JP2001259808A - Method for continuously casting steel - Google Patents

Method for continuously casting steel

Info

Publication number
JP2001259808A
JP2001259808A JP2000079519A JP2000079519A JP2001259808A JP 2001259808 A JP2001259808 A JP 2001259808A JP 2000079519 A JP2000079519 A JP 2000079519A JP 2000079519 A JP2000079519 A JP 2000079519A JP 2001259808 A JP2001259808 A JP 2001259808A
Authority
JP
Japan
Prior art keywords
slab
center
light reduction
reduction
speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000079519A
Other languages
Japanese (ja)
Other versions
JP3846676B2 (en
Inventor
Mikio Suzuki
幹雄 鈴木
Masayuki Nakada
正之 中田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP2000079519A priority Critical patent/JP3846676B2/en
Publication of JP2001259808A publication Critical patent/JP2001259808A/en
Application granted granted Critical
Publication of JP3846676B2 publication Critical patent/JP3846676B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PROBLEM TO BE SOLVED: To drastically reduce the center segregation over all positions in a cast slab in a continuous casting steel. SOLUTION: Rolling reduction is applied in a continuous caster to a part in the casting direction of the cast slab 2 having unsolidified phase 4 in the inner part to press-stick both of the faced solidified shells 3. Successively, the cast slab after press-sticking is solidified while applying the light rolling- reduction with plural pairs of light rolling-reduction rolls 13, afterward, the press-sticking part is cut to form the cast slab. At this time, both faced solidified shells are desirable to press-stick by applying the light rolling-reducing at the point of time when the solid phase ratio at the center part in the thickness direction of the cast slab is <=0.4 and by applying the rolling-reduction when the thickness of unsolidified phase at the center part in the thickness direction of the cast slab is 2-10 mm.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、連続鋳造鋳片の中
心部に発生する成分偏析を防止することのできる鋼の連
続鋳造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for continuously casting steel capable of preventing component segregation occurring at the center of a continuously cast slab.

【0002】[0002]

【従来の技術】鋼の凝固過程における最終凝固部では、
炭素、燐、硫黄等の溶質元素は未凝固相に濃縮される。
この溶質元素が濃縮された溶鋼(濃化溶鋼と云う)が流
動して集積し、その状態で凝固すると初期濃度に比べて
格段に高濃度となり、成分偏析部が生成される。このよ
うな濃化溶鋼の流動・集積が、鋼のマクロ的な成分偏析
の主たる生成原因である。
2. Description of the Related Art In the final solidification part in the solidification process of steel,
Solute elements such as carbon, phosphorus and sulfur are concentrated in the uncoagulated phase.
Molten steel in which the solute elements are concentrated (referred to as concentrated molten steel) flows and accumulates. When solidified in this state, the concentration becomes much higher than the initial concentration, and a component segregation portion is generated. Such flow and accumulation of the concentrated molten steel is a main cause of macro component segregation of the steel.

【0003】鋼が凝固すると体積収縮が起こり、この凝
固収縮に伴い、連続鋳造の場合には鋳片の引き抜き方向
へ溶鋼が吸引されて流動する。連続鋳造鋳片の凝固末期
の未凝固相には十分な量の溶鋼が存在しないので、凝固
収縮に伴い最終凝固部であるデンドライト樹間の濃化溶
鋼が流動をおこし、それが鋳片厚み方向中心部に集積し
て凝固し、所謂中心偏析が生成される。
[0003] When the steel solidifies, volume shrinkage occurs. With this solidification shrinkage, in the case of continuous casting, molten steel is sucked and flows in the direction of drawing the slab. Since there is not enough molten steel in the unsolidified phase at the end of solidification in continuous cast slabs, the concentrated molten steel between dendrite trees, which is the final solidified part, flows along with solidification shrinkage, and it flows in the slab thickness direction. It accumulates in the center and solidifies, producing so-called center segregation.

【0004】この中心偏析は鋼製品の品質を劣化させ
る。例えば、石油輸送用及び天然ガス輸送用のラインパ
イプ材においては、サワーガスの作用により中心偏析を
起点として水素誘起割れが発生し、又、飲料水用の缶製
品に用いられる深絞り材においては、成分の偏析により
加工性に異方性が出現する。そのため、鋳造工程から圧
延工程に至るまで、中心偏析を低減する対策が多数提案
されている。
[0004] This center segregation degrades the quality of steel products. For example, in line pipe materials for oil transportation and natural gas transportation, hydrogen-induced cracking occurs from the center segregation as a starting point due to the action of sour gas, and in deep drawing materials used for can products for drinking water, Anisotropy appears in workability due to segregation of components. Therefore, many measures have been proposed to reduce center segregation from the casting process to the rolling process.

【0005】そのなかで、安価に且つ効果的に鋳片の中
心偏析を低減する手段として、例えば特開平8−132
203号公報や特開平8−192256号公報に開示さ
れているように、未凝固鋳片を複数対の軽圧下ロールで
圧下する(以下「軽圧下」と呼ぶ)方法が提案されてい
る。この軽圧下方法は、鋳片の凝固収縮速度に見合った
速度で鋳片を徐々に軽圧下して未凝固相の体積を減少さ
せ、デンドライト樹間の濃化溶鋼の流動を起こさないよ
うにして中心偏析を防止することを目的としている。
[0005] Among them, as means for reducing the center segregation of the cast slab inexpensively and effectively, for example, Japanese Patent Laid-Open No. 8-132 is disclosed.
As disclosed in JP-A-203-203 and JP-A-8-192256, a method has been proposed in which unsolidified slabs are reduced by a plurality of pairs of light reduction rolls (hereinafter referred to as "light reduction"). This light reduction method reduces the volume of the unsolidified phase by gradually reducing the volume of the slab at a speed corresponding to the solidification shrinkage speed of the slab so that the flow of concentrated molten steel between dendrite trees does not occur. The purpose is to prevent center segregation.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、軽圧下
を行う最終凝固部では凝固殻に通常高さ10m以上の静
鉄圧が作用する。又、軽圧下方法では複数対の軽圧下ロ
ールにより鋳片を圧下しているが、隣合うロールとロー
ルとの間(ロール間という)では、鋳片は支持されてお
らず、そのため、ロール間では凝固殻に作用する静鉄圧
により凝固殻の膨れ(以下「バルジング」と記す)が発
生する。このバルジングにより未凝固相の体積変化が生
じて溶鋼が流動するので、バルジングは中心偏析の発生
原因の一つとなっている。軽圧下方法において、隣合う
ロールとロールとの設置間隔(ロールピッチという)を
小さくすれば、バルジング量は減少するが、ロール強度
の点からロールピッチを小さくするには限度があり、従
って、ロール間では多かれ少なかれ必ずバルジングが発
生し、従来の軽圧下方法ではこのバルジングによる中心
偏析を防ぎきれないという問題点がある。
However, in the final solidification part where light reduction is performed, a static iron pressure having a height of usually 10 m or more acts on the solidified shell. Further, in the light reduction method, the slab is reduced by a plurality of pairs of light reduction rolls. However, between adjacent rolls (between the rolls), the slab is not supported. In this case, swelling of the solidified shell (hereinafter referred to as "bulging") occurs due to static iron pressure acting on the solidified shell. The bulging causes a change in the volume of the unsolidified phase and causes the molten steel to flow, so that the bulging is one of the causes of center segregation. In the light pressure reduction method, if the installation interval between adjacent rolls (called the roll pitch) is reduced, the amount of bulging decreases, but there is a limit to reducing the roll pitch in terms of roll strength. There is a problem that bulging occurs more or less inevitably between the bulging portions and the conventional light reduction method cannot prevent the center segregation due to the bulging.

