JP3846676B2 - Steel continuous casting method - Google Patents

Steel continuous casting method Download PDF

Info

Publication number
JP3846676B2
JP3846676B2 JP2000079519A JP2000079519A JP3846676B2 JP 3846676 B2 JP3846676 B2 JP 3846676B2 JP 2000079519 A JP2000079519 A JP 2000079519A JP 2000079519 A JP2000079519 A JP 2000079519A JP 3846676 B2 JP3846676 B2 JP 3846676B2
Authority
JP
Japan
Prior art keywords
slab
light
center
continuous casting
roll
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000079519A
Other languages
Japanese (ja)
Other versions
JP2001259808A (en
Inventor
幹雄 鈴木
正之 中田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2000079519A priority Critical patent/JP3846676B2/en
Publication of JP2001259808A publication Critical patent/JP2001259808A/en
Application granted granted Critical
Publication of JP3846676B2 publication Critical patent/JP3846676B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Continuous Casting (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、連続鋳造鋳片の中心部に発生する成分偏析を防止することのできる鋼の連続鋳造方法に関するものである。
【0002】
【従来の技術】
鋼の凝固過程における最終凝固部では、炭素、燐、硫黄等の溶質元素は未凝固相に濃縮される。この溶質元素が濃縮された溶鋼(濃化溶鋼と云う)が流動して集積し、その状態で凝固すると初期濃度に比べて格段に高濃度となり、成分偏析部が生成される。このような濃化溶鋼の流動・集積が、鋼のマクロ的な成分偏析の主たる生成原因である。
【0003】
鋼が凝固すると体積収縮が起こり、この凝固収縮に伴い、連続鋳造の場合には鋳片の引き抜き方向へ溶鋼が吸引されて流動する。連続鋳造鋳片の凝固末期の未凝固相には十分な量の溶鋼が存在しないので、凝固収縮に伴い最終凝固部であるデンドライト樹間の濃化溶鋼が流動をおこし、それが鋳片厚み方向中心部に集積して凝固し、所謂中心偏析が生成される。
【0004】
この中心偏析は鋼製品の品質を劣化させる。例えば、石油輸送用及び天然ガス輸送用のラインパイプ材においては、サワーガスの作用により中心偏析を起点として水素誘起割れが発生し、又、飲料水用の缶製品に用いられる深絞り材においては、成分の偏析により加工性に異方性が出現する。そのため、鋳造工程から圧延工程に至るまで、中心偏析を低減する対策が多数提案されている。
【0005】
そのなかで、安価に且つ効果的に鋳片の中心偏析を低減する手段として、例えば特開平8−132203号公報や特開平8−192256号公報に開示されているように、未凝固鋳片を複数対の軽圧下ロールで圧下する(以下「軽圧下」と呼ぶ)方法が提案されている。この軽圧下方法は、鋳片の凝固収縮速度に見合った速度で鋳片を徐々に軽圧下して未凝固相の体積を減少させ、デンドライト樹間の濃化溶鋼の流動を起こさないようにして中心偏析を防止することを目的としている。
【0006】
【発明が解決しようとする課題】
しかしながら、軽圧下を行う最終凝固部では凝固殻に通常高さ10m以上の静鉄圧が作用する。又、軽圧下方法では複数対の軽圧下ロールにより鋳片を圧下しているが、隣合うロールとロールとの間(ロール間という)では、鋳片は支持されておらず、そのため、ロール間では凝固殻に作用する静鉄圧により凝固殻の膨れ(以下「バルジング」と記す)が発生する。このバルジングにより未凝固相の体積変化が生じて溶鋼が流動するので、バルジングは中心偏析の発生原因の一つとなっている。軽圧下方法において、隣合うロールとロールとの設置間隔(ロールピッチという)を小さくすれば、バルジング量は減少するが、ロール強度の点からロールピッチを小さくするには限度があり、従って、ロール間では多かれ少なかれ必ずバルジングが発生し、従来の軽圧下方法ではこのバルジングによる中心偏析を防ぎきれないという問題点がある。
【0007】
更に、軽圧下方法では軽圧下量が多すぎると、デンドライト樹間の濃化溶鋼は鋳造方向とは逆方向に絞り出されて、鋳片厚み方向中心部には炭素、燐、硫黄等の溶質元素濃度が少ない偏析(この場合は負偏析という)が生成し、一方、軽圧下量が少なすぎると、凝固に伴う体積収縮によって溶鋼は吸引されるため、デンドライト樹間の濃化溶鋼の流動を抑制できずに中心偏析が生成する。
【0008】
このように軽圧下方法においては溶鋼が流動しないための最適圧下条件は非常に限定された条件となるが、上記のバルジングとの兼ね合いもあり、軽圧下による鋳片偏析防止対策は未だ充分とは云い難い。一方、需要家からの鋼材品質に対する要求は厳格化を増し、中心偏析の更なる低減化が望まれている。
【0009】
本発明は上記事情に鑑みなされたもので、その目的とするところは、鋳片の全ての部位に渡って中心偏析を大幅に低減することができ、近年の厳しい品質要求にも対処可能な鋳片を製造することのできる鋼の連続鋳造方法を提供することである。
【0010】
【課題を解決するための手段】
第1の発明による鋼の連続鋳造方法は、内部に未凝固相を有する鋳片の鋳造方向の一部分を、当該鋳片の厚み方向中心部の未凝固相の厚みが2mm〜10mmのときに連続鋳造機内で圧下して、対向する凝固殻同士を圧着させ、次いで、内部に未凝固相が封じ込まれた、圧着後の鋳片を、鋳片厚み方向中心部の固相率が0.4以下の時点から、連続鋳造機内に設置された複数対の軽圧下ロールによって、凝固収縮に伴って減少する体積に見合うように軽圧下しつつ鋳片の中心部まで完全に凝固させ、その後、前記圧着部分を切断して鋳片とすることを特徴とするものである。
【0013】
の発明による鋼の連続鋳造方法は、第1の発明において、軽圧下ロールの絞り込み勾配を一定とし、0.2mm/min〜1.0mm/minの軽圧下速度で軽圧下することを特徴とするものである。
【0014】
の発明による鋼の連続鋳造方法は、第1の発明において、鋳片厚み方向中心部の固相率が0〜0.6までの範囲は0.2mm/min〜1.0mm/minの軽圧下速度で軽圧下し、鋳片厚み方向中心部の固相率が0.6を越える範囲は0.6mm/min〜1.5mm/minの軽圧下速度で軽圧下することを特徴とするものである。
【0015】
本発明では、内部に未凝固相を有する鋳片の鋳造方向の一部分を連続鋳造機内で圧下して対向する凝固殻同士を圧着させる。凝固殻を圧着させることで、圧着部よりも鋳片引き抜き方向上流側の静鉄圧は、圧着部よりも鋳片引き抜き方向下流側の凝固殻には作用しなくなり、従って、圧着部より鋳片引き抜き方向下流側の凝固殻に作用する静鉄圧は大幅に減少し、例えば連続鋳造機の水平部では静鉄圧は実質的にゼロとなる。
【0016】
圧着後、内部に未凝固相を封じ込まれた鋳片は凝固していくが、そのまま凝固させると、凝固収縮により未凝固相の体積が減少して、中心偏析やポロシティーが発生する。そこで、本発明では内部の未凝固相が完全に凝固するまで、内部に未凝固相が封じ込まれた鋳片を軽圧下する。即ち、凝固収縮に伴って減少する体積に見合うように鋳片表面から圧下力を加える。
【0017】
このように、本発明では凝固殻のバルジングが実質的にゼロになり、更に、軽圧下により未凝固相の移動が妨げられるので、中心偏析が極めて少ない鋳片の製造が可能となる。尚、本発明の軽圧下とは、各軽圧下ロールの絞り込み勾配を鋳片の引き抜き方向1m当たり鋳片厚みの0.2〜2.0%として圧下することである。
【0018】
軽圧下を開始する時期は鋳片厚み方向中心部の固相率が0.4以下の時点とすることが好ましい。これは、鋳片厚み方向中心部の固相率が0.4を越えてから軽圧下を開始しても、すでに濃化溶鋼の移動が発生しており、中心偏析の低減効果が少ないからである。
【0019】
又、鋳片厚み方向中心部の未凝固相の厚みが2mm〜10mmのときに圧下して凝固殻同士を圧着させることが好ましい。未凝固相が2mm未満の場合には圧着後鋳片厚み方向中心部が凝固するまでの時間が短く、十分に軽圧下を行うことが困難になり、一方、未凝固相厚みが10mmを越える鋳片の凝固殻を圧着させると、圧着時に鋳型内の溶鋼表面(湯面)が上昇して、その上昇量が大きくなる。この湯面変動によりモールドパウダーの巻き込み等による鋳片の品質劣化を起こし易くなるからである。
【0020】
更に、軽圧下ロールの絞り込み勾配を一定とし、0.2mm/min〜1.0mm/minの軽圧下速度で軽圧下するか、若しくは、鋳片厚み方向中心部の固相率が0〜0.6までの範囲は0.2mm/min〜1.0mm/minの軽圧下速度で軽圧下し、鋳片厚み方向中心部の固相率が0.6を越える範囲は0.6mm/min〜1.5mm/minの軽圧下速度で軽圧下するか、どちらかの方法で軽圧下することが好ましい。これは、軽圧下ロールの絞り込み勾配を一定とした場合には、0.2mm/min未満の軽圧下速度では軽圧下速度が遅く、未凝固相の移動を防止できず、一方、1.0mm/minを越える軽圧下速度では未凝固相の絞り出しが発生して中心偏析が悪化するからである。又、鋳片厚み方向中心部の固相率が0.6を越える範囲は軽圧下速度を大きくしても未凝固相の移動は起こらないので、軽圧下ロールの絞り込み勾配を圧下途中から変更する場合には、鋳片厚み方向中心部の固相率が0.6を越える範囲の軽圧下速度を0.6mm/min〜1.5mm/minと大きくすることで鋳片厚み方向中心部のポロシティーを軽減させることができる。
【0021】
【発明の実施の形態】
以下、本発明を図面を参照して説明する。図1は、本発明の実施の形態の1例を示す図であり、鋳片断面が矩形型の垂直曲げ型スラブ連続鋳造設備の側断面概略図である。
【0022】
図1において、鋳型1の下方には、対向する一対のロールを1組として、それぞれ複数組のサポートロール10、ガイドロール11、ピンチロール12、及び軽圧下ロール13からなる、鋳片2を支持する案内ロール群が設置され、この案内ロール群の下流側には、複数本の搬送ロール15と、搬送ロール15の上方に位置して鋳片2の引き抜き速度と同調して移動するガス切断機14とが設置されている。案内ロール群には、エアーミストスプレー又は水スプレーからなる二次冷却帯(図示せず)が設置されている。
【0023】
案内ロール群の中の下部矯正帯9の鋳片引き抜き方向下流側に、一対の圧着ロール6が設置されている。この圧着ロール6は、鋳片2の引き抜き速度に同調して移動する油圧シリンダー(図示せず)と接続されており、この油圧シリンダーにより対向する圧着ロール6との間隔を増減することができる。即ち、圧着ロール6により鋳片2を鋳片2の引き抜き速度に同調して圧下できるようになっている。そして、圧着ロール6の鋳片引き抜き方向下流側には、複数対の軽圧下ロール13からなる軽圧下帯7が設置されている。尚、圧着ロール6の構造は上記に限るものではなく、例えば、圧着ロール6を連続鋳造機に固定した油圧シリンダーに接続し、且つ、圧着ロール6を電動機や油圧モーターにより駆動させ、鋳片2の引き抜きと同調させて移動させずに固定した場所で圧下する方式としても良い。
【0024】
このような構成の連続鋳造設備における本発明の連続鋳造方法を以下に説明する。鋳型1の上方所定位置に設置されたタンディッシュ(図示せず)から鋳型1内に溶鋼を連続的に注入する。通常、この注入は、その先端が鋳型1内の湯面5に浸漬する浸漬ノズル(図示せず)を介して行われる。鋳型1内に注入した溶鋼を鋳型1にて冷却して凝固殻3を形成させ、外周を凝固殻3、内部を未凝固相4とした鋳片2として、サポートロール10、ガイドロール11、及びピンチロール12からなる案内ロール群をピンチロール12の駆動力により下方に向けて連続的に引き抜く。その間、鋳片2は上部矯正帯8で平板状から円弧状に矯正され、又、下部矯正帯9で円弧状から平板状に曲げ戻される。
【0025】
この引き抜き途中、鋳片2がガス切断機14により切断される位置の表面に、圧着ロール6を押し付けて鋳片2を圧下し、対向する凝固殻3同士を圧着させる。鋳片2がガス切断機14により切断される位置は、鋳造総長さと切断後の個々の鋳片2Aの必要長さとで決めることができる。
【0026】
圧着時の未凝固相4の厚みを2mm〜10mmの範囲とすることが好ましい。従って、圧着時の未凝固相4の厚みがこの範囲になるように、鋳型直下から圧着ロール6までの二次冷却強度を調整し、更には必要に応じて鋳片2の引き抜き速度を調整する。
【0027】
次いで、凝固殻3の一部が圧着され、内部に未凝固相4が封じ込まれた鋳片2を、軽圧下帯7で軽圧下する。鋳片2が軽圧下帯7の範囲内で凝固完了するように、鋳片2の引き抜き速度を設定する。これは、鋳片厚みや鋳片引き抜き速度及び二次冷却強度等から予め伝熱計算により求めることができる。
【0028】
前述したように軽圧下の開始時期は鋳片厚みの中心部の固相率が0.4以下の時点とすることが好ましい。又、鋳片厚みの中心部が凝固完了するまで軽圧下を継続する。これは、凝固途中で軽圧下を停止すると中心偏析の低減効果が少ないからである。
【0029】
軽圧下ロール13の絞り込み勾配(mm/m)を一定とし、0.2mm/min〜1.0mm/minの軽圧下速度で軽圧下するか、若しくは、軽圧下ロール13の絞り込み勾配を圧下途中から変更して、鋳片厚み方向中心部の固相率が0〜0.6までの範囲は0.2mm/min〜1.0mm/minの軽圧下速度で軽圧下し、鋳片厚み方向中心部の固相率が0.6を越える範囲は0.6mm/min〜1.5mm/minの軽圧下速度で軽圧下するか、どちらかの方法で軽圧下することが好ましい。
【0030】
