JPH02151623A - Epoxy resin composition and prepreg - Google Patents

Epoxy resin composition and prepreg

Info

Publication number
JPH02151623A
JPH02151623A JP30561288A JP30561288A JPH02151623A JP H02151623 A JPH02151623 A JP H02151623A JP 30561288 A JP30561288 A JP 30561288A JP 30561288 A JP30561288 A JP 30561288A JP H02151623 A JPH02151623 A JP H02151623A
Authority
JP
Japan
Prior art keywords
epoxy resin
weight
parts
resin
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP30561288A
Other languages
Japanese (ja)
Other versions
JPH0639519B2 (en
Inventor
Yasuhisa Nagata
康久 永田
Masafumi Hoyano
穂谷野 雅史
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Toho Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toho Rayon Co Ltd filed Critical Toho Rayon Co Ltd
Priority to JP63305612A priority Critical patent/JPH0639519B2/en
Publication of JPH02151623A publication Critical patent/JPH02151623A/en
Publication of JPH0639519B2 publication Critical patent/JPH0639519B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To make the title compsn. curable at a relatively low temp. and to improve storage stability by compounding an epoxy resin, a specified thermoplastic resin, dicyandiamide, a urea compd. and diaminodiphenyl sulfone. CONSTITUTION:The title compsn. is obtd. by compounding 100 pts.wt. (hereinbelow described merely as pts.) epoxy resin (A) contg. 50 pts. or more glydcidylamine epoxy resin, 10-20 pts. thermoplastic resin (B) selected from polyamide, PS, polyether sulfone and polyetherimide with a particle diameter of pref 400mum or smaller and a glass transition temp. of 200 deg.C or higher, 2-10 pts. fine powder of dicyandiamide (C) with a particle diameter of pref. 10mum or smaller, 2-5 pts. urea compd. (D) of the formula (wherein X and Y are each H, Cl or OCH3) and 15-30 pts. diaminodiphenyl sulfone (E). A prepreg is obtd. by impregnating carbon fibers with this compsn.

Description

【発明の詳細な説明】 (技術分野) 本発明は、比較的低温での硬化が可能で、しかも、貯蔵
安定性に優れたエポキシ樹脂組成物、及び、該樹脂組成
物を炭W:繊維に含浸させたプリプレグに関するもので
ある。本発明の樹脂組成物を炭素繊維に含浸させた本発
明のプリプレグは、ドレープ性、タック性に優れ、プリ
プレグの取扱性が良好である。また、該プリプレグから
得られる成形物は、耐熱性、機械的特性に優れるため、
得られた炭素繊維強化樹脂複合材料(CFRPコンポジ
ット)は炭素mMの高強度、高弾性率をよく反映し、特
に曲げ強度に優れたコンポジット(複合材料)を与え、
且つ、破壊靭性(衝撃特性)にも優れたものである。
Detailed Description of the Invention (Technical Field) The present invention provides an epoxy resin composition that can be cured at a relatively low temperature and has excellent storage stability, and a method for applying the resin composition to charcoal W: fibers. It relates to impregnated prepreg. The prepreg of the present invention, in which carbon fibers are impregnated with the resin composition of the present invention, has excellent drape properties and tack properties, and has good handleability. In addition, molded products obtained from the prepreg have excellent heat resistance and mechanical properties, so
The obtained carbon fiber reinforced resin composite material (CFRP composite) reflects the high strength and high elastic modulus of carbon mM, giving a composite with particularly excellent bending strength.
Moreover, it has excellent fracture toughness (impact properties).

〔従来技術〕[Prior art]

m維強化樹脂複合材料は、高い比強度、比弾性率を有し
ており、軽急化高強力材料として、長繊維、短繊維の強
化mtaと各種のマトリックス樹脂と複合化され、航空
宇宙、船舶、車両等の輸送機器、オートメーション機器
等の先端産業分野の機能部材、釣竿、ゴルフシャフト等
のスポーツ・レジャー用品における高性能製品として広
く使用されている。このようなII維強化樹脂複合材料
のマトリックス樹脂として、長繊維状の強化繊維を使用
するものについては、従来、不飽和ポリエステル樹脂、
エポキシ樹脂、ポリイミド樹脂等の熱硬化性樹脂が使用
されてきた。
M-fiber reinforced resin composite material has high specific strength and specific modulus, and is used as a lightweight, high-strength material by compounding it with reinforced mta of long fibers and short fibers and various matrix resins, and is used in aerospace, aerospace, etc. It is widely used as a high-performance product in transportation equipment such as ships and vehicles, functional components in cutting-edge industrial fields such as automation equipment, and sports and leisure goods such as fishing rods and golf shafts. Conventionally, unsaturated polyester resin, unsaturated polyester resin,
Thermosetting resins such as epoxy resins and polyimide resins have been used.

コンポジットを製造する場合、炭素繊維に前記の熱硬化
性樹脂を含浸させたプリプレグを中間製品として作り、
これを所定の寸法、角度に積層し、加熱加圧により硬化
させ、成形品とする方法が一般的である。
When manufacturing a composite, prepreg, which is carbon fiber impregnated with the above-mentioned thermosetting resin, is made as an intermediate product.
A common method is to stack these materials at predetermined dimensions and angles and harden them by heating and pressing to form a molded product.

釣竿、ゴルフシャフト等のスポーツレジャー用複合材料
の製造においても、プリプレグの形態を経てコンポジッ
ト化される場合が多く、マトリックス樹脂としては、極
々の熱硬化性樹脂の中でも120〜130℃の比較的低
い温度で成形可能で、且つ、機械的特性の良好なエポキ
シ樹脂がよく使用されている。
In the manufacture of composite materials for sports and leisure such as fishing rods and golf shafts, they are often made into composites through the form of prepreg, and the matrix resin is a relatively low temperature of 120 to 130 °C even among extremely thermosetting resins. Epoxy resins are often used because they can be molded at high temperatures and have good mechanical properties.

