JP2001301695A - 無人ヘリコプタの飛行制御システム - Google Patents

無人ヘリコプタの飛行制御システム

Info

Publication number
JP2001301695A
JP2001301695A JP2000120519A JP2000120519A JP2001301695A JP 2001301695 A JP2001301695 A JP 2001301695A JP 2000120519 A JP2000120519 A JP 2000120519A JP 2000120519 A JP2000120519 A JP 2000120519A JP 2001301695 A JP2001301695 A JP 2001301695A
Authority
JP
Japan
Prior art keywords
flight
input
data
command
directions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2000120519A
Other languages
English (en)
Inventor
Akira Sato
彰 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamaha Motor Co Ltd
Original Assignee
Yamaha Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaha Motor Co Ltd filed Critical Yamaha Motor Co Ltd
Priority to JP2000120519A priority Critical patent/JP2001301695A/ja
Publication of JP2001301695A publication Critical patent/JP2001301695A/ja
Withdrawn legal-status Critical Current

Links

Abstract

(57)【要約】 【課題】入力する位置指令データの数を減らすとともに
飛行条件に適合して最適な飛行経路となる指令値を自動
的に設定する無人ヘリコプタの飛行制御システムを提供
する。 【解決手段】モニタを有するパソコンを備え、飛行点に
おける前後、左右、上下および回転方向の4方向の指令
値を前記パソコンに入力し、該指令値に基づく速度指令
データにより飛行制御する無人ヘリコプタの飛行制御シ
ステムにおいて、前記指令値を入力する飛行点が2点以
上ある場合に、各飛行点について前記4方向のうち3方
向の指令値を位置指令データとして入力し、残りの1方
向の指令値は前記パソコン内で予め設定された飛行条件
に応じて自動的に決定される。