【0007】更に、軽圧下方法では軽圧下量が多すぎる
と、デンドライト樹間の濃化溶鋼は鋳造方向とは逆方向
に絞り出されて、鋳片厚み方向中心部には炭素、燐、硫
黄等の溶質元素濃度が少ない偏析(この場合は負偏析と
いう)が生成し、一方、軽圧下量が少なすぎると、凝固
に伴う体積収縮によって溶鋼は吸引されるため、デンド
ライト樹間の濃化溶鋼の流動を抑制できずに中心偏析が
生成する。
[0007] Further, if the amount of light reduction is too large in the light reduction method, the concentrated molten steel between the dendrite trees is squeezed out in the direction opposite to the casting direction, and carbon, phosphorus, and sulfur are located at the center in the thickness direction of the slab. Segregation with a low solute element concentration (called negative segregation in this case) is generated, while if the amount of light reduction is too small, the molten steel is sucked by volume shrinkage accompanying solidification, so the concentrated molten steel between dendrite trees Center segregation is generated without suppressing the flow of

【0008】このように軽圧下方法においては溶鋼が流
動しないための最適圧下条件は非常に限定された条件と
なるが、上記のバルジングとの兼ね合いもあり、軽圧下
による鋳片偏析防止対策は未だ充分とは云い難い。一
方、需要家からの鋼材品質に対する要求は厳格化を増
し、中心偏析の更なる低減化が望まれている。
[0008] As described above, in the light rolling method, the optimum rolling conditions for preventing molten steel from flowing are very limited conditions. However, due to the above-mentioned bulging, measures to prevent slab segregation by light rolling are still available. It is hardly enough. On the other hand, demands on steel quality from customers are becoming more stringent, and further reduction of center segregation is desired.

【0009】本発明は上記事情に鑑みなされたもので、
その目的とするところは、鋳片の全ての部位に渡って中
心偏析を大幅に低減することができ、近年の厳しい品質
要求にも対処可能な鋳片を製造することのできる鋼の連
続鋳造方法を提供することである。
The present invention has been made in view of the above circumstances,
The aim is to continuously reduce the segregation of the center over all the parts of the slab, and to produce a slab that can cope with recent severe quality requirements. It is to provide.

【0010】[0010]

【課題を解決するための手段】第1の発明による鋼の連
続鋳造方法は、内部に未凝固相を有する鋳片の鋳造方向
の一部分を連続鋳造機内で圧下して、対向する凝固殻同
士を圧着させ、次いで、圧着後の鋳片を複数対の軽圧下
ロールにより軽圧下しつつ凝固させ、その後、前記圧着
部分を切断して鋳片とすることを特徴とするものであ
る。
According to a first aspect of the present invention, there is provided a continuous casting method for steel, in which a part of a slab having an unsolidified phase therein in a casting direction is reduced in a continuous casting machine so that opposed solidified shells are separated from each other. The method is characterized in that the slab is pressed and then solidified while being lightly reduced by a plurality of pairs of light reduction rolls, and then the crushed portion is cut into a slab.

【0011】第2の発明による鋼の連続鋳造方法は、第
1の発明において、鋳片厚み方向中心部の固相率が0.
4以下の時点から軽圧下することを特徴とするものであ
る。
[0011] The continuous casting method for steel according to a second aspect of the present invention is the continuous casting method according to the first aspect, wherein the solid fraction at the center in the thickness direction of the slab is 0.1.
It is characterized in that the pressure is reduced slightly from the point of time 4 or less.

【0012】第3の発明による鋼の連続鋳造方法は、第
1の発明又は第2の発明において、鋳片厚み方向中心部
の未凝固相の厚みが2mm〜10mmのときに圧下して
凝固殻同士を圧着させることを特徴とするものである。
[0012] The continuous casting method of steel according to the third invention is characterized in that, in the first invention or the second invention, when the thickness of the unsolidified phase at the center in the thickness direction of the slab is 2 mm to 10 mm, the solidified shell is reduced. It is characterized in that they are pressed together.

【0013】第4の発明による鋼の連続鋳造方法は、第
1の発明乃至第3の発明の何れかにおいて、軽圧下ロー
ルの絞り込み勾配を一定とし、0.2mm/min〜
1.0mm/minの軽圧下速度で軽圧下することを特
徴とするものである。
A continuous casting method for steel according to a fourth aspect of the present invention is the method according to any one of the first to third aspects, wherein the drawing gradient of the roll under light pressure is constant, and 0.2 mm / min to 0.2 mm / min.
It is characterized in that light reduction is performed at a light reduction speed of 1.0 mm / min.

【0014】第5の発明による鋼の連続鋳造方法は、第
1の発明乃至第3の発明の何れかにおいて、鋳片厚み方
向中心部の固相率が0〜0.6までの範囲は0.2mm
/min〜1.0mm/minの軽圧下速度で軽圧下
し、鋳片厚み方向中心部の固相率が0.6を越える範囲
は0.6mm/min〜1.5mm/minの軽圧下速
度で軽圧下することを特徴とするものである。
According to a fifth aspect of the present invention, there is provided the continuous casting method of steel according to any one of the first to third aspects, wherein the solid phase ratio at the center in the thickness direction of the slab is 0 to 0.6. .2mm
/ Min to 1.0 mm / min with a light reduction speed, and a range where the solid fraction in the center of the slab thickness direction exceeds 0.6 is a 0.6 mm / min to 1.5 mm / min light reduction speed. And a slight reduction in pressure.

【0015】本発明では、内部に未凝固相を有する鋳片
の鋳造方向の一部分を連続鋳造機内で圧下して対向する
凝固殻同士を圧着させる。凝固殻を圧着させることで、
圧着部よりも鋳片引き抜き方向上流側の静鉄圧は、圧着
部よりも鋳片引き抜き方向下流側の凝固殻には作用しな
くなり、従って、圧着部より鋳片引き抜き方向下流側の
凝固殻に作用する静鉄圧は大幅に減少し、例えば連続鋳
造機の水平部では静鉄圧は実質的にゼロとなる。
In the present invention, a part of a slab having an unsolidified phase therein in the casting direction is pressed down in a continuous casting machine to press the opposing solidified shells together. By pressing the solidified shell,
The static iron pressure on the upstream side of the slab withdrawal direction from the crimped portion does not act on the solidified shell on the downstream side of the slab withdrawal direction from the crimped portion, and therefore, on the solidified shell on the downstream side of the slab withdrawal direction from the crimped portion. The working iron pressure is greatly reduced, for example in the horizontal part of a continuous casting machine, the iron pressure is substantially zero.

【0016】圧着後、内部に未凝固相を封じ込まれた鋳
片は凝固していくが、そのまま凝固させると、凝固収縮
により未凝固相の体積が減少して、中心偏析やポロシテ
ィーが発生する。そこで、本発明では内部の未凝固相が
完全に凝固するまで、内部に未凝固相が封じ込まれた鋳
片を軽圧下する。即ち、凝固収縮に伴って減少する体積
に見合うように鋳片表面から圧下力を加える。
After pressing, the slab in which the unsolidified phase is sealed solidifies, but when solidified as it is, the volume of the unsolidified phase decreases due to solidification shrinkage, and center segregation and porosity occur. I do. Therefore, in the present invention, the slab in which the unsolidified phase is sealed is lightly reduced until the internal unsolidified phase is completely solidified. That is, a rolling force is applied from the slab surface so as to match the volume that decreases with solidification shrinkage.

【0017】このように、本発明では凝固殻のバルジン
グが実質的にゼロになり、更に、軽圧下により未凝固相
の移動が妨げられるので、中心偏析が極めて少ない鋳片
の製造が可能となる。尚、本発明の軽圧下とは、各軽圧
下ロールの絞り込み勾配を鋳片の引き抜き方向1m当た
り鋳片厚みの0.2〜2.0%として圧下することであ
る。
As described above, in the present invention, the bulging of the solidified shell becomes substantially zero, and the movement of the unsolidified phase is prevented by light pressure, so that it is possible to produce a cast piece with extremely small center segregation. . The light reduction in the present invention means to reduce the drawing gradient of each light reduction roll to 0.2 to 2.0% of the thickness of the slab per 1 m in the drawing direction of the slab.

【0018】軽圧下を開始する時期は鋳片厚み方向中心
部の固相率が0.4以下の時点とすることが好ましい。
これは、鋳片厚み方向中心部の固相率が0.4を越えて
から軽圧下を開始しても、すでに濃化溶鋼の移動が発生
しており、中心偏析の低減効果が少ないからである。
It is preferable that light reduction be started when the solid fraction at the center in the thickness direction of the slab is 0.4 or less.
This is because even when light reduction is started after the solid phase ratio in the center of the slab thickness direction exceeds 0.4, the movement of the concentrated molten steel has already occurred, and the effect of reducing center segregation is small. is there.

【0019】又、鋳片厚み方向中心部の未凝固相の厚み
が2mm〜10mmのときに圧下して凝固殻同士を圧着
させることが好ましい。未凝固相が2mm未満の場合に
は圧着後鋳片厚み方向中心部が凝固するまでの時間が短
く、十分に軽圧下を行うことが困難になり、一方、未凝
固相厚みが10mmを越える鋳片の凝固殻を圧着させる
と、圧着時に鋳型内の溶鋼表面(湯面)が上昇して、そ
の上昇量が大きくなる。この湯面変動によりモールドパ
ウダーの巻き込み等による鋳片の品質劣化を起こし易く
なるからである。
Further, when the thickness of the unsolidified phase at the center in the thickness direction of the slab is 2 mm to 10 mm, it is preferable to compress the solidified shells by pressing down. If the unsolidified phase is less than 2 mm, the time required for solidifying the center in the thickness direction of the slab after crimping is short, making it difficult to perform sufficient light reduction. When the solidified shell of the piece is pressed, the surface of the molten steel (the molten metal surface) in the mold rises during the pressure bonding, and the amount of the rise increases. The reason for this is that the quality of the cast slab is likely to be deteriorated due to the entanglement of the mold powder or the like due to the fluctuation of the molten metal level.

【0020】更に、軽圧下ロールの絞り込み勾配を一定
とし、0.2mm/min〜1.0mm/minの軽圧
下速度で軽圧下するか、若しくは、鋳片厚み方向中心部
の固相率が0〜0.6までの範囲は0.2mm/min
〜1.0mm/minの軽圧下速度で軽圧下し、鋳片厚
み方向中心部の固相率が0.6を越える範囲は0.6m
m/min〜1.5mm/minの軽圧下速度で軽圧下
するか、どちらかの方法で軽圧下することが好ましい。
これは、軽圧下ロールの絞り込み勾配を一定とした場合
には、0.2mm/min未満の軽圧下速度では軽圧下
速度が遅く、未凝固相の移動を防止できず、一方、1.
0mm/minを越える軽圧下速度では未凝固相の絞り
出しが発生して中心偏析が悪化するからである。又、鋳
片厚み方向中心部の固相率が0.6を越える範囲は軽圧
下速度を大きくしても未凝固相の移動は起こらないの
で、軽圧下ロールの絞り込み勾配を圧下途中から変更す
る場合には、鋳片厚み方向中心部の固相率が0.6を越
える範囲の軽圧下速度を0.6mm/min〜1.5m
m/minと大きくすることで鋳片厚み方向中心部のポ
ロシティーを軽減させることができる。
Furthermore, the drawing gradient of the light reduction roll is kept constant, and the reduction is performed at a light reduction speed of 0.2 mm / min to 1.0 mm / min. The range from to 0.6 is 0.2 mm / min
Light reduction at a light reduction speed of ~ 1.0 mm / min. The range where the solid fraction at the center of the slab thickness direction exceeds 0.6 is 0.6 m.
It is preferable to perform light reduction at a light reduction speed of m / min to 1.5 mm / min or to perform light reduction by either method.
This is because when the drawing gradient of the light reduction roll is constant, the light reduction speed is slow at a light reduction speed of less than 0.2 mm / min, and the movement of the unsolidified phase cannot be prevented.
At a light reduction speed exceeding 0 mm / min, the unsolidified phase is squeezed out and the center segregation deteriorates. Also, in the range where the solid fraction in the center of the slab thickness direction exceeds 0.6, the movement of the unsolidified phase does not occur even if the light reduction speed is increased, so the drawing gradient of the light reduction roll is changed from the middle of the reduction. In this case, the light reduction speed in the range where the solid fraction in the center of the slab thickness direction exceeds 0.6 is 0.6 mm / min to 1.5 m.
By increasing the value to m / min, the porosity at the center of the slab in the thickness direction can be reduced.

【0021】[0021]

【発明の実施の形態】以下、本発明を図面を参照して説
明する。図1は、本発明の実施の形態の1例を示す図で
あり、鋳片断面が矩形型の垂直曲げ型スラブ連続鋳造設
備の側断面概略図である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to the drawings. FIG. 1 is a view showing an example of an embodiment of the present invention, and is a schematic side sectional view of a vertical bending slab continuous casting facility having a rectangular slab section.

【0022】図1において、鋳型1の下方には、対向す
る一対のロールを1組として、それぞれ複数組のサポー
トロール10、ガイドロール11、ピンチロール12、
及び軽圧下ロール13からなる、鋳片2を支持する案内
ロール群が設置され、この案内ロール群の下流側には、
複数本の搬送ロール15と、搬送ロール15の上方に位
置して鋳片2の引き抜き速度と同調して移動するガス切
断機14とが設置されている。案内ロール群には、エア
ーミストスプレー又は水スプレーからなる二次冷却帯
(図示せず)が設置されている。
In FIG. 1, a plurality of sets of support rolls 10, guide rolls 11, pinch rolls 12, and
A guide roll group that supports the slab 2 and that includes a light pressure roll 13 is installed, and on the downstream side of the guide roll group,
A plurality of transport rolls 15 and a gas cutting machine 14 that is located above the transport rolls 15 and moves in synchronization with the drawing speed of the slab 2 are installed. A secondary cooling zone (not shown) made of air mist spray or water spray is installed in the guide roll group.

【0023】案内ロール群の中の下部矯正帯9の鋳片引
き抜き方向下流側に、一対の圧着ロール6が設置されて
いる。この圧着ロール6は、鋳片2の引き抜き速度に同
調して移動する油圧シリンダー(図示せず)と接続され
ており、この油圧シリンダーにより対向する圧着ロール
6との間隔を増減することができる。即ち、圧着ロール
6により鋳片2を鋳片2の引き抜き速度に同調して圧下
できるようになっている。そして、圧着ロール6の鋳片
引き抜き方向下流側には、複数対の軽圧下ロール13か
らなる軽圧下帯7が設置されている。尚、圧着ロール6
の構造は上記に限るものではなく、例えば、圧着ロール
6を連続鋳造機に固定した油圧シリンダーに接続し、且
つ、圧着ロール6を電動機や油圧モーターにより駆動さ
せ、鋳片2の引き抜きと同調させて移動させずに固定し
た場所で圧下する方式としても良い。
A pair of pressure bonding rolls 6 are provided on the downstream side of the lower straightening belt 9 in the guide roll group in the slab drawing direction. The pressure roll 6 is connected to a hydraulic cylinder (not shown) that moves in synchronization with the speed at which the slab 2 is pulled out, and the distance between the pressure roller 6 and the opposing pressure roll 6 can be increased or decreased by the hydraulic cylinder. That is, the slab 2 can be lowered by the press roll 6 in synchronization with the drawing speed of the slab 2. On the downstream side of the slab pulling direction of the pressure roll 6, a light pressure lowering band 7 including a plurality of pairs of light pressure lowering rolls 13 is provided. In addition, the pressure bonding roll 6
The structure is not limited to the above. For example, the pressing roll 6 is connected to a hydraulic cylinder fixed to a continuous casting machine, and the pressing roll 6 is driven by an electric motor or a hydraulic motor to synchronize with the drawing of the slab 2. It is also possible to adopt a method of lowering the pressure at a fixed place without moving it.

【0024】このような構成の連続鋳造設備における本
発明の連続鋳造方法を以下に説明する。鋳型1の上方所
定位置に設置されたタンディッシュ(図示せず)から鋳
型1内に溶鋼を連続的に注入する。通常、この注入は、
その先端が鋳型1内の湯面5に浸漬する浸漬ノズル(図
示せず)を介して行われる。鋳型1内に注入した溶鋼を
鋳型1にて冷却して凝固殻3を形成させ、外周を凝固殻
3、内部を未凝固相4とした鋳片2として、サポートロ
ール10、ガイドロール11、及びピンチロール12か
らなる案内ロール群をピンチロール12の駆動力により
下方に向けて連続的に引き抜く。その間、鋳片2は上部
矯正帯8で平板状から円弧状に矯正され、又、下部矯正
帯9で円弧状から平板状に曲げ戻される。
The continuous casting method of the present invention in the continuous casting facility having such a configuration will be described below. Molten steel is continuously injected into the mold 1 from a tundish (not shown) installed at a predetermined position above the mold 1. Usually, this injection
This is performed through an immersion nozzle (not shown) whose tip is immersed in the molten metal surface 5 in the mold 1. The molten steel poured into the mold 1 is cooled in the mold 1 to form a solidified shell 3, and the support roll 10, the guide roll 11, and the cast piece 2 having the solidified shell 3 on the outer periphery and the unsolidified phase 4 on the inside are formed. The guide roll group including the pinch rolls 12 is continuously pulled downward by the driving force of the pinch rolls 12. During that time, the slab 2 is straightened from a flat plate shape to an arc shape in the upper straightening band 8, and is bent back from the arc shape to the flat plate shape in the lower straightening band 9.

【0025】この引き抜き途中、鋳片2がガス切断機1
4により切断される位置の表面に、圧着ロール6を押し
付けて鋳片2を圧下し、対向する凝固殻3同士を圧着さ
せる。鋳片2がガス切断機14により切断される位置
は、鋳造総長さと切断後の個々の鋳片2Aの必要長さと
で決めることができる。
During the drawing, the slab 2 is removed by the gas cutting machine 1.
The pressing roll 6 is pressed against the surface at the position where the cutting is performed by the pressing member 4, and the slab 2 is pressed down, so that the opposing solidified shells 3 are pressed together. The position at which the slab 2 is cut by the gas cutting machine 14 can be determined by the total casting length and the required length of the individual slab 2A after cutting.

【0026】圧着時の未凝固相4の厚みを2mm〜10
mmの範囲とすることが好ましい。従って、圧着時の未
凝固相4の厚みがこの範囲になるように、鋳型直下から
圧着ロール6までの二次冷却強度を調整し、更には必要
に応じて鋳片2の引き抜き速度を調整する。
The thickness of the unsolidified phase 4 at the time of pressing is 2 mm to 10 mm.
mm. Therefore, the secondary cooling strength from immediately below the mold to the pressure roll 6 is adjusted so that the thickness of the unsolidified phase 4 during the pressure bonding falls within this range, and further, the drawing speed of the slab 2 is adjusted as necessary. .

【0027】次いで、凝固殻3の一部が圧着され、内部
に未凝固相4が封じ込まれた鋳片2を、軽圧下帯7で軽
圧下する。鋳片2が軽圧下帯7の範囲内で凝固完了する
ように、鋳片2の引き抜き速度を設定する。これは、鋳
片厚みや鋳片引き抜き速度及び二次冷却強度等から予め
伝熱計算により求めることができる。
Next, the cast slab 2 in which a part of the solidified shell 3 is press-bonded and the unsolidified phase 4 is sealed therein is lightly reduced by the light reduction band 7. The drawing speed of the slab 2 is set so that the slab 2 is completely solidified within the range of the low-pressure band 7. This can be determined in advance by heat transfer calculation from the slab thickness, the slab withdrawal speed, the secondary cooling strength, and the like.

【0028】前述したように軽圧下の開始時期は鋳片厚
みの中心部の固相率が0.4以下の時点とすることが好
ましい。又、鋳片厚みの中心部が凝固完了するまで軽圧
下を継続する。これは、凝固途中で軽圧下を停止すると
中心偏析の低減効果が少ないからである。
As described above, the timing of starting the light pressure reduction is preferably the time when the solid fraction at the center of the slab thickness is 0.4 or less. Light reduction is continued until the center of the slab thickness is solidified. This is because if the reduction is stopped during the solidification, the effect of reducing the center segregation is small.

【0029】軽圧下ロール13の絞り込み勾配(mm/
m)を一定とし、0.2mm/min〜1.0mm/m
inの軽圧下速度で軽圧下するか、若しくは、軽圧下ロ
ール13の絞り込み勾配を圧下途中から変更して、鋳片
厚み方向中心部の固相率が0〜0.6までの範囲は0.
2mm/min〜1.0mm/minの軽圧下速度で軽
圧下し、鋳片厚み方向中心部の固相率が0.6を越える
範囲は0.6mm/min〜1.5mm/minの軽圧
下速度で軽圧下するか、どちらかの方法で軽圧下するこ
とが好ましい。
The drawing gradient of the roll 13 under light pressure (mm /
m) is fixed, and 0.2 mm / min to 1.0 mm / m
The light reduction rate is a light reduction speed of in, or the drawing gradient of the light reduction roll 13 is changed from the middle of the reduction.
Light reduction is performed at a light reduction speed of 2 mm / min to 1.0 mm / min, and when the solid phase ratio at the center in the slab thickness direction exceeds 0.6, the reduction is 0.6 mm / min to 1.5 mm / min. It is preferable to reduce the pressure at a reduced speed or by either method.

【0030】軽圧下速度は、鋳片引き抜き速度と軽圧下
ロール13のロール間隔の絞り込み勾配(mm/m)と
の乗算値であるので、鋳造条件として決めた鋳片引き抜
き速度に基づき、軽圧下ロール13の絞り込み勾配(m
m/m)を設定すれば良い。軽圧下ロール13の絞り込
み勾配を圧下途中から変更して、鋳片厚み方向中心部の
固相率が0.6を越える範囲は0.6mm/min〜
1.5mm/minの軽圧下速度で軽圧下した場合に
は、中心偏析とポロシティーが共に少ない鋳片2を鋳造
することができる。そして、軽圧下しつつ鋳片2の中心
部まで完全に凝固させ、鋳片2の完全凝固後、圧着部が
搬送ロール15位置まで引抜かれた時点で、この圧着部
をガス切断機14にて切断して鋳片2Aを製造する。
The light reduction speed is a value obtained by multiplying the slab withdrawing speed by the drawing gradient (mm / m) of the roll interval of the light reduction rolls 13. Therefore, the light reduction speed is determined based on the slab withdrawing speed determined as the casting condition. The narrowing gradient of the roll 13 (m
m / m) may be set. By changing the drawing gradient of the light reduction roll 13 from the middle of the reduction, the range where the solid phase ratio in the center of the slab thickness direction exceeds 0.6 is 0.6 mm / min.
When the reduction is performed at a light reduction speed of 1.5 mm / min, a slab 2 having a small center segregation and a small porosity can be cast. Then, the slab 2 is completely solidified to the center of the slab 2 while slightly reducing the pressure. After the slab 2 is completely solidified, the crimping portion is pulled out to the position of the transport roll 15 by the gas cutting machine 14. Cut to produce a cast piece 2A.

【0031】尚、圧着ロール6で圧下するときの未凝固
相4の厚みを2mm〜10mmとし、且つ、軽圧下帯7
の範囲内で鋳片2を完全凝固させるには軽圧下帯7の長
さがそれ相応に必要であるので、これも伝熱計算により
予め求めて、軽圧下帯7の設置範囲を設定すれば良い。
又、凝固殻3に作用するバルジング力を実質的にゼロと
するために、軽圧下帯7は連続鋳造機の水平部に設置す
ることが好ましい。
The thickness of the unsolidified phase 4 when reduced by the pressure roll 6 is set to 2 mm to 10 mm, and
In order to completely solidify the slab 2 within the range, the length of the light pressure reduction zone 7 is necessary correspondingly, and this is also obtained in advance by heat transfer calculation, and the setting range of the light pressure reduction zone 7 is set. good.
Further, in order to make the bulging force acting on the solidified shell 3 substantially zero, it is preferable that the light pressure lowering zone 7 is installed in a horizontal portion of the continuous casting machine.

【0032】このようにして鋳造することで、鋳片2の
凝固殻3にはバルジング力が実質的に作用せず、そのた
め、未凝固相4の収縮量に見合った軽圧下を行うことが
可能となり、鋳片2の全ての部位の中心偏析を大幅に低
減することが可能となる。
By performing the casting in this manner, the bulging force does not substantially act on the solidified shell 3 of the slab 2, and therefore, it is possible to perform light reduction corresponding to the shrinkage amount of the unsolidified phase 4. Thus, center segregation at all portions of the slab 2 can be significantly reduced.

【0033】尚、上記説明は垂直曲げ型連続鋳造機を用
いた場合であるが、本発明は垂直曲げ型連続鋳造機に限
るものではなく、湾曲型連続鋳造機においても上記説明
に従い本発明を実施することができる。又、上記説明は
スラブ連続鋳造機に関する説明であるが、本発明はスラ
ブ鋳片に限定されるものでなく、ブルーム連続鋳造機や
ビレット連続鋳造機にも適用できる。
Although the above description is for the case of using a vertical bending type continuous casting machine, the present invention is not limited to the vertical bending type continuous casting machine, and the present invention can be applied to a curved type continuous casting machine in accordance with the above description. Can be implemented. Although the above description relates to a continuous slab caster, the present invention is not limited to a slab cast, and can be applied to a bloom continuous caster and a billet continuous caster.

