JPS6360056B2 - - Google Patents

Info

Publication number
JPS6360056B2
JPS6360056B2 JP19607885A JP19607885A JPS6360056B2 JP S6360056 B2 JPS6360056 B2 JP S6360056B2 JP 19607885 A JP19607885 A JP 19607885A JP 19607885 A JP19607885 A JP 19607885A JP S6360056 B2 JPS6360056 B2 JP S6360056B2
Authority
JP
Japan
Prior art keywords
epoxy
parts
resin
resin composition
epoxy resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP19607885A
Other languages
Japanese (ja)
Other versions
JPS6257417A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP19607885A priority Critical patent/JPS6257417A/en
Publication of JPS6257417A publication Critical patent/JPS6257417A/en
Publication of JPS6360056B2 publication Critical patent/JPS6360056B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Epoxy Resins (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明は靭性、耐熱、耐水性およびタツク・ド
レープ性の優れたプリプレグ用エポキシ樹脂組成
物に関するものである。 [従来の技術] 炭素繊維、ガラス繊維および芳香族ポリアミド
繊維などの強化材とエポキシ樹脂からなる複合材
料は、その高い比強度、比弾性率を生かしてゴル
フクラブシヤフトや釣竿などのプレミアム・スポ
ーツ用途および航空機等の構造材用途に広く使用
されている。しかし、これらの複合材料に使用さ
れているエポキシ樹脂は更に大きな強度や靭性、
耐熱・耐水性を必要とする用途には性能が不十分
である。 現在、航空機用複合材料に使用されているエポ
キシ樹脂はN,N,N′,N′−テトラグリシジル
ジアミノジフエニルメタンを主成分とし、硬化剤
はジアミノジフエニルスルホンが使用されてい
る。この樹脂組成物は耐熱性は高いが、樹脂伸度
が小さく脆い硬化物になる。この樹脂組成物から
得られるCFRPは優れた耐熱性は示すが、靭性は
低い。 エポキシ樹脂の靭性の向上に関して多くの技術
が提案されている。その手法の一つは、エポキシ
樹脂にアクリロニトリル−ブタジエン共重合体な
どのゴムを添加した後、エポキシ樹脂を硬化させ
てゴム相を分離相として形成させることによりク
ラツクの発生を防止したり、接着強度の向上を測
るものである(例えば、特開昭57−21450号公
報)。他の手法には、ポリエーテルスルホン、ポ
リスルホン、ポリアリレートなどの熱可塑性樹脂
をエポキシ樹脂に添加・混合し硬化樹脂のクラツ
クの伝播を抑制したり、この樹脂を使用して炭素
繊維強化複合材料の靭性を向上させる方法がある
(例えば、THE BRITISH POLYMER
JOURNAL,Vo1.15,MARCH,1983.P.71,
28th SAMPE SYMPOSIUM,1983,P.367、特
開昭58−134126)。しかし、後者の手法は複合材
料の耐熱・耐水性は損わないが、高い靭性をもた
せるためには熱可塑性樹脂のブレンド量をある程
度以上に増やさなければならない。 熱可塑性樹脂のブレンド量を増やすとエポキシ
樹脂の粘度が非常に高くなり、プリプレグの製造
あるいは成形工程で強化材との含浸不良および硬
化不良が生じ易いこと、プリプレグのタツク・ド
レープ性が損われ、積層作業や複雑な形状の成形
が不可能になるなどの問題が生じる。 [発明が解決しようとする問題点] 本発明の目的は、樹脂組成物の製造および複合
材料用プリプレグの製造・成形工程において適度
の粘度を有し、かつ適度のタツク・ドレープ性の
あるプリプレグを与える靭性および耐熱・耐水性
の優れたプリプレグ用エポキシ樹脂組成物を提供
することにある。 [問題点を解決するための手段] 上記目的を達成するため本発明は下記の構成か
らなる。 (1) 下記、[A]、[B]、[C]、[D]および[
E]
を必須成分として配合してなるプリプレグ用エ
ポキシ樹脂組成物。 [A] N,N,N′,N′−テトラグリシジル
ジアミノジフエニルメタン [B] 一般式 で示されるビスフエノールA型エポキシ樹脂 [C] ビスフエノールF型エポキシ樹脂 [D] ジアミノジフエニルスルホン [E] 一般式 で示されるポリエーテルスルホン。 ただし上式中、nは0.2以下であり、mは20〜
500である。 本発明において好ましくは、[B]成分の一般
式[]のnは0.20以下であり、更には0.10以下
である。またmは好ましくは20〜500である。 本発明に用いられるN,N,N′,N′−テトラ
グリシジルジアミノジフエニルメタンは、
ELM434(住友化学工業社製)、MY720(チバ・ガ
イギー社製)、YH434(東都化成社製)などの商
品名で市販されている。このエポキシ樹脂は四官
能エポキシ樹脂であるため、架橋密度が高くな
り、高弾性率かつ高耐熱性の硬化物が得られると
いう長所がある。だが、硬化物の伸度が小さく脆
いという欠点がある。これらの特性を考慮して、
N,N,N′,N′−テトラグリシジルジアミノジ
フエニルメタンの添加量はエポキシ樹脂成分中50
〜70重量%が好ましい。この範囲より多くする
と、得られる硬化物は脆くなり耐水性も悪くな
る。少なくすると、硬化物の耐熱性および弾性率
が低下する。従つて、これらの場合、CFRPの靭
性および耐熱・耐水性は低下する。 本発明に使用される一般式[I]で示されるビ
スフエノールA型エポキシ樹脂は、EP825(油化
シエルエポキシ社製)、EP828(油化シエルエポキ
シ社製)、DER331(ダウ・ケミカル日本社製)な
どの商品名で市販されている。特に、タツク・ド
レープ性向上の点から、EP825の使用が非常に好
ましい。この樹脂から得られる硬化物は樹脂伸度
が大きいことから、靭性を向上させる上で非常に
好ましい反面、弾性率が低いので添加量はエポキ
シ樹脂成分中で20〜40重量%である。 本発明に使用されるビスフエノールF型エポキ
シ樹脂は、エピクロン830(大日本インキ化学工業
社製)、エピコート807(油化シエルエポキシ社製)
などの商品名で市販されている。このエポキシ樹
脂の添加は、本発明プリプレグ用エポキシ樹脂組
成物の粘度を下げ、タツク・ドレープ性を向上さ
せることから非常に好ましい。また、プリプレグ
の製造、成形工程において適度の粘度を有する配
合物を得ることができ、作業性も大幅に改善でき
る。しかし、このエポキシ樹脂から得られる硬化
物は、樹脂伸度が大きい反面、若干、耐熱性が低
い。これらの特性を考慮してビスフエノールF型
エポキシ樹脂の添加量はエポキシ樹脂成分中5〜
20重量%が好ましい。 また、本発明で使用されるエポキシ樹脂以外の
エポキシ樹脂としては、ビスフエノールS型エポ
キシ樹脂、フエノールノボラツク型エポキシ樹
脂、クレゾールノボラツク型エポキシ樹脂、グリ
セリンのグリシジル誘導体等に代表される反応希
釈剤、脂環族エポキシ樹脂などが挙げられる。し
かし、これらのエポキシ樹脂を多量に使用する
と、本発明のプリプレグ用エポキシ樹脂組成物の
耐熱・耐水性あるいはタツク・ドレープ性を低下
させるため、その使用量は限定される。 本発明で使用される硬化剤ジアミノジフエニル
スルホンの添加量は、理論的にはエポキシ1当量
に対してアミン1当量であるように添加すればよ
い。また、硬化速度やシエルフライフの調製およ
び得られる硬化物の耐熱・耐水性などに応じて、
この硬化剤の添加量はエポキシ1当量に対して
0.7〜1.3当量の範囲で適宜好ましい当量を選択す
ることができる。更に、三フツ化ホウ素、・アミ
ン錯体、イミダゾール化合物、およびジシアンジ
アミドなどを硬化促進剤として使用することもで
きる。 本発明で使用される一般式[]で示されるポ
リエーテルスルホンは、インペリアル・ケミカ
ル・インダストリー社(英国)で開発され、
VICTREXの商品名で市販されている。このポリ
エーテルスルホンの添加量は、本発明プリプレグ
用エポキシ樹脂100部に対して、15〜30部が好ま
しい。この範囲より多くすると非常に粘度の高い
樹脂組成物になるため、樹脂の含浸が悪いうえタ
ツク・ドレープ性の良くないプリプレグしか得ら
れない。また、この範囲より少なくすると、ポリ
エーテルスルホンの添加効果が小さく靭性の低い
ものになる。なお本発明において、その効果を発
揮できる範囲内で[A]〜[E]以外の成分を混
合使用できることはもちろんである。 本発明の各成分の混合方法に特に制限はなく、
成分の性状や目的とする配合物の混合状態あるい
は分散状態に応じて適宜好ましい方法を選択する
ことができる。混合方法の一例として[A]、
[B]、[C]、[D]および[E]の各成分が溶解
する溶媒を使用して比較的低温で均一溶液とする
方法があり、他の例としては溶媒を使用せずに比
較的高温で各成分を混合する方法がある。後者の
場合には、エポキシ樹脂とポリエーテルスルホン
を先ず比較的高温で溶解させたのち温度を下げ、
次いで硬化剤を混合する方法が好ましく使用され
る。 本発明のプリプレグ用エポキシ樹脂組成物は、
複合材料樹脂として好ましく用いられるが、この
場合に使用される炭素繊維とは、一定方向に配列
されたテープ、シート状物、マツト状物、織物な
どのような形態のものに適用できる。さらに、ア
ラミド繊維、ボロン繊維、炭化ケイ素繊維など先
進複合材料の補強材、さらに、これらのハイブリ
ツドについても使用できる。 [作用] 本発明ではN,N,N′,N′−テトラグリシジ
ルジアミノジフエニルメタンで示されるビスフエ
ノールA型エポキシ樹脂、ビスフエノールF型エ
ポキシ樹脂、ジアミノジフエニルスルホンおよび
ポリエーテルスルホンを組合せることによつて、
靭性、耐熱・耐水性およびタツク・ドレープ性の
優れたプリプレグ用エポキシ樹脂組成物が提供さ
れる。さらに、各成分の配合工程および強化剤に
含浸してプリプレグを製造する工程において何ら
不都合をもたらすことなく、良好な複合材料を得
ることができる。 [実施例] 以下の実施例によつて本発明を更に詳細に説明
する。実施例中の各成分の量は重量部を表わし、
エポキシ樹脂の内容は以下の通りである。 エポキシA:N,N,N′,N′−テトラグリシ
ジルジアミノジフエニルメタン、住友化学
工業社製ELM434 エポキシB:ビスフエノールA型エポキシ樹
脂、油化シエルエポキシ社製EP825 エポキシC:ビスフエノールF型エポキシ樹
脂、大日本インキ化学工業社製エピクロン
830 エポキシD:ビスフエノールA型エポキシ樹
脂、油化シエルエポキシ社製エピコート
828 エポキシE:ブロム化エポキシ樹脂、大日本イ
ンキ化学工業社製エピクロン152 エポキシF:クレゾールノボラツク型エポキシ
樹脂、ダウ・ケミカル・ジヤパン社製
DEN485 実施例 1 エポキシA60部、エポキシB30部、エポキシ
C10部およびポリエーテルスルホン17.5部を150℃
で加熱・攪拌すると、30分後に透明な粘稠液が得
られた。この組成物を60℃まで冷却し、ジアミノ
ジフエニルスルホン46部を均一に分散させたとこ
ろ、室温において適度なタツク・ドレープ性を有
する樹脂組成物が得られた。 上記の樹脂組成物を180℃で2時間硬化させた
ところ、透明な樹脂硬化物が得られた。この樹脂
硬化物のガラス転移温度(示差差動熱量計を使用
し、40℃/分の昇温速度で側定)は212℃であり、
吸水率(煮沸/20時間)は2.9%であつた。同様
にして、上記と同様の組成でポリエーテルスルホ
ンを添加せずに樹脂硬化板を作製した。このもの
のガラス転移温度は212℃であり、吸水率は3.3%
であつた。 本実施例から、耐熱・耐水性に優れ、ポリエー
テルスルホンが均質に分散させた樹脂硬化物が得
られることが明らかにされた。 実施例 2 実施例1で作製した樹脂組成物について、レオ
ペキシ−アナライザ(岩本製作所製、コーンプレ
ート型)を用いて、設定昇温速度3℃/分で粘度
−温度特性を側定した。最低粘度を表1に示す。 実施例1で作製した樹脂組成物100部に塩化メ
チレン/クロロホルム/メタノール混合溶媒
(53/43/4重量比)240部に溶解し、均質な溶液
を調製した。この溶液を東レ(株)製“トレカ”
T300使用平織クロスに樹脂含量が41重量%にな
るように塗布・含浸させた。一日風乾後、加熱乾
燥して溶媒を除去させたところ、室温において適
度なタツク・ドレープ性のある均質なプリプレグ
が得られた。このプリプレグを24枚積層し、オー
トクレープを使用して180℃、2時間、圧力6
Kg/cm2の条件で硬化させ、厚さ約5mmの複合材を
得た。また、成形後において複合材からの樹脂フ
ローはほとんどみられなかつた。この複合材の先
端R16mmの錘を使用して、680Kg・cm/cm(試料
厚さ)の落錘衝撃エネルギーを与えた。この衝撃
試験により生じた損傷をキヤノン/ホロソニツク
ス社製超音波探傷映像装置M400B型を用いて測
定した。損傷面積を表1に示す。 上記の樹脂組成物を用いて、シリコンペーパ上
にレジンフイルムを形成し、このフイルムを“ト
レカ”T800の一方向配列繊維に樹脂重量含有率
が35%になるように加熱加圧して転写し、室温に
おいて適度なタツク・ドレープ性を有する均質な
一方向配列プリプレグを得た。このプリプレグを
8枚重ね、オートクレーブを使用して180℃、2
時間、圧力6Kg/cm2の条件で硬化させ、厚さ約1
mmの一方向積層材を得た。島津オートグラフ
DCS−10Tを用いて、クロスヘツド速度1mm/分
の条件で上記複合材の繊維方向の引張破断伸度を
測定した。結果を表1に示す。 同様にして、上記プリプレグを16枚重ね、厚さ
約2mmの一方向積層材を得た。島津オートグラフ
IS−2000を用いて、クロスヘツド速度1mm/分の
条件で上記複合材の繊維直角方向の引張破断伸度
を測定した。結果を表1に示す。 実施例 3 エポキシA60部、エポキシB20部、エポキシ
C20部、ポリエーテルスルホン17部およびジアミ
ノジフエニルスルホン46部からなる系について、
実施例1と同様の方法で樹脂組成物を作製したと
ころ、室温において均一で適度なタツク・ドレー
プ性を有する樹脂組成物が得られた。この樹脂組
成物について、実施例1と同様の方法で樹脂硬化
物を作製したところ、透明な樹脂硬化物が得られ
た。この樹脂硬化物のガラス転移温度は215℃で
あり、吸水率は2.9%であつた。 同様にして、上記と同様の組成でポリエーテル
スルホンを添加せずに樹脂硬化板を作製した。こ
のもののガラス転移温度は215℃であり、吸水率
は3.3%であつた。 実施例 4 実施例3で作製した樹脂組成物について、実施
例2と同様の方法により、粘度−温度特性を測定
した。最低粘度を表1に示す。 実施例3の樹脂組成物を用いて、実施例2と同
様の方法により、室温において適度なタツク・ド
レープ性を有する均質な一方向配列プリプレグを
得た。このプリプレグを用いて、実施例2と同様
の方法により、繊維方向および繊維直角方向の引
張破断伸度を測定した。結果を表1に示す。 また、成形後において、上記複合材からの樹脂
フローはほとんどみられなかつた。 上記の樹脂組成物について、塩化メチレン/ク
ロロホルム/メタノール混合溶媒を用いて、実施
例2と同様の方法によりプリプレグを作製したと
ころ、このプリプレグは室温において適度なタツ
ク・ドレープ性を有した。このプリプレグを用い
て、実施例2と同様の方法により、落錘衝撃試験
後の損傷面積を測定した。結果を表1に示す。 また、成形後において複合材からの樹脂フロー
はほとんどみられなかつた。 比較例 1 エポキシA60部、エポキシB30部、エポキシ
C10部、ポリエーテルスルホン40部およびジアミ
ノジフエニルスルホン46部からなる樹脂組成物を
実施例1と同様の方法により作製したところ室温
においてタツク・ドレープ性のない樹脂組成物が
得られた。 比較例 2 エポキシA70部、エポキシD30部、ジアミノジ
フエニルスルホン46部およびポリエーテルスルホ
ン17部からなる系について、実施例1と同様にし
て樹脂組成物を作製したところ、室温でタツク・
ドレープ性の不十分な樹脂組成物が得られた。 比較例 3 エポキシA60部、エポキシB30部、エポキシ
C10部およびジアミノジフエニルスルホン46部か
らなる樹脂組成物を作製した。この樹脂組成物
100部をメチルエチルケトン150部に溶解し、均質
な溶液を調製した。この溶液から実施例2と同様
の方法により厚さ約5mmの複合材を得た。成形
後、複合材からの樹脂フローがみられた。この複
合材を用いて、実施例2と同様の方法により落錘
衝撃試験後の損傷面積を測定した。結果を表1に
示す。 比較例 4 エポキシA35部、エポキシD35部、エポキシ
E30部およびジアミノジフエニルスルホン34部か
らなる樹脂組成物について、実施例2と同様の方
法で粘度−温度特性を測定した。結果を表1に示
す。 上記の樹脂組成物100部をメチルエチルケトン
150部に溶解し均質な溶液を調製した。この溶液
から実施例2と同様の方法により厚さ約5mmの複
合材を得た。この複合材を用いて、実施例2と同
様の方法により落錘衝撃試験後の損傷面積を測定
した。結果を表1に示す。 上記の樹脂組成物を用いて、実施例2と同様の
方法により一方向積層材を作製し、繊維方向およ
び繊維直角方向の引張破断伸度を測定した。結果
を表1に示す。 また、本実施例で得られた複合材からは、成形
後、顕著な樹脂フローがみられた。 比較例 5 エポキシA63部、エポキシB17部、エポキシ
F22部およびジアミノジフエニルスルホン45部か
らなる樹脂組成物について、実施例2と同様の方
法で粘度−温度特性を測定した。結果を表1に示
す。 上記の樹脂組成物100部をメチルエチルケトン
150部に溶解し均質な溶液を調製した。この容液
を用いて、実施例2と同様の方法により厚さ約5
mmの複合材を得た。この複合材を用いて、実施例
2と同様の方法により落錘衝撃試験後の損傷面積
を測定した。結果を表1に示す。 上記の樹脂組成物を用いて、実施例2と同様の
方法により一方向積層材を作製し、繊維方向およ
び繊維直角方向の引張破断伸度を測定した。結果
を表1に示す。 また、本比較例で得られた複合材からは、成形
後、顕著な樹脂フローがみられた。
[Industrial Field of Application] The present invention relates to an epoxy resin composition for prepregs having excellent toughness, heat resistance, water resistance, and tuck/drape properties. [Prior art] Composite materials made of reinforcing materials such as carbon fibers, glass fibers, and aromatic polyamide fibers and epoxy resins are used for premium sports applications such as golf club shafts and fishing rods by taking advantage of their high specific strength and specific modulus. It is widely used as a structural material for aircraft, etc. However, the epoxy resins used in these composite materials have even greater strength, toughness, and
Performance is insufficient for applications that require heat resistance and water resistance. Currently, epoxy resins used in aircraft composite materials have N,N,N',N'-tetraglycidyldiaminodiphenylmethane as a main component, and diaminodiphenylsulfone is used as a curing agent. Although this resin composition has high heat resistance, the resin composition has low resin elongation and becomes a brittle cured product. CFRP obtained from this resin composition exhibits excellent heat resistance but low toughness. Many techniques have been proposed for improving the toughness of epoxy resins. One method is to add rubber such as acrylonitrile-butadiene copolymer to epoxy resin, and then cure the epoxy resin to form a rubber phase as a separate phase, which prevents cracks and increases adhesive strength. (For example, Japanese Patent Laid-Open No. 57-21450). Other methods include adding and mixing thermoplastic resins such as polyethersulfone, polysulfone, and polyarylate to epoxy resins to suppress the propagation of cracks in cured resins, and using these resins to create carbon fiber-reinforced composite materials. There are ways to improve toughness (e.g. THE BRITISH POLYMER
JOURNAL, Vo1.15, MARCH, 1983.P.71,
28th SAMPE SYMPOSIUM, 1983, P.367, Japanese Patent Application Publication No. 1983-134126). However, although the latter method does not impair the heat resistance and water resistance of the composite material, it is necessary to increase the amount of thermoplastic resin blended beyond a certain level in order to provide high toughness. When the amount of blended thermoplastic resin is increased, the viscosity of the epoxy resin becomes extremely high, which tends to cause poor impregnation and curing with reinforcing materials during prepreg manufacturing or molding processes, and impairs the tact and drape properties of the prepreg. Problems arise, such as making lamination work and molding of complex shapes impossible. [Problems to be Solved by the Invention] An object of the present invention is to provide prepregs with appropriate viscosity and appropriate tackiness and drape properties in the manufacturing process of resin compositions and prepregs for composite materials. An object of the present invention is to provide an epoxy resin composition for prepreg that has excellent toughness and heat resistance and water resistance. [Means for Solving the Problems] In order to achieve the above object, the present invention has the following configuration. (1) Below, [A], [B], [C], [D] and [
E]
An epoxy resin composition for prepregs containing as an essential component. [A] N,N,N',N'-tetraglycidyldiaminodiphenylmethane [B] General formula Bisphenol A type epoxy resin represented by [C] Bisphenol F type epoxy resin [D] Diaminodiphenylsulfone [E] General formula Polyether sulfone represented by. However, in the above formula, n is 0.2 or less, and m is 20~
It is 500. In the present invention, n in the general formula [] of component [B] is preferably 0.20 or less, more preferably 0.10 or less. Further, m is preferably 20 to 500. N,N,N',N'-tetraglycidyldiaminodiphenylmethane used in the present invention is
It is commercially available under trade names such as ELM434 (manufactured by Sumitomo Chemical), MY720 (manufactured by Ciba-Geigy), and YH434 (manufactured by Toto Kasei). Since this epoxy resin is a tetrafunctional epoxy resin, it has the advantage that it has a high crosslinking density, and a cured product with high elastic modulus and high heat resistance can be obtained. However, it has the disadvantage that the cured product has low elongation and is brittle. Considering these characteristics,
The amount of N,N,N',N'-tetraglycidyldiaminodiphenylmethane added is 50% in the epoxy resin component.
~70% by weight is preferred. If the amount exceeds this range, the resulting cured product will become brittle and have poor water resistance. If the amount is decreased, the heat resistance and elastic modulus of the cured product will decrease. Therefore, in these cases, the toughness, heat resistance, and water resistance of CFRP decrease. The bisphenol A type epoxy resins represented by the general formula [I] used in the present invention are EP825 (manufactured by Yuka Ciel Epoxy Co., Ltd.), EP828 (manufactured by Yuka Ciel Epoxy Co., Ltd.), and DER331 (manufactured by Dow Chemical Japan Co., Ltd.). ) and are commercially available under product names such as In particular, from the viewpoint of improving tuck and drape properties, it is highly preferable to use EP825. Since the cured product obtained from this resin has a high resin elongation, it is very preferable for improving toughness, but on the other hand, since the modulus of elasticity is low, the amount added is 20 to 40% by weight in the epoxy resin component. The bisphenol F type epoxy resins used in the present invention are Epiclon 830 (manufactured by Dainippon Ink Chemical Industry Co., Ltd.) and Epicort 807 (manufactured by Yuka Ciel Epoxy Co., Ltd.).
It is commercially available under product names such as. Addition of this epoxy resin is very preferable because it lowers the viscosity of the epoxy resin composition for prepreg of the present invention and improves tack and drape properties. In addition, a compound having an appropriate viscosity can be obtained in prepreg manufacturing and molding processes, and workability can be greatly improved. However, although the cured product obtained from this epoxy resin has high resin elongation, it has slightly low heat resistance. Considering these characteristics, the amount of bisphenol F type epoxy resin added is 5 to 5% in the epoxy resin component.
20% by weight is preferred. Epoxy resins other than the epoxy resins used in the present invention include reactive diluents such as bisphenol S-type epoxy resins, phenol novolak-type epoxy resins, cresol novolak-type epoxy resins, and glycidyl derivatives of glycerin. , alicyclic epoxy resin, etc. However, if a large amount of these epoxy resins is used, the heat resistance, water resistance, tackiness and drape properties of the epoxy resin composition for prepreg of the present invention will be reduced, so the amount used is limited. The amount of the curing agent diaminodiphenyl sulfone used in the present invention may theoretically be 1 equivalent of amine per 1 equivalent of epoxy. In addition, depending on the curing speed, the preparation of the shelf life, and the heat resistance and water resistance of the resulting cured product,
The amount of this curing agent added is based on 1 equivalent of epoxy.
A preferred equivalent can be selected as appropriate within the range of 0.7 to 1.3 equivalents. Furthermore, boron trifluoride, amine complexes, imidazole compounds, dicyandiamide, and the like can also be used as curing accelerators. The polyether sulfone represented by the general formula [ ] used in the present invention was developed by Imperial Chemical Industries (UK),
It is commercially available under the trade name VICTREX. The amount of polyether sulfone added is preferably 15 to 30 parts per 100 parts of the epoxy resin for prepreg of the present invention. If the amount exceeds this range, the resulting resin composition will have a very high viscosity, resulting in poor resin impregnation and a prepreg with poor tack and drape properties. If the amount is less than this range, the effect of adding polyether sulfone will be small and the toughness will be low. In the present invention, it is of course possible to mix and use components other than [A] to [E] within the range that can exhibit the effect. There is no particular restriction on the method of mixing each component of the present invention,
A suitable method can be selected depending on the properties of the components and the mixing state or dispersion state of the target compound. As an example of the mixing method [A],
There is a method of making a homogeneous solution at a relatively low temperature using a solvent that dissolves each component of [B], [C], [D], and [E], and another example is a method of making a homogeneous solution at a relatively low temperature. There is a method of mixing each component at a high temperature. In the latter case, the epoxy resin and polyether sulfone are first melted at a relatively high temperature, and then the temperature is lowered.
A method in which a curing agent is then mixed is preferably used. The epoxy resin composition for prepreg of the present invention is
Although preferably used as a composite material resin, the carbon fibers used in this case can be applied to forms such as tapes, sheets, mats, textiles, etc. arranged in a certain direction. Furthermore, it can be used for reinforcing advanced composite materials such as aramid fibers, boron fibers, silicon carbide fibers, and hybrids thereof. [Function] In the present invention, bisphenol A type epoxy resin, bisphenol F type epoxy resin, diaminodiphenyl sulfone and polyether sulfone represented by N,N,N',N'-tetraglycidyldiaminodiphenylmethane are combined. By the way,
An epoxy resin composition for prepreg having excellent toughness, heat resistance/water resistance, and tack/drape properties is provided. Furthermore, a good composite material can be obtained without causing any inconvenience in the step of blending each component and the step of manufacturing a prepreg by impregnating it with a reinforcing agent. [Example] The present invention will be explained in more detail with the following example. The amount of each component in the examples represents parts by weight,
The contents of the epoxy resin are as follows. Epoxy A: N,N,N',N'-tetraglycidyldiaminodiphenylmethane, ELM434 manufactured by Sumitomo Chemical Co., Ltd. Epoxy B: Bisphenol A type epoxy resin, EP825 manufactured by Yuka Ciel Epoxy Co., Ltd. Epoxy C: Bisphenol F type Epoxy resin, Epiclon manufactured by Dainippon Ink Chemical Industries, Ltd.
830 Epoxy D: Bisphenol A type epoxy resin, Epicoat manufactured by Yuka Ciel Epoxy Co., Ltd.
828 Epoxy E: Brominated epoxy resin, manufactured by Dainippon Ink & Chemicals Co., Ltd. Epiclon 152 Epoxy F: Cresol novolak type epoxy resin, manufactured by Dow Chemical Japan Co., Ltd.
DEN485 Example 1 60 parts of epoxy A, 30 parts of epoxy B, epoxy
10 parts of C and 17.5 parts of polyether sulfone at 150℃
When heated and stirred, a clear viscous liquid was obtained after 30 minutes. When this composition was cooled to 60° C. and 46 parts of diaminodiphenylsulfone was uniformly dispersed, a resin composition having appropriate tack and drape properties at room temperature was obtained. When the above resin composition was cured at 180°C for 2 hours, a transparent cured resin product was obtained. The glass transition temperature of this cured resin (determined using a differential calorimeter at a heating rate of 40°C/min) is 212°C.
The water absorption rate (boiling/20 hours) was 2.9%. Similarly, a cured resin board was produced with the same composition as above without adding polyether sulfone. The glass transition temperature of this material is 212℃, and the water absorption rate is 3.3%.
It was hot. From this example, it was revealed that a cured resin product having excellent heat resistance and water resistance and in which polyether sulfone was homogeneously dispersed could be obtained. Example 2 The viscosity-temperature characteristics of the resin composition prepared in Example 1 were determined using a rheopexi analyzer (manufactured by Iwamoto Seisakusho, cone plate type) at a set temperature increase rate of 3° C./min. The minimum viscosity is shown in Table 1. 100 parts of the resin composition prepared in Example 1 was dissolved in 240 parts of a mixed solvent of methylene chloride/chloroform/methanol (53/43/4 weight ratio) to prepare a homogeneous solution. This solution is used as a trading card manufactured by Toray Industries, Inc.
A plain weave cloth using T300 was coated and impregnated with a resin content of 41% by weight. After air drying for one day, the solvent was removed by heat drying, and a homogeneous prepreg with appropriate tact and drape properties was obtained at room temperature. 24 sheets of this prepreg were laminated and heated at 180℃ for 2 hours using an autoclave at a pressure of 6.
It was cured under conditions of Kg/cm 2 to obtain a composite material with a thickness of approximately 5 mm. Furthermore, almost no resin flow from the composite material was observed after molding. A falling weight impact energy of 680 kg cm/cm (sample thickness) was applied using a weight with a radius of 16 mm at the tip of this composite material. The damage caused by this impact test was measured using an ultrasonic flaw detection imaging device model M400B manufactured by Canon/Holosonics. The damaged area is shown in Table 1. Using the above resin composition, a resin film is formed on silicone paper, and this film is transferred to the unidirectionally aligned fibers of "Trading Card" T800 by heating and pressurizing so that the resin weight content becomes 35%. A homogeneous unidirectionally aligned prepreg with appropriate tack and drape properties at room temperature was obtained. 8 sheets of this prepreg were stacked and heated at 180℃ for 2 hours using an autoclave.
Cured under conditions of time and pressure of 6 kg/cm 2 to a thickness of approx.
A unidirectional laminate of mm was obtained. Shimadzu Autograph
Using DCS-10T, the tensile elongation at break in the fiber direction of the composite material was measured at a crosshead speed of 1 mm/min. The results are shown in Table 1. In the same manner, 16 sheets of the above prepreg were stacked to obtain a unidirectional laminate with a thickness of about 2 mm. Shimadzu Autograph
Using IS-2000, the tensile elongation at break in the direction perpendicular to the fibers of the composite material was measured at a crosshead speed of 1 mm/min. The results are shown in Table 1. Example 3 60 parts of epoxy A, 20 parts of epoxy B, epoxy
For a system consisting of 20 parts of C, 17 parts of polyether sulfone and 46 parts of diaminodiphenylsulfone,
When a resin composition was prepared in the same manner as in Example 1, a resin composition was obtained that was uniform and had appropriate tack and drape properties at room temperature. A cured resin product was produced from this resin composition in the same manner as in Example 1, and a transparent cured resin product was obtained. This cured resin had a glass transition temperature of 215°C and a water absorption rate of 2.9%. Similarly, a cured resin board was produced with the same composition as above without adding polyether sulfone. This material had a glass transition temperature of 215°C and a water absorption rate of 3.3%. Example 4 The viscosity-temperature characteristics of the resin composition prepared in Example 3 were measured in the same manner as in Example 2. The minimum viscosity is shown in Table 1. Using the resin composition of Example 3, a homogeneous unidirectional prepreg having appropriate tuck and drape properties at room temperature was obtained in the same manner as in Example 2. Using this prepreg, the tensile elongation at break in the fiber direction and in the direction perpendicular to the fibers was measured in the same manner as in Example 2. The results are shown in Table 1. Further, after molding, almost no resin flow from the composite material was observed. A prepreg was prepared from the above resin composition in the same manner as in Example 2 using a mixed solvent of methylene chloride/chloroform/methanol, and this prepreg had appropriate tack and drape properties at room temperature. Using this prepreg, the damaged area after the falling weight impact test was measured in the same manner as in Example 2. The results are shown in Table 1. Furthermore, almost no resin flow from the composite material was observed after molding. Comparative example 1 60 parts of epoxy A, 30 parts of epoxy B, epoxy
A resin composition consisting of 10 parts of C, 40 parts of polyether sulfone and 46 parts of diaminodiphenylsulfone was prepared in the same manner as in Example 1, and a resin composition without tack and drape properties at room temperature was obtained. Comparative Example 2 A resin composition was prepared in the same manner as in Example 1 using a system consisting of 70 parts of epoxy A, 30 parts of epoxy D, 46 parts of diaminodiphenylsulfone, and 17 parts of polyether sulfone.
A resin composition with insufficient drapability was obtained. Comparative example 3 60 parts of epoxy A, 30 parts of epoxy B, epoxy
A resin composition consisting of 10 parts of C and 46 parts of diaminodiphenyl sulfone was prepared. This resin composition
A homogeneous solution was prepared by dissolving 100 parts in 150 parts of methyl ethyl ketone. A composite material having a thickness of approximately 5 mm was obtained from this solution in the same manner as in Example 2. After molding, resin flow from the composite material was observed. Using this composite material, the damaged area after the falling weight impact test was measured in the same manner as in Example 2. The results are shown in Table 1. Comparative example 4 35 parts of epoxy A, 35 parts of epoxy D, epoxy
The viscosity-temperature characteristics of a resin composition consisting of 30 parts of E and 34 parts of diaminodiphenylsulfone were measured in the same manner as in Example 2. The results are shown in Table 1. Add 100 parts of the above resin composition to methyl ethyl ketone.
A homogeneous solution was prepared by dissolving 150 parts. A composite material having a thickness of approximately 5 mm was obtained from this solution in the same manner as in Example 2. Using this composite material, the damaged area after the falling weight impact test was measured in the same manner as in Example 2. The results are shown in Table 1. A unidirectional laminate was produced using the above resin composition in the same manner as in Example 2, and the tensile elongation at break in the fiber direction and in the direction perpendicular to the fibers was measured. The results are shown in Table 1. Further, the composite material obtained in this example showed remarkable resin flow after molding. Comparative example 5 63 parts of epoxy A, 17 parts of epoxy B, epoxy
The viscosity-temperature characteristics of a resin composition consisting of 22 parts of F and 45 parts of diaminodiphenyl sulfone were measured in the same manner as in Example 2. The results are shown in Table 1. Add 100 parts of the above resin composition to methyl ethyl ketone.
A homogeneous solution was prepared by dissolving 150 parts. Using this solution, the same method as in Example 2 was used to obtain a film with a thickness of approximately 5 mm.
A composite of mm was obtained. Using this composite material, the damaged area after the falling weight impact test was measured in the same manner as in Example 2. The results are shown in Table 1. A unidirectional laminate was produced using the above resin composition in the same manner as in Example 2, and the tensile elongation at break in the fiber direction and in the direction perpendicular to the fibers was measured. The results are shown in Table 1. Furthermore, the composite material obtained in this comparative example showed significant resin flow after molding.

【表】 [発明の効果] (1) 複合材料の衝撃による損傷が減少する。 (2) 耐熱・耐水性に優れた樹脂組成物が提供され
る。 (3) 品質が安定し、タツク・ドレープ性に優れた
プリプレグが作製できる。 (4) 均質な樹脂組成物および硬化樹脂が得られ
る。 (5) 特殊な条件を必要とせず、オートクレーブを
用いて成形できる。 (6) 一方向積層材の繊維直角方向の引張破断伸度
が向上し、均質な多方向積層材が取得できる。 (7) 最低粘度が増加し、成形による樹脂フローが
少ないため、均質な厚さの複合材の成形が可能
である。
[Table] [Effects of the invention] (1) Damage to composite materials due to impact is reduced. (2) A resin composition with excellent heat resistance and water resistance is provided. (3) Prepreg with stable quality and excellent tack and drape properties can be produced. (4) A homogeneous resin composition and cured resin can be obtained. (5) Can be molded using an autoclave without requiring special conditions. (6) The tensile elongation at break in the direction perpendicular to the fibers of unidirectional laminated materials is improved, and homogeneous multidirectional laminated materials can be obtained. (7) Because the minimum viscosity increases and the resin flow during molding is reduced, it is possible to mold composite materials with uniform thickness.

Claims (1)

【特許請求の範囲】 1 下記[A],[B],[C],[D]および[E]
を必須成分として配合してなるプリプレグ用エポ
キシ樹脂組成物。 [A] N、N、N′,N′−テトラグリシジルジ
アミノジフエニルメタン [B] 一般式 で示されるビスフエノールA型エポキシ樹脂 [C] ビスフエノールF型エポキシ樹脂 [D] ジアミノジフエニルスルホン [E] 一般式 で示されるポリエーテルスルホン。 ただし上式中、nは0.2以下であり、mは20
〜500である。 2 特許請求の範囲第1項において[B]成分の
一般式[I]のnが0.10以下であるプリプレグ用
エポキシ樹脂組成物。
[Claims] 1. The following [A], [B], [C], [D] and [E]
An epoxy resin composition for prepregs containing as an essential component. [A] N, N, N', N'-tetraglycidyldiaminodiphenylmethane [B] General formula Bisphenol A type epoxy resin [C] Bisphenol F type epoxy resin [D] Diaminodiphenylsulfone [E] General formula Polyether sulfone represented by. However, in the above formula, n is 0.2 or less, and m is 20
~500. 2. An epoxy resin composition for prepregs, wherein n in general formula [I] of component [B] in claim 1 is 0.10 or less.
JP19607885A 1985-09-06 1985-09-06 Epoxy resin composition for prepreg Granted JPS6257417A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19607885A JPS6257417A (en) 1985-09-06 1985-09-06 Epoxy resin composition for prepreg