〔従来技術における問題点〕[Problems with conventional technology]

比較的低い温度で成形可能なタイプのエポキシ樹脂組成
物は、特公昭58−5925号公報にあるように、エポ
キシ樹脂と、ジシアンジアミド/尿素化合物系硬化促進
剤とを組合せた組成物が主である。この場合の主成分エ
ポキシ樹脂の種類は、フェノールノボラック型とビスフ
ェノール△型エポキシ樹脂の組合せであるため、硬化樹
脂の架橋密度が低く弾性率に若干劣る問題があったり、
特に高弾性炭素繊維を用いたコンポジットのマトリック
ス樹脂として使用したときに、平板の見掛のO°曲げ強
さが低い等、コンポジットとしての性能を充分に引き出
せないものであった。
Epoxy resin compositions that can be molded at relatively low temperatures are mainly compositions that combine an epoxy resin and a dicyandiamide/urea compound curing accelerator, as disclosed in Japanese Patent Publication No. 58-5925. . In this case, the type of main component epoxy resin is a combination of phenol novolac type and bisphenol △ type epoxy resin, so there is a problem that the crosslinking density of the cured resin is low and the elastic modulus is slightly inferior.
In particular, when used as a matrix resin for a composite using high modulus carbon fibers, the apparent 0° bending strength of the flat plate was low, and the performance as a composite could not be fully brought out.

特開昭60−58422号公報では、テトラグリシジル
ジアミノジフェニルメタン/ノボラック型エポキシ樹脂
/ジシアンジアミド/尿素化合物系硬化促進剤の組合せ
で、耐熱性が高く、且つ、低温速硬化性を有し、保存安
定性の良好な組成物を提供している。この場合、樹脂組
成物の粘度を調節する目的で、少量のジアミノジフェニ
ルスルホンを予備重合してもよいことが記述されている
が、これにより、成形物の機械的特性は充分に向上して
いない。また、この場合、マトリックス樹脂の剛性が高
いため、平板の0゜曲げ強さ等の機械的特性には優れる
ものの、樹脂が硬く脆いため、フンポジットの衝撃特性
に劣るという欠点を有していた。
JP-A No. 60-58422 discloses a combination of tetraglycidyldiaminodiphenylmethane/novolac type epoxy resin/dicyandiamide/urea compound curing accelerator, which has high heat resistance, fast curing properties at low temperatures, and storage stability. It offers a good composition. In this case, it is stated that a small amount of diaminodiphenylsulfone may be prepolymerized in order to adjust the viscosity of the resin composition, but this does not sufficiently improve the mechanical properties of the molded product. . Furthermore, in this case, since the rigidity of the matrix resin is high, the mechanical properties such as the 0° bending strength of a flat plate are excellent, but since the resin is hard and brittle, it has the disadvantage that it is inferior to the impact properties of a hunposite.

更に、特開昭62−129308号公報では、エポキシ
樹脂/ポリアリルエーテルスルホン/ジシアンジアミド
/尿素化合物系硬化促進剤の組合せが示されている。こ
の場合も、エポキシ樹脂にポリアリルエーテルスルホン
を混入することで、樹脂組成物の粘度を調節し、成形時
のフローコントロールを行い、機械的特性を低下させる
ことな(成形性を向上させようとしたものである。
Further, JP-A-62-129308 discloses a combination of epoxy resin/polyallyl ether sulfone/dicyandiamide/urea compound type curing accelerator. In this case as well, by mixing polyallylether sulfone into the epoxy resin, the viscosity of the resin composition is adjusted, flow control is performed during molding, and mechanical properties are not deteriorated (in order to improve moldability). This is what I did.

しかしながら、この場合は、硬化樹脂の架橋密度を高め
ることで、マトリックス樹脂の剛性を向上させ、コンポ
ジットの機械的特性を高めるような目的のものではなく
、事実、高強度・高弾性炭素繊維の優れた繊維性能を充
分に引き出し得るに適した組成のものではなかった。
However, in this case, the purpose of increasing the crosslinking density of the cured resin is not to improve the rigidity of the matrix resin and improve the mechanical properties of the composite. The composition was not suitable for fully bringing out the fiber performance.

(発明の目的) 本発明は、上記の欠点を克服し、比較的低温での硬化が
可能で、しかも、貯蔵安定性に優れ、用いられる炭素繊
維の高強度、高弾性率をよく反映し、特に曲げ強さと衝
撃特性を兼備したコンポジットを与えるような樹脂組成
物及びプリプレグを提供しようとするものである。
(Objective of the Invention) The present invention overcomes the above-mentioned drawbacks, can be cured at a relatively low temperature, has excellent storage stability, and reflects the high strength and high modulus of the carbon fiber used. In particular, it is an object of the present invention to provide a resin composition and a prepreg that provide a composite having both bending strength and impact properties.

(発明の構成及び効果) 本発明は、下記の通りである。(Structure and effects of the invention) The present invention is as follows.

(1)下記〔A〕〜〔E〕を含み、80℃での溶融粘度
が100〜10,000ボイスであり、且つ、90〜1
30℃で硬化可能なエポキシ樹脂組成物。
(1) Contains the following [A] to [E], has a melt viscosity of 100 to 10,000 voices at 80°C, and 90 to 1
An epoxy resin composition that can be cured at 30°C.

(A)少なくとも50重置部以上のグリシジルアミン型
エポキシ樹脂を含んだエポキシ樹脂100重量部 (B)ポリアミド、ポリスルホン、ポリエーテルスルホ
ン、ポリエーテルイミドの中から選ばれた少なくとも1
種類の熱可塑性樹脂10〜30重量部 (C)ジシアンジアミド  2〜10重量部(D)下式
で示される尿素化合物 2〜5重量部 (但し、X、Yは同−又は異なりてH,CI、OCH*
を表わす。) (E)ジアミノジフェニルスルホン 15〜30重量部 (2)炭素繊維に請求項(1)記載のエポキシ樹脂組成
物を含浸させたプリプレグ。
(A) 100 parts by weight of an epoxy resin containing at least 50 parts or more of glycidylamine type epoxy resin (B) At least one selected from polyamide, polysulfone, polyether sulfone, and polyetherimide
10 to 30 parts by weight of thermoplastic resin (C) 2 to 10 parts by weight of dicyandiamide (D) 2 to 5 parts by weight of a urea compound represented by the following formula (where X and Y are the same or different and H, CI, OCH*
represents. ) (E) 15 to 30 parts by weight of diaminodiphenylsulfone (2) A prepreg obtained by impregnating carbon fiber with the epoxy resin composition according to claim (1).