【0034】[0034]

【実施例】図1に示すスラブ連続鋳造機を用い、鋳片引
き抜き速度及び軽圧下ロールの絞り込み勾配(mm/
m)を変化させ、鋳片引き抜き速度と中心偏析との関
係、軽圧下速度と中心偏析との関係、圧着時の未凝固相
厚みと鋳型内湯面変動との関係について調査する試験を
実施した。中心偏析の評価は、鋳造後のスラブ厚み方向
中心部から厚さ方向に30mmの範囲に渡って1mmの
スライス試料を採取して炭素の分析を行い、炭素濃度の
最大値Cmax と溶鋼の炭素濃度C0 との比(Cma x /C
0 )を中心偏析度として評価する方法で行った。この場
合、中心偏析度が1.0に近づくほど中心偏析は軽減す
ることになる。
EXAMPLE Using a continuous slab casting machine shown in FIG. 1, a slab drawing speed and a drawing gradient (mm /
m) was changed, and a test was conducted to investigate the relationship between the slab withdrawal speed and the center segregation, the relationship between the light reduction speed and the center segregation, and the relationship between the unsolidified phase thickness during crimping and the variation in the mold surface in the mold. The center segregation was evaluated by taking a 1 mm slice sample from the center of the cast slab in the thickness direction over a range of 30 mm in the thickness direction, analyzing the carbon, analyzing the maximum carbon concentration C max and the carbon content of the molten steel. the ratio of the concentration C 0 (C ma x / C
0 ) was evaluated as a center segregation degree. In this case, the center segregation is reduced as the degree of center segregation approaches 1.0.

【0035】用いた連続鋳造機は、鋳型(長さ950m
m)直下に2.8mの垂直部を有し、それに続く湾曲部
の半径が10mであり、上部矯正帯が鋳型上端から3.
8m〜5.0mの範囲、下部矯正帯が鋳型上端から18
m〜20mの範囲であり、機長が49mの垂直曲げ型の
スラブ連続鋳造機である。鋳型上端から24m〜24.
5m(鋳片との同調移動範囲を含む)の位置に圧着ロー
ルを設置し、圧着ロールの鋳片引き抜き方向下流側には
鋳造方向約8mに渡る軽圧下帯を設置した。そして、鋳
片厚みが250mm、鋳片幅が2100mm、炭素濃度
が0.08mass%、Mn濃度が1.4mass%のAlキル
ド鋼鋳片を鋳造した。
The continuous casting machine used was a mold (950 m long)
m) There is a vertical portion of 2.8 m directly below, the radius of the curved portion following it is 10 m, and the upper straightening band is 3.
8m to 5.0m, lower straightening belt is 18m from top of mold
This is a vertical bending type slab continuous casting machine having a length of 49 m and a length of m to 20 m. 24m to 24.
A pressure roll was installed at a position of 5 m (including the range of the synchronous movement with the slab), and a low pressure lower band extending about 8 m in the casting direction was installed on the downstream side of the slab withdrawal direction of the slab. Then, an Al-killed steel slab having a slab thickness of 250 mm, a slab width of 2100 mm, a carbon concentration of 0.08 mass%, and a Mn concentration of 1.4 mass% was cast.

【0036】図2は、鋳片引き抜き速度を1.30〜
1.60m/minの範囲で変化させたときの鋳片の中
心偏析度を調査した結果を示す図である。この場合、軽
圧下速度が0.5mm/minになるように、鋳片引き
抜き速度に合わせて軽圧下ロールの絞り込み勾配(mm
/m)を変化させた。
FIG. 2 shows that the speed of drawing the slab is from 1.30 to 1.
It is a figure which shows the result of having investigated the center segregation degree of the slab when changing in the range of 1.60 m / min. In this case, the squeezing gradient (mm) of the light reduction roll is adjusted in accordance with the slab drawing speed so that the light reduction speed is 0.5 mm / min.
/ M).

【0037】図2に示すように、鋳片引き抜き速度が
1.30m/minの場合には中心偏析度が高く、中心
偏析は低減されないが、鋳片引き抜き速度が1.35m
/minの場合にはやや中心偏析が低減し、そして、鋳
片引き抜き速度が1.40m/min以上になると中心
偏析は低減されることが分かった。圧着時の鋳片厚み方
向中心部の未凝固相厚みとの関係から、この理由を考察
した。
As shown in FIG. 2, when the slab drawing speed is 1.30 m / min, the degree of center segregation is high and the center segregation is not reduced, but the slab drawing speed is 1.35 m / min.
/ Min, the center segregation was slightly reduced, and when the slab drawing speed was 1.40 m / min or more, the center segregation was found to be reduced. This reason was considered from the relationship with the thickness of the unsolidified phase at the center in the thickness direction of the slab at the time of press bonding.

【0038】図3は、鋳片引き抜き速度を1.30〜
1.60m/minとしたときの圧着時点の鋳片厚み方
向中心部の未凝固相厚みを伝熱計算から算出した結果を
示す図である。図3で明らかなように、鋳片引き抜き速
度が1.30m/minの場合には、圧着時点ですでに
凝固が完了しており、本発明を実施できなったことが分
かった。鋳片引き抜き速度が1.35m/minの場合
には、鋳片厚み方向中心部は固相と液相とが混在してお
り、固相率は0.3程度であった。それに対して、鋳片
引き抜き速度が1.40m/min以上の場合には、鋳
片厚み方向中心部は固相率がゼロであり、液相が存在し
ていることが分かった。
FIG. 3 shows that the speed of drawing the slab is from 1.30 to 1.
It is a figure which shows the result of having calculated the unsolidified phase thickness of the center part of the slab thickness direction at the time of press bonding at 1.60 m / min from heat transfer calculation. As is clear from FIG. 3, when the slab drawing speed was 1.30 m / min, solidification had already been completed at the time of press bonding, and it was found that the present invention could not be implemented. When the slab drawing speed was 1.35 m / min, a solid phase and a liquid phase were mixed at the center in the slab thickness direction, and the solid phase ratio was about 0.3. On the other hand, when the slab drawing speed was 1.40 m / min or more, the solid phase ratio was zero at the center in the slab thickness direction, and it was found that a liquid phase was present.

【0039】これらの結果から鋳片厚み方向中心部に十
分な液相即ち未凝固相が存在するときに鋳片を圧着し、
その後軽圧下を行えば鋳片厚み方向中心部の偏析は飛躍
的に改善されることが確認された。
From these results, when a sufficient liquid phase, that is, an unsolidified phase exists in the center of the slab in the thickness direction, the slab is pressure-bonded.
Thereafter, it was confirmed that the segregation at the central portion in the thickness direction of the slab was remarkably improved by light reduction.

【0040】一方、圧着時の未凝固相厚みが厚いと、圧
着時に未凝固相が鋳造方向とは逆の方向に押しだされ、
鋳型内の湯面に到達して鋳型内湯面レベルの変動になっ
て現れる。そこで、鋳片引き抜き速度を1.4〜2.0
m/minの範囲で変更し、圧着時の鋳型内湯面レベル
の変動量を調査した。湯面レベルの変動は渦電流式距離
計にて測定し、圧着時点の未凝固相厚みは伝熱計算によ
り算出して、圧着時点の未凝固相厚みと湯面変動量との
関係を調査した。調査結果を図4に示す。
On the other hand, if the thickness of the unsolidified phase at the time of pressing is large, the unsolidified phase is extruded at the time of pressing at a direction opposite to the casting direction.
It reaches the molten metal level in the mold and appears as a change in the level of the molten metal level in the mold. Therefore, the slab drawing speed is set to 1.4 to 2.0.
The range was changed within the range of m / min, and the amount of change in the level of the molten metal in the mold during press bonding was investigated. Fluctuations in the level of the molten metal were measured with an eddy current type distance meter, and the thickness of the unsolidified phase at the time of compression was calculated by heat transfer calculation, and the relationship between the thickness of the unsolidified phase at the time of compression and the amount of variation in the molten metal level was investigated. . FIG. 4 shows the results of the investigation.