軽圧下速度は、鋳片引き抜き速度と軽圧下ロール13のロール間隔の絞り込み勾配(mm/m)との乗算値であるので、鋳造条件として決めた鋳片引き抜き速度に基づき、軽圧下ロール13の絞り込み勾配(mm/m)を設定すれば良い。軽圧下ロール13の絞り込み勾配を圧下途中から変更して、鋳片厚み方向中心部の固相率が0.6を越える範囲は0.6mm/min〜1.5mm/minの軽圧下速度で軽圧下した場合には、中心偏析とポロシティーが共に少ない鋳片2を鋳造することができる。そして、軽圧下しつつ鋳片2の中心部まで完全に凝固させ、鋳片2の完全凝固後、圧着部が搬送ロール15位置まで引抜かれた時点で、この圧着部をガス切断機14にて切断して鋳片2Aを製造する。
【0031】
尚、圧着ロール6で圧下するときの未凝固相4の厚みを2mm〜10mmとし、且つ、軽圧下帯7の範囲内で鋳片2を完全凝固させるには軽圧下帯7の長さがそれ相応に必要であるので、これも伝熱計算により予め求めて、軽圧下帯7の設置範囲を設定すれば良い。又、凝固殻3に作用するバルジング力を実質的にゼロとするために、軽圧下帯7は連続鋳造機の水平部に設置することが好ましい。
【0032】
このようにして鋳造することで、鋳片2の凝固殻3にはバルジング力が実質的に作用せず、そのため、未凝固相4の収縮量に見合った軽圧下を行うことが可能となり、鋳片2の全ての部位の中心偏析を大幅に低減することが可能となる。
【0033】
尚、上記説明は垂直曲げ型連続鋳造機を用いた場合であるが、本発明は垂直曲げ型連続鋳造機に限るものではなく、湾曲型連続鋳造機においても上記説明に従い本発明を実施することができる。又、上記説明はスラブ連続鋳造機に関する説明であるが、本発明はスラブ鋳片に限定されるものでなく、ブルーム連続鋳造機やビレット連続鋳造機にも適用できる。
【0034】
【実施例】
図1に示すスラブ連続鋳造機を用い、鋳片引き抜き速度及び軽圧下ロールの絞り込み勾配(mm/m)を変化させ、鋳片引き抜き速度と中心偏析との関係、軽圧下速度と中心偏析との関係、圧着時の未凝固相厚みと鋳型内湯面変動との関係について調査する試験を実施した。中心偏析の評価は、鋳造後のスラブ厚み方向中心部から厚さ方向に30mmの範囲に渡って1mmのスライス試料を採取して炭素の分析を行い、炭素濃度の最大値Cmax と溶鋼の炭素濃度C0 との比(Cmax /C0 )を中心偏析度として評価する方法で行った。この場合、中心偏析度が1.0に近づくほど中心偏析は軽減することになる。
【0035】
用いた連続鋳造機は、鋳型(長さ950mm)直下に2.8mの垂直部を有し、それに続く湾曲部の半径が10mであり、上部矯正帯が鋳型上端から3.8m〜5.0mの範囲、下部矯正帯が鋳型上端から18m〜20mの範囲であり、機長が49mの垂直曲げ型のスラブ連続鋳造機である。鋳型上端から24m〜24.5m(鋳片との同調移動範囲を含む)の位置に圧着ロールを設置し、圧着ロールの鋳片引き抜き方向下流側には鋳造方向約8mに渡る軽圧下帯を設置した。そして、鋳片厚みが250mm、鋳片幅が2100mm、炭素濃度が0.08mass%、Mn濃度が1.4mass%のAlキルド鋼鋳片を鋳造した。
【0036】
図2は、鋳片引き抜き速度を1.30〜1.60m/minの範囲で変化させたときの鋳片の中心偏析度を調査した結果を示す図である。この場合、軽圧下速度が0.5mm/minになるように、鋳片引き抜き速度に合わせて軽圧下ロールの絞り込み勾配(mm/m)を変化させた。
【0037】
図2に示すように、鋳片引き抜き速度が1.30m/minの場合には中心偏析度が高く、中心偏析は低減されないが、鋳片引き抜き速度が1.35m/minの場合にはやや中心偏析が低減し、そして、鋳片引き抜き速度が1.40m/min以上になると中心偏析は低減されることが分かった。圧着時の鋳片厚み方向中心部の未凝固相厚みとの関係から、この理由を考察した。
【0038】
図3は、鋳片引き抜き速度を1.30〜1.60m/minとしたときの圧着時点の鋳片厚み方向中心部の未凝固相厚みを伝熱計算から算出した結果を示す図である。図3で明らかなように、鋳片引き抜き速度が1.30m/minの場合には、圧着時点ですでに凝固が完了しており、本発明を実施できなったことが分かった。鋳片引き抜き速度が1.35m/minの場合には、鋳片厚み方向中心部は固相と液相とが混在しており、固相率は0.3程度であった。それに対して、鋳片引き抜き速度が1.40m/min以上の場合には、鋳片厚み方向中心部は固相率がゼロであり、液相が存在していることが分かった。
【0039】
これらの結果から鋳片厚み方向中心部に十分な液相即ち未凝固相が存在するときに鋳片を圧着し、その後軽圧下を行えば鋳片厚み方向中心部の偏析は飛躍的に改善されることが確認された。
【0040】
一方、圧着時の未凝固相厚みが厚いと、圧着時に未凝固相が鋳造方向とは逆の方向に押しだされ、鋳型内の湯面に到達して鋳型内湯面レベルの変動になって現れる。そこで、鋳片引き抜き速度を1.4〜2.0m/minの範囲で変更し、圧着時の鋳型内湯面レベルの変動量を調査した。湯面レベルの変動は渦電流式距離計にて測定し、圧着時点の未凝固相厚みは伝熱計算により算出して、圧着時点の未凝固相厚みと湯面変動量との関係を調査した。調査結果を図4に示す。
【0041】
図4に示すように、未凝固相厚みが10mm以上の鋳片を圧着させると、湯面レベル変動量は5mmを越える。湯面レベル変動量が5mmを越えると、鋳型内湯面を覆うモールドパウダーの巻き込みが発生することを本発明者等は経験的に知っている。従って、鋳型内の湯面レベルの変動量を抑えるために、圧着時の未凝固相厚みが10mm以下となるように鋳造条件を調整することが好ましい。
【0042】
図5は、軽圧下ロールの絞り込み勾配(mm/m)を0〜1.0mm/mの範囲のなかから1つの値を選択すると共に、鋳片引き抜き速度を1.40〜1.60m/minの範囲で変更して、軽圧下速度を0〜1.5mm/minの範囲で変更したときの鋳片の中心偏析度を調査した結果を示す図である。図5に示すように、軽圧下速度が0.2〜1.0mm/minのときに中心偏析が低減することが分かった。1.0mm/minを越える圧下速度では未凝固相の絞り出しが発生していた。
【0043】
但し、軽圧下ロールの絞り込み勾配(mm/m)を一定として軽圧下した場合、軽圧下速度が0.6mm/min未満の場合には、中心偏析は低減したが、鋳片厚み方向中心部にポロシティーが発生する頻度が高かった。そこで、鋳片厚み方向中心部の固相率が低い範囲と高い範囲とで軽圧下ロールの絞り込み勾配(mm/m)を変更した試験を実施した。
【0044】
固相と液相とが共存して状態で、液相が流動可能といわれている固相率は約0.6であるので、固相率が0〜0.6の範囲を0〜1.0mm/minの軽圧下速度で軽圧下し、軽圧下速度が大きくなっても負偏析が生じない範囲である、固相率が0.6を越える範囲は軽圧下ロールの絞り込み勾配(mm/m)を大きくして0.6〜2.0mm/minの軽圧下速度で軽圧下した。その結果、固相率が0.6を越える領域を1.5mm/minまでの軽圧下速度で軽圧下することができたが、1.5mm/minを越える軽圧下速度では設備上の制約から軽圧下が困難であった。しかし、0.6〜1.5mm/minの軽圧下速度で鋳片厚み方向中心部のポロシティーは消滅しており、これ以上の軽圧下速度は不要であることを確認した。
【0045】
【発明の効果】
本発明によれば、凝固殻にバルジング力が実質的に作用しない状態で鋳片を軽圧下することができるので、鋳片の全ての部位に渡って中心偏析を大幅に低減することが可能となり、その結果、近年の厳しい品質要求にも対処可能な鋳片を安定して製造することができ、工業上有益な効果がもたらされる。
【図面の簡単な説明】
【図1】本発明の実施の形態の例を示す図である。
【図2】鋳片引き抜き速度と中心偏析度との関係の調査結果を示す図である。
【図3】鋳片引き抜き速度を変化させたときの圧着時点の鋳片厚み方向中心部の未凝固相厚みを示す図である。
【図4】圧着時点の鋳片厚み方向中心部の未凝固相厚みと鋳型内湯面レベル変動量との関係の調査結果を示す図である。
【図5】軽圧下速度と中心偏析度との関係の調査結果を示す図である。
【符号の説明】
1 鋳型
2 鋳片
3 凝固殻
4 未凝固相
5 湯面
6 圧着ロール
7 軽圧下帯
8 上部矯正帯
9 下部矯正帯
10 サポートロール
11 ガイドロール
12 ピンチロール
13 軽圧下ロール
14 ガス切断機
15 搬送ロール
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a continuous casting method of steel capable of preventing component segregation occurring at the center of a continuous cast slab.
[0002]
[Prior art]
In the final solidification part in the solidification process of steel, solute elements such as carbon, phosphorus and sulfur are concentrated in the unsolidified phase. When the molten steel enriched with this solute element (called concentrated molten steel) flows and accumulates and solidifies in this state, the concentration becomes much higher than the initial concentration, and a component segregation part is generated. Such flow and accumulation of concentrated molten steel is the main cause of the segregation of macroscopic components in steel.
[0003]
When the steel solidifies, volume shrinkage occurs, and along with this solidification shrinkage, in the case of continuous casting, the molten steel is sucked and flows in the drawing direction of the slab. Since there is not a sufficient amount of molten steel in the unsolidified phase at the end of solidification of the continuous cast slab, the concentrated molten steel between the dendritic trees, which is the final solidified part, flows along with the solidification shrinkage, which is the direction of the slab thickness. It accumulates in the center and solidifies, producing so-called center segregation.
[0004]
This central segregation degrades the quality of the steel product. For example, in line pipe materials for oil transportation and natural gas transportation, hydrogen-induced cracking occurs from the center segregation due to the action of sour gas, and in deep drawing materials used in can products for drinking water, Anisotropy appears in workability due to segregation of components. Therefore, many countermeasures for reducing the center segregation have been proposed from the casting process to the rolling process.
[0005]
Among them, as means for reducing the center segregation of the slab at a low cost and effectively, as disclosed in, for example, JP-A-8-132203 and JP-A-8-192256, an unsolidified slab is used. A method of rolling down with a plurality of pairs of light rolling rolls (hereinafter referred to as “light rolling”) has been proposed. In this light reduction method, the slab is gradually lightly reduced at a rate commensurate with the solidification shrinkage rate of the slab to reduce the volume of the unsolidified phase and prevent the flow of concentrated molten steel between dendrites. The purpose is to prevent center segregation.
[0006]
[Problems to be solved by the invention]