本発明のエポキシ樹脂組成物は、その製造に当って溶剤
を使用しないで、(B)成分を予め(A)成分に均一に
溶解せしめ、その後(C)(D)(E)成分と混合する
とき、特に熱可塑性樹脂成分の配合割合が高い、比較的
均一なホットメルト用マトリックス樹脂組成物を与える
ことができる。熱可塑性樹脂成分をマトリックス樹脂に
加える場合、樹脂組成物全体の粘度が上昇する傾向にあ
るため、用いるエポキシ樹脂(A)成分は、50℃の粘
度が100ポイズ以下の樹脂を50重量部以上用いるこ
とが好ましい。
The epoxy resin composition of the present invention is manufactured by uniformly dissolving component (B) in component (A) in advance without using a solvent, and then mixing it with components (C), (D), and (E). In this case, it is possible to provide a relatively uniform hot melt matrix resin composition having a particularly high blending ratio of the thermoplastic resin component. When adding a thermoplastic resin component to a matrix resin, the viscosity of the entire resin composition tends to increase, so the epoxy resin (A) component used is 50 parts by weight or more of a resin with a viscosity of 100 poise or less at 50°C. It is preferable.

本発明の組成物から得られるプリプレグは、エポキシ樹
脂成分の浸れた機械的特性、耐熱性を損ねることなく、
靭性及びそれに伴なう衝撃特性の改良されたコンポジッ
トを与えることができる。
The prepreg obtained from the composition of the present invention can be prepared without impairing the mechanical properties and heat resistance of the epoxy resin component.
Composites can be provided with improved toughness and associated impact properties.

本発明において用いられる炭素Illは、コンポジット
としての優れた機械的特性を発揮させるため、引張り強
さ300kgf/n+*”以上、弾性率20T on/
 s+n’以上の炭素繊維が望ましい。また、本発明の
樹脂組成物は、炭素繊維の高強度、高弾性率をよく反映
するものであり、引張り弾性率40〜60T on/ 
a++n’の高弾性炭素繊維においても、加成性を仮定
して計輝によって求められる計算弾性率の80%以上の
寄与率を保持した曲げ弾性率を与え、高強度・高弾性炭
素繊維に適した樹脂組成物といえる。
In order to exhibit excellent mechanical properties as a composite, the carbon Ill used in the present invention has a tensile strength of 300 kgf/n+*" or more and an elastic modulus of 20 T on/
Carbon fibers of s+n' or more are desirable. In addition, the resin composition of the present invention reflects the high strength and high elastic modulus of carbon fiber, and has a tensile elastic modulus of 40 to 60 T on/
Even for a++n' high modulus carbon fibers, it provides a bending modulus that maintains a contribution rate of 80% or more of the calculated modulus calculated by Keiki assuming additivity, making it suitable for high strength and high modulus carbon fibers. It can be said that it is a resin composition.

本発明において使用されるマトリックス樹脂組成物のう
ち、(A)成分のグリシジルアミン型エポキシ樹脂とし
ては、アラルダイトMY120メ’irM−100、E
LM−434(住友化学社製)、エピコート604(シ
ェル化学社製)等がある。
Among the matrix resin compositions used in the present invention, the glycidylamine type epoxy resins as component (A) include Araldite MY120 Me'irM-100, E
Examples include LM-434 (manufactured by Sumitomo Chemical Co., Ltd.) and Epicote 604 (manufactured by Shell Chemical Co., Ltd.).

(A)Jilt分のエポキシ樹脂のうち、グリシジルア
ミン型エポキシ樹脂は50重量部以上用いることが必要
である。50重撮部未満の場合は、樹脂硬化物の架橋密
度が思うように充分上らず、ガラス転移温度が低く、耐
熱性、機械的強度共に低下するようになる。
(A) Among the epoxy resins for Jilt, it is necessary to use 50 parts by weight or more of the glycidylamine type epoxy resin. If the crosslinking density is less than 50, the crosslinking density of the cured resin product will not increase as expected, the glass transition temperature will be low, and both heat resistance and mechanical strength will decrease.

(A)成分のエポキシ樹脂は、その他にビスフェノール
A型エポキシ樹脂として、エピコート  815、エピ
コート828.1ビコート  834、エピコート 1
001、エピコート 1002 (シェル化学社製)、
フェノール・ノボラック型エポキシ樹脂として、エピコ
ート  152、エピコート  154(シェル化学社
製)、ダウエポキシDEN  431、DEN  43
8、DEN  439(ダウケミカル社製)、EPPN
  201(日本化薬社製)、エビクロンN   74
0(DrC社製)等、クレゾール・ノボラック型エポキ
シ樹脂として、アラルダイトE CN  1235、E
CN  1273、E CN 1280 (チバ・ガイ
ギー社製)、EOCN   102、E OCN   
103、εOCN   104(日本化薬社製)等を使
用することもできる。
The epoxy resins of component (A) include Epicoat 815, Epicoat 828.1 Bikoat 834, and Epicoat 1 as bisphenol A epoxy resins.
001, Epicote 1002 (manufactured by Shell Chemical Co., Ltd.),
As phenol/novolac type epoxy resins, Epicote 152, Epicote 154 (manufactured by Shell Chemical Co., Ltd.), Dowepoxy DEN 431, DEN 43
8, DEN 439 (manufactured by Dow Chemical Company), EPPN
201 (manufactured by Nippon Kayaku Co., Ltd.), Ebicuron N 74
Araldite E CN 1235, E as a cresol novolak type epoxy resin such as 0 (manufactured by DrC), etc.
CN 1273, E CN 1280 (manufactured by Ciba Geigy), EOCN 102, E OCN
103, εOCN 104 (manufactured by Nippon Kayaku Co., Ltd.), etc. can also be used.

また、脂環式エポキシ樹脂として、アラルダイトCY−
179、CY−178、CY−182、C’y’−18
3(チバ・ガイギー社製)等を用いることもできる。
In addition, as an alicyclic epoxy resin, Araldite CY-
179, CY-178, CY-182, C'y'-18
3 (manufactured by Ciba Geigy), etc. can also be used.

ウレタン変性、ビスフェノールA型エポキシ樹脂である
7デカレジンEPLI−6、EPU−10、EPU−1
5(旭電化社製)を10重量部程度用いた場合、可撓性
に優れ、強化材繊維と接着性の良い樹脂組成物を与える
ことができる。
7 decal resin EPLI-6, EPU-10, EPU-1 which is urethane modified bisphenol A type epoxy resin
5 (manufactured by Asahi Denka Co., Ltd.) in an amount of about 10 parts by weight, it is possible to provide a resin composition with excellent flexibility and good adhesion to reinforcing fibers.

樹脂組成物全体の粘度を調整する意味で、樹脂硬化物の
耐熱性を低下させない程度の配合量で、エポキシ樹脂系
の反応性希釈剤、例えばポリプロピレングリコールジグ
リシジルエーテル、ジグリシジルエーテル、ブタンジオ
ールグリシジルエーテル、2−グリシジルフェニールグ
リシジルエーテル、レゾルシノールジグリシジルエーテ
ル、アルキルフェノールグリシジルエーテル、フェニー
ルグリシジルエーテル、ブチルグリシジルエーテル、ク
レゾールグリシジルエーテル、スチレンオキサイド等を
併用することもできる。この場合、これらの配合量は1
0重量部以下が好ましい。
In order to adjust the viscosity of the entire resin composition, an epoxy resin-based reactive diluent such as polypropylene glycol diglycidyl ether, diglycidyl ether, butanediol glycidyl is added in an amount that does not reduce the heat resistance of the cured resin product. Ether, 2-glycidyl phenyl glycidyl ether, resorcinol diglycidyl ether, alkylphenol glycidyl ether, phenyl glycidyl ether, butyl glycidyl ether, cresol glycidyl ether, styrene oxide, etc. can also be used in combination. In this case, the amount of these ingredients is 1
It is preferably 0 parts by weight or less.

(B)成分の熱可塑性樹脂には、ポリアミド樹脂として
融点150”C以上の熱可塑性ポリアミドであるエルバ
ミド(デュポン社製)、ガラス転移温度190℃以上の
ポリスルホン樹脂であるニーデルポリスルホンP −1
700(ユニオン・カーバイド社製)、ガラス転移温度
220℃以上のポリエーテルスルホン樹脂であるごクト
レックスPE5(I(1社製)、ガラス転移温度210
℃以上のポリエーテルイミに樹脂であるULTEM (
GE社製)が挙げられるが、樹脂調製の面からこれらの
熱可塑性樹脂は粒子径400μm以下、y特に100μ
m以下の粉末状であることが好ましい。
The thermoplastic resin of component (B) includes Elvamide (manufactured by DuPont), which is a thermoplastic polyamide with a melting point of 150"C or higher as a polyamide resin, and Needle Polysulfone P-1, which is a polysulfone resin with a glass transition temperature of 190"C or higher.
700 (manufactured by Union Carbide), Goctrex PE5 (I (manufactured by 1), a polyether sulfone resin with a glass transition temperature of 220°C or higher, glass transition temperature 210
ULTEM (
(manufactured by GE), but from the viewpoint of resin preparation, these thermoplastic resins have a particle size of 400 μm or less, especially 100 μm.
It is preferable that the powder be in the form of a powder having a particle diameter of m or less.

また、耐熱性を考慮するなら、ガラス転移温度200℃
以上の熱可塑性樹脂を使用した方が好ましい。特に、ポ
リエーテルスルホン樹脂であるピクトレックスPE5(
ICI社製)とポリエーテルイミド樹脂であるULTE
M (GE社成酸物優れた機械的特性、耐熱性を損ねる
ことなく、靭性及びそれに伴なう衝撃特性が改良され、
結果的に良好なコンポジット性能を与える成形物を得る
ことが可能である。
Also, if you consider heat resistance, the glass transition temperature is 200℃.
It is preferable to use the above thermoplastic resins. In particular, the polyether sulfone resin Pictrex PE5 (
manufactured by ICI) and ULTE, a polyetherimide resin.
M (GE Co., Ltd. oxide) Excellent mechanical properties, improved toughness and associated impact properties without sacrificing heat resistance,
As a result, it is possible to obtain moldings that give good composite performance.

これらの熱可塑性樹脂は、エポキシ樹脂100重量部に
対して、10〜30重量部用いる必要がある。10重量
部より少ないと、機械的強度は良好であるが、樹脂が脆
く、衝撃特性に劣る傾向がある。30重量部より多くな
ると、樹脂組成物全体の粘度が高くなり、プリプレグ作
製時の作業性に支障をきたしたり、タック性やドレープ
性などのプリプレグ自身の取扱性も悪くなり、結果的に
コンポジット性能にも悪影響を及ぼすため好ましくない
These thermoplastic resins need to be used in an amount of 10 to 30 parts by weight based on 100 parts by weight of the epoxy resin. When the amount is less than 10 parts by weight, mechanical strength is good, but the resin tends to be brittle and have poor impact properties. If the amount exceeds 30 parts by weight, the viscosity of the entire resin composition will increase, which may impede workability during prepreg production, and the handleability of the prepreg itself, such as tackiness and drapability, will deteriorate, resulting in poor composite performance. This is not desirable as it has a negative effect on

(C)成分のジシアンジアミドは市販のものが使用され
るが、反応性や成形性を考慮して、粒子径10μ−以下
の微粉状のものが好ましい。
A commercially available dicyandiamide as component (C) is used, but in consideration of reactivity and moldability, a finely powdered dicyandiamide with a particle size of 10 μm or less is preferable.

(C)成分のジシアンジアミドと(D)成分の尿素化合
物を併用することで、90〜130℃の温度において3
0〜120分の硬化時間で完全硬化が可能で、且つ、室
温で1力月以上の可使時間を持つ樹脂組成物及びプリプ
レグを提供することができる。
By using the dicyandiamide (C) component and the urea compound (D) component together, the
It is possible to provide a resin composition and prepreg that can be completely cured in a curing time of 0 to 120 minutes and have a pot life of 1 month or more at room temperature.

(C)成分の使用量は、2〜10重石部である。The amount of component (C) used is 2 to 10 parts by weight.

2重量部より少ないと、硬化剤としての役割を発揮せず
、10重間部より多いと、反応に関与しないものが樹脂
組成物中に残存し、コンポジットの成形性や機械的特性
に悪影響を及ぼす。
If it is less than 2 parts by weight, it will not function as a curing agent, and if it is more than 10 parts by weight, substances that do not participate in the reaction will remain in the resin composition, adversely affecting the moldability and mechanical properties of the composite. affect

(D)成分の尿素化合物は、2〜5重石部が必要である
。2重量部より少ないと、硬化促進剤としての役割を発
揮せず、5量産部より多l掌*と反応性が強すぎて、比
較的低い温度で反応が進むため、樹脂混合時の温度等の
管理条件が厳しくなり作業性に支障をきたしたり、プリ
プレグ自身の可使時間も短いものとなってしまう。
The urea compound of component (D) requires 2 to 5 helical parts. If it is less than 2 parts by weight, it will not function as a curing accelerator and will be too reactive (more than 5 parts by weight), and the reaction will proceed at a relatively low temperature, so the temperature during resin mixing etc. The control conditions become stricter, which impedes workability and shortens the usable life of the prepreg itself.