Description

【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は、地上側のパソコン
に入力された飛行指令に基づいて機体側のマイコンを介
して機体の運転を自律制御する無人ヘリコプタの飛行制
御システムに関するものである。
【0002】
【従来の技術】本出願人は、無人ヘリコプタの自律飛行
システムを開発し、特願平10−288356として特
許出願している。この自律飛行システムにおいては、地
上側にパソコンからなる飛行制御装置を設置し、このパ
ソコンから飛行指令を機体側のマイコンに送信し、地上
からの指令データに応じて機体を飛行させる。地上側の
パソコンは、各種演算処理回路やメモリ回路等を内蔵
し、キーボードおよびマウス等の入力操作手段および表
示用モニタを備えている。このパソコンに、飛行指令デ
ータとなる前後、左右、上下および回転(方位)につい
ての速度指令値および時間が入力され、これが機体側に
送信される。
【0003】機体側にはマイコンからなる駆動制御装置
が備わる。機体側のマイコンは、演算処理回路およびメ
モリ回路を備え、地上側のパソコンからの飛行指令デー
タに応じて駆動回路(マイコンに内蔵)を介してエンジ
ンやロータ等のアクチュエータを駆動して機体を飛行さ
せる。
【0004】機体にはGPSやジャイロ等からなる機体
の位置や姿勢を検出するセンサが備わり、その検出デー
タが機体側のマイコンから地上側のパソコンに送られ
る。このような位置等の検出データにより飛行中の機体
の実際の軌跡がリアルタイムで確認できる。
【0005】一方、このような無人ヘリコプタ等の移動
体の移動制御を行う移動制御装置および移動監視装置が
特開平5−19854号公報に記載されている。この公
報記載の移動制御装置は、無人ヘリコプタに、GPSレ
シーバ、ICカードおよびコントローラを搭載し、この
ICカードに飛行点の座標データ、速度データおよび高
度データからなる移動予定経路の飛行データが記憶され
る。コントローラは、GPSレシーバから受信した自己
の位置データとICカードから読み出した飛行データと
を比較してそのずれを演算し、このずれに基づいてヘリ
コプタを予定経路に戻すように駆動する。
【0006】また、この公報記載の移動監視装置は、ヘ
リコプタのGPSレシーバで自己の位置を計測し、この
現在の飛行位置データを地上のリモートコントロール装
置に送信する。リモートコントロール装置は同心円状の
距離ゲージを有するディスプレイを備え、出発点等の基
準位置を中心として現在位置が距離ゲージ上に表示され
出発点からの距離がわかる。また、高度および速度が数
字で表示され、方位が矢印で示される。このような表示
により、無人ヘリコプタの実際の移動状態をリアルタイ
ムで監視する。
【0007】
【発明が解決しようとする課題】しかしながら、4方向
の飛行指令データをすべて速度指令値として入力する無
人ヘリコプタの飛行制御システムでは、例えば地図上で
の位置を指定してこれを目標点として飛行させたいよう
な場合に直ちに対処することができない。
【0008】また、上記公報記載の装置では飛行経路に
沿った多数の飛行点の全てについて飛行データを入力し
なければならず、入力操作が煩雑になる。すなわち、例
えば同じ飛行軌跡の形状で異なる位置で飛行させたい場
合に、飛行ごとに飛行経路に沿って飛行軌跡形状を特定
する全ての飛行点の位置データを入力しなければなら
ず、入力操作が手間取る。
【0009】このような点に対処するために、前後、左
右、上下および回転の4方向について、速度指令に代え
て飛行点の4方向の位置指令データを入力して飛行駆動
可能とし、入力飛行点のデータ数を少なくする飛行制御
システムが考えられる。
【0010】このような4方向の位置データによる飛行
システムにおいて、2点の飛行点を指定した場合、この
2点間の飛行経路は、距離や時間あるいは燃費等の飛行
条件を考慮して最適となるように4方向の位置データが
入力される。このような最適経路を飛行ごとに選定して
各飛行点の4位置データを入力することは手間のかかる
作業である。
【0011】本発明は、上記従来技術を考慮したもので
あって、入力する位置指令データの数を減らすとともに
飛行条件に適合して最適な飛行経路となる指令値を自動
的に設定する無人ヘリコプタの飛行制御システムの提供
を目的とする。
【0012】
【課題を解決するための手段】前記目的を達成するた
め、本発明では、モニタを有するパソコンを備え、飛行
点における前後、左右、上下および回転方向の4方向の
指令値を前記パソコンに入力し、該指令値に基づく速度
指令データにより飛行制御する無人ヘリコプタの飛行制
御システムにおいて、前記指令値を入力する飛行点が2
点以上ある場合に、各飛行点について前記4方向のうち
3方向の指令値を位置指令データとして入力し、残りの
1方向の指令値は前記パソコン内で予め設定された飛行
条件に応じて自動的に決定されることを特徴とする無人
ヘリコプタの飛行制御システムを提供する。
【0013】この構成によれば、3方向の位置指令デー
タを入力するだけで残りの1方向については、飛行条件
に応じて自動的に決定されるため、少ないデータ入力数
で飛行条件に適合した最善の飛行経路が自動的に設定で
きる。
【0014】好ましい構成例では、前記3方向の位置指
令データとして前後、左右および上下方向の位置指令デ
ータを入力し、回転方向の指令値は飛行条件に応じて自
動的に定められることを特徴としている。
【0015】この構成によれば、前後、左右および上下
の3方向位置指令データを入力することにより、回転方
向位置指令データが自動的に求まるため、入力操作の手
間が軽減されるとともに最適な飛行経路が速やかに確実
に設定される。
【0016】さらに好ましい構成例では、飛行入力点が
2点の場合、2点間距離が所定値以下であればそのまま
の方位で飛行し、所定値より長ければ方位を進行方向に
変更してから飛行し、飛行入力点が3点以上であれば方
位を変更しながら飛行するように前記飛行条件を設定し
たことを特徴としている。
【0017】この構成によれば、2点の飛行点間の距離
に応じて、短距離であれば機体の向きを変えずにそのま
ま飛行し、距離が長くなれば向きを変えてから飛行し、
途中の通過点を指定された場合には、逐次向きを変えな
がら飛行するように方位の指令値が自動的に定まる。こ
れにより最適飛行経路が短時間で的確に設定され自律飛
行の操作性が高まる。
【0018】
【発明の実施の形態】以下図面を参照して本発明の実施
の形態について説明する。図1は、本発明に係る自律飛
行システム全体の制御フローを示すブロック図である。
オペレータ(操作者)1は、飛行指示データを飛行中に
直接指示入力しながら飛行させることができ(ブロック
2)、あるいは、飛行前に指示データを事前指示入力し
て記憶させ、これを飛行中に読み出して飛行させること
もできる(ブロック3)。事前指示の場合、地上側に設
置されたパソコンに予定経路の飛行データを入力し、こ
れを一連の飛行動作のシーケンスとしてプログラム化し
て記憶する(ブロック4)、このプログラムを飛行時に
読み出して自律飛行を行う。この場合、パソコンに記憶