However, in the final solidification part where light reduction is performed, a static iron pressure of a height of 10 m or more usually acts on the solidified shell. In the light reduction method, the slab is reduced by a plurality of pairs of light reduction rolls, but the slab is not supported between adjacent rolls (referred to as between the rolls). Then, blistering of the solidified shell (hereinafter referred to as “bulging”) occurs due to the static iron pressure acting on the solidified shell. This bulging causes a volume change of the unsolidified phase and the molten steel flows, so that bulging is one of the causes of central segregation. In the light reduction method, if the installation interval between rolls adjacent to each other (referred to as roll pitch) is reduced, the amount of bulging decreases, but there is a limit to reducing the roll pitch in terms of roll strength. There is a problem that bulging occurs more or less in the meantime, and the conventional light reduction method cannot prevent the center segregation due to the bulging.
[0007]
Furthermore, if the amount of light reduction is too large in the light reduction method, the concentrated molten steel between dendrites will be squeezed in the direction opposite to the casting direction, and solutes such as carbon, phosphorus, sulfur, etc. in the center of the slab thickness direction. Segregation with a low element concentration (in this case, called negative segregation) is generated. On the other hand, if the amount of light reduction is too small, the molten steel is attracted by volume shrinkage due to solidification. Central segregation occurs without being suppressed.
[0008]
In this way, in the light reduction method, the optimum reduction condition for the molten steel not to flow is a very limited condition, but there is also a balance with the above bulging, and measures to prevent slab segregation due to light reduction are still insufficient. It ’s hard to say. On the other hand, demands for quality of steel materials from customers are becoming stricter, and further reduction of central segregation is desired.
[0009]
The present invention has been made in view of the above circumstances, and the object of the present invention is to reduce the center segregation over all parts of the slab and to cope with the recent severe quality requirements. It is to provide a continuous casting method of steel capable of producing a piece.
[0010]
[Means for Solving the Problems]
In the continuous casting method for steel according to the first invention, a part of the slab having an unsolidified phase in the casting direction is continuous when the thickness of the unsolidified phase at the center in the thickness direction of the slab is 2 mm to 10 mm. The pressed solidified shells are pressed down in the casting machine to press the solidified shells facing each other, and then the pressed solid slab is sealed with an unsolidified phase inside. From the following time points, by a plurality of pairs of light rolling rolls installed in the continuous casting machine, the solids are completely solidified to the center of the slab while lightly rolling down to meet the volume that decreases with solidification shrinkage. The pressure-bonded portion is cut into a slab.
[0013]
Continuous casting method of steel according to the second invention, Oite the first inventions, the constant narrowing slope of soft reduction rolls are soft reduction at a soft reduction rate of 0.2mm / min~1.0mm / min It is characterized by this.
[0014]
Continuous casting method of steel according to the third invention, Oite the first inventions, ranging solid fraction of the slab thickness direction center portion is from 0 to 0.6 is 0.2mm / min~1.0mm In the range where the solid phase ratio in the center part of the slab thickness direction exceeds 0.6, light reduction is performed at a light reduction speed of 0.6 mm / min to 1.5 mm / min. It is a feature.
[0015]
In the present invention, a part in the casting direction of a slab having an unsolidified phase inside is squeezed in a continuous casting machine to press the solidified shells facing each other. By pressing the solidified shell, the static iron pressure upstream of the crimping part in the direction of drawing the slab does not act on the solidified shell downstream of the crimping part in the direction of drawing the slab. The static iron pressure acting on the solidified shell on the downstream side in the drawing direction is significantly reduced. For example, the static iron pressure is substantially zero in the horizontal portion of the continuous casting machine.
[0016]
After the crimping, the slab containing the unsolidified phase is solidified, but when solidified as it is, the volume of the unsolidified phase is reduced due to solidification shrinkage, and central segregation and porosity occur. Therefore, in the present invention, the slab in which the unsolidified phase is sealed is lightly reduced until the unsolidified phase inside is completely solidified. That is, a rolling force is applied from the slab surface so as to meet the volume that decreases with solidification shrinkage.
[0017]
Thus, in the present invention, the bulging of the solidified shell becomes substantially zero, and furthermore, the movement of the unsolidified phase is hindered by light pressure, so that it is possible to produce a slab with very little center segregation. In addition, the light reduction of the present invention is to reduce the squeezing gradient of each light reduction roll as 0.2 to 2.0% of the slab thickness per meter of drawing direction of the slab.
[0018]
It is preferable to start the light reduction at a time when the solid phase ratio at the center of the slab thickness direction is 0.4 or less. This is because, even if light reduction is started after the solid phase ratio in the center of the slab thickness direction exceeds 0.4, the movement of the concentrated molten steel has already occurred, and the effect of reducing the center segregation is small. is there.
[0019]