(C)成分と(D)成分の配合割合は、使用目的、成形
方法、成形条件等を考慮して、任意に決めることができ
る。
The blending ratio of component (C) and component (D) can be arbitrarily determined in consideration of the intended use, molding method, molding conditions, etc.

(E)成分のジアミノジフェニルスルホンは、市販のも
のを使用すればよい。配合量としては、15〜30重量
部用いるが、本発明の樹脂系において、(C)成分と(
D)成分の使用だけで充分完全硬化が可能であるにもか
かわらず、更にアミン成分が過剰になることを承知の上
で(E)成分を使用する目的は、この系に(E)成分を
添加することで、コンポジットの機械的強度が更に向上
することにある。特に、高弾性炭素繊維を用いた場合に
、炭素llHの高弾性率をコンポジットに効率良く反映
させることができる。
As the component (E), diaminodiphenylsulfone, a commercially available one may be used. The blending amount is 15 to 30 parts by weight, but in the resin system of the present invention, component (C) and (
Even though it is possible to completely cure the system by using component D), the purpose of using component (E) is to add component (E) to this system, knowing that the amine component will be in excess. By adding it, the mechanical strength of the composite can be further improved. In particular, when high modulus carbon fibers are used, the high modulus of elasticity of carbon IIH can be efficiently reflected in the composite.

即ち、(C)成分/〔D〕成分/(E)成分の併用によ
り、90〜130℃の温度において30〜120分の硬
化時間で完全硬化が可能で、且つ、用いられる炭素繊維
の高強度、高弾性率をよく反映し、特に曲げ強度に優れ
たコンポジットを与えることができたのである。この場
合、〔A)成分として50重量部以上用いられているグ
リシジルアミン型エポキシ樹脂も、(E)成分との併用
において重要であり、硬化樹脂の弾性率を更に向上させ
、コンポジットの機械的性質を高める役割がある。特に
、後で述べる予備反応した場合に効果が一層発揮される
That is, by the combination of component (C)/component [D]/component (E), complete curing is possible at a temperature of 90 to 130°C in a curing time of 30 to 120 minutes, and the carbon fiber used has high strength. We were able to provide a composite that reflected the high modulus of elasticity and had particularly excellent bending strength. In this case, the glycidylamine type epoxy resin used in an amount of 50 parts by weight or more as component [A) is also important when used in combination with component (E), and further improves the elastic modulus of the cured resin and improves the mechanical properties of the composite. It has the role of increasing In particular, the effect is more pronounced when a preliminary reaction, which will be described later, is carried out.

(E)成分の配合間としては、15〜30重量部用いる
が、15重量部より少ないと、配合による効果が不充分
であり、30重量部より多いと、成形物の吸湿特性が低
下してくるため好ましくない。
The blending ratio of component (E) is 15 to 30 parts by weight, but if it is less than 15 parts by weight, the effect of the blending will be insufficient, and if it is more than 30 parts by weight, the moisture absorption properties of the molded product will deteriorate. This is not desirable because it causes

(E)成分の15〜30重量部の中から、少量の(E)
成分を取り出して、(A)成分の一′部又は令聞と予備
反応させてもかまわない。この場合、予備反応条件とし
ては、120℃〜140℃の温度で60〜120分、(
A)成分ioo重旦部に対して(E)成分15重撮部以
下が好ましい。
A small amount of (E) from 15 to 30 parts by weight of component (E)
The component may be extracted and preliminarily reacted with a portion or portion of component (A). In this case, the preliminary reaction conditions are 60 to 120 minutes at a temperature of 120 to 140 °C (
It is preferable that component (E) has 15 or less weights compared to 10 weights of component A).

また、エポキシ樹脂用硬化促進剤として、ご(少量の、
BF1七ノエチルアミン、BF3ベンジルアミン、2−
エチル−4メチルイミダゾール、2−エチルイミダゾー
ル、2,4−ジメチルイミダゾール、2−フェニルイミ
ダゾール、Go(II)アセチルアセトネート等を併用
することもできる。
In addition, as a curing accelerator for epoxy resin, a small amount of
BF1 heptanoethylamine, BF3 benzylamine, 2-
Ethyl-4methylimidazole, 2-ethylimidazole, 2,4-dimethylimidazole, 2-phenylimidazole, Go(II) acetylacetonate, etc. can also be used in combination.

本発明で(B)成分は、エポキシ樹脂と均一と に混合せず、適度の相分離構造を灰る場合があるが、む
しろコンポジットの衝撃特性を向上させる傾向があり好
ましい。
In the present invention, component (B) does not mix uniformly with the epoxy resin and may destroy a proper phase separation structure, but it is preferable because it tends to improve the impact properties of the composite.

本発明に用いられるプリプレグ用樹脂組成物の中には、
上記の各必須成分以外に、耐熱性を低下させない程度の
少量のゴム成分(例えば、カルボキシル基末端のブタジ
ェン−アクリロニトリル共重合体、ニトリルゴム、エポ
キシ変性ポリブタジェンゴム等〉、プリプレグの取扱〆
性を悪くしない程度の充填剤(例えば、シリカ粉末)、
三酸化アンチモンのような難燃剤又は着色剤等を添加し
てもかまわない。
Among the prepreg resin compositions used in the present invention,
In addition to the above-mentioned essential components, a small amount of rubber components (e.g. carboxyl-terminated butadiene-acrylonitrile copolymer, nitrile rubber, epoxy-modified polybutadiene rubber, etc.) that does not reduce heat resistance, and prepreg handling properties. Filler (for example, silica powder) to the extent that it does not deteriorate the
Flame retardants such as antimony trioxide or coloring agents may be added.

本発明のプリプレグ用樹脂組成物の調製は、例えば以下
の方法により行うことができる。
The prepreg resin composition of the present invention can be prepared, for example, by the following method.

