JPS6244771B2 - - Google Patents

Info

Publication number
JPS6244771B2
JPS6244771B2 JP58092978A JP9297883A JPS6244771B2 JP S6244771 B2 JPS6244771 B2 JP S6244771B2 JP 58092978 A JP58092978 A JP 58092978A JP 9297883 A JP9297883 A JP 9297883A JP S6244771 B2 JPS6244771 B2 JP S6244771B2
Authority
JP
Japan
Prior art keywords
epoxy resin
weight
parts
cured product
properties
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58092978A
Other languages
Japanese (ja)
Other versions
JPS59217721A (en
Inventor
Tadahide Sato
Kuniaki Tobukuro
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP9297883A priority Critical patent/JPS59217721A/en
Publication of JPS59217721A publication Critical patent/JPS59217721A/en
Publication of JPS6244771B2 publication Critical patent/JPS6244771B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

(技術分野) 本発明は、耐熱性及び耐水性の優れた炭素繊維
強化プラスチツク(以下CFRPと略す)を与える
炭素繊維プリプレグ用エポキシ樹脂組成物に関す
る。 (従来技術) 炭素繊維の比強度、比弾性率が高いという特性
を活かしたCFRPは、航空機をはじめとする産業
分野で広く使用されている。その一つに超高速回
転の遠心分離機がある。かかる用途に使用される
CFRPに要求される特性として、耐熱性及び機械
的物性は勿論のこと、この他に特に耐水性及び低
温硬化性が要求されている。すなわち、CFRPは
マトリツクス樹脂により寸法変化を起しバランス
を崩して高速回転させられない。回転させる際
は、脱水しなければならず、耐水性の悪いものは
脱水に長時間かかるため、耐水性の良いものが要
求される。また、硬化温度が高いと、成形時の熱
残留歪みが大きいため、成形品に歪みが発生しや
すく、そのため回転のバランスがとりにくい。 現在、耐熱性を必要とするCFRPに使用されて
いるエポキシ樹脂は、N・N・N′・N′−テトラ
グリシジルジアミノジフエニルメタンか、これを
若干変性した物と、硬化剤として4・4′−ジアミ
ノジフエニルスルホンを混合したエポキシ樹脂組
成物である。この樹脂組成物の欠点は、耐水性及
び硬化性が悪いことである。すなわち、硬化性が
悪いため硬化を十分行なわせるためには、200〜
210℃で4時間以上の硬化が必要なため、生産性
が低いばかりでなく、得られるCFRPに大きな熱
歪みが残る。 一方、特開昭54−77699で、N・N・N′・N′−
テトラグリシジルジアミノジフエニルメタンと
4・4′−ジアミノジフエニルスルホンに、N・
N・O−トリグリシジルメタアミノフエノールを
添加すれば、物性を向上させると共に硬化性が改
善されることが知られている。しかし、この樹脂
組成物から得られる硬化物は吸水率が大きいため
高速回転物用途には適していない。 (本発明の目的) 本発明の目的は、耐熱性及び機械的物性と共
に、耐水性及び硬化性の優れたエポキシ樹脂を得
ることにある。 (本発明の構成) 本発明のかかる目的は、 (1) 全エポキシ樹脂を100重量部として (A) N・N・N-・N-−テトラグリシジルジア
ミノジフエニルメタン25〜75重量部のと、 (B) N・N・O−トリグリシジルメタアミノフ
エノール5〜25重量部と、 (C) Br化エポキシ樹脂及び/又はノボラツク
型エポキシ樹脂15〜60重量部と、 (D) 全エポキシ樹脂のエポキシ基1当量に対し
て0.6〜1.4当量の4・4-ジアミノジフエニル
スルホン を含有することを特徴とする炭素繊維プリプレ
グ用エポキシ樹脂組成物。 によつて達成される。 本発明に使用される、N・N・N′・N′−テト
ラグリシジルジアミノジフエニルメタンは、
ELM434、YL913、YH434などの商標で市販され
ている。このエポキシ樹脂は、4官能エポキシで
あるため架橋密度が高かくなり、その結果、高耐
熱性かつ高弾性率の硬化物が得られるが、硬化物
の伸度は小さい。また、分子内に窒素原子を含有
するため耐水性が悪い。これらの特性を考慮し
て、N・N・N′・N′−テトラグリシジルジアミ
ノジフエニルメタンの添加量は、硬化剤の4・
4′−ジアミノジフエニルスルホンを除いたエポキ
シ樹脂だけを、100重量部とした場合、25〜75重
量部であり、より好ましくは30〜65重量部がよ
い。この範囲より多くすると、硬化物の伸度及び
耐水性が低下し、少くなくすると、硬化物の耐熱
性が低下する。N・N・N′・N′−テトラグリシ
ジルジアミノジフエニルメタンに、N・N・
N′−トリグリシジルジアミノジフエニルメタン
及びこれらのグリシジル基同志が反応した二量体
が含有されていても、本発明の樹脂組成物の性能
を損なうことはない。 本発明に使用されるN・N・O−トリグリシジ
ルメタアミノフエノールは、ELM120、YDM120
などの商標で市販されている。このエポキシ樹脂
は自己硬化性を有するほど反応性が良い。また、
三官能エポキシ樹脂であるため、架橋密度が高か
くなる結果、高耐熱性かつ高弾性率の硬化物が得
られるが、硬化物の伸度は小さい。さらに、分子
内に窒素原子を含有するため硬化物の耐水性は悪
い。これらの特性を考慮して、N・N・O−トリ
グリシジルメタアミノフエノールの添加量は、5
〜25重量部であり、好ましくは、10〜20重量部で
ある。この範囲より多くすると、耐水性が低下す
ると共にプリプレグのシエルフライフが短かくな
り、少なくすると、硬化性が悪くなる。 本発明に使用されるBr化エポキシ樹脂は、Br
化ビスフエノールAのグリシジルエーテル型エポ
キシ樹脂、及びBr化フエノールボラツク樹脂の
グリシジルエーテル型エポキシ樹脂であり、Br
含有量が16〜50重量%のものである。このBr化
エポキシ樹脂は、エピクロン152、エピクロン
1120、ESB340、EP1050、BREN−Sの商標名で
市販されている。このBr化エポキシ樹脂は、耐
水性及び弾性率の高い硬化物になるが、エポキシ
当量が大きいので架橋密度が低くなり耐熱性の低
い硬化物になる。さらに、Br原子に起因する立
体障害を有するため、Br化エポキシ樹脂の濃度
を高くすると硬化物の伸度が低下する。これらの
特性を考慮して、Br化エポキシ樹脂の添加量
は、15〜60重量部であり、より好ましくは、20〜
50重量部である。この範囲より多くすると硬化物
の耐熱性及び伸度が低下し、少なくすると硬化物
の耐水性が低下する。 本発明に使用されるノボラツク型エポキシ樹脂
は、フエノールノボラツク樹脂及びクレゾールノ
ボラツク樹脂のグリシジルエーテル型エポキシ樹
脂であり、EP152、EP154、N740、DER485、
ESCN220L、N673などの商標名で市販されてい
る。このノボラツク型エポキシ樹脂は、高耐熱
性、高耐水性、高伸度の硬化物になるが、弾性率
の低い硬化物になる。これらの特性を考慮してノ
ボラツク型エポキシ樹脂は15〜60重量部であり、
より好ましくは、20〜50重量部である。この範囲
より多くすると硬化物の弾性率が低下し、少なく
すると、硬化物の耐水性及び伸度が低下する。 さらに、本発明の樹脂組成物に、EP828、
EP1001、EP1004、YD128、エピクロン855、エ
ピクロン1050、ELA128などの商標名で市販され
ているビスフエノールAのグリシジルエーテル型
エポキシ樹脂の添加は、硬化物の伸度を大きくす
ることから、ビスフエノールAのグリシジルエー
テル型エポキシ樹脂の添加は非常に好ましい。 本発明に使用される硬化剤としての4・4′−ジ
アミノジフエニルスルホンは、アミン系硬化剤と
しては比較的長いシエルフライフが有ると共に、
高耐熱性の硬化物を与えるものである。4・4′−
ジアミノジフエニルスルホンの添加量は、理論的
にはエポキシ1当量に対してアミン1当量添加す
ればよいが、硬化速度やシエルフライフの調整、
及び得られる硬化物の耐熱性、耐水性、伸度か
ら、4・4′−ジアミノジフエニルスルホンの添加
量は、エポキシ1当量に対して、0.6〜1.4当量で
あり、より好ましくは、0.8〜1.1当量である。ま
た、本発明において、4・4′−ジアミノジフエニ
ルスルホンは、他の硬化剤と併用することは勿論
可能である。 本発明において、プリプレグに適した樹脂粘度
にするため、4・4′−ジアミノジフエニルスルホ
ンや4・4′−ジアミノジフエニルメタンで予備重
合し樹脂粘度を調節してもさしつかえない。さら
に、本発明の樹脂組成物の特性を損なわない程度
に、熱可塑性樹脂を添加し、樹脂の粘度を調節し
たり硬化時の樹脂フローの調節をしてもさしつか
えない。 本発明のエポキシ樹脂組成物は、CFRPとして
好ましく用いられるが、この場合に使用される炭
素繊維とは、一定方向に配列されたテープ、シー
ト状物、ホツト状物、織物など、どのような形態
の炭素繊維にも適用できる。さらに、ガラス繊
維、ボロン繊維、有機繊維など、通常FRPの補
強材として用いられるものは、すべて使用でき
る。 (本発明の効果) 本発明のエポキシ樹脂組成物は硬化性及び耐水
性が良い。この結果、180℃で2時間硬化させれ
ば、吸水性が小さくかつガラス転移温度が220〜
230℃の高耐熱性の硬化物が得られ、吸水による
寸法変化も小さい。さらに、硬化物の弾性率及び
伸度が大きいためすぐれた物性のCFRPが得られ
るという効果を有する。 以下実施例によつて、本発明をさらに詳細に説
明する。 実施例 1 N・N・N′・N′−テトラグリシジルジアミノ
ジフエニルメタン(エポキシ当量120)2250gと
Br化エポキシ樹脂(エポキシ当量360)2000gと
N・N・O−トリグリシジルメタアミノフエノー
ル(エポキシ当量118)750gを、あらかじめ100
℃に加熱したニーダに加え十分混合する。混合し
た後、ニーダ内容物の温度を60〜65℃に冷却し
て、4・4′−ジアミノジフエニルスルホン1800g
を加えて十分混合しエポキシ樹脂組成物を作つ
た。この樹脂組成物を一方向に引き揃えた炭素繊
維“トレカ”T−300(東レ商標)にホツトメル
ト法により含浸させ、樹脂含有量34重量%の一方
向プリプレグを作成した。得られたプリプレグを
長さ30cm、巾30cmに切断し、これを8枚積層した
後、離型処理したアルミ板にのせ、ナイロン製の
バキユームバツクでおおい、バツグ内を真空引き
した後、オートクレーブに入れ、6Kg/cm2に加熱
した後、1.5℃/分で昇温し、180℃で2時間加熱
し硬化板を得た。得られた硬化板の炭素繊維含有
量は、59.5容量%であり、板の厚さは1.15mmであ
つた。また、ガラス転移温度は224℃であつた。
この硬化板から炭素繊維方向に長さ230mm、巾
12.71mmの0゜引張用試験片を切り出した。この
試験片の両端の両側に長さ50mm、巾12.71mmの一
方の端に10mmのテーパ部を持つガラス製のタブを
接着した。このタブ付き試験片の中央に歪みゲー
ジを張り付け、1mm/分の引張速度で引張、引張
物性を測定した。この結果を表1に示す。また、
この硬化板から、ASTM、D695に準じて試験片
を切り出し圧縮物性を測定した。この結果を表1
に示す。この硬化板から炭素繊維方向に長さ150
mm、巾20mmの試験片を切り出し、71℃の温水中に
14日間浸漬した結果、吸水率は0.83%であつた。
さらに、プリプレグを長さ35cm、巾30cmに切断
し、これを16枚積層した。この積層した物を上記
と同様な方法で硬化板を作つた。この硬化板の炭
素含有量は59.2容量%で、板の厚さは2.27mmであ
つた。この硬化板から炭素繊維に対して90゜方向
に長さ230mm、巾25.41mmの90゜引張用試験片を切
り出した。この試験片の中央に歪みゲージを張り
付け、引張速度1mm/分で引張、90゜引張物性を
測定した。この結果を表1に示す。また、この硬
化板から、ASTM、D2344に準じて試験片を切り
出し層間セン断強度を測定した。この結果を表1
に示す。これらの結果より硬化性が良く、耐水
性、耐熱性、コンポジツト物性が優れていること
を確認した。
(Technical Field) The present invention relates to an epoxy resin composition for carbon fiber prepreg that provides carbon fiber reinforced plastic (hereinafter abbreviated as CFRP) with excellent heat resistance and water resistance. (Prior art) CFRP, which takes advantage of carbon fiber's high specific strength and specific modulus, is widely used in industrial fields including aircraft. One of them is a centrifugal separator that rotates at ultra-high speed. used for such purposes
The properties required of CFRP include not only heat resistance and mechanical properties, but also water resistance and low-temperature hardening properties. In other words, CFRP undergoes dimensional changes due to the matrix resin, which causes it to lose its balance and cannot be rotated at high speeds. When rotating, it must be dehydrated, and since it takes a long time to dehydrate a product with poor water resistance, a product with good water resistance is required. Furthermore, if the curing temperature is high, thermal residual strain during molding is large, which tends to cause distortion in the molded product, making it difficult to balance rotation. Currently, the epoxy resin used for CFRP that requires heat resistance is N・N・N′・N′-tetraglycidyldiaminodiphenylmethane or a slightly modified version of this, and 4.4% as a hardening agent. This is an epoxy resin composition mixed with '-diaminodiphenyl sulfone. The disadvantage of this resin composition is that it has poor water resistance and curability. In other words, since the curing properties are poor, in order to sufficiently cure the
Because it requires curing at 210°C for 4 hours or more, not only is productivity low, but the resulting CFRP also suffers from large thermal distortions. On the other hand, in JP-A-54-77699, N・N・N′・N′−
N.
It is known that adding N.O-triglycidylmethaminophenol improves physical properties and curability. However, the cured product obtained from this resin composition has a high water absorption rate and is therefore not suitable for use in high-speed rotating objects. (Objective of the present invention) An object of the present invention is to obtain an epoxy resin having excellent water resistance and curability as well as heat resistance and mechanical properties. (Structure of the present invention) This object of the present invention is as follows: (1) Based on 100 parts by weight of the total epoxy resin, (A) 25 to 75 parts by weight of N・N・N -・N - -tetraglycidyldiaminodiphenylmethane. , (B) 5 to 25 parts by weight of N・N・O-triglycidyl metaaminophenol; (C) 15 to 60 parts by weight of brominated epoxy resin and/or novolak type epoxy resin; (D) of all epoxy resins. An epoxy resin composition for carbon fiber prepreg, comprising 0.6 to 1.4 equivalents of 4,4 - diaminodiphenyl sulfone per equivalent of epoxy group. achieved by. N・N・N′・N′-tetraglycidyldiaminodiphenylmethane used in the present invention is
It is commercially available under trademarks such as ELM434, YL913, and YH434. Since this epoxy resin is a tetrafunctional epoxy, the crosslinking density is high, and as a result, a cured product with high heat resistance and high elastic modulus can be obtained, but the elongation of the cured product is small. Also, since it contains nitrogen atoms in its molecules, it has poor water resistance. Taking these characteristics into consideration, the amount of N・N・N′・N′-tetraglycidyldiaminodiphenylmethane added is determined by
When the epoxy resin excluding 4'-diaminodiphenyl sulfone is taken as 100 parts by weight, the amount is 25 to 75 parts by weight, more preferably 30 to 65 parts by weight. If the amount exceeds this range, the elongation and water resistance of the cured product will decrease, and if it decreases, the heat resistance of the cured product will decrease. N・N・N′・N′-tetraglycidyldiaminodiphenylmethane, N・N・
Even if N'-triglycidyldiaminodiphenylmethane and a dimer obtained by reacting these glycidyl groups with each other are contained, the performance of the resin composition of the present invention is not impaired. N・N・O-triglycidyl metaaminophenol used in the present invention is ELM120, YDM120
It is sold under the trademarks such as. The more this epoxy resin has self-curing properties, the better its reactivity is. Also,
Since it is a trifunctional epoxy resin, the crosslinking density is high, resulting in a cured product with high heat resistance and high modulus of elasticity, but the elongation of the cured product is low. Furthermore, since the molecule contains nitrogen atoms, the water resistance of the cured product is poor. Considering these characteristics, the amount of N・N・O-triglycidyl metaaminophenol added is 5.
-25 parts by weight, preferably 10-20 parts by weight. If the amount exceeds this range, the water resistance will decrease and the shelf life of the prepreg will be shortened, and if it decreases, the curing properties will deteriorate. The Br epoxy resin used in the present invention is Br
A glycidyl ether type epoxy resin of brominated bisphenol A, and a glycidyl ether type epoxy resin of brominated phenol borax resin.
The content is 16-50% by weight. This brominated epoxy resin is Epicron 152, Epicron
It is commercially available under the trade names 1120, ESB340, EP1050, and BREN-S. This brominated epoxy resin becomes a cured product with high water resistance and elastic modulus, but since the epoxy equivalent is large, the crosslinking density is low, resulting in a cured product with low heat resistance. Furthermore, since it has steric hindrance due to Br atoms, increasing the concentration of the Br-containing epoxy resin lowers the elongation of the cured product. Considering these characteristics, the amount of the brominated epoxy resin added is 15 to 60 parts by weight, more preferably 20 to 60 parts by weight.
50 parts by weight. If the amount exceeds this range, the heat resistance and elongation of the cured product will decrease, and if it decreases, the water resistance of the cured product will decrease. The novolak type epoxy resins used in the present invention are glycidyl ether type epoxy resins of phenol novolak resin and cresol novolak resin, including EP152, EP154, N740, DER485,
It is commercially available under trade names such as ESCN220L and N673. This novolak type epoxy resin becomes a cured product with high heat resistance, high water resistance, and high elongation, but a cured product with low elastic modulus. Considering these characteristics, the amount of novolak type epoxy resin is 15 to 60 parts by weight.
More preferably, it is 20 to 50 parts by weight. If the amount exceeds this range, the elastic modulus of the cured product will decrease, and if it decreases, the water resistance and elongation of the cured product will decrease. Furthermore, EP828,
The addition of glycidyl ether type epoxy resins of bisphenol A, which are commercially available under trade names such as EP1001, EP1004, YD128, Epiclon 855, Epiclon 1050, and ELA128, increases the elongation of the cured product. The addition of glycidyl ether type epoxy resins is highly preferred. 4,4'-diaminodiphenyl sulfone as a curing agent used in the present invention has a relatively long shelf life as an amine-based curing agent, and
It provides a cured product with high heat resistance. 4・4′−
Theoretically, the addition amount of diaminodiphenylsulfone should be 1 equivalent of amine per 1 equivalent of epoxy, but it is necessary to adjust the curing speed and shelf life.
In view of the heat resistance, water resistance, and elongation of the resulting cured product, the amount of 4,4'-diaminodiphenyl sulfone added is 0.6 to 1.4 equivalents, more preferably 0.8 to 1.4 equivalents per equivalent of epoxy. It is 1.1 equivalent. Furthermore, in the present invention, 4,4'-diaminodiphenyl sulfone can of course be used in combination with other curing agents. In the present invention, in order to obtain a resin viscosity suitable for prepreg, the resin viscosity may be adjusted by prepolymerizing with 4,4'-diaminodiphenyl sulfone or 4,4'-diaminodiphenylmethane. Furthermore, a thermoplastic resin may be added to adjust the viscosity of the resin or the flow of the resin during curing to the extent that the properties of the resin composition of the present invention are not impaired. The epoxy resin composition of the present invention is preferably used as CFRP, but the carbon fibers used in this case can be in any form such as tapes, sheets, hots, textiles, etc. arranged in a certain direction. It can also be applied to carbon fiber. Furthermore, all the materials normally used as reinforcing materials for FRP, such as glass fiber, boron fiber, and organic fiber, can be used. (Effects of the present invention) The epoxy resin composition of the present invention has good curability and water resistance. As a result, if cured at 180℃ for 2 hours, the water absorption is small and the glass transition temperature is 220~220℃.
A cured product with high heat resistance of 230℃ is obtained, and dimensional changes due to water absorption are small. Furthermore, since the cured product has high elastic modulus and elongation, it has the effect of providing CFRP with excellent physical properties. The present invention will be explained in more detail with reference to Examples below. Example 1 2250 g of N・N・N′・N′-tetraglycidyldiaminodiphenylmethane (epoxy equivalent: 120)
2000 g of brominated epoxy resin (epoxy equivalent: 360) and 750 g of N・N・O-triglycidyl metaaminophenol (epoxy equivalent: 118) were mixed in advance at 100 g.
Add to a kneader heated to ℃ and mix thoroughly. After mixing, the temperature of the contents of the kneader was cooled to 60-65℃, and 1800 g of 4,4'-diaminodiphenylsulfone was added.
was added and thoroughly mixed to prepare an epoxy resin composition. This resin composition was impregnated into unidirectionally aligned carbon fibers "Torayca" T-300 (Toray trademark) by a hot melt method to produce a unidirectional prepreg having a resin content of 34% by weight. The obtained prepreg was cut into pieces of 30 cm in length and 30 cm in width, and 8 sheets were laminated, placed on a release-treated aluminum plate, covered with a nylon vacuum bag, and after vacuuming the inside of the bag, placed in an autoclave. , 6 Kg/cm 2 , the temperature was increased at a rate of 1.5° C./min, and the mixture was heated at 180° C. for 2 hours to obtain a cured plate. The carbon fiber content of the obtained cured board was 59.5% by volume, and the thickness of the board was 1.15 mm. Further, the glass transition temperature was 224°C.
230mm in length and width from this hardened plate in the carbon fiber direction.
A 12.71 mm 0° tensile test piece was cut out. Glass tabs having a length of 50 mm and a width of 12.71 mm and having a tapered portion of 10 mm at one end were adhered to both ends of this test piece. A strain gauge was attached to the center of this tabbed test piece, and the tensile properties were measured at a tensile speed of 1 mm/min. The results are shown in Table 1. Also,
A test piece was cut out from this cured plate according to ASTM, D695, and its compressive properties were measured. The results are shown in Table 1.
Shown below. Length 150 in the direction of carbon fiber from this hardened plate
Cut out a test piece with a width of 20 mm and place it in hot water at 71℃.
After 14 days of immersion, the water absorption rate was 0.83%.
Furthermore, the prepreg was cut into pieces of 35 cm in length and 30 cm in width, and 16 sheets were laminated. A cured plate was made from this laminated product in the same manner as above. The carbon content of this cured plate was 59.2% by volume, and the thickness of the plate was 2.27 mm. A 90° tensile test piece having a length of 230 mm and a width of 25.41 mm was cut from this cured plate in a direction 90° to the carbon fiber. A strain gauge was attached to the center of this test piece, and the test piece was pulled at a pulling speed of 1 mm/min to measure the physical properties under 90° tension. The results are shown in Table 1. Further, a test piece was cut out from this cured plate according to ASTM, D2344, and the interlaminar shear strength was measured. The results are shown in Table 1.
Shown below. From these results, it was confirmed that the curability was good, and the water resistance, heat resistance, and composite physical properties were excellent.

【表】 実施例 2 N・N・N′・N′−テトラグリシジルジアミノ
ジフエニルメタン2000gとN・N・O−トリグリ
シジルメタアミノフエノール750gとノボラツク
型エポキシ(エポキシ当量178)2250と4・4′−
ジアミノジフエニルスルホン050gを、あらかじ
め60〜65℃に加熱したニーダに加え十分混合して
エポキシ樹脂組成物を作つた。この樹脂組成物を
使つて実施例1と同様にしてプリプレグを作つ
た。このプリプレグを使つて実施例1と同様にし
て硬化板を作つた。この硬化板のガラス転移温度
は225℃であり、吸水率は0.92%であつた。実施
例1と同様に、0゜及び90゜引張物性、圧縮物
性、層間セン断強度を測定した。これらの結果は
表2の通りであり、硬化性が良く、耐水性、耐熱
性、コンポジツト物性が優れていることを確認し
た。
[Table] Example 2 2000g of N・N・N′・N′-tetraglycidyldiaminodiphenylmethane, 750g of N・N・O-triglycidylmethaminophenol, and novolac type epoxy (epoxy equivalent: 178) 2250 and 4.4 ′−
An epoxy resin composition was prepared by adding 050 g of diaminodiphenylsulfone to a kneader preheated to 60 to 65°C and thoroughly mixing. A prepreg was made in the same manner as in Example 1 using this resin composition. A cured plate was made using this prepreg in the same manner as in Example 1. The glass transition temperature of this cured plate was 225°C, and the water absorption rate was 0.92%. In the same manner as in Example 1, 0° and 90° tensile properties, compressive properties, and interlaminar shear strength were measured. These results are shown in Table 2, and it was confirmed that the curability was good, and the water resistance, heat resistance, and composite physical properties were excellent.

【表】【table】

【表】 比較例 1 N・N・N′・N′−テトラグリシジルジアミノ
ジフエニルメタン4000gと4・4′−ジアミノジフ
エニルスルホン1920gを、あらかじめ60〜65℃に
加熱したニーダに加え十分混合したエポキシ樹脂
組成物を作り、以下実施例1と同様にしてプリプ
レグを作つた。このプリプレグを使用して、実施
例1と同様にして硬化板を作つた。この硬化板の
ガラス転移温度は192℃であり、吸水率は2.14で
あつた。実施例1と同様に、0゜及び90゜引張特
性、圧縮物性、層間セン断強度を測定した。これ
らの結果は表3の通りであり、硬化性が悪く実施
例と比較してコンポジツト物性は著しく低かつ
た。
[Table] Comparative Example 1 4000 g of N・N・N′・N′-tetraglycidyldiaminodiphenylmethane and 1920 g of 4,4′-diaminodiphenyl sulfone were added to a kneader preheated to 60 to 65°C and mixed thoroughly. An epoxy resin composition was prepared, and a prepreg was produced in the same manner as in Example 1. A cured plate was made in the same manner as in Example 1 using this prepreg. The glass transition temperature of this cured plate was 192°C, and the water absorption rate was 2.14. In the same manner as in Example 1, 0° and 90° tensile properties, compressive properties, and interlaminar shear strength were measured. These results are shown in Table 3, and the curing properties were poor and the physical properties of the composite were significantly lower than those of the Examples.

【表】 比較例 2 N・N・N′・N′−テトラグリシジルジアミノ
ジフエニルメタン3400gとN・N・O−トリグリ
シジルメタアミノフエノール600gと4・4′−ジ
アミノジフエニルスルホン1920gを、あらかじめ
60〜65℃に加熱したニーダに加え十分混合してエ
ポキシ樹脂組成物を作り、以下実施例1と同様に
してプリプレグを作つた。このプリプレグを使用
して、実施例1と同様にして硬化板を作つた。こ
の硬化板のガラス転移温度224℃であり、吸水率
は1.93%であつた。実施例1と同様に、0゜及び
90゜引張物性、圧縮物生、層間セン断強度を測定
した。これらの結果は表4の通りであり、硬化性
は良いが、耐水性が悪いCFRPであつた。
[Table] Comparative Example 2 3400 g of N・N・N′・N′-tetraglycidyldiaminodiphenylmethane, 600 g of N・N・O-triglycidylmethaminophenol, and 1920 g of 4,4′-diaminodiphenyl sulfone were prepared in advance.
The mixture was added to a kneader heated to 60 to 65° C. and thoroughly mixed to prepare an epoxy resin composition, and a prepreg was prepared in the same manner as in Example 1. A cured plate was made in the same manner as in Example 1 using this prepreg. The glass transition temperature of this cured plate was 224°C, and the water absorption rate was 1.93%. As in Example 1, 0° and
The 90° tensile properties, compressive properties, and interlaminar shear strength were measured. These results are shown in Table 4, indicating that the CFRP had good hardenability but poor water resistance.

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】 1 全エポキシ樹脂を100重量部として (A) N・N・N-・N-−テトラグリシジルジアミ
ノジフエニルメタン25〜75重量部のと、 (B) N・N・O−トリグリシジルメタアミノフエ
ノール5〜25重量部と、 (C) Br化エポキシ樹脂及び/又はノボラツク型
エポキシ樹脂15〜60重量部と、 (D) 全エポキシ樹脂のエポキシ基1当量に対して
0.6〜1.4当量の4・4-ジアミノジフエニルスル
ホン を含有することを特徴とする炭素繊維プリプレク
用エポキシ樹脂組成物。
[Claims] 1. Based on 100 parts by weight of the total epoxy resin, (A) 25 to 75 parts by weight of N.N.N -.N - -tetraglycidyldiaminodiphenylmethane; (B) N.N.O. - 5 to 25 parts by weight of triglycidyl metaaminophenol; (C) 15 to 60 parts by weight of brominated epoxy resin and/or novolak type epoxy resin; (D) based on 1 equivalent of epoxy groups in the total epoxy resin.
An epoxy resin composition for carbon fiber prepreg, comprising 0.6 to 1.4 equivalents of 4,4 - diaminodiphenyl sulfone.
JP9297883A 1983-05-26 1983-05-26 Epoxy resin composition for carbon fiber prepreg Granted JPS59217721A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9297883A JPS59217721A (en) 1983-05-26 1983-05-26 Epoxy resin composition for carbon fiber prepreg

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9297883A JPS59217721A (en) 1983-05-26 1983-05-26 Epoxy resin composition for carbon fiber prepreg

Publications (2)

Publication Number Publication Date
JPS59217721A JPS59217721A (en) 1984-12-07
JPS6244771B2 true JPS6244771B2 (en) 1987-09-22

Family

ID=14069475

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9297883A Granted JPS59217721A (en) 1983-05-26 1983-05-26 Epoxy resin composition for carbon fiber prepreg

Country Status (1)

Country Link
JP (1) JPS59217721A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS621749A (en) * 1985-06-28 1987-01-07 Toray Ind Inc Prepreg for high-strength composite material
JPS6236427A (en) * 1985-08-12 1987-02-17 Toray Ind Inc Unidirectionally carbon fiber-reinforced high-strength composite material
DE3689783T2 (en) * 1985-09-27 1994-08-25 Sumitomo Chemical Co Low viscosity epoxy resin, this resin-containing composition and fiber-containing composite based on this hardened composition.
JPH0362821A (en) * 1989-07-31 1991-03-18 Tonen Corp Epoxy resin composition

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5477699A (en) * 1977-12-01 1979-06-21 Toray Ind Inc Heat resistant epoxy resin composition

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5477699A (en) * 1977-12-01 1979-06-21 Toray Ind Inc Heat resistant epoxy resin composition

Also Published As

Publication number Publication date
JPS59217721A (en) 1984-12-07

Similar Documents

Publication Publication Date Title
AU2001266730B2 (en) Low moisture absorption epoxy resin systems
JPWO2003040206A1 (en) Epoxy resin composition for fiber reinforced composite material, method for producing fiber reinforced composite material, and fiber reinforced composite material
AU2001266730A1 (en) Low moisture absorption epoxy resin systems
JP4475880B2 (en) Epoxy resin composition
JPH0639519B2 (en) Epoxy resin composition and prepreg
JP2006291094A (en) Epoxy resin composition for reinforced composite material
JPH02113031A (en) Epoxy resin mixture for fibrous composite material
JP3026372B2 (en) Composite material intermediate
JPS6244771B2 (en)
JPS6236421A (en) Epoxy resin composition for prepreg
JP2018012797A (en) Epoxy resin composition, prepreg, resin cured product and fiber-reinforced composite material
JP2001302760A (en) Epoxy resin composition
JP2829369B2 (en) Epoxy resin composition
JP2006291093A (en) Epoxy resin composition for fiber-reinforced composite material
JP2006291092A (en) Epoxy resin composition for fiber-reinforced composite material
JPS62177016A (en) Epoxy resin composition
JPS6017288B2 (en) Heat-resistant epoxy resin composition
JPS6261217B2 (en)
JPS6244772B2 (en)
JPH01135858A (en) Epoxy resin composition for fiber reinforcement
JPH0778138B2 (en) Resin composition for fiber reinforced prepreg
CN114729104A (en) Epoxy resin composition
JPS6244770B2 (en)
JPS59174616A (en) Epoxy resin composition and prepreg
JPS6257417A (en) Epoxy resin composition for prepreg