Moreover, it is preferable to reduce the thickness of the unsolidified phase at the center of the slab thickness direction to 2 mm to 10 mm to press the solidified shells together. When the unsolidified phase is less than 2 mm, it takes a short time until the central portion in the thickness direction of the slab after solidification is solidified, and it becomes difficult to perform light reduction sufficiently, while the thickness of the unsolidified phase exceeds 10 mm. When the solidified shell of the piece is pressure-bonded, the molten steel surface (molten metal surface) in the mold rises at the time of pressure-bonding, and the amount of the increase increases. This is because the quality fluctuation of the slab due to the entrainment of mold powder or the like is likely to occur due to the fluctuation of the molten metal surface.
[0020]
Further, the squeezing gradient of the light rolling roll is made constant and light rolling is performed at a light rolling speed of 0.2 mm / min to 1.0 mm / min, or the solid phase ratio in the center part in the slab thickness direction is 0 to 0. The range up to 6 is lightly reduced at a light reduction speed of 0.2 mm / min to 1.0 mm / min, and the range where the solid phase ratio in the center part in the slab thickness direction exceeds 0.6 is 0.6 mm / min to 1 It is preferable to lightly reduce at a light reduction speed of 5 mm / min, or to reduce lightly by either method. This is because, when the narrowing gradient of the light rolling roll is constant, the light rolling speed is slow at a light rolling speed of less than 0.2 mm / min, and the movement of the unsolidified phase cannot be prevented. This is because, at a light rolling speed exceeding min, the unsolidified phase is squeezed out and the central segregation is worsened. Also, in the range where the solid fraction in the center of the slab thickness direction exceeds 0.6, the movement of the unsolidified phase does not occur even if the light reduction speed is increased, so the narrowing gradient of the light reduction roll is changed from the middle of the reduction. In this case, by increasing the light reduction speed in the range where the solid phase ratio in the central part of the slab thickness direction exceeds 0.6 to 0.6 mm / min to 1.5 mm / min, City can be reduced.
[0021]
DETAILED DESCRIPTION OF THE INVENTION
The present invention will be described below with reference to the drawings. FIG. 1 is a diagram showing an example of an embodiment of the present invention, and is a schematic side sectional view of a vertical bending slab continuous casting facility having a rectangular slab section.
[0022]
In FIG. 1, below the mold 1, a pair of opposed rolls is set as one set, and a slab 2 comprising a plurality of sets of support rolls 10, guide rolls 11, pinch rolls 12, and lightly reduced rolls 13 is supported. A guide roll group is installed, and on the downstream side of this guide roll group, there are a plurality of transport rolls 15 and a gas cutting machine that is positioned above the transport rolls 15 and moves in synchronization with the drawing speed of the slab 2 14 are installed. A secondary cooling zone (not shown) made of air mist spray or water spray is installed in the guide roll group.
[0023]
A pair of pressure-bonding rolls 6 is installed on the downstream side of the lower straightening band 9 in the guide roll group in the slab drawing direction. The pressure roll 6 is connected to a hydraulic cylinder (not shown) that moves in synchronization with the drawing speed of the slab 2, and the distance between the pressure roll 6 facing the hydraulic cylinder can be increased or decreased. That is, the slab 2 can be rolled down by the pressure roll 6 in synchronism with the drawing speed of the slab 2. Then, on the downstream side of the crimping roll 6 in the slab drawing direction, a light pressure lowering belt 7 including a plurality of pairs of light pressure lowering rolls 13 is installed. The structure of the crimping roll 6 is not limited to the above. For example, the crimping roll 6 is connected to a hydraulic cylinder fixed to a continuous casting machine, and the crimping roll 6 is driven by an electric motor or a hydraulic motor. It is also possible to use a method of rolling down at a fixed place without moving in synchronism with the pulling out.
[0024]
The continuous casting method of the present invention in the continuous casting equipment having such a configuration will be described below. Molten steel is continuously poured into the mold 1 from a tundish (not shown) installed at a predetermined position above the mold 1. Normally, this injection is performed through an immersion nozzle (not shown) whose tip is immersed in the molten metal surface 5 in the mold 1. The molten steel poured into the mold 1 is cooled in the mold 1 to form a solidified shell 3, and a cast roll 2 having an outer periphery as a solidified shell 3 and an inside as an unsolidified phase 4, a support roll 10, a guide roll 11, A guide roll group consisting of the pinch rolls 12 is continuously pulled downward by the driving force of the pinch rolls 12. Meanwhile, the slab 2 is corrected from the flat plate shape to the arc shape by the upper correction band 8, and is bent back from the arc shape to the flat plate shape by the lower correction band 9.
[0025]
During this drawing, the pressing roll 6 is pressed against the surface where the slab 2 is cut by the gas cutter 14, and the slab 2 is pressed down to press the solidified shells 3 facing each other. The position where the slab 2 is cut by the gas cutter 14 can be determined by the total casting length and the required length of each slab 2A after cutting.
[0026]
It is preferable that the thickness of the unsolidified phase 4 at the time of pressure bonding be in the range of 2 mm to 10 mm. Therefore, the secondary cooling strength from directly under the mold to the pressure roll 6 is adjusted so that the thickness of the unsolidified phase 4 at the time of pressure bonding is within this range, and further, the drawing speed of the slab 2 is adjusted as necessary. .
[0027]
Next, the slab 2, in which a part of the solidified shell 3 is pressure-bonded and the unsolidified phase 4 is sealed inside, is lightly reduced by a light pressure lower band 7. The drawing speed of the slab 2 is set so that the slab 2 is solidified within the range of the light pressure lower belt 7. This can be obtained in advance by heat transfer calculation from the slab thickness, slab drawing speed, secondary cooling strength, and the like.
[0028]
