JPH04153252A - Matrix resin composition - Google Patents

Matrix resin composition

Info

Publication number
JPH04153252A
JPH04153252A JP27525690A JP27525690A JPH04153252A JP H04153252 A JPH04153252 A JP H04153252A JP 27525690 A JP27525690 A JP 27525690A JP 27525690 A JP27525690 A JP 27525690A JP H04153252 A JPH04153252 A JP H04153252A
Authority
JP
Japan
Prior art keywords
epoxy resin
resin
manufactured
resin composition
intramolecularly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27525690A
Other languages
Japanese (ja)
Inventor
Jiro Takada
二郎 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP27525690A priority Critical patent/JPH04153252A/en
Publication of JPH04153252A publication Critical patent/JPH04153252A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a matrix resin composition for a fiber-reinforced composite material improved in resin flow resistance during curing and molding, moldability, stability of the weight of a molding an workability by adding an intramolecularly epoxidized polybutadiene to a resin composition. CONSTITUTION:An intramolecularly epoxidized polybutadiene as a modified is added to a composition comprising an epoxy resin, e.g. a mixture of bisphenol A epoxy resin with a phenol novolac epoxy resin, a curing agent such as dicyandiamide and a catalyst such as 3-(3,4-dichlorophenyl)-1,1-dimethylurea to obtain an epoxy resin for a prepreg containing carbon fibers or the like. The amount of the modifier added is 1-30 pts.wt., desirably 3-20 pts.wt. per 100 pts.wt. total weight of the resin.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、繊維強化複合材料用のマトリックス樹脂組成
物に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention relates to a matrix resin composition for fiber reinforced composite materials.

さらに詳しくは、本発明は、成形性、保存安定性に優れ
、特に重量の安定した成形品を得るために必要な成形硬
化時の耐レジンフロー性に優れ、かつ成形性の優れたプ
リプレグ用マトリックス樹脂組成物に関する。
More specifically, the present invention provides a prepreg matrix that has excellent moldability, storage stability, and particularly excellent resin flow resistance during mold curing, which is necessary to obtain a molded product with stable weight, and has excellent moldability. The present invention relates to a resin composition.

(従来の技術) 近年、炭素繊維(以下、CFと略称する)は軽量かつ高
強度、高弾性率の特性を生かし、樹脂との複合体、いわ
ゆるプリプレグの形で、例えばゴルフシャフト、釣竿あ
るいはテニスラケット、バドミントンラケット等のスポ
ーツレジャー用途をはしめ、一般産業用途、さらには宇
宙航空機用途へと炭素繊維強化プラスチック(以下、C
FRPと略称する)の利用分野は拡大を続けている。
(Prior Art) In recent years, carbon fiber (hereinafter abbreviated as CF) has been used in the form of composites with resins, so-called prepregs, by taking advantage of its light weight, high strength, and high modulus of elasticity, and is being used in golf shafts, fishing rods, and tennis rods, for example. Carbon fiber reinforced plastics (hereinafter referred to as C
The field of use of FRP (abbreviated as FRP) continues to expand.

かかるCFRPを作成するために用いられるプリプレグ
用の樹脂組成物としては、グリシジルエーテル系エポキ
シ樹脂であるビスフェノールA型エポキン樹脂、ビスフ
ェノールF型エポキシ樹脂、フェノールノボラック型エ
ポキシ樹脂、タレゾールノボラック型エポキシ樹脂等が
、また環式脂肪族エポキシ樹脂、グリシジルエステル型
エポキシ樹脂、グリシジルアミン型エポキシ樹脂、複素
環式エポキシ樹脂等の混合物が知られている。
Resin compositions for prepreg used to create such CFRP include bisphenol A type epoxy resin, bisphenol F type epoxy resin, phenol novolac type epoxy resin, Talesol novolac type epoxy resin, etc., which are glycidyl ether type epoxy resins. However, mixtures of cycloaliphatic epoxy resins, glycidyl ester type epoxy resins, glycidylamine type epoxy resins, heterocyclic epoxy resins, etc. are also known.

また、硬化剤、触媒としては、アミン類、酸無水物類、
ポリアミド樹脂、イミダゾール類が知られており、上述
エポキシ樹脂組成物に適宜、所定量添加される。
In addition, as curing agents and catalysts, amines, acid anhydrides,
Polyamide resins and imidazoles are known, and are appropriately added in a predetermined amount to the above-mentioned epoxy resin composition.

さて、これらの混合物として得られる樹脂組成物を用い
て作製したCFRPは、その成形条件が適切であれば諸
物性のバランスのとれた成形品となるが、これらの混合
物は一般に硬化成形の際の温度上昇に伴う粘度の低下が
著しく、高温・加圧下では、レジンが極めてフローし易
い状態になり、そのフローにより得られた成形品の重量
が設定値を下回り、また製品のスペックに合わなくなる
ことが発生したり、また局所的にフローが起こると、ボ
イド等の部分的な構造欠陥を誘発することになる。
Now, CFRP produced using a resin composition obtained as a mixture of these can be a molded product with well-balanced physical properties if the molding conditions are appropriate, but these mixtures generally have problems during curing molding. The viscosity decreases significantly as the temperature rises, and at high temperatures and under pressure, the resin becomes extremely prone to flow, which causes the weight of the molded product obtained to fall below the set value and not to meet the product specifications. If this occurs or a localized flow occurs, local structural defects such as voids will be induced.

さらに、複雑な形状の成形品の場合、レジンフローが多
くかつその速度が速すぎると、CFが型内壁面にうまく
沿わず、CFがしわ状になり表面欠陥を形成することに
なる。
Furthermore, in the case of a molded article with a complicated shape, if the resin flow is large and its speed is too fast, the CF will not follow the inner wall surface of the mold well, causing the CF to wrinkle and form surface defects.

一方、作業性の面からは、フローしたレジンがパリとな
って成形品に付着し、その量が多い程、パリを除去する
工程が煩雑となり、作業性が著しく低下することになる
On the other hand, from the viewpoint of workability, the flowed resin turns into flakes and adheres to the molded product, and the larger the amount, the more complicated the process of removing the flakes, which significantly reduces workability.

すなわち、プリプレグ用マトリックス樹脂組成物として
は、成形品の良好な重量安定性、成形性、さらに良好な
作業性を有することが要求される。
That is, the matrix resin composition for prepreg is required to have good weight stability and moldability of molded products, and also good workability.

かかる要求特性に対して、例えば、特開昭62−169
829号公報、特開平1−161040号公報に見られ
るように、マトリックス樹脂の粘度低下を抑制する試み
として改質剤を添加する方法が開示されている。この方
法では、添加する改質剤が上記エポキシ樹脂と較べて温
度変化に対する粘度変化が小さいことが肝要であり、一
般に、より高分子量のポリマーがその選択の範晴となる
For such required characteristics, for example, Japanese Patent Application Laid-Open No. 62-169
As seen in JP-A No. 829 and JP-A-1-161040, a method of adding a modifier is disclosed as an attempt to suppress a decrease in the viscosity of a matrix resin. In this method, it is important that the modifier to be added has a smaller change in viscosity with respect to temperature change than the epoxy resin, and generally higher molecular weight polymers are the preferred choice.

その際、改質剤選択のポイントは、マトリックス樹脂、
すなわち上記エポキシ樹脂と良好な相溶性を有さなけれ
ばならない点である0例えば、相溶性が極端に悪い場合
は、エポキシ樹脂の改質とならないのみならず、異物と
して残存する結果、硬化物の機械物性を著しく低下させ
、改質剤になり得ないことは明らかである0次に、相溶
性が少し悪い程度、すなわちミクロ相分離を起こすよう
な場合では、耐レジンフロー性の改良効果は認められな
いものの、硬化物の機械物性には少なからず影響を及ぼ
し、その添加量がおのずと制限されるものである。また
、エポキシ樹脂の硬化が進行するにつれて、改質剤との
相溶性が低下する傾向になる場合も多(、硬化条件が変
わると成形品の物性が変化することになり、製品スペッ
クの安定性の観点から望ましくない。
In this case, the key points in selecting a modifier are matrix resin,
In other words, it must have good compatibility with the above-mentioned epoxy resin. For example, if the compatibility is extremely poor, not only will the epoxy resin not be modified, but it will remain as a foreign substance, resulting in the hardening of the cured product. It is clear that it significantly reduces mechanical properties and cannot be used as a modifier. Next, in cases where compatibility is slightly poor, that is, microphase separation occurs, the effect of improving resin flow resistance is not recognized. Although it cannot be added, it does have a considerable influence on the mechanical properties of the cured product, and the amount added is naturally limited. Additionally, as the curing of the epoxy resin progresses, its compatibility with the modifier often tends to decrease (changes in the curing conditions will result in changes in the physical properties of the molded product, leading to a decrease in the stability of product specifications). undesirable from this point of view.

従って、望ましくは、改質剤がエポキシ樹脂と分子オー
ダーで完全に相溶性を有し、かつ硬化の進行に伴う相分
離も起こさないことである。しかしながら、硬化の進行
に伴う相分離を回避することは困難であり、相分離した
構造の機械物性の低下の抑制が次のポイントとなる。
Therefore, it is desirable that the modifier has complete compatibility with the epoxy resin on the molecular order, and that phase separation does not occur as curing progresses. However, it is difficult to avoid phase separation as the curing progresses, and the next point is to suppress the deterioration of mechanical properties of the phase-separated structure.

(発明が解決しようとする課N) 本発明者等は鋭意検討を行った結果、本発明を完成した
ものであり、その目的とするところは、このようなエポ
キシ樹脂組成物の改良にかかわるものであり、硬化成形
時の耐リジンフロー性を改良することにより、成形性、
成形品の重量安定性、及び作業性を改善することが出来
る優れたマトリックス樹脂組成物を提供するものである
(Problem N to be solved by the invention) The present inventors have completed the present invention as a result of intensive studies, and the purpose thereof is to solve problems related to the improvement of such epoxy resin compositions. By improving lysine flow resistance during curing molding, moldability,
The present invention provides an excellent matrix resin composition that can improve the weight stability and workability of molded articles.

(課題を解決するための手段) すなわち、本発明は、分子内エポキシ化ポリフタジエン
を配合したプリプレグ用エポキシ樹脂組成物である。
(Means for Solving the Problems) That is, the present invention is an epoxy resin composition for prepregs containing intramolecularly epoxidized polyphtadiene.

以下、詳細に本発明を説明する。The present invention will be explained in detail below.

ここで、エポキシ樹脂としては、フェノールノボラック
型エポキシ樹脂あるいはタレゾールノボランク型エポキ
シ樹脂、及びビスフェノールA型エポキシ樹脂の混合物
が望ましい、このようなフェノールノボラック型エポキ
シ樹脂としては、例えばエピコート152.154(油
化シェルエポキシ社製)、DEN431.438.43
9.485(ダウケミカル社製)、EPN113B、1
139(チバガイギー社製)、N730.738.74
0.770.775.865.870.510(大日本
インキ化学工業社製)、EPPN201(日本北東社製
) 、YDPN601.602(東部化成社製)等があ
る。
Here, as the epoxy resin, a mixture of a phenol novolac type epoxy resin, a Talesol novolank type epoxy resin, and a bisphenol A type epoxy resin is preferable.As such a phenol novolac type epoxy resin, for example, Epicote 152.154 ( (manufactured by Yuka Shell Epoxy Co., Ltd.), DEN431.438.43
9.485 (manufactured by Dow Chemical Company), EPN113B, 1
139 (manufactured by Ciba Geigy), N730.738.74
Examples include 0.770.775.865.870.510 (manufactured by Dainippon Ink and Chemicals), EPPN201 (manufactured by Nippon Tohoku Co., Ltd.), and YDPN601.602 (manufactured by Tobu Kasei Co., Ltd.).

タレゾールノボラック型エポキシ樹脂としては、ECN
273.280.299(旭化成工業社製)、EP18
0(油化シェルエポキシ社製)、N665.670.6
73.680.690.695(大日本インキ化学工業
社製L ECN273.103.104(日本北東社製
)、ECN1235.1273.1280.1299 
(チバガイギー社製) 、YDCN701.702.7
03.704(東部化成社製)等がある。
As Talesol novolac type epoxy resin, ECN
273.280.299 (manufactured by Asahi Kasei Industries), EP18
0 (manufactured by Yuka Shell Epoxy Co., Ltd.), N665.670.6
73.680.690.695 (manufactured by Dainippon Ink Chemical Co., Ltd. L ECN273.103.104 (manufactured by Nippon Tohoku Co., Ltd.), ECN1235.1273.1280.1299
(manufactured by Ciba Geigy), YDCN701.702.7
03.704 (manufactured by Tobu Kasei Co., Ltd.), etc.

ビスフェノールA型エポキシ樹脂としては、AER33
0,331,661,664,667,669(旭化成
工業社製)、EP827.828.834.1001.
1002.1004.1O07,1009(油化シェル
エポキシ社製)、DER331,332,662,66
3u (ダウケミカル社製)、CY2O5,230,2
32,221,257,252,255,250,26
0,280(チバガイギー社製)、エピクロン840.
850.855.860、1050.3050.405
0.7050 (大日本インキ化学社製)、YD115
.115CA、117.121.127.128.12
8CA、12BS、134.001Z、011,012
.014.014ES。
As a bisphenol A type epoxy resin, AER33
0,331,661,664,667,669 (manufactured by Asahi Kasei Industries, Ltd.), EP827.828.834.1001.
1002.1004.1O07,1009 (manufactured by Yuka Shell Epoxy Co., Ltd.), DER331,332,662,66
3u (manufactured by Dow Chemical Company), CY2O5,230,2
32,221,257,252,255,250,26
0,280 (manufactured by Ciba Geigy), Epicron 840.
850.855.860, 1050.3050.405
0.7050 (manufactured by Dainippon Ink Chemical Co., Ltd.), YD115
.. 115CA, 117.121.127.128.12
8CA, 12BS, 134.001Z, 011,012
.. 014.014ES.

017.019.020.002(東部化成社製)等が
ある。
017.019.020.002 (manufactured by Tobu Kasei Co., Ltd.), etc.

ここで、ノボラック型エポキシ樹脂としては、フェノー
ルノボラック型エポキシ樹脂、クレゾールノボラック型
エポキシ樹脂のいずれを用いても構わないが、共に比較
的小さいエポキシ当量のために、硬化成形物の架橋密度
が高くなり、結果として耐熱性は高く、高弾性率の特性
を発現するものの、伸度が低いために脆い性質を示す。
Here, as the novolac type epoxy resin, either a phenol novolac type epoxy resin or a cresol novolac type epoxy resin may be used, but since both have relatively small epoxy equivalents, the crosslinking density of the cured molded product will be high. As a result, although it exhibits high heat resistance and high elastic modulus, it exhibits brittle properties due to low elongation.

一方、ビスフェノールA型エポキシ樹脂は、種々のエポ
キシ当量を有するため、それらを適宜配合することによ
り伸度をコントロールすることが可能である。
On the other hand, since bisphenol A type epoxy resins have various epoxy equivalents, it is possible to control the elongation by appropriately blending them.

かかる観点から、ノボラック型エポキシ樹脂の配合量は
、総重量100重量部の内20〜80重量部、より好ま
しくは40〜60重量部であり、一方、ビスフェノール
A型エポキシ樹脂の配合量は、ノボラック型エポキシ樹
脂の配合量を除く全量に相当することになる。また、ビ
スフェノールA型エポキシ樹脂の配合に際しては、プリ
プレグの表面タック性のコントロールのため、室温にお
ける性状が固型である比較的高分子量物と、液状である
比較的低分子量物を適宜配合する方法をとることができ
る。
From this point of view, the blending amount of the novolac type epoxy resin is 20 to 80 parts by weight, more preferably 40 to 60 parts by weight, out of 100 parts by weight of the total weight, while the blending amount of the bisphenol A type epoxy resin is This corresponds to the total amount excluding the blended amount of mold epoxy resin. In addition, when blending bisphenol A type epoxy resin, in order to control the surface tackiness of the prepreg, a relatively high molecular weight material that is solid at room temperature and a relatively low molecular weight material that is liquid are appropriately blended. can be taken.

次に、硬化剤、触媒には、スポーツレジャー用途では、
130 ”C硬化が主流であることから、硬化剤にはア
ミン類のうちジシアンシジアミドが望ましく、また触媒
には、3−(3,4−ジクロロフェニル)−1,1−N
ジメチル尿素、3−フェニル−1,l−Nジメチル尿素
等の尿素化合物や、イミダゾール誘導体等が望ましい。
Next, curing agents and catalysts are used in sports and leisure applications.
Since 130"C curing is the mainstream, dicyancidiamide among amines is preferable as a curing agent, and 3-(3,4-dichlorophenyl)-1,1-N is preferable as a catalyst.
Urea compounds such as dimethylurea and 3-phenyl-1,1-N dimethylurea, imidazole derivatives, and the like are preferable.

さて、本発明のポイントは、かかるエポキシ樹脂組成物
に分子内エポキシ化ポリブタジェンを改質剤として用い
る点である。
Now, the key point of the present invention is to use intramolecularly epoxidized polybutadiene as a modifier in such an epoxy resin composition.

分子内エポキシ化ポリブタジェンとしては種々の構造の
化合物が得られているが、本発明者等の鋭意検討の結果
、1.2−付加型のポリブタジェンの側鎖炭素二重結合
を、エポキシ化した下式で示される化合物において、上
述改質硬化が顕著であることを見出し、本発明に至った
ものである。
Compounds with various structures have been obtained as intramolecularly epoxidized polybutadiene, but as a result of intensive studies by the present inventors, the side chain carbon double bond of 1,2-addition type polybutadiene was epoxidized. The inventors have discovered that the above-mentioned modified hardening is remarkable in the compound represented by the formula, leading to the present invention.

−4GHz−CB−CHz−CH−CHz−CH←T−
(JI=CHz CH=C)l! CB−CH工\1 かかる分子内エポキシ化ポリブタジェンの市販製品とし
ては、BF−1000(アデカアーガス社製)を用いる
ことが出来る。また1、4−付加型ポリブタジェンを用
いた分子内エポキシ化ポリブタジェンも用いることが出
来、市販製品としてはR−45EPI (長瀬化成社製
)が挙げられる。
-4GHz-CB-CHz-CH-CHz-CH←T-
(JI=CHz CH=C)l! CB-CH Engineering\1 As a commercially available product of such intramolecularly epoxidized polybutadiene, BF-1000 (manufactured by Adeka Argus) can be used. Further, intramolecularly epoxidized polybutadiene using 1,4-addition type polybutadiene can also be used, and a commercially available product includes R-45EPI (manufactured by Nagase Kasei Co., Ltd.).

以下に分子内エポキシ化ポリブタジェンの特徴を挙げる
The characteristics of intramolecularly epoxidized polybutadiene are listed below.

まず、エポキシ樹脂との相溶性に関しては、未変性ポリ
ブタジェンの場合相溶性は著しく悪いが、側鎖ビニル基
の一部をエポキシ化することで分子の極性が上がり、エ
ポキシ樹脂と近似した溶解度パラメーターを持たせるこ
とが可能となり、極めて良い相溶性を付与することが出
来る。エポキシ樹脂との良い相溶性を示す溶解度パラメ
ーターは、9.5〜11.5であり、より好ましくは1
0〜11である0分子内エポキシ化ポリブタジェン分子
中の変性ビニル基は未変性エポキシ基に対し5〜50%
が望ましい、より好ましくは10〜30%である。
First, regarding compatibility with epoxy resins, unmodified polybutadiene has extremely poor compatibility, but by epoxidizing a portion of the side chain vinyl groups, the polarity of the molecule increases, resulting in a solubility parameter similar to that of epoxy resins. This makes it possible to provide extremely good compatibility. The solubility parameter indicating good compatibility with the epoxy resin is 9.5 to 11.5, more preferably 1
The modified vinyl group in the epoxidized polybutadiene molecule is 0 to 11 and is 5 to 50% of the unmodified epoxy group.
is desirable, more preferably 10 to 30%.

次に、この分子内エポキシ化ポリブタジェンは、各種エ
ポキシ樹脂と比較して温度変化に対する粘度変化が小さ
い特徴を有しており、これらの混合レジンも同様に温度
変化に対する粘度変化が小さくなり、硬化成形時の最適
粘度のレベルが上がる結果、レジンフロー量の減少を可
能ならしめるものである。
Next, this intramolecularly epoxidized polybutadiene has a characteristic that the viscosity change with temperature changes is small compared to various epoxy resins, and these mixed resins also have a small viscosity change with temperature changes, and can be cured and molded. As a result of increasing the optimum viscosity level, it is possible to reduce the amount of resin flow.

さらに特記すべき効果として、成形時マトリックス樹脂
中での繊維の流動性が著しく向上し、その結果、成形型
壁面への繊維の配列が良好となる、成形性の顕著な改良
が可能となるものである。
Another noteworthy effect is that the fluidity of the fibers in the matrix resin during molding is significantly improved, resulting in better alignment of the fibers on the wall of the molding die, making it possible to significantly improve moldability. It is.

レジンの流出量の抑制、繊維の流動性の改良と、この−
見相反する特性を両立せしめた点は極めて驚くべきこと
であり、又産業上の利用価値も極めて高いものと判断さ
れる。なお、この分子内エポキシ化ポリブタジェンは、
すでに公知の改質剤、例えばポリビニルホルマール、フ
ェノキシ樹脂、ダイマー酸ジグリシジルエステル型エポ
キシ樹脂等と併用することも可能である。
Suppression of resin outflow, improvement of fiber fluidity, and
It is extremely surprising that these contradictory properties are compatible, and it is also judged to have extremely high industrial utility value. In addition, this intramolecular epoxidized polybutadiene is
It is also possible to use together with already known modifiers such as polyvinyl formal, phenoxy resin, dimer acid diglycidyl ester type epoxy resin, etc.

従来用いられる改質剤は、エポキシ樹脂とまったく反応
性を有しないか、もしくは分子鎖末端に反応性官能基を
有するのみであり、添加量の増大に伴う耐熱性の低下は
避けられないものであった。
Conventionally used modifiers either have no reactivity with epoxy resins or only have a reactive functional group at the end of the molecular chain, and a decrease in heat resistance is unavoidable as the amount added increases. there were.

また、硬化反応の進行に伴いミクロ相分離を起こした場
合、機械物性の低下を招くこともあり、添加量はおのず
と制限されるものであった。
Furthermore, if microphase separation occurs as the curing reaction progresses, mechanical properties may deteriorate, so the amount added is naturally limited.

これに対し、本発明の分子内エポキシ化ポリブタジェン
は、分子内にエポキシ基を有するため、硬化後はエポキ
シ樹脂の架橋構造中に組み込まれ、添加量を増やしても
極端な耐熱性の低下を抑制することが可能となる。
On the other hand, the intramolecularly epoxidized polybutadiene of the present invention has an epoxy group in the molecule, so it is incorporated into the crosslinked structure of the epoxy resin after curing, suppressing the extreme drop in heat resistance even when the amount added is increased. It becomes possible to do so.

ここで、硬化条件によっであるいはエポキシ樹脂の種類
によって、硬化成形時に、もし架橋反応よりも相分離反
応の方が先行したとしても、最終硬化物中ではエポキシ
樹脂と分子内エポキシ化ポリブタジェン間に化学結合を
形成するため、機械物性を低下させるような構造欠陥と
はならず、分子内エポキシ化ポリブタジェンの比較的柔
らかいドメインの部分が、衝撃を受けた時にエネルギー
を吸収する部分となり、その結果耐衝撃性が向上すると
いう特徴をも生じることになる。
Depending on the curing conditions or the type of epoxy resin, even if the phase separation reaction precedes the crosslinking reaction during curing and molding, there may be a difference between the epoxy resin and intramolecular epoxidized polybutadiene in the final cured product. Because chemical bonds are formed, there are no structural defects that degrade mechanical properties, and the relatively soft domain of intramolecular epoxidized polybutadiene becomes a part that absorbs energy when subjected to impact, resulting in improved durability. This also results in the characteristic of improved impact resistance.

さらに、分子内エポキシ化ポリブタジェンは、室温にお
ける性状が粘調液状であるために、得られたプリプレグ
のドレープ性が増大し、積層作業性が著しく向上するも
のである。
Furthermore, since the intramolecularly epoxidized polybutadiene has a viscous liquid state at room temperature, the drapeability of the obtained prepreg increases and the lamination workability is significantly improved.

かかる分子内エポキシ化ポリブタジェンの添加量は、樹
脂総重量の100重量部のうち、1〜30重量部、より
好ましくは3〜20重量部である。
The amount of the intramolecularly epoxidized polybutadiene added is 1 to 30 parts by weight, more preferably 3 to 20 parts by weight, based on 100 parts by weight of the total resin weight.

本発明に用いる繊維補強材としては、炭素111m、ガ
ラス繊維、有機高弾性線II(たとえば、ポリアラミド
繊維など)、シリコンカーバイド繊維、アルミナ繊維、
ボロン繊維などの高強度、高弾性補強繊維であり、その
形態は連続繊維、長繊維などでよく、またマルチフィラ
メント、モノフィラメントであってもよい、また、該繊
維などを一方的に互いに並行かつシート状に引き揃えて
配列したもの、上記配列体をその繊維軸の方向が互いに
交差するように重ね合わせたもの、または上記補強繊維
の一方向もしくは二方向織物、マット等の布帛形態で使
用できる。
The fiber reinforcing materials used in the present invention include carbon 111m, glass fiber, organic high elastic wire II (for example, polyaramid fiber, etc.), silicon carbide fiber, alumina fiber,
It is a high-strength, high-elasticity reinforcing fiber such as boron fiber, and its form may be continuous fiber, long fiber, etc., or it may be multifilament or monofilament. The reinforcing fibers can be used in the form of a unidirectional or bidirectional woven fabric, a mat, or the like, in which the reinforcing fibers are arranged in a straight line, in which the arrayed bodies are stacked one on top of the other so that the directions of their fiber axes intersect with each other.

(実施例) 以下に実施例を挙げ本発明を説明するが、これらは本発
明の範囲を制限しない。
(Example) The present invention will be explained below with reference to Examples, but these do not limit the scope of the present invention.

ここで実施例中の“部”は“重量部”を意味するもので
ある。
Here, "parts" in the examples mean "parts by weight."

実施例I EPPN201 (日本北東社製)45部、AER33
1(旭化成工業社製)25部、AER661(旭化成工
業社製)25部、BF−1000(アデカアーガス社製
)5部をニーグーに添加し、攪拌混合した後、ジシアン
ジアミド(以下DICYと略記する)4部、3−(3,
4−ジクロロフェニル)−1,1−Nジメチル尿素(以
下DCMUと略記する)を添加し、攪拌混合し、プリプ
レグ用のエポキシ樹脂組成物を得た。
Example I EPPN201 (manufactured by Nippon Tohokusha) 45 parts, AER33
1 (manufactured by Asahi Kasei Kogyo Co., Ltd.), 25 parts of AER661 (manufactured by Asahi Kasei Kogyo Co., Ltd.), and 5 parts of BF-1000 (manufactured by Adeka Argus Co., Ltd.) were added to Nigu, and after stirring and mixing, dicyandiamide (hereinafter abbreviated as DICY) was added. Part 4, 3-(3,
4-dichlorophenyl)-1,1-N dimethylurea (hereinafter abbreviated as DCMU) was added and mixed with stirring to obtain an epoxy resin composition for prepreg.

このエポキシ樹脂組成物の粘度特性をレオメータ−MR
3(レオロジー社製)を使って3°C/分の昇温速度で
測定したところ、70℃における粘度が300ポイズ、
最底粘度が10ボイズであった。この粘度特性はプリプ
レグ作製工程上適正なものであった。
The viscosity characteristics of this epoxy resin composition were measured using a rheometer MR.
3 (manufactured by Rheology) at a heating rate of 3°C/min, the viscosity at 70°C was 300 poise,
The bottom viscosity was 10 voids. This viscosity property was appropriate for the prepreg manufacturing process.

次に、市販の高強度炭素績!(引張強度400kg/腫
2、弾性率23.5t/論2 ハイカーポロン”旭化成
カーボンファイバー社製)に上記樹脂組成物をホントメ
ルト法により含浸させ、レジン含有率40%の一方向炭
素繊維ブリブレグを得た。
Next, commercially available high-strength carbon steel! (Tensile strength: 400 kg/2, elastic modulus: 23.5 t/2) Hi-Carporon (manufactured by Asahi Kasei Carbon Fiber Co., Ltd.) was impregnated with the above resin composition by the true melt method to form a unidirectional carbon fiber blibreg with a resin content of 40%. Obtained.

このプリプレグの表面タック性を指先による官能検査で
調べたところ適度であり、レイアップ時の作業性は良好
であった。
The surface tackiness of this prepreg was examined by fingertip sensory testing and was found to be moderate, and workability during layup was good.

次に、JIS  K−7071−1988r炭素繊維及
びエポキシ樹脂からなるプリプレグの試験方法」に記載
の方法で、レジンフロー量をa定したところ、15%で
あった。
Next, the resin flow amount was determined to be 15% by the method described in JIS K-7071-1988r "Testing Method for Prepreg Made of Carbon Fiber and Epoxy Resin".

次に、このプリプレグの成形性の試験をバドミントンラ
ケットを成形して行った。成形はまず所定の積層角でラ
ッピングした後、金型にセットし、内圧5 kg/dで
150℃、30分硬化させた0作製した10本のラケッ
トの表面を観察したところ、いずれもしわ、ボイド等の
欠陥のない良好なものであった。
Next, the moldability of this prepreg was tested by molding a badminton racket. For molding, the racquets were first wrapped at a predetermined lamination angle, then set in a mold and cured at 150°C for 30 minutes at an internal pressure of 5 kg/d.When observing the surfaces of the 10 manufactured rackets, there were no wrinkles or wrinkles. It was in good condition with no defects such as voids.

実施例2 EPPN201 (日本北東社製)45部、AER33
1(旭化成工業社製)20部、AER661(旭化成工
業社製)25部、BF−1000(アデカアーガス社製
)10部、DICY4部、DCMU3部を実施例1と同
様の方法で混合した。
Example 2 EPPN201 (manufactured by Nippon Tohokusha) 45 parts, AER33
1 (manufactured by Asahi Kasei Industries, Ltd.), 25 parts of AER661 (manufactured by Asahi Kasei Industries, Ltd.), 10 parts of BF-1000 (manufactured by Adeka Argus), 4 parts of DICY, and 3 parts of DCMU were mixed in the same manner as in Example 1.

得られた樹脂の粘度特性は、70℃で500ボイズ、最
底粘度は12ボイズであった。
The resulting resin had a viscosity of 500 voids at 70° C. and a bottom viscosity of 12 voids.

次に、実施例1と同様の方法でプリプレグ化し、タック
性を評価したところ適正であった。さらに、レジンフロ
ー量の測定値は10%と実施例1よりさらに減少した。
Next, it was made into a prepreg in the same manner as in Example 1, and the tackiness was evaluated and found to be appropriate. Furthermore, the measured value of the resin flow amount was 10%, which was further decreased compared to Example 1.

また、バドミントンラケットの成形性の試験では、作製
した10本いずれも表面欠陥のない良好なものであった
In addition, in a moldability test of badminton rackets, all 10 produced badminton rackets were good with no surface defects.

比較例 EPPN201 (日本北東社製)45部、AER33
1(旭化成工業社製)30部、AER661(旭化成工
業社製)25部、DICY4部、DCMUa部を実施例
1と同様の方法で混合した。
Comparative Example EPPN201 (manufactured by Nihon Tohokusha) 45 parts, AER33
1 (manufactured by Asahi Kasei Industries, Ltd.), 25 parts of AER661 (manufactured by Asahi Kasei Industries, Ltd.), 4 parts of DICY, and a part of DCMU were mixed in the same manner as in Example 1.

得られた樹脂の粘度特性は、70℃で250ポイズ、最
底粘度は7ボイズであった。
The resulting resin had a viscosity of 250 poise at 70° C. and a bottom viscosity of 7 poise.

次に、実施例1と同様の方法でプリプレグ化し、タック
性を評価したところ適正であった。
Next, it was made into a prepreg in the same manner as in Example 1, and the tackiness was evaluated and found to be appropriate.

一方、レジンフロー量の測定値は19%と実施例より多
いレベルであった。また、バドミントンラケットの成形
性の試験では、作製した10本の内4本の表面に明確な
しわ、ボイドが見られ、不良率の高いものであった。
On the other hand, the measured value of resin flow amount was 19%, which was higher than in the example. In addition, in a moldability test of badminton rackets, clear wrinkles and voids were observed on the surface of 4 out of 10 produced, and the defective rate was high.

これらの結果を第1表にまとめて示す。These results are summarized in Table 1.

第1表 (発明の効果) 本発明によれば、耐レジンフロー性、かつ成形性に特に
優れた性質を有するCFRPのマトリックス樹脂組成物
を提供することが可能となるものであり、産業の発展に
寄与するところ、極めて大なるものがある。
Table 1 (Effects of the Invention) According to the present invention, it is possible to provide a matrix resin composition for CFRP that has particularly excellent properties in resin flow resistance and moldability, and this will contribute to the development of the industry. There are some extremely significant contributions.

(ほか1名)(1 other person)

Claims (1)

【特許請求の範囲】[Claims] 分子内エポキシ化ポリブタジエンを配合してなることを
特徴とする、プリプレグ用エポキシ樹脂組成物。
An epoxy resin composition for prepreg, characterized in that it contains intramolecularly epoxidized polybutadiene.
JP27525690A 1990-10-16 1990-10-16 Matrix resin composition Pending JPH04153252A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27525690A JPH04153252A (en) 1990-10-16 1990-10-16 Matrix resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27525690A JPH04153252A (en) 1990-10-16 1990-10-16 Matrix resin composition

Publications (1)

Publication Number Publication Date
JPH04153252A true JPH04153252A (en) 1992-05-26

Family

ID=17552881

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27525690A Pending JPH04153252A (en) 1990-10-16 1990-10-16 Matrix resin composition

Country Status (1)

Country Link
JP (1) JPH04153252A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5478885A (en) * 1994-04-15 1995-12-26 Shell Oil Company Composition of epoxy resin, epoxidized block polydiene and curing agent
US5576388A (en) * 1994-10-11 1996-11-19 Shell Oil Company Telechelic polymers and heterotelechelic polydiene block polymers with dual cure systems
US6133377A (en) * 1997-04-17 2000-10-17 Ajinomoto Co., Inc. Compostion of epoxy resin, phenol-triazine-aldehyde condensate and rubber
EP0755415B1 (en) * 1994-04-15 2002-06-26 KRATON Polymers Research B.V. Epoxidized low viscosity rubber toughening modifiers for epoxy resins
WO2010023217A1 (en) * 2008-08-28 2010-03-04 Astrium Sas Use of polymerisable resins with low vacuum degassing for making space-grade composite materials
JP2011137092A (en) * 2009-12-28 2011-07-14 Nippon Soda Co Ltd Curable composition

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5478885A (en) * 1994-04-15 1995-12-26 Shell Oil Company Composition of epoxy resin, epoxidized block polydiene and curing agent
EP0755415B1 (en) * 1994-04-15 2002-06-26 KRATON Polymers Research B.V. Epoxidized low viscosity rubber toughening modifiers for epoxy resins
US5804657A (en) * 1994-10-11 1998-09-08 Shell Oil Company Adhesives and sealants based on telechelic polymers and heterotelechelic block polymers with dual cure systems
US5721318A (en) * 1994-10-11 1998-02-24 Shell Oil Company Pressure sensitive structural adhesives and sealants based on telechelic/heterotelechelic polymers with dual cure systems
US5880217A (en) * 1994-10-11 1999-03-09 Shell Oil Company Telechelic and heterotelechelic polymers with dual curing agents
US5910542A (en) * 1994-10-11 1999-06-08 Shell Oil Company Adhesives and sealants based on telechelic polymers and heterotelechelic block polymers with dual cure systems
US5910541A (en) * 1994-10-11 1999-06-08 Shell Oil Company Telechelic polymers and heterotelechelic polydiene block polymers with dual cure systems
US5948863A (en) * 1994-10-11 1999-09-07 Shell Oil Company Telechelic polymers and heterotelechelic polydiene block polymers with dual curing systems
US5576388A (en) * 1994-10-11 1996-11-19 Shell Oil Company Telechelic polymers and heterotelechelic polydiene block polymers with dual cure systems
US6133377A (en) * 1997-04-17 2000-10-17 Ajinomoto Co., Inc. Compostion of epoxy resin, phenol-triazine-aldehyde condensate and rubber
WO2010023217A1 (en) * 2008-08-28 2010-03-04 Astrium Sas Use of polymerisable resins with low vacuum degassing for making space-grade composite materials
FR2935388A1 (en) * 2008-08-28 2010-03-05 Astrium Sas USE OF POLYMERIZABLE RESINS WITH LOW VACUUM DEGASSING FOR THE MANUFACTURE OF COMPOSITE MATERIALS FOR SPATIAL USE
JP2011137092A (en) * 2009-12-28 2011-07-14 Nippon Soda Co Ltd Curable composition

Similar Documents

Publication Publication Date Title
US6399199B1 (en) Prepeg and carbon fiber reinforced composite materials
RU2605424C2 (en) Composition based on epoxy resins and film, prepreg and fibre-reinforced plastic obtained using said composition
TWI816760B (en) Prepreg and fiber reinforced composite materials
JP4687224B2 (en) Epoxy resin composition, prepreg and fiber reinforced composite material
JP2011079983A (en) Epoxy resin composition for carbon fiber-reinforced composite material, prepreg and carbon fiber-reinforced composite material
JPH02151623A (en) Epoxy resin composition and prepreg
WO2022039050A1 (en) Epoxy resin composition, prepreg, and fiber-reinforced composite material
JPH04153252A (en) Matrix resin composition
JP2604778B2 (en) Matrix resin composition
JP4880992B2 (en) Epoxy resin composition and composite intermediate
JPS6236421A (en) Epoxy resin composition for prepreg
JPH08337707A (en) Epoxy resin composition, prepreg and fiber-reinforced composite material
JP2004027043A (en) Epoxy resin composition for fiber-reinforced composite material and the resulting fiber-reinforced composite material
JPH08301982A (en) Epoxy resin composition for fiber-reinforced composite, prepreg, and composite
JP3531845B2 (en) Epoxy resin composition
JP2003055534A (en) Resin composition for composite material, intermediate material for composite material, and composite material
CN114729104A (en) Epoxy resin composition
JP2003012837A (en) Epoxy resin composition for fiber-reinforced composite material, prepreg and fiber-reinforced composition material
KR20200025746A (en) Method for manufacturing prepreg having high toughness, high strength and heat resistance characteristic, prepreg manufactured by the same
JPS6360056B2 (en)
JPH01161040A (en) Matrix resin composition
JPH03243619A (en) Epoxy resin composition
JP2000355649A (en) Epoxy resin composition for fiber-reinforced composite material, prepreg, and fiber-reinforced composite material
JP6066026B1 (en) Epoxy resin composition, prepreg and fiber reinforced composite material
JP2022033709A (en) Epoxy resin composition, prepreg and fiber-reinforced composite material