【0041】図4に示すように、未凝固相厚みが10m
m以上の鋳片を圧着させると、湯面レベル変動量は5m
mを越える。湯面レベル変動量が5mmを越えると、鋳
型内湯面を覆うモールドパウダーの巻き込みが発生する
ことを本発明者等は経験的に知っている。従って、鋳型
内の湯面レベルの変動量を抑えるために、圧着時の未凝
固相厚みが10mm以下となるように鋳造条件を調整す
ることが好ましい。
As shown in FIG. 4, the thickness of the unsolidified phase was 10 m.
When the slabs of m or more are pressure-bonded, the level change
over m. The present inventors have empirically known that when the level of the molten metal level exceeds 5 mm, the mold powder covering the molten metal surface in the mold is involved. Therefore, it is preferable to adjust the casting conditions so that the thickness of the unsolidified phase at the time of press bonding is 10 mm or less, in order to suppress the fluctuation amount of the level of the molten metal in the mold.

【0042】図5は、軽圧下ロールの絞り込み勾配(m
m/m)を0〜1.0mm/mの範囲のなかから1つの
値を選択すると共に、鋳片引き抜き速度を1.40〜
1.60m/minの範囲で変更して、軽圧下速度を0
〜1.5mm/minの範囲で変更したときの鋳片の中
心偏析度を調査した結果を示す図である。図5に示すよ
うに、軽圧下速度が0.2〜1.0mm/minのとき
に中心偏析が低減することが分かった。1.0mm/m
inを越える圧下速度では未凝固相の絞り出しが発生し
ていた。
FIG. 5 shows the drawing gradient (m) of the roll under light pressure.
m / m) is selected from the range of 0 to 1.0 mm / m and the slab drawing speed is set to 1.40 to 1.0 mm / m.
Change the speed in the range of 1.60 m / min and set the light reduction speed to 0.
It is a figure which shows the result of having investigated the center segregation degree of the slab when changing in the range of -1.5 mm / min. As shown in FIG. 5, it was found that the center segregation was reduced when the light reduction speed was 0.2 to 1.0 mm / min. 1.0mm / m
At a reduction speed exceeding in, the unsolidified phase was squeezed out.

【0043】但し、軽圧下ロールの絞り込み勾配(mm
/m)を一定として軽圧下した場合、軽圧下速度が0.
6mm/min未満の場合には、中心偏析は低減した
が、鋳片厚み方向中心部にポロシティーが発生する頻度
が高かった。そこで、鋳片厚み方向中心部の固相率が低
い範囲と高い範囲とで軽圧下ロールの絞り込み勾配(m
m/m)を変更した試験を実施した。
However, the drawing gradient (mm
/ M) is constant and the light reduction speed is 0.
When it was less than 6 mm / min, the center segregation was reduced, but the frequency of occurrence of porosity was high at the center in the thickness direction of the slab. Therefore, the narrowing gradient (m
m / m).

【0044】固相と液相とが共存して状態で、液相が流
動可能といわれている固相率は約0.6であるので、固
相率が0〜0.6の範囲を0〜1.0mm/minの軽
圧下速度で軽圧下し、軽圧下速度が大きくなっても負偏
析が生じない範囲である、固相率が0.6を越える範囲
は軽圧下ロールの絞り込み勾配(mm/m)を大きくし
て0.6〜2.0mm/minの軽圧下速度で軽圧下し
た。その結果、固相率が0.6を越える領域を1.5m
m/minまでの軽圧下速度で軽圧下することができた
が、1.5mm/minを越える軽圧下速度では設備上
の制約から軽圧下が困難であった。しかし、0.6〜
1.5mm/minの軽圧下速度で鋳片厚み方向中心部
のポロシティーは消滅しており、これ以上の軽圧下速度
は不要であることを確認した。
In the state where the solid phase and the liquid phase coexist, the solid phase ratio at which the liquid phase is said to be flowable is about 0.6. A light reduction at a light reduction speed of ~ 1.0 mm / min. A range in which negative segregation does not occur even if the light reduction speed is increased. A range where the solid phase ratio exceeds 0.6 is a drawing gradient of the light reduction roll ( mm / m), and was lightly reduced at a light reduction speed of 0.6 to 2.0 mm / min. As a result, the region where the solid fraction exceeds 0.6
Although light reduction was possible at a light reduction speed of up to m / min, it was difficult to reduce the light reduction speed at a light reduction speed exceeding 1.5 mm / min due to equipment restrictions. However, 0.6-
The porosity at the center of the slab thickness direction disappeared at a light reduction speed of 1.5 mm / min, and it was confirmed that no further light reduction speed was necessary.

【0045】[0045]

【発明の効果】本発明によれば、凝固殻にバルジング力
が実質的に作用しない状態で鋳片を軽圧下することがで
きるので、鋳片の全ての部位に渡って中心偏析を大幅に
低減することが可能となり、その結果、近年の厳しい品
質要求にも対処可能な鋳片を安定して製造することがで
き、工業上有益な効果がもたらされる。
According to the present invention, since the slab can be lightly reduced in a state where bulging force does not substantially act on the solidified shell, the center segregation is greatly reduced over all the parts of the slab. As a result, it is possible to stably produce a slab that can cope with recent strict quality requirements, and an industrially beneficial effect is brought.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態の例を示す図である。FIG. 1 is a diagram showing an example of an embodiment of the present invention.

【図2】鋳片引き抜き速度と中心偏析度との関係の調査
結果を示す図である。
FIG. 2 is a diagram showing the results of an investigation on the relationship between the slab withdrawal speed and the degree of center segregation.

【図3】鋳片引き抜き速度を変化させたときの圧着時点
の鋳片厚み方向中心部の未凝固相厚みを示す図である。
FIG. 3 is a diagram showing the thickness of an unsolidified phase at the center in the slab thickness direction at the time of press bonding when the slab drawing speed is changed.

【図4】圧着時点の鋳片厚み方向中心部の未凝固相厚み
と鋳型内湯面レベル変動量との関係の調査結果を示す図
である。
FIG. 4 is a diagram showing the results of an investigation of the relationship between the thickness of the unsolidified phase at the center of the slab thickness direction at the time of press bonding and the level change in the mold level in the mold.

【図5】軽圧下速度と中心偏析度との関係の調査結果を
示す図である。
FIG. 5 is a diagram showing the results of an investigation on the relationship between the speed of light reduction and the degree of center segregation.

【符号の説明】[Explanation of symbols]

1 鋳型 2 鋳片 3 凝固殻 4 未凝固相 5 湯面 6 圧着ロール 7 軽圧下帯 8 上部矯正帯 9 下部矯正帯 10 サポートロール 11 ガイドロール 12 ピンチロール 13 軽圧下ロール 14 ガス切断機 15 搬送ロール REFERENCE SIGNS LIST 1 mold 2 cast slab 3 solidified shell 4 unsolidified phase 5 molten surface 6 pressure roll 7 light pressure lower band 8 upper correction band 9 lower correction band 10 support roll 11 guide roll 12 pinch roll 13 light pressure lower roll 14 gas cutting machine 15 transport roll

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 内部に未凝固相を有する鋳片の鋳造方向
の一部分を連続鋳造機内で圧下して、対向する凝固殻同
士を圧着させ、次いで、圧着後の鋳片を複数対の軽圧下
ロールにより軽圧下しつつ凝固させ、その後、前記圧着
部分を切断して鋳片とすることを特徴とする鋼の連続鋳
造方法。
1. A part of a slab having an unsolidified phase therein in a casting direction is reduced in a continuous casting machine so that opposing solidified shells are pressure-bonded to each other. A continuous casting method for steel, characterized in that the steel is solidified while being lightly reduced by a roll, and thereafter, the crimped portion is cut into a cast piece.
【請求項2】 鋳片厚み方向中心部の固相率が0.4以
下の時点から軽圧下することを特徴とする請求項1に記
載の鋼の連続鋳造方法。
2. The continuous casting method for steel according to claim 1, wherein the steel is lightly reduced from a point in time when the solid phase ratio at the center of the slab thickness direction is 0.4 or less.
【請求項3】 鋳片厚み方向中心部の未凝固相の厚みが
2mm〜10mmのときに圧下して凝固殻同士を圧着さ
せることを特徴とする請求項1又は請求項2に記載の鋼
の連続鋳造方法。
3. The steel according to claim 1, wherein when the thickness of the unsolidified phase at the center in the thickness direction of the slab is 2 mm to 10 mm, the solidified shells are pressed to each other. Continuous casting method.
【請求項4】 軽圧下ロールの絞り込み勾配を一定と
し、0.2mm/min〜1.0mm/minの軽圧下
速度で軽圧下することを特徴とする請求項1乃至請求項
3の何れか1つに記載の鋼の連続鋳造方法。
4. The method according to claim 1, wherein the reduction gradient of the light reduction roll is constant, and the reduction is performed at a light reduction speed of 0.2 mm / min to 1.0 mm / min. The continuous casting method for steel according to any one of the first to third aspects.
【請求項5】 鋳片厚み方向中心部の固相率が0〜0.
6までの範囲は0.2mm/min〜1.0mm/mi
nの軽圧下速度で軽圧下し、鋳片厚み方向中心部の固相
率が0.6を越える範囲は0.6mm/min〜1.5
mm/minの軽圧下速度で軽圧下することを特徴とす
る請求項1乃至請求項3の何れか1つに記載の鋼の連続
鋳造方法。
5. A solid phase ratio of 0 to 0.
The range up to 6 is 0.2 mm / min to 1.0 mm / mi
n in the range of 0.6 mm / min to 1.5 mm where the solid fraction at the center in the thickness direction of the slab exceeds 0.6.
The continuous casting method for steel according to any one of claims 1 to 3, wherein the steel is lightly reduced at a light reduction speed of mm / min.
JP2000079519A 2000-03-22 2000-03-22 Steel continuous casting method Expired - Fee Related JP3846676B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000079519A JP3846676B2 (en) 2000-03-22 2000-03-22 Steel continuous casting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000079519A JP3846676B2 (en) 2000-03-22 2000-03-22 Steel continuous casting method

Publications (2)

Publication Number Publication Date
JP2001259808A true JP2001259808A (en) 2001-09-25
JP3846676B2 JP3846676B2 (en) 2006-11-15

Family

ID=18596759

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000079519A Expired - Fee Related JP3846676B2 (en) 2000-03-22 2000-03-22 Steel continuous casting method

Country Status (1)

Country Link
JP (1) JP3846676B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008260056A (en) * 2007-04-16 2008-10-30 Kobe Steel Ltd Continuous casting method for slab steel less in central segregation
JP2008307600A (en) * 2007-06-18 2008-12-25 Jfe Steel Kk Continuous casting method and continuous casting machine
JP2010069499A (en) * 2008-09-18 2010-04-02 Jfe Steel Corp Method for producing continuously cast slab

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008260056A (en) * 2007-04-16 2008-10-30 Kobe Steel Ltd Continuous casting method for slab steel less in central segregation
JP2008307600A (en) * 2007-06-18 2008-12-25 Jfe Steel Kk Continuous casting method and continuous casting machine
JP2010069499A (en) * 2008-09-18 2010-04-02 Jfe Steel Corp Method for producing continuously cast slab

Also Published As

Publication number Publication date
JP3846676B2 (en) 2006-11-15

Similar Documents

Publication Publication Date Title
CN102398007B (en) Soft reduction process for continuous casting of large square billet of high chrome alloy steel
JP4507887B2 (en) Steel continuous casting method
KR101252645B1 (en) Continuous Casting Method and Continuous Casting Apparatus
JP5045408B2 (en) Manufacturing method of continuous cast slab
JP3511973B2 (en) Continuous casting method
JP2001259808A (en) Method for continuously casting steel
CN2579561Y (en) Continuous blank withdrawal straightening device with light pressing function
JP5870966B2 (en) Manufacturing method of continuous cast slab
JP2011147985A (en) Continuous casting method and apparatus
JP3546297B2 (en) Method of reducing center segregation in continuous cast slab
JP3402251B2 (en) Continuous casting method
JP3362703B2 (en) Continuous casting method
JP2001259809A (en) Continuous casting method
JP3111954B2 (en) Continuous casting method
JPH0390261A (en) Continuous casting method
JP3240978B2 (en) Manufacturing method of continuous cast slab
JP2000218350A (en) Continuous casting method
JPH0740019A (en) Method for reducing center segregation in cast slab in continuous casting for steel
JPH11267804A (en) Method of producing round billet cast piece by continuous casting
JP3488656B2 (en) Steel continuous casting method
JP3277873B2 (en) Manufacturing method of continuous cast slab
JP3402250B2 (en) Manufacturing method of round billet slab by continuous casting
JPH0573506B2 (en)
JP3056582B2 (en) Slab rolling method in continuous casting
RU1693786C (en) Method of continuous casting of slabs

Legal Events

Date Code Title Description
A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060817

R150 Certificate of patent or registration of utility model

Ref document number: 3846676

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060921

A072 Dismissal of procedure

Free format text: JAPANESE INTERMEDIATE CODE: A072

Effective date: 20070129

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090901

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100901

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100901

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110901

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110901

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120901

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120901

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130901

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees