JPH08132205A - Method and device for improving center segregation of cast slab in continuous casting - Google Patents
Method and device for improving center segregation of cast slab in continuous castingInfo
- Publication number
- JPH08132205A JPH08132205A JP30156694A JP30156694A JPH08132205A JP H08132205 A JPH08132205 A JP H08132205A JP 30156694 A JP30156694 A JP 30156694A JP 30156694 A JP30156694 A JP 30156694A JP H08132205 A JPH08132205 A JP H08132205A
- Authority
- JP
- Japan
- Prior art keywords
- roll
- slab
- continuous casting
- stage
- cast slab
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Continuous Casting (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、連続鋳造装置における
鋳片引き抜きセクションにおける鋳片の中心偏析の改善
に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to improvement of center segregation of a slab in a slab drawing section of a continuous casting apparatus.
【0002】[0002]
【従来の技術】溶鋼の連続鋳造において、鋳片の凝固最
終段階では鋳片中心部は溶鋼流動である一方、溶鋼との
境界付近では不均一凝固が生じ、凝固末期ではブリッジ
ングがおこり、ブリッジとその周辺の樹間濃化溶鋼がブ
リッジより下流で凝固収縮により中心部へ吸引される結
果、鋳片中心部に中心偏析として集積していた。このよ
うな中心偏析の発生を防止する技術として電磁撹拌技術
がある。これは電磁撹拌技術によりモールド内撹拌を行
い、凝固全面におけるデンドライトを沈降させて微細等
軸晶を生成することによりブリッジングを防止する方法
である。しかし、電磁撹拌技術によっても連続鋳造にお
ける鋳片の中心偏析の解消は高級鋼材にとっては必ずし
も十分ではなかった。2. Description of the Related Art In continuous casting of molten steel, molten steel flows at the center of the slab in the final stage of solidification of the slab, while non-uniform solidification occurs near the boundary with the molten steel and bridging occurs at the end of solidification, resulting in bridging. As a result of the molten wood between and around it being sucked toward the center by solidification shrinkage downstream from the bridge, it was accumulated as center segregation in the center of the slab. There is an electromagnetic stirring technique as a technique for preventing the occurrence of such center segregation. This is a method in which bridging is prevented by stirring in a mold by an electromagnetic stirring technique to precipitate dendrites on the entire surface of solidification to generate fine equiaxed crystals. However, even with the electromagnetic stirring technique, the elimination of the center segregation of the slab in continuous casting was not always sufficient for high-grade steel materials.
【0003】[0003]
【発明が解決しようとする課題】本発明は、垂直型連続
鋳造における鋳片の中心部に生じる中心偏析の改善を従
来の技術よりも更に図る方法および装置を提供して軸受
鋼などの高級鋼においても満足できる鋳片を製造する。DISCLOSURE OF THE INVENTION The present invention provides a method and apparatus for further improving the center segregation occurring in the center of a slab in vertical type continuous casting, as compared with the prior art, and provides a high-grade steel such as bearing steel. Also produces a slab that can be satisfied.
【0004】[0004]
【課題を解決するための手段】課題を解決するための本
発明の手段は、請求項1の発明では、連続鋳造により鋼
材鋳片を製造する方法において、鋳造速度VC を0.4
0〜0.60m/分とし、鋳片の軸芯固相率fS が0.
0を超え1.0未満の領域の凝固収縮部に対し、鋳片の
軸芯固相率fS が1.0の等温線の内側の各位置におけ
る未凝固領域を、圧下比{=全圧下量(mm)÷未凝固厚
み(mm)}を0.015〜0.420及び圧下速度を
0.40〜2.5mm/分として鋳片の幅広面の片面から
厚さ方向に多段圧縮することにより収縮による溶鋼の下
向きの流れを阻止して中心偏析を改善することを特徴と
する連続鋳造における鋳片の圧下方法である。According to the invention of claim 1, in the method for producing a steel slab by continuous casting, the casting speed V C is 0.4.
0 to 0.60 m / min, and the slab has an axial solid phase fraction f S of 0.
To solidification shrinkage of less than 1.0 area greater than 0, the non-solidified regions in each position inside the shaft center solid fraction f S is 1.0 isotherm of the slab, the reduction ratio {= total reduction Amount (mm) / unsolidified thickness (mm)} of 0.015 to 0.420 and a rolling speed of 0.40 to 2.5 mm / min, and multi-stage compression in the thickness direction from one side of the wide surface of the slab. Is a method for rolling down a slab in continuous casting, which prevents the downward flow of molten steel due to shrinkage and improves center segregation.
【0005】請求項2の発明では、鋳片の軸芯固相率f
S が好ましくは0.2ないし0.8の間の凝固収縮部に
対し、多段圧縮することを特徴とする請求項1の発明の
手段における連続鋳造における鋳片の圧下方法である。According to the second aspect of the invention, the axial solid fraction f of the cast slab is f.
The method of rolling down a slab in continuous casting according to the means of the invention of claim 1, characterized in that multi-stage compression is applied to the solidification shrinkage portion of which S is preferably between 0.2 and 0.8.
【0006】請求項3の発明では、連続鋳造装置の鋳片
引抜き領域において、鋳造速度VCを0.40〜0.6
0m/分として鋳片の軸芯固相率fS が0.0を超え
1.0未満の領域の凝固収縮部に対し鋳片を圧下するた
めの基準側ロールと反基準側ロールからなる多段のロー
ル対を配設し、反基準側ロールの鋳片圧下用のロール凸
部の幅を該ロール設置位置における鋳片の未凝固幅に1
0〜100mm加えた幅とし、該ロール凸部の高さを5〜
60mmとし、並びに、圧下比0.015〜0.420に
おいて、ロールの圧下速度が0.40〜2.5mm/分を
満足するように多段ロールの各ロールの圧下量を略均等
配分して各ロール対の基準ロールと反基準ロールの間隔
を設定して配設したことを特徴とする連続鋳造装置の圧
下装置である。According to the third aspect of the present invention, the casting speed V C is 0.40 to 0.6 in the cast strip drawing region of the continuous casting apparatus.
Reference side roll and multistage consisting counter reference side roll for the axis solid fraction f S of the slab as 0 m / min to pressure the slab to solidification shrinkage of less than 1.0 area exceed 0.0 Of the rolls, and the width of the roll convex portion for rolling down the slab of the anti-reference side roll is set to 1 as the unsolidified width of the slab at the roll installation position.
With a width of 0 to 100 mm added, the height of the roll convex portion is 5 to
60 mm, and at a rolling reduction ratio of