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19607885A JPS6257417A (en) 1985-09-06 1985-09-06 Epoxy resin composition for prepreg

Publications (2)

Publication Number Publication Date
JPS6257417A JPS6257417A (en) 1987-03-13
JPS6360056B2 true JPS6360056B2 (en) 1988-11-22

Family

ID=16351832

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19607885A Granted JPS6257417A (en) 1985-09-06 1985-09-06 Epoxy resin composition for prepreg

Country Status (1)

Country Link
JP (1) JPS6257417A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0643508B2 (en) * 1987-03-11 1994-06-08 東邦レーヨン株式会社 Prepreg and manufacturing method thereof
JPH0639517B2 (en) * 1989-06-16 1994-05-25 松下電工株式会社 Epoxy resin composition
JPH0660230B2 (en) * 1989-09-30 1994-08-10 東燃株式会社 Epoxy resin composition
JP4857587B2 (en) * 2005-04-13 2012-01-18 横浜ゴム株式会社 Epoxy resin composition for fiber reinforced composite materials
CA2683073A1 (en) 2007-04-13 2008-11-06 Yasuyuki Yokoe Resin composition, and prepreg

Also Published As

Publication number Publication date
JPS6257417A (en) 1987-03-13

Similar Documents

Publication Publication Date Title
EP2311892A1 (en) Epoxy resin composition and prepreg using same
JP7200928B2 (en) Thermosetting resin compositions, prepregs and fiber-reinforced composites
JP4821163B2 (en) Epoxy resin composition for fiber reinforced composite materials
JP6710972B2 (en) Epoxy resin composition, prepreg, cured resin and fiber reinforced composite material
JP6156569B2 (en) Epoxy resin composition for carbon fiber reinforced plastic, and film, prepreg and carbon fiber reinforced plastic using the same
JP2003238657A (en) Epoxy resin composition, cured resin, prepreg and fiber reinforced composite material
JP2003026768A (en) Epoxy resin composition, prepreg, and fiber-reinforced composite material
JPH0639519B2 (en) Epoxy resin composition and prepreg
KR0152515B1 (en) Phenolic modified epoxy adhesive
JPS6236421A (en) Epoxy resin composition for prepreg
JP4894339B2 (en) Epoxy resin composition for fiber reinforced composite materials
JP2006291094A (en) Epoxy resin composition for reinforced composite material
JPH04249544A (en) Resin composition, prepreg and production of prepreg
WO2020217894A1 (en) Epoxy resin composition, intermediate substrate, and fiber-reinforced composite material
JPS6360056B2 (en)
JP2018012797A (en) Epoxy resin composition, prepreg, resin cured product and fiber-reinforced composite material
JP2006219513A (en) Epoxy resin composition, prepreg and fiber-reinforced composite material
JP2004027043A (en) Epoxy resin composition for fiber-reinforced composite material and the resulting fiber-reinforced composite material
JP2011057851A (en) Epoxy resin composition, prepreg and fiber-reinforced composite material
JP2009215481A (en) Prepreg and fiber-reinforced composite material
JP3193095B2 (en) Manufacturing method of composite material
JP2003041093A (en) Resin composition for composite material, intermediate material for composite material and composite material
JPH0586425B2 (en)
KR20200025746A (en) Method for manufacturing prepreg having high toughness, high strength and heat resistance characteristic, prepreg manufactured by the same
JPH01135858A (en) Epoxy resin composition for fiber reinforcement

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term