即ら、各成分を混線装置に供給し、好ましくは不活性ガ
ス雰囲気下、加熱混練する。この際の加熱温度はエポキ
シ樹脂の硬化開始湿度より低温とする。又は、(A)成
分に(8)成分を溶解後、(C)(D)(E)成分を加
え混練してもよい。通常は20〜200℃の温度、特に
好ましくは、100〜150℃の温度にて(B)成分を
(A)成分に溶解させる。この場合、樹脂調製の面から
、溶解を速めるため(B)成分は100μ以下の微粉末
状であることが好ましい。
That is, each component is supplied to a mixing device and heated and kneaded, preferably under an inert gas atmosphere. The heating temperature at this time is lower than the humidity at which the epoxy resin starts curing. Alternatively, after dissolving component (8) in component (A), components (C), (D), and (E) may be added and kneaded. Component (B) is dissolved in component (A) usually at a temperature of 20 to 200°C, particularly preferably at a temperature of 100 to 150°C. In this case, from the viewpoint of resin preparation, component (B) is preferably in the form of a fine powder of 100 μm or less in order to speed up dissolution.

この操作により、熱可塑性樹脂が30重量部まで高配合
されたエポキシ樹脂組成物を調製することが可能となる
が、熱可塑性樹脂を30重量部以上配合させることは、
組成物の粘度が非常に高くなり混線が難しくなるため、
好ましくない。
By this operation, it is possible to prepare an epoxy resin composition containing as much as 30 parts by weight of a thermoplastic resin.
The viscosity of the composition becomes very high, making crosstalk difficult.
Undesirable.

また、結果的に得られるコンポジットの機械的特性にも
、悪影響を及ぼすようになる。
The mechanical properties of the resulting composite will also be adversely affected.

本発明のプリプレグ用樹脂組成物を炭素繊維に含浸させ
プリプレグとする場合は、既に知られている所謂ホット
メルト法により行うことができる。
When carbon fibers are impregnated with the resin composition for prepreg of the present invention to form a prepreg, the so-called hot melt method, which is already known, can be used.

本発明の樹脂組成物は(A)成分のエポキシ樹脂に(B
)成分の熱可塑性樹脂を溶解させるため、ホット・メル
ト方式のプリプレグ製造が可能であり、しかも、残存溶
剤の影響もなく、エポキシ樹脂の優れた耐熱性と熱可塑
性樹脂の靭性・衝撃強さ等を兼ね備えた優れたプリプレ
グ用樹脂組成物が与えられる。
The resin composition of the present invention has an epoxy resin as a component (A) and a component (B).
), it is possible to manufacture prepregs using the hot melt method because the thermoplastic resin of the component is dissolved, and there is no influence of residual solvent, and the epoxy resin has excellent heat resistance and the thermoplastic resin has excellent toughness and impact strength. This provides an excellent prepreg resin composition that has the following properties.

また、溶解性の問題から、(B)成分が50μ以下の相
となって析出してくる場合もあるが、その場合でもホッ
ト・メルト方式によるプリプレグ作製に支障はない。
Further, due to solubility problems, component (B) may precipitate as a phase of 50 μm or less, but even in this case, there is no problem in producing prepreg by the hot melt method.

このような操作によって得られた一方向又は織物プリプ
レグは、品質的にも良好なものである。
The unidirectional or woven prepreg obtained by such an operation is of good quality.

〔実施例及び比較例〕[Examples and comparative examples]

実施例1〜6及び比較例1〜7 主成分である(A)(B)成分が、第1表に示す種類及
び配合割合になるよう計量してビーカーに取った。これ
を、130℃、1時間攪拌しながら加熱させ、均一な樹
脂混合物を得た。次に、ロールミル混合において、第1
表に示す配合割合の(C)(D)(E)成分を加え、8
0℃、30分混合を行い、プリプレグ用樹脂組成物を得
、樹脂組成物の130℃でゲルタイム及び80℃での粘
度を測定した。
Examples 1 to 6 and Comparative Examples 1 to 7 The main components (A) and (B) were weighed and placed in a beaker so that the types and blending ratios were as shown in Table 1. This was heated at 130° C. for 1 hour with stirring to obtain a uniform resin mixture. Next, in roll mill mixing, the first
Add ingredients (C), (D), and (E) in the proportions shown in the table, and
Mixing was carried out at 0°C for 30 minutes to obtain a resin composition for prepreg, and the gel time of the resin composition at 130°C and the viscosity at 80°C were measured.

この組成物からフィルムコーターを用いて樹脂フィルム
を作製し、この樹脂フィルム上に炭素繊維(CF)ベス
ファイトl−IMs−46X(東邦レーヨン社製、引張
り強さ380kg f / mm’ 、弾性率46T1
01’ )を並べ、加熱、含浸させ、CF目付140o
/II ’ 、樹脂含有率34重量%の一方向ブリブレ
グを得た。プリプレグの可使時間は、23℃の温調され
た部屋に放置し、プリプレグのドレープ性がなくなるま
での時間とした。
A resin film was prepared from this composition using a film coater, and carbon fiber (CF) Besphite l-IMs-46X (manufactured by Toho Rayon Co., Ltd., tensile strength 380 kg f/mm', elastic modulus 46T1) was coated on the resin film.
01') were arranged, heated and impregnated, and the CF area weight was 140o.
/II', a unidirectional bobble leg with a resin content of 34% by weight was obtained. The pot life of the prepreg was defined as the time until the prepreg loses its drapability after being left in a temperature-controlled room at 23°C.

このプリプレグより、所定の枚数のプリプレグをカット
、積層し、昇温速度2℃/分、130℃で90分の成形
条件でオートクレーブ成形により加熱硬化させた成形板
より試験片を切りだし、ガラス転移潤度、O′層tmせ
ん断強さ、O°曲げ強さ、±45°シャルピー衝撃値を
測定した。
From this prepreg, a predetermined number of sheets of prepreg were cut and laminated, and a test piece was cut out from a molded plate that was heat-cured by autoclave molding at a heating rate of 2°C/min and 130°C for 90 minutes, and the glass transition Moisture content, O' layer tm shear strength, O° bending strength, and ±45° Charpy impact value were measured.

また、加成性を仮定して炭素繊維の弾性率より算出され
たコンポジットの曲げ弾性率ECに対する、実測の曲げ
弾性率Erの寄与率(Er /f−cxloo)を計算
により求めた。結果を第1表に示す。
Furthermore, the contribution ratio (Er /f-cxloo) of the actually measured bending elastic modulus Er to the bending elastic modulus EC of the composite calculated from the elastic modulus of carbon fibers assuming additivity was calculated. The results are shown in Table 1.

また、比較例として、(A)成分の内、グリシジルアミ
ン型エポキシ樹脂が50重量部未満の系、(B)成分が
少ない系、(B)成分が多い系、(C)成分の少ない系
、(D)成分の少ない系、(E)成分を入れない系につ
いても、実施例と同条件でプリプレグを作製、成形し、
物性を測定した。得られた結果を第2表に示す。
In addition, as comparative examples, systems containing less than 50 parts by weight of glycidylamine type epoxy resin in the component (A), systems with a small amount of the (B) component, systems with a large amount of the (B) component, systems with a small amount of the (C) component, For systems with a small amount of component (D) and systems without component (E), prepregs were prepared and molded under the same conditions as in the example,
Physical properties were measured. The results obtained are shown in Table 2.

以上の結果より、実施例1〜6の場合は、比較例に比べ
比較的低温で硬化可能で、コンポジット性能にも優れて
いることが明らかとなった。
From the above results, it has become clear that Examples 1 to 6 can be cured at a relatively low temperature and have excellent composite performance compared to Comparative Examples.

実施例7 主成分である(A)(B)成分が、第1表に示す種類及
び配合割合になるよう計量してビーカーに取った。これ
を、130℃、1時間攪拌しながら加熱させ、均一な樹
脂混合物を得た。次に、(E)成分を10重量部加え、
130℃、120分子備反応を行なった。次に、ロール
ミル混合において、第1表に示す配合割合の(C)(D
)とI’E)成分10重量部企加え、80℃、30分混
合を行い、プリプレグ用樹脂組成物を得、樹脂組成物の
130℃でゲルタイム及び80℃での粘度を測定した。
Example 7 Components (A) and (B), which are the main components, were weighed and placed in a beaker so that the types and blending ratios were as shown in Table 1. This was heated at 130° C. for 1 hour with stirring to obtain a uniform resin mixture. Next, add 10 parts by weight of component (E),
A reaction with 120 molecules was carried out at 130°C. Next, in roll mill mixing, (C) (D) with the blending ratio shown in Table 1.
10 parts by weight of components ) and I'E) were added and mixed at 80°C for 30 minutes to obtain a prepreg resin composition.The gel time of the resin composition at 130°C and the viscosity at 80°C were measured.

Claims (2)

【特許請求の範囲】[Claims] (1)下記〔A〕〜〔E〕を含み、80℃での溶融粘度
が100〜10,000ポイズであり、且つ、90〜1
30℃で硬化可能なエポキシ樹脂組成物。 (A)少なくとも50重量部以上のグリシジルアミン型
エポキシ樹脂を含んだエポキシ樹脂 100重量部 (B)ポリアミド、ポリスルホン、ポリエーテルスルホ
ン、ポリエーテルイミドの中から 選ばれた少なくとも1種類の熱可塑性樹脂 10〜30重量部 (C)ジシアンジアミド2〜10重量部 (D)下式で示される尿素化合物 2〜5重量部 ▲数式、化学式、表等があります▼ (但し、X、Yは同一又は異なりてH、Cl、OCH_
3を表わす。) (E)ジアミノジフェニルスルホン 15〜30重量部
(1) Contains the following [A] to [E], has a melt viscosity of 100 to 10,000 poise at 80°C, and 90 to 1
An epoxy resin composition that can be cured at 30°C. (A) 100 parts by weight of an epoxy resin containing at least 50 parts by weight of a glycidylamine type epoxy resin (B) 10 parts by weight of at least one thermoplastic resin selected from polyamide, polysulfone, polyethersulfone, and polyetherimide ~30 parts by weight (C) 2 to 10 parts by weight of dicyandiamide (D) 2 to 5 parts by weight of a urea compound represented by the formula below ▲ Numerical formulas, chemical formulas, tables, etc. are available ▼ (However, X and Y may be the same or different and H ,Cl,OCH_
Represents 3. ) (E) 15 to 30 parts by weight of diaminodiphenylsulfone
(2)炭素繊維に請求項(1)記載のエポキシ樹脂組成
物を含浸させたプリプレグ。
(2) A prepreg obtained by impregnating carbon fiber with the epoxy resin composition according to claim (1).
JP63305612A 1988-12-02 1988-12-02 Epoxy resin composition and prepreg Expired - Lifetime JPH0639519B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63305612A JPH0639519B2 (en) 1988-12-02 1988-12-02 Epoxy resin composition and prepreg

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63305612A JPH0639519B2 (en) 1988-12-02 1988-12-02 Epoxy resin composition and prepreg

Publications (2)

Publication Number Publication Date
JPH02151623A true JPH02151623A (en) 1990-06-11
JPH0639519B2 JPH0639519B2 (en) 1994-05-25

Family

ID=17947237

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63305612A Expired - Lifetime JPH0639519B2 (en) 1988-12-02 1988-12-02 Epoxy resin composition and prepreg

Country Status (1)

Country Link
JP (1) JPH0639519B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04249544A (en) * 1990-12-28 1992-09-04 Toho Rayon Co Ltd Resin composition, prepreg and production of prepreg
EP0745640A1 (en) * 1994-12-02 1996-12-04 Toray Industries, Inc. Prepreg and fiber-reinforced composite material
WO2004048435A1 (en) * 2002-11-28 2004-06-10 Mitsubishi Rayon Co., Ltd. Epoxy resin for prepreg, prepreg, fiber-reinforced composite material, and processes for producing these
JP2005314524A (en) * 2004-04-28 2005-11-10 Sumitomo Bakelite Co Ltd Resin composition, prepreg and laminated sheet
JP2006291218A (en) * 2001-02-27 2006-10-26 Hexcel Corp Adhesive prepreg face sheets for sandwich panels
WO2009157295A1 (en) * 2008-06-25 2009-12-30 東邦テナックス株式会社 Epoxy resin composition and prepreg using same
WO2010055811A1 (en) * 2008-11-13 2010-05-20 東邦テナックス株式会社 Thermosetting resin composition and prepreg utilizing same
JP2010275493A (en) * 2009-05-30 2010-12-09 Toho Tenax Co Ltd Epoxy resin composition and prepreg using the epoxy resin composition as matrix resin
JP4719976B2 (en) * 1999-03-11 2011-07-06 東レ株式会社 Epoxy resin composition, epoxy resin composition for fiber reinforced composite material, and fiber reinforced composite material having the same
GB2503503A (en) * 2012-06-29 2014-01-01 Gurit Uk Ltd Prepregs for manufacturing composite materials
JP2014132064A (en) * 2012-12-04 2014-07-17 Honda Motor Co Ltd Method for evaluating the mixing dispersibility of epoxy resins
GB2514189A (en) * 2013-05-17 2014-11-19 Gurit Uk Ltd Carbon fibre-containing prepregs
JP2016504472A (en) * 2013-01-07 2016-02-12 東レ株式会社 Epoxy resin composition, prepreg, fiber reinforced plastic material, and method for producing fiber reinforced plastic material
WO2020100916A1 (en) * 2018-11-14 2020-05-22 株式会社ブリヂストン Reinforced fiber composite resin production method

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04249544A (en) * 1990-12-28 1992-09-04 Toho Rayon Co Ltd Resin composition, prepreg and production of prepreg
EP0745640A1 (en) * 1994-12-02 1996-12-04 Toray Industries, Inc. Prepreg and fiber-reinforced composite material
EP0745640A4 (en) * 1994-12-02 2000-05-31 Toray Industries Prepreg and fiber-reinforced composite material
JP4719976B2 (en) * 1999-03-11 2011-07-06 東レ株式会社 Epoxy resin composition, epoxy resin composition for fiber reinforced composite material, and fiber reinforced composite material having the same
JP2006291218A (en) * 2001-02-27 2006-10-26 Hexcel Corp Adhesive prepreg face sheets for sandwich panels
US7959838B2 (en) 2002-11-28 2011-06-14 Mitsubishi Rayon Co., Ltd. Epoxy resin for prepreg, prepreg, fiber-reinforced composite material and methods for production thereof
WO2004048435A1 (en) * 2002-11-28 2004-06-10 Mitsubishi Rayon Co., Ltd. Epoxy resin for prepreg, prepreg, fiber-reinforced composite material, and processes for producing these
US8486518B2 (en) 2002-11-28 2013-07-16 Mitsubishi Rayon Co., Ltd. Epoxy resin for prepreg, prepreg, and fiber-reinforced composite material and methods for production thereof
JP2010070771A (en) * 2002-11-28 2010-04-02 Mitsubishi Rayon Co Ltd Method for producing epoxy resin composition
US8470435B2 (en) 2002-11-28 2013-06-25 Mitsubishi Rayon Co., Ltd. Epdxy resin for prepreg, prepreg, fiber-reinforced composite material, and methods for production thereof
US7591973B2 (en) 2002-11-28 2009-09-22 Mitsubishi Rayon Co., Ltd. Method for producing a fiber-reinforced composite material plate
JP4569159B2 (en) * 2004-04-28 2010-10-27 住友ベークライト株式会社 Resin composition, prepreg and laminate
JP2005314524A (en) * 2004-04-28 2005-11-10 Sumitomo Bakelite Co Ltd Resin composition, prepreg and laminated sheet
WO2009157295A1 (en) * 2008-06-25 2009-12-30 東邦テナックス株式会社 Epoxy resin composition and prepreg using same
WO2010055811A1 (en) * 2008-11-13 2010-05-20 東邦テナックス株式会社 Thermosetting resin composition and prepreg utilizing same
JP5469086B2 (en) * 2008-11-13 2014-04-09 東邦テナックス株式会社 Thermosetting resin composition and prepreg using the same
JP2010275493A (en) * 2009-05-30 2010-12-09 Toho Tenax Co Ltd Epoxy resin composition and prepreg using the epoxy resin composition as matrix resin
GB2503503A (en) * 2012-06-29 2014-01-01 Gurit Uk Ltd Prepregs for manufacturing composite materials
GB2503503B (en) * 2012-06-29 2015-04-29 Gurit Uk Ltd Prepregs for manufacturing composite materials
JP2014132064A (en) * 2012-12-04 2014-07-17 Honda Motor Co Ltd Method for evaluating the mixing dispersibility of epoxy resins
JP2016504472A (en) * 2013-01-07 2016-02-12 東レ株式会社 Epoxy resin composition, prepreg, fiber reinforced plastic material, and method for producing fiber reinforced plastic material
GB2514189A (en) * 2013-05-17 2014-11-19 Gurit Uk Ltd Carbon fibre-containing prepregs
GB2514189B (en) * 2013-05-17 2018-11-14 Gurit Uk Ltd Carbon fibre-containing prepregs
WO2020100916A1 (en) * 2018-11-14 2020-05-22 株式会社ブリヂストン Reinforced fiber composite resin production method

Also Published As

Publication number Publication date
JPH0639519B2 (en) 1994-05-25

Similar Documents

Publication Publication Date Title
JP3796176B2 (en) Epoxy resin composition and prepreg using the epoxy resin composition
US7005185B2 (en) Quick cure carbon fiber reinforced epoxy resin
EP2311892A1 (en) Epoxy resin composition and prepreg using same
JPH02151623A (en) Epoxy resin composition and prepreg
JP2006131920A (en) Epoxy resin composition and prepreg made with the epoxy resin composition
JP2003026768A (en) Epoxy resin composition, prepreg, and fiber-reinforced composite material
JP2003238657A (en) Epoxy resin composition, cured resin, prepreg and fiber reinforced composite material
JPH04249544A (en) Resin composition, prepreg and production of prepreg
JP2006052385A (en) Epoxy resin composition for fiber-reinforced composite material, prepreg and fiber-reinforced composite material
JP2604778B2 (en) Matrix resin composition
JP2007284545A (en) Epoxy resin composition for fiber-reinforced composite material
JPS6236421A (en) Epoxy resin composition for prepreg
JPS63221122A (en) Prepreg and its production
JPH11279261A (en) Heat-resistant epoxy resin composition for fiber-reinforced composite material
JPS62141039A (en) Resin composition for fiber reinforced prepreg
JPS6143616A (en) Epoxy resin composition
JPS6360056B2 (en)
JPS59174616A (en) Epoxy resin composition and prepreg
JPS63221139A (en) Prepreg and its production
JPH04153252A (en) Matrix resin composition
JPH03281635A (en) Resin composition for prepreg
JPH069802A (en) Prepreg
JPH0335018A (en) Epoxy resin composition
JPH03243619A (en) Epoxy resin composition
JP2018012798A (en) Epoxy resin composition, prepreg, resin cured product and fiber-reinforced composite material

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080525

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090525

Year of fee payment: 15

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090525

Year of fee payment: 15