As described above, it is preferable that the light rolling start time is a time when the solid phase ratio at the center of the slab thickness is 0.4 or less. Further, the light reduction is continued until the center of the slab thickness is completely solidified. This is because if the light pressure is stopped during solidification, the effect of reducing center segregation is small.
[0029]
The squeezing gradient (mm / m) of the light rolling roll 13 is made constant and light rolling is performed at a light rolling speed of 0.2 mm / min to 1.0 mm / min, or the squeezing gradient of the light rolling roll 13 is started from the middle of rolling down. Change, the range from 0 to 0.6 in the slab thickness direction center portion is lightly reduced at a light reduction speed of 0.2 mm / min to 1.0 mm / min, and the slab thickness direction center portion In the range where the solid phase ratio exceeds 0.6, it is preferable to lightly reduce at a light reduction speed of 0.6 mm / min to 1.5 mm / min, or to reduce lightly by either method.
[0030]
Since the light reduction speed is a product of the slab drawing speed and the narrowing gradient (mm / m) of the roll interval of the light reduction roll 13, the light reduction speed of the light reduction roll 13 is based on the slab extraction speed determined as the casting condition. A narrowing gradient (mm / m) may be set. By changing the narrowing gradient of the light rolling roll 13 in the middle of the rolling, the range in which the solid phase ratio at the center of the slab thickness direction exceeds 0.6 is light at a light rolling speed of 0.6 mm / min to 1.5 mm / min. When squeezed, the slab 2 with less center segregation and porosity can be cast. Then, it is completely solidified to the center of the slab 2 while being lightly reduced, and after the slab 2 is completely solidified, when the crimping part is pulled out to the position of the transport roll 15, the crimping part is removed by the gas cutter 14. The slab 2A is manufactured by cutting.
[0031]
The thickness of the unsolidified phase 4 when being reduced by the pressure roll 6 is set to 2 mm to 10 mm, and the length of the light pressure lower belt 7 is sufficient to completely solidify the slab 2 within the light pressure lower belt 7 range. Since it is necessary accordingly, it may be determined in advance by heat transfer calculation and the installation range of the light pressure lower belt 7 may be set. Further, in order to make the bulging force acting on the solidified shell 3 substantially zero, it is preferable to install the light pressure lower belt 7 in the horizontal portion of the continuous casting machine.
[0032]
By casting in this way, the bulging force does not substantially act on the solidified shell 3 of the slab 2, so that it is possible to perform a light reduction corresponding to the amount of shrinkage of the unsolidified phase 4. It becomes possible to greatly reduce the center segregation of all the parts of the piece 2.
[0033]
Although the above description is based on the case where a vertical bending type continuous casting machine is used, the present invention is not limited to the vertical bending type continuous casting machine, and the present invention is also implemented in a curved type continuous casting machine according to the above description. Can do. Moreover, although the said description is description regarding a slab continuous casting machine, this invention is not limited to a slab cast piece, It can apply also to a bloom continuous casting machine and a billet continuous casting machine.
[0034]
【Example】
Using the slab continuous casting machine shown in FIG. 1, the slab drawing speed and the squeeze gradient (mm / m) of the light reduction roll are changed, and the relationship between the slab extraction speed and the center segregation, the light reduction speed and the center segregation A test was conducted to investigate the relationship, the relationship between the thickness of the unsolidified phase at the time of pressure bonding and the molten metal surface fluctuation in the mold. The evaluation of the center segregation is performed by analyzing a carbon sample by taking a slice sample of 1 mm over a range of 30 mm in the thickness direction from the center of the slab thickness direction after casting, and the maximum value C max of the carbon concentration and the carbon of the molten steel The ratio (C max / C 0 ) with the concentration C 0 was evaluated as a central segregation degree. In this case, the center segregation is reduced as the center segregation degree approaches 1.0.
[0035]
The continuous casting machine used has a vertical part of 2.8 m directly under the mold (length 950 mm), the radius of the curved part that follows is 10 m, and the upper straightening band is 3.8 m to 5.0 m from the upper end of the mold. This is a vertical bending type slab continuous casting machine whose lower straightening band is in the range of 18 to 20 m from the upper end of the mold and whose machine length is 49 m. A crimping roll is installed at a position of 24m to 24.5m (including the range of synchronous movement with the slab) from the upper end of the mold, and a light pressure belt that extends about 8m in the casting direction is installed downstream of the crimping roll in the slab pulling direction. did. Then, an Al killed steel slab having a slab thickness of 250 mm, a slab width of 2100 mm, a carbon concentration of 0.08 mass%, and an Mn concentration of 1.4 mass% was cast.
[0036]
FIG. 2 is a diagram showing the results of investigating the center segregation degree of the slab when the slab drawing speed is changed in the range of 1.30 to 1.60 m / min. In this case, the squeezing gradient (mm / m) of the light reduction roll was changed in accordance with the slab drawing speed so that the light reduction speed was 0.5 mm / min.
[0037]
As shown in FIG. 2, the center segregation degree is high when the slab drawing speed is 1.30 m / min, and the center segregation is not reduced, but it is slightly centered when the slab drawing speed is 1.35 m / min. It has been found that the segregation is reduced and the center segregation is reduced when the slab drawing speed is 1.40 m / min or more. This reason was considered from the relationship with the thickness of the unsolidified phase at the center of the slab thickness direction at the time of pressure bonding.
[0038]
FIG. 3 is a diagram showing the result of calculating the thickness of the unsolidified phase at the center of the slab thickness direction at the time of crimping when the slab drawing speed is 1.30 to 1.60 m / min, from heat transfer calculation. As apparent from FIG. 3, it was found that when the slab drawing speed was 1.30 m / min, solidification had already been completed at the time of pressing, and the present invention could not be implemented. When the slab drawing speed was 1.35 m / min, a solid phase and a liquid phase were mixed in the central part of the slab thickness direction, and the solid phase ratio was about 0.3. On the other hand, when the slab drawing speed was 1.40 m / min or more, it was found that the solid phase rate was zero at the center part in the slab thickness direction and the liquid phase was present.
[0039]
From these results, segregation at the center of the slab thickness direction can be drastically improved if the slab is crimped when there is a sufficient liquid phase, i.e., an unsolidified phase, at the center of the slab thickness direction. It was confirmed that
[0040]
On the other hand, if the thickness of the unsolidified phase at the time of crimping is thick, the unsolidified phase is pushed out in the direction opposite to the casting direction at the time of crimping, reaches the molten metal surface in the mold and appears as a fluctuation of the molten metal surface level in the mold. . Therefore, the slab drawing speed was changed in the range of 1.4 to 2.0 m / min, and the amount of fluctuation in the mold surface level during pressure bonding was investigated. The fluctuation of the molten metal surface level was measured with an eddy current distance meter, the thickness of the unsolidified phase at the time of crimping was calculated by heat transfer calculation, and the relationship between the thickness of the unsolidified phase at the time of crimping and the amount of fluctuation of the molten metal surface was investigated. . The survey results are shown in FIG.
[0041]
As shown in FIG. 4, when a slab having an unsolidified phase thickness of 10 mm or more is pressure-bonded, the molten metal level fluctuation amount exceeds 5 mm. The present inventors have empirically know that when the amount of fluctuation of the molten metal level exceeds 5 mm, the mold powder covering the molten metal surface in the mold is entrained. Accordingly, it is preferable to adjust the casting conditions so that the thickness of the unsolidified phase at the time of pressure bonding is 10 mm or less in order to suppress the fluctuation amount of the molten metal surface level in the mold.
[0042]
FIG. 5 shows that the drawing gradient (mm / m) of the roll under light pressure is selected from the range of 0 to 1.0 mm / m, and the slab drawing speed is 1.40 to 1.60 m / min. It is a figure which shows the result which investigated the center segregation degree of the slab when it changes in the range of and changes the light reduction speed in the range of 0-1.5 mm / min. As shown in FIG. 5, it was found that the center segregation is reduced when the light reduction speed is 0.2 to 1.0 mm / min. When the rolling speed exceeded 1.0 mm / min, the unsolidified phase was squeezed out.
[0043]
However, when light rolling is performed with the narrowing-down gradient (mm / m) of the light rolling roll being constant, the center segregation is reduced when the light rolling speed is less than 0.6 mm / min, but at the center of the slab thickness direction. The frequency of porosity was high. Then, the test which changed the narrowing-down gradient (mm / m) of the light reduction roll by the range with a low solid phase rate of the slab thickness direction center part and a high range was implemented.
[0044]
Since the solid phase ratio in which the solid phase and the liquid phase coexist and the liquid phase is said to be flowable is about 0.6, the range of the solid phase ratio from 0 to 0.6 is 0 to 1. The range where the solid phase ratio exceeds 0.6 is the range where the solid phase ratio exceeds 0.6 (mm / m), which is a range in which negative segregation does not occur even if the light reduction speed is increased at a light reduction speed of 0 mm / min. ) Was increased and light reduction was performed at a light reduction speed of 0.6 to 2.0 mm / min. As a result, it was possible to lightly reduce the region where the solid phase ratio exceeded 0.6 at a light reduction speed of up to 1.5 mm / min, but due to equipment limitations at light reduction speeds exceeding 1.5 mm / min. Light reduction was difficult. However, the porosity at the center of the slab thickness direction disappeared at a light reduction speed of 0.6 to 1.5 mm / min, and it was confirmed that a further light reduction speed was unnecessary.
[0045]
【The invention's effect】
According to the present invention, since the slab can be lightly reduced in a state in which the bulging force does not substantially act on the solidified shell, it becomes possible to greatly reduce the center segregation over all parts of the slab. As a result, it is possible to stably manufacture a slab that can cope with severe demands for quality in recent years, which brings about an industrially beneficial effect.
[Brief description of the drawings]
FIG. 1 is a diagram showing an example of an embodiment of the present invention.
FIG. 2 is a diagram showing the results of an investigation of the relationship between the slab drawing speed and the center segregation degree.
FIG. 3 is a diagram showing the thickness of the unsolidified phase at the center of the slab thickness direction at the time of pressure bonding when the slab drawing speed is changed.
FIG. 4 is a diagram showing the results of an investigation of the relationship between the thickness of the unsolidified phase at the center of the slab thickness direction at the time of pressure bonding and the amount of fluctuation in the mold surface level.
FIG. 5 is a diagram showing a result of investigating the relationship between the light reduction speed and the degree of central segregation.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Mold 2 Cast slab 3 Solidified shell 4 Unsolidified phase 5 Molten surface 6 Crimp roll 7 Light pressure lower belt 8 Upper straight belt 9 Lower straight belt 10 Support roll 11 Guide roll 12 Pinch roll 13 Light pressure lower roll 14 Gas cutting machine 15 Transport roll

Claims (3)

内部に未凝固相を有する鋳片の鋳造方向の一部分を、当該鋳片の厚み方向中心部の未凝固相の厚みが2mm〜10mmのときに連続鋳造機内で圧下して、対向する凝固殻同士を圧着させ、次いで、内部に未凝固相が封じ込まれた、圧着後の鋳片を、鋳片厚み方向中心部の固相率が0.4以下の時点から、連続鋳造機内に設置された複数対の軽圧下ロールによって、凝固収縮に伴って減少する体積に見合うように軽圧下しつつ鋳片の中心部まで完全に凝固させ、その後、前記圧着部分を切断して鋳片とすることを特徴とする、鋼の連続鋳造方法。A portion in the casting direction of a slab having an unsolidified phase inside is crushed in a continuous casting machine when the thickness of the unsolidified phase at the center of the slab in the thickness direction is 2 mm to 10 mm , and opposing solidified shells Then, the slab after crimping, in which the unsolidified phase was sealed, was installed in the continuous casting machine from the time when the solid phase ratio in the central part of the slab thickness direction was 0.4 or less. With a plurality of pairs of light rolling rolls, solidify completely to the center of the slab while lightly rolling down to meet the volume that decreases with solidification shrinkage, and then cut the crimped part into a slab. A method for continuous casting of steel. 軽圧下ロールの絞り込み勾配を一定とし、0.2mm/min〜1.0mm/minの軽圧下速度で軽圧下することを特徴とする、請求項1に記載の鋼の連続鋳造方法。The continuous casting method of steel according to claim 1, wherein the narrowing down gradient of the light rolling roll is made constant and light rolling is performed at a light rolling speed of 0.2 mm / min to 1.0 mm / min . 鋳片厚み方向中心部の固相率が0〜0.6までの範囲は0.2mm/min〜1.0mm/minの軽圧下速度で軽圧下し、鋳片厚み方向中心部の固相率が0.6を越える範囲は0.6mm/min〜1.5mm/minの軽圧下速度で軽圧下することを特徴とする、請求項1に記載の鋼の連続鋳造方法。 The solid phase ratio in the center part of the slab thickness direction is in the range from 0 to 0.6, and is lightly reduced at a light reduction speed of 0.2 mm / min to 1.0 mm / min. 2. The continuous casting method for steel according to claim 1 , wherein the steel is lightly reduced at a light reduction speed of 0.6 mm / min to 1.5 mm / min in a range exceeding 0.6 .
JP2000079519A 2000-03-22 2000-03-22 Steel continuous casting method Expired - Fee Related JP3846676B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000079519A JP3846676B2 (en) 2000-03-22 2000-03-22 Steel continuous casting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000079519A JP3846676B2 (en) 2000-03-22 2000-03-22 Steel continuous casting method