した飛行データまたはプログラムを無人ヘリコプタ(機
体)側に送信し、機体に搭載したマイコンのメモリに記
憶させ、飛行時にこのマイコンからプログラムを読み出
して自律飛行することもできる。
【0019】このような飛行プログラムに入力される指
令値としては、一般に速度指令データや位置指令データ
あるいは加速度指令データ等がある。速度指令データを
用いることにより、指令値を入力する場合に、実際の飛
行時の操縦感覚と同じ感覚で指令値を入力でき、機体の
移動状態が直感的に分かり易く、データ入力がし易くな
る。したがって、通常飛行時にはこのような速度指令入
力により飛行することが操縦しやすい。また、地図上の
目標点を直接位置指定して経路を設定したい場合があ
り、このような場合には位置指令によることが好まし
い。本実施形態は、速度指令データに基づく飛行プログ
ラムを用いて速度指令入力により飛行するシステムが前
提であり、この速度指令データによる飛行システムにお
いてさらに位置指令データを入力可能とし、これを速度
データに変換して速度指令データ用のプログラムをその
まま使用可能としている。
【0020】したがって、入力する飛行データは、前
後、左右、上下および回転(方位)についての4つの速
度指令値および時間指令値とすることができる(ブロッ
ク5)。入力された4速度指令値に基づきパソコン(ま
たはマイコン)から4つの速度指令が発せられ(ブロッ
ク6)、機体の駆動装置7を動作させて無人ヘリコプタ
8を飛行させる。
【0021】入力する飛行データとして、上記4つの速
度指令値に代えて、飛行経路上の位置を前後、左右、上
下および回転の4方向についてそれぞれ指示する4位置
指令データを入力してもよい(ブロック9)。この場
合、後述のように、モニタの地図画面上で目標位置を指
定してもよいし、画面上のアイコン等への数値入力とす
ることもできる。また、通過時刻や飛行速度等を併せて
入力してもよい。
【0022】この4位置指令の場合、例えば出発点と目
標点の2点の位置を指定する。あるいは、出発点と目標
点間にさらに1点または数点の通過飛行点の位置を指定
してもよい。また、位置指定した2点間に速度指令デー
タを入力してもよい。さらに、出発点の4方向位置のみ
を指令してその後は速度指令とすることもできる。これ
により、例えば、予め速度指令データにより飛行軌跡の
プログラムを形成し、該飛行軌跡中の1点の位置を位置
指令データにより指定することにより異なる位置で同じ
飛行軌跡形状で飛行させることができる。この構成によ
れば、同一形状の飛行軌跡経路で異なる位置において繰
り返し飛行させる場合に、例えばそれぞれ異なる位置の
出発点の位置データのみを指定すれば他の位置は指定し
なくてもプログラムにより自動的に設定される。したが
って、入力データ数を大幅に減少させることができる。
【0023】このような4位置指令データは、演算処理
され(ブロック10)速度データに変換して前述のよう
に速度指令(ブロック6)として駆動装置7を駆動す
る。さらに、入力する飛行データとして、目標通過点が
2点以上ある場合、4つの位置指令データのうち3つの
位置データを入力し(ブロック11)、この3位置デー
タと飛行条件(ブロック12)に基づいて、後述のよう
に、2点間の最適経路を算出し(ブロック10)、これ
により最適経路となる4つの速度データを求めて自動的
に最適経路で飛行させることもできる。
【0024】前述のパソコンのメモリに記憶された飛行
プログラムは、パソコンで演算処理され、予想軌跡が算
出される。本実施形態ではこの予想軌跡がモニタに表示
される(ブロック13)。
【0025】図2は、本実施形態の制御系のブロック構
成図である。地上側に設置されたパソコン(本体)14
は演算処理回路を内蔵し、モニタ15および入力手段と
してキーボード16とマウス17を備え、メモリ18を
有している。機体側には演算処理回路を内蔵しメモリ6
0を有するマイコン20が搭載される。マイコン20に
は、位置検出用のGPSセンサ21と、姿勢検出用のジ
ャイロセンサ22が接続される。地上側のパソコン14
と機体側のマイコン20は、それぞれの送受信機19,
23を介して相互にデータ通信する。
【0026】前述の速度指令データあるいは位置指令デ
ータからなる飛行データは、キーボード16からの数値
入力あるいはマウス17によりモニタ15の表示画面を
クリックすることにより入力される。入力された予定飛
行データに基づき予想軌跡が算出され、この予想軌跡が
モニタ15に表示される。
【0027】機体側では、GPSセンサ21およびジャ
イロセンサ22により、飛行中の現在時点の位置と姿勢
が検出され、実際の飛行データが地上側のパソコン14
に送られる。パソコン14は、これらの飛行データから
実際の飛行軌跡の表示データを算出しこれを前述の予想
軌跡とともにモニタ15に表示する。これにより、実際
の飛行軌跡と予想軌跡のずれがモニタ画面上でリアルタ
イムで識別できる。
【0028】図3は、上記制御系を備えた自律飛行シス
テム全体の構成図である。無人ヘリコプタ8の機体に
は、駆動源である不図示のエンジン、該エンジンのスロ
ットル系や姿勢制御系を駆動する不図示のサーボモー
タ、GPSセンサ21、GPSアンテナ21a、ジャイ
ロセンサ22、マイコン20(図2)等が搭載され、マ
イコン20(図2)には、I/F回路24を介して通信
装置(送受信機)23が接続されている。
【0029】一方、地上側に設置されたパソコン14に
は、GPS衛星25からの信号を受信するGPSアンテ
ナ26とGPS受信機27及び通信装置(送受信機)1
9がI/F回路28を介して接続されている。また、シ
ステムの安全性を確保するために、通常の送信機からな
るバックアップ用送信機29を備え、指令変更や異常発
生時その他のときに、操縦者がバックアップして操縦す
ることができる。
【0030】このような構成の飛行システムにおいて、
前述のようにパソコン14に入力された前後、左右、上
下および回転の4つの飛行指令データに基づいて微分お
よび積分を含む演算処理を行って、前後方向のエレベー
タサーボ指令、左右方向のエルロンサーボ指令、上下方
向のコレクティブサーボ指令および回転方向のラダーサ
ーボ指令を発する。
【0031】図4は、上記各方向のサーボ指令による駆
動機構の例を示す概略構成説明図である。主ロータ30
のロータ軸31がアクチュエータ板32に連結される。
アクチュエータ板32には、前2ヶ所、後1ヵ所に上下
駆動のシリンダ33a,33b,33cが備わる。エレ
ベータサーボ制御は、前2つのシリンダ33a,33b
を固定し、後のシリンダ33cを駆動することにより
(又はその逆により)、主ロータ30の前後方向の角度
を変化させ、前後進およびその速度を制御して行われ
る。エルロンサーボ制御は、前2つのシリンダ33a,
33bを駆動して主ロータ30の左右方向の傾きを変化
させ、左右の方向およびその速度を制御して行われる。
コレクティブサーボ制御は、3つのシリンダ33a,3
3b,33cを同時に同じ方向に駆動してロータ軸31
内の主ロータ連結部(図示しない)を介して主ロータ3
0の迎え角を矢印Aのように変化させることにより機体
を上昇または下降させて行う。ラダーサーボ制御は、テ
ールロータ(図示しない)の回転を制御することにより
行われる。
【0032】このような4方向についての飛行速度デー
タに基づくサーボ指令値の算出方法を図5〜図8を参照
して以下に説明する。図5はデータ処理の制御信号図、
図6は無人ヘリコプタの斜視図、図7および図8はそれ
ぞれ無人ヘリコプタが前進しながら右旋回している状態
を示す側面図と後面図である。
【0033】この飛行制御系は、上記4種類の速度指令
値を積分して位置指令値を算出し、同速度指令値を微分
して係数を掛けることによって姿勢指令値を算出し、こ
れらの指令値を目標値として、該目標値と無人ヘリコプ
タに搭載されたGPSセンサ21およびジャイロセンサ
22によって検出された機体の位置と速度および姿勢の
各検出値との差分を算出し、この差分を制御指令値(サ
ーボ指令値)として機体に搭載されたサーボモータに送
信し、サーボモータによって前記差分が0になるように
機体の速度と姿勢を制御する。
【0034】さらに詳細な計算方法は以下のとおりであ
る。図6に示すように、前後の速度指令値をvx、左右
の速度指令値をvy、上下の速度指令値をvz、回転の速
度指令値を回転角速度ωとする。
【0035】上述のように4種類の速度指令値vx
y,vz,ωがパソコン14に入力されると、これらの
速度指令値はローパスフィルタ34を通過して目標速度
x *,vy *,vz *,ω*として設定され、これらの目標
速度vx *,vy *,vz *,ω*は地球座標に変換された後
に時間積分される。このように目標速度を時間積分する
ことにより無人ヘリコプタ8の地球座標における前後、
左右,上下(高度)および回転方向(方位角)の目標位
置x*,y*,z*,Ψ*がそれぞれ次式によって求められ
る。なお、方位角Ψ*は無人ヘリコプタ8の機体の姿勢
を示すパラメータである。
【0036】 x*=∫vx *dt y*=∫vy *dt z*=∫vz *dt Ψ*=∫ω*dt また、目標速度vx *,vy *,vz *,ω*を時間微分する
ことにより無人ヘリコプタ8の目標姿勢を示すパラメー
タとしてピッチ角θおよびロール角φが求められる。
【0037】ここで目標ピッチ角θ*と目標ロール角φ*
の計算方法を図7および図8に基づいて説明する。
【0038】1)ピッチ角θ:図示のように無人ヘリコ
プタ8の機体に作用する推力をT、機体の質量をm、重
力加速度をgとすると上下方向の力の釣合いから次式が
成立する。なお、ピッチ角θは、無人ヘリコプタの機首
が上がる方向を正とする。
【0039】 mg=Tcos(−θ) …(1) また、機体に作用する慣性力はm・dvx/dtとなる
ため、前後方向の力の釣合いから次式が成立する。
【0040】 m・dvx/dt=Tsin(−θ) …(2) 上記(1)、(2)式より次式が導かれる。 tan(−θ)=(dvx/dt)/g ここで、θが微小であるとするとtan(−θ)=−θ
とみなすことができるため、ピッチ角θは次式によって
求められる。 θ=−(dvx/dt)/g …(3)
【0041】2)ロール角φ:上下方向の力の釣合いか
ら次式が成立する。 mg=Tcosφ …(4) また、機体に作用する遠心力はmvxωとなるため、左
右方向の力の釣合いから次式が成立する。
【0042】 mvxω=Tsinφ …(5) 上記(4)、(5)式より次式が導かれる。 tanφ=vxω/g ここで、φが微小であるとするとtanφ=φとみなす
ことができるため、ロール角φは次式によって求められ
る。 φ=vxω/g …(6)
【0043】また、同様にして無人ヘリコプタ8が右移
動しながら右旋回している場合のピッチ角θとロール角
φはそれぞれ次式によって求められる。 θ=vyω/g …(7) φ=(dvy/dt)/g …(8)
【0044】ここで、ホバリング(停止)状態での釣り
合い姿勢角をθ0,φ0とすると、結局、(3),
(6),(7),(8)式よりピッチ角θとロール角φ
は次式によって求められる。 θ=θ0−(dvx/dt)/g+vyω/g…(9) φ=φ0+(dvy/dt)/g+vxω/g…(10)
【0045】したがって、目標ピッチ角θ*と目標ロー
ル角φ*は目標速度vx *,Vy *ω*を用いて次式によって
求められる。 θ*=θ0 *−(dvx */dt)/g+vy *ω*/g…
(9)’ φ*=φ0 *+(dvy */dt)/g+vx *ω*/g…(1
0)’
【0046】他方、図3に示すGPS衛星25からの信
号は無人ヘリコプタ8に設置された前記GPSアンテナ
21a及びGPSセンサ21と地上に設置されたGPS
アンテナ26及びGPS受信機27によって受信され、
無人ヘリコプタ8の地球座標における位置(緯度と経度
及び高度)と速度(水平速度と左右速度及び鉛直速度)
が検出され、これらは方位変換されて機体座標での値が
求められ、さらにアンテナ補正(GPSアンテナ21a
が無人ヘリコプタ8の機体重心位置に設置されていない
ための補正)されて機体の重心位置(前後方向位置x、
左右方向位置y及び上下方向位置z)と機体重心速度
(前後方向速度vx、左右方向速度vy及び上下方向速度
z)の検出データが得られる。
【0047】また、無人ヘリコプタ8に設置された前記
ジャイロセンサ22によって機体の姿勢(ピッチ角θ、
ロール角φ、方位角Ψ及び方位角速度ω)が検出され
る。
【0048】上記検出データx,y,z,vx,vy,v
z,θ,φ,Ψ,ωは通信装置19,23による通信に
よってパソコン14に送信され、パソコン14において
は前記目標値x*,y*,z*,vx *,vy *,vz *,θ*
φ*,Ψ*,ω*と検出データx,y,z,vx,vy
z,θ,φ,Ψ,ωとの差分(誤差)Δx,Δy,Δ
z,Δvx,Δvy,Δvz,Δθ,Δφ,ΔΨ,Δωが
次式によって求められる。
【0049】 Δx=x*−x Δy=y*−y Δz=z*−z Δvx=vx *−vx Δvy=vy *−vy Δvz=vz *−vz Δθ=θ*−θ Δφ=φ*−φ ΔΨ=Ψ*−Ψ Δω=ω*−ω
【0050】上式によって差分(誤差)Δx,Δy,Δ
z,Δvx,Δvy,Δvz,Δθ,Δφ,ΔΨ,Δωが
求められると、これらを制御指令(エレベータサーボ指
令(前後方向)、エルロンサーボ指令(左右方向)、コ
レクティブサーボ指令(上下方向)及びラダーサーボ指
令(回転方向))として機体に搭載されたサーボモータ
に送信し、サーボモータによって前記差分Δx,Δy,
Δz,Δvx,Δvy,Δvz,Δθ,Δφ,ΔΨ,Δω
が0になるように機体の速度と姿勢がフィードバック制
御され、これによって無人ヘリコプタ8は所定のコース
に沿って飛行する。
【0051】以上のようにして計算され、事前に記憶さ
れた速度指令値とこれを与える時間により、無人ヘリコ
プタが飛行する予想の軌跡を予め計算し、この予想軌跡
をパソコンのモニタに表示する。
【0052】速度指令値とそれを与える時間の記憶方法
には以下の2つの方法がある。 (1)パソコンのモニタ画面上にあるアイコンの操縦指
示ボタンをマウス操作によるポインタでクリックして入
力し記憶させる方法。 (2)速度指示量とその時間をキーボードから数値的に
入力する方法。
【0053】上記(1)の方法は、記憶させる操作が非
常に簡単であり、時間と手間をかけずに記憶させること
ができる。しかしながら、この方法では高精度の飛行経
路は指示できない。
【0054】これに対し、上記(2)の方法は、入力し
て記憶させるための時間と手間はかかるが、高精度の飛
行経路を指示できる。飛行目的に応じて上記2つの方法
を適宜選択して使い分けることができる。
【0055】図9は、予想軌跡を表示したモニタ画面の
例を示す説明図である。モニタ画面15aは、地図表示
部35と高度表示部36を有し、地図表示部35に飛行
エリア39が表示される。この地図表示部35に無人ヘ
リコプタを示す指示マーク37が表わされる。この指示
マーク37は、後述のように操縦指示ボタンをクリック
することによりヘリコプタの移動動作に対応して回転お
よび移動する。この指示マーク37が画面上で移動し予
想軌跡38を表示する。この例の予想軌跡38は、出発
点P0から前進して左に進み、矢印のように経度(左右
方向の位置)を変えて3往復して元の出発点P0に戻る
軌跡を示している。
【0056】図10は、上記(1)の方法による記憶操
作の画面を示す説明図である。モニタ画面15a内に複
数の操縦指示ボタン41を有するアイコン40が表示さ
れる。操縦指示ボタン41は、「前」、「後」、
「右」、「左」、「上昇」、「下降」、「右回転」、
「左回転」等の各方向を表わすボタンと「遅前」、「遅
右」等の低速移動を表わすボタンおよびホバリングを指
示する「ホバー」ボタン等を有している。各ボタンをマ
ウス操作によるポインタ(図示しない)でクリックする
ことにより、地図表示部35内の指示マーク37が、ク
リックされたボタンの指示方向に移動して予想軌跡38
を表示する。このような複数のボタン操作による飛行経
路データは、一連の飛行経路プログラムとして、プログ
ラム飛行ボタン42および記憶操作ボタン43のクリッ
クにより、クリックされたプログラム格納位置のパソコ
ンのメモリに記憶される。
【0057】図11は、上記(2)の方法による記憶操
作の画面を示す説明図である。モニタ画面15a内にプ
ログラム編集用のアイコン44が表示される。このアイ
コン44内の表に、番号順に一連の連続した飛行データ
をキーボード操作により数値入力する。時刻は飛行制御
開始からの時刻であり、時間はその番号の動作の継続時
間である。したがって、累積時間が時刻になり自動的に
表示することができる。速度指令値として、コレクティ
ブ、エレベータ、エルロン、ラダーおよび補助(リモコ
ン操作時に入力する)の各数値が、指定すべき必要な欄
に入力される。また、移動量の数値が、左右(エルロ
ン)、前後(エレベータ)、高度(コレクティブ)およ
びヨー(ラダーによる方位)について表示される。この
移動量データは、既に入力された時間と速度のデータを
掛けたものであり、パソコン内で演算処理され自動的に
表示される。これらの時系列的な一連の飛行データによ
り1つの飛行プログラムが形成され、その経路が予想軌
跡38として地図表示部35に表示される。
【0058】このような飛行経路の予想軌跡を、飛行エ
リアが表示された地図画面上に表示することにより、プ
ログラム作成時に予め飛行経路が目視により鳥瞰的に確
認できるため、予定経路の判別が容易にかつ迅速にで
き、最適な飛行経路が速やかに設定される。また経路の
修正や変更も容易にできる。
【0059】このような予想軌跡は飛行前だけでなく、
飛行中にも随時表示できる。飛行中に、GPSセンサや
ジャイロセンサにより機体の位置および姿勢を検出し、
この実際の機体の位置やその向きを予想軌跡と同じ画面
に表示することにより、飛行中にリアルタイムで、現時
点の飛行位置が予定経路からずれているかの判別及びそ
れまでの実際の軌跡を合わせて表示することにより予想
軌跡と実際の飛行軌跡とのずれの判別が容易にかつ迅速
にできる。
【0060】上記実施形態では、操縦指令は速度指令値
により入力される。しかしながら、地図上での位置を指
定して、その位置を目標位置として移動したいというよ
うな絶対位置の目標入力が必要となる場合もある。この
ような絶対位置の指令値に対しても、後述のように簡単
な演算処理により速度指令値に変換できる。これによ
り、速度指令値に基づく制御プログラムをそのまま用い
て、位置指令値に基づく飛行制御ができる。
【0061】このような、地図上での絶対位置を目標位
置の指令値として入力した場合においても、前述の実施
形態と同様に、予想軌跡をパソコンのモニタ画面上に表
示できる。この場合、出発位置(または現在位置)と目
標位置の2点の位置データを指定することにより、距離
や時間あるいは燃費等の飛行条件を考慮して2点間の最
適な飛行経路を自動的に設定できる。この飛行経路を予
想軌跡としてモニタ画面に表示する。
【0062】また、出発位置と目標位置の2点間に、1
点または複数点の飛行通過点の中間目標位置データを指
定して入力してもよい。このように飛行目標点の中間位
置データを指定した場合、そのヘリコプタの飛行特性に
応じて、指定した通過位置を機体が円滑に通過するよう
に、すなわち単に通過点とその前後の飛行点を直線的に
結んで経路を設定するのでなく、円滑な曲線状に連続す
る軌跡として、通過点で急激にあるいは不連続的に機体
の向きや姿勢が変化しないように飛行軌跡が自動的に設
定され、この飛行軌跡のプログラムにしたがって運転制
御される。
【0063】図12は、位置指令データから速度指令デ
ータへの変換処理のフローチャートである。各ステップ
S1〜S5の処理内容は以下のとおりである。
【0064】ステップS1:地図画面上で目標位置を指
定する。この位置指定方法には、後述のように、モニタ
画面上でマウスのポインタにより地図上の点を直接クリ
ックして指定する方法と、画面上のアイコン等にキーボ
ードから数値入力して指定する方法の2通りがある。こ
のとき目標位置座標を(X0,Y0)とする。
【0065】ステップS2:GPSセンサ等から検出さ
れた機体の現在位置座標(X,Y)との差をとり、移動
ベクトル(ΔX,ΔY)を計算する。計算式は図のとお
りである。
【0066】ステップS3:機体の方位角Ψにより、座
標変換を行い、機体座標での移動ベクトル(ΔX1,Δ
Y1)を計算する。計算式は図のとおりである。これが
目標速度になる。
【0067】ステップS4:速度リミット(Vxlimit,
Vylimit)により、速度限界を指定し、速度指令とす
る。
【0068】ステップS5:速度指令値(Vx,Vy)が
求まる。
【0069】図13は、速度指令値の計算方法(位置デ
ータから速度データへの変換方法)を4方向データの各
方向ごとに示すフローチャートである。(a)は前後、
左右の速度指令値、(b)は上下の速度指令値、(c)
は回転方向の速度指令値の計算方法を示す。
【0070】前後、左右方向の速度については、(a)
に示すように、目標の位置座標データ45が入力され、
この目標位置データ45と現在位置データ46との差が
減算器47で演算され、これが機体座標に変換される
(ブロック48)。目標位置と現在位置のデータは地球
座標で指定されるため、地球座標で示す方向(東西南北
方向)が機体にとって前後左右についてどの方向かを示
すために機体の現在の向きに応じた座標変換が必要にな
る。続いて、前後、左右それぞれについて所定のゲイン
を掛け(ブロック49)、それぞれ所定の限界範囲内と
なるように速度リミットを指定し(ブロック50)、前
後方向および左右方向について速度指令値を得る。
【0071】上下方向および回転方向については、
(b)(c)に示すように、目標高度データ51および
目標方位データ52が入力され、これらと現在の高度デ
ータ53および現在の方位データ54との差が減算器4
7で演算される。この差分データにそれぞれ所定のゲイ
ンを掛け(ブロック49)、それぞれ所定の限界範囲と
なるように速度リミットを指定し(ブロック50)、上
下方向および回転方向について速度指令値を得る。この
上下方向および回転方向については、地球座標と機体座
標が同じであるため、座標変換は必要ない。
【0072】図14は目標位置の入力方法を示す画面の
説明図である。モニタ画面15a内に前述のように地図
表示部35および高度表示部36が表示されるととも
に、目標位置設定用のアイコン51が表示される。
【0073】目標位置入力の第1の方法は、マウスのポ
インタにより目標位置を指示する方法である。この場
合、地図表示部35の地図画面上で目標位置Pをクリッ
クすることにより、地球座標の緯度、経度に対応した位
置座標データが自動的に入力される。高度については、
高度表示部36の高度をマウスのポインタで指定したり
又は前述の図10のアイコン40内の上下方向の操縦指
示ボタンにより高度表示部36の高度を指定することが
できる。また、方位については、同じく前述の図10の
アイコン40内の回転方向の操縦指示ボタンをマウスで
クリックすることにより指示マーク37を回転させて指
定することができる。このようにして、マウスのクリッ
ク操作により目標位置の4方向についての位置データを
入力することができる。
【0074】目標位置入力の第2の方法は、位置データ
を数値入力により指示する方法である。これは、モニタ
画面のアイコン51に表わされた緯度、経度、高度およ
び方位の各欄にキーボード操作によりそれぞれの数値デ
ータを入力して行う。なお、アイコン51中の方位補正
値は、機体座標と地球座標の方位の差に基づく補正デー
タである。
【0075】以上2つのいずれかの方法により、飛行目
標位置の前後、左右、上下および方位についての4位置
指令値を、絶対位置の指令データとして入力することが
できる。
【0076】上記実施形態では、飛行点における機体の
位置等を特定するのに必要な4つの方向についての位置
指令データを入力したが、これら4つの位置指令データ
を全て入力する必要はなく、3つの位置指令データを入
力して残りのデータはその飛行条件から自動的に求める
ことができる。これにより、飛行データ点を2点以上入
力する場合に、3位置指令入力により自動的に最適条件
で飛行経路が設定される。
【0077】図15は、前後および左右位置と高度につ
いての3位置指令を入力した場合の残りの方位について
の位置決定の説明図である。目標位置の上記3位置指令
を入力した場合、現在位置から目標位置に移動する場合
に以下の3種類の方位の設定方法が考えられる。 方位をそのままで移動 最初に方位を進行方向に向けてから移動 方位を変更しながら移動
【0078】これら3つの方位設定方法は、2点間の飛
行条件により定められる。移動距離がごく近距離で素早
く移動したいときにはが最適である。移動距離が長く
なったときに最速で移動したいときにはが最適であ
る。目標位置が最終目標でなく通過点である場合には
が最適である。これら3種類の移動方法は、目標位置の
飛行条件により自動的に判定され方位の指令値を計算す
ることができる。飛行条件は、例えば移動時間を最短に
する、飛行速度を最速にする、燃費を最小にする等が挙
げられる。
【0079】図16は、3位置入力による残りの方位決
定方法のフローチャートである。まず、飛行点が2点入
力されているか否かを判別する(ステップQ1)。2点
の入力データがなければ2点の飛行点の前後、左右およ
び上下の3位置データを入力する(ステップQ2)。2
点の指令データが入力されたら、飛行点が3点以上ある
か否かが判別される(ステップQ3)。3点以上あれば
前述ので示したように方位を変更しながら移動する
(ステップQ4)。飛行入力点が2点のみであればその
2点間の距離が所定値以上か否かが判別される(ステッ
プQ5)。所定値以上距離が離れていれば、前述ので
示したように方位を進行方向に変更してから移動する
(ステップQ6)。所定値以下の距離であれば、前述の
で示したように方位をそのままにして移動する(ステ
ップQ7)。
【0080】
【発明の効果】以上説明したように、本発明では、3方
向の位置指令データを入力するだけで残りの1方向につ
いては、飛行条件に応じて自動的に決定されるため、少
ないデータ入力数で飛行条件に適合した最善の飛行経路
が自動的に設定でき自律飛行の操作性が高まる。
【図面の簡単な説明】
【図1】 本発明に係る自律飛行システム全体の制御フ
ローを示すブロック図。
【図2】 本実施形態の制御系のブロック構成図。
【図3】 本発明に係る自律飛行システム全体の構成
図。
【図4】 サーボ指令による駆動機構の例を示す概略構
成説明図。
【図5】 データ処理の制御信号図。
【図6】 無人ヘリコプタの斜視図。
【図7】 無人ヘリコプタが前進しながら右旋回してい
る状態を示す側面図。
【図8】 無人ヘリコプタが前進しながら右旋回してい
る状態を示す後面図。
【図9】 予想軌跡を表示したモニタ画面の例を示す説
明図。
【図10】 マウスによる記憶操作の画面を示す説明
図。
【図11】 マウスによる記憶操作の画面を示す説明
図。
【図12】 位置指令データから速度指令データへの変
換処理のフローチャート。
【図13】 速度指令値の計算方法を各方向ごとに示す
フローチャート
【図14】 目標位置の入力方法を示す画面の説明図。
【図15】 3位置指令を入力した場合の残りの方位に
ついての位置決定の説明図。
【図16】 3位置入力による残りの方位決定方法のフ
ローチャート。
【符号の説明】
1:オペレータ、8:無人ヘリコプタ、14:パソコ
ン、15:モニタ、16:キーボード、17:マウス、
18:メモリ、19:通信装置、20:マイコン、2
1:GPSセンサ、22:ジャイロセンサ、23:通信
装置、24:I/F回路、25:GPS衛星、26:G
PSアンテナ、27:GPS受信機、28:I/F回
路、29:バックアップ用送信機、30:主ロータ、3
1:ロータ軸、32:アクチュエータ板、33a,33
b,33c:シリンダ、34:ローパスフィルタ、3
5:地図表示部、36:高度表示部、37:指示マー
ク、38:予想軌跡、39:飛行エリア、40:アイコ
ン、41:操縦指示ボタン、42:プログラム飛行ボタ
ン、43:記憶操作ボタン、44:アイコン、45:目
標位置データ、46:現在位置データ、47:減算器、
51:目標高度データ、52:目標方位データ、53:
現在の高度データ、54:現在の方位データ、60:メ
モリ

Claims (3)

    【特許請求の範囲】
  1. 【請求項1】モニタを有するパソコンを備え、飛行点に
    おける前後、左右、上下および回転方向の4方向の指令
    値を前記パソコンに入力し、該指令値に基づく速度指令
    データにより飛行制御する無人ヘリコプタの飛行制御シ
    ステムにおいて、 前記指令値を入力する飛行点が2点以上ある場合に、各
    飛行点について前記4方向のうち3方向の指令値を位置
    指令データとして入力し、残りの1方向の指令値は前記
    パソコン内で予め設定された飛行条件に応じて自動的に
    決定されることを特徴とする無人ヘリコプタの飛行制御
    システム。
  2. 【請求項2】前記3方向の位置指令データとして前後、
    左右および上下方向の位置指令データを入力し、回転方
    向の指令値は飛行条件に応じて自動的に定められること
    を特徴とする請求項1に記載の無人ヘリコプタの飛行制
    御システム。
  3. 【請求項3】飛行入力点が2点の場合、2点間距離が所
    定値以下であればそのままの方位で飛行し、所定値より
    長ければ方位を進行方向に変更してから飛行し、飛行入
    力点が3点以上であれば方位を変更しながら飛行するよ
    うに前記飛行条件を設定したことを特徴とする請求項2
    に記載の無人ヘリコプタの飛行制御システム。
JP2000120519A 2000-04-21 2000-04-21 無人ヘリコプタの飛行制御システム Withdrawn JP2001301695A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000120519A JP2001301695A (ja) 2000-04-21 2000-04-21 無人ヘリコプタの飛行制御システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000120519A JP2001301695A (ja) 2000-04-21 2000-04-21 無人ヘリコプタの飛行制御システム

Publications (1)

Publication Number Publication Date
JP2001301695A true JP2001301695A (ja) 2001-10-31

Family

ID=18631313

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000120519A Withdrawn JP2001301695A (ja) 2000-04-21 2000-04-21 無人ヘリコプタの飛行制御システム

Country Status (1)

Country Link
JP (1) JP2001301695A (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102566580A (zh) * 2011-12-27 2012-07-11 中国直升机设计研究所 一种无人直升机飞行航迹规划方法
CN102650887A (zh) * 2011-02-25 2012-08-29 鸿富锦精密工业(深圳)有限公司 无人飞行载具及调整其控制信号的方法
JP2016085100A (ja) * 2014-10-24 2016-05-19 株式会社amuse oneself 測量システム、設定装置、設定プログラム及び記録媒体
US10095226B1 (en) 2008-02-12 2018-10-09 Drone-Control, Llc Radio controlled aircraft, remote controller and methods for use therewith
KR20200007482A (ko) * 2018-07-13 2020-01-22 한국항공우주산업 주식회사 회전익 무인항공기의 고속 선회비행을 위한 제어방법 및 장치
JP2022088441A (ja) * 2019-02-22 2022-06-14 株式会社ナイルワークス ドローン操縦機、および、操縦用プログラム

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10095226B1 (en) 2008-02-12 2018-10-09 Drone-Control, Llc Radio controlled aircraft, remote controller and methods for use therewith
US10248117B2 (en) 2008-02-12 2019-04-02 Drone-Control, Llc Radio controlled aircraft, remote controller and methods for use therewith
US11281205B2 (en) 2008-02-12 2022-03-22 Drone-Control, Llc Radio controlled aircraft, remote controller and methods for use therewith
CN102650887A (zh) * 2011-02-25 2012-08-29 鸿富锦精密工业(深圳)有限公司 无人飞行载具及调整其控制信号的方法
CN102566580A (zh) * 2011-12-27 2012-07-11 中国直升机设计研究所 一种无人直升机飞行航迹规划方法
JP2016085100A (ja) * 2014-10-24 2016-05-19 株式会社amuse oneself 測量システム、設定装置、設定プログラム及び記録媒体
KR20200007482A (ko) * 2018-07-13 2020-01-22 한국항공우주산업 주식회사 회전익 무인항공기의 고속 선회비행을 위한 제어방법 및 장치
KR102094537B1 (ko) * 2018-07-13 2020-03-30 한국항공우주산업 주식회사 회전익 무인항공기의 고속 선회비행을 위한 제어방법 및 장치
JP2022088441A (ja) * 2019-02-22 2022-06-14 株式会社ナイルワークス ドローン操縦機、および、操縦用プログラム

Similar Documents

Publication Publication Date Title
JP4109767B2 (ja) 無人ヘリコプタの飛行制御システム
Sugeno et al. Development of an intelligent unmanned helicopter
JP2001306144A (ja) 無人ヘリコプタの飛行制御システム
EP1728176B1 (en) Control system for vehicles
EP2673681B1 (en) Flight control laws for constant vector flat turns
US20180039271A1 (en) Fixed-wing drone, in particular of the flying-wing type, with assisted manual piloting and automatic piloting
US20100084513A1 (en) Method and system for directing unmanned vehicles
JP2001306143A (ja) 無人ヘリコプタの飛行制御システム
EP3357809B1 (en) System and method for stabilizing longitudinal acceleration of a rotorcraft
JP2004256022A (ja) 小型無人ヘリコプタの自律制御方法
JP2004268730A (ja) 無人ヘリコプタの姿勢制御方法
JP5493103B2 (ja) 無人飛翔体の簡易手動飛行操縦システム
JP2009143268A (ja) 航空機の飛行制御システム及び飛行制御システムを搭載した航空機
JP2001301695A (ja) 無人ヘリコプタの飛行制御システム
JP7006449B2 (ja) 作業車両の管理システム
JPH0539095A (ja) オートローテーシヨン着陸支援システム
JP4294994B2 (ja) 散布制御装置
JP7003798B2 (ja) 圃場作業車両の管理システム
JP4316772B2 (ja) 移動体
JP3185081B2 (ja) 無人ヘリコプタの姿勢制御装置
CA2773702C (en) Control system for vehicles
JPH07300096A (ja) 無人ヘリコプタの姿勢制御装置
JP2022010965A (ja) 飛行装置
JPH07257489A (ja) 飛行体の姿勢制御装置
JP2009096369A (ja) 無人無線操縦ヘリコプタの操縦支援装置

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060419

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060419

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070213

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20090403

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090415