Publications (2)

Publication Number Publication Date
JP2001259808A JP2001259808A (en) 2001-09-25
JP3846676B2 true JP3846676B2 (en) 2006-11-15

Family

ID=18596759

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000079519A Expired - Fee Related JP3846676B2 (en) 2000-03-22 2000-03-22 Steel continuous casting method

Country Status (1)

Country Link
JP (1) JP3846676B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5020687B2 (en) * 2007-04-16 2012-09-05 株式会社神戸製鋼所 Continuous casting method of slab steel with little center segregation
JP5093463B2 (en) * 2007-06-18 2012-12-12 Jfeスチール株式会社 Continuous casting method and continuous casting machine
JP5380968B2 (en) * 2008-09-18 2014-01-08 Jfeスチール株式会社 Manufacturing method of continuous cast slab

Also Published As

Publication number Publication date
JP2001259808A (en) 2001-09-25

Similar Documents

Publication Publication Date Title
JP5776285B2 (en) Manufacturing method of continuous cast slab
JP5380968B2 (en) Manufacturing method of continuous cast slab
JP2010082638A (en) Method for producing continuously cast slab
JP3846676B2 (en) Steel continuous casting method
JP3511973B2 (en) Continuous casting method
JP2009136909A (en) Method for producing continuously cast slab
JP5870966B2 (en) Manufacturing method of continuous cast slab
JPH08132205A (en) Method and device for improving center segregation of cast slab in continuous casting
JP4998734B2 (en) Manufacturing method of continuous cast slab
JP3402251B2 (en) Continuous casting method
JP3271574B2 (en) Continuous casting method of billet slab
JP3362703B2 (en) Continuous casting method
JP3351375B2 (en) Continuous casting method
JP2001138021A (en) Method for reducing center segregation of continuous cast slab
JP2001259809A (en) Continuous casting method
JP3876768B2 (en) Continuous casting method
JP3240978B2 (en) Manufacturing method of continuous cast slab
JP2014231086A (en) Method for continuously casting steel
JP3277873B2 (en) Manufacturing method of continuous cast slab
JP3395387B2 (en) Continuous casting of wide thin slabs
JP2000061602A (en) Continuously cast slab and continuous casting method
JPH11156509A (en) Continuous casting method
JP2002248554A (en) Continuous-cast steel piece and casting method
JP3056582B2 (en) Slab rolling method in continuous casting
JP2949453B2 (en) Continuous casting method

Legal Events

Date Code Title Description
A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060817

R150 Certificate of patent or registration of utility model

Ref document number: 3846676

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060921

A072 Dismissal of procedure

Free format text: JAPANESE INTERMEDIATE CODE: A072

Effective date: 20070129

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090901

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100901

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100901

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110901

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110901

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120901

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120901

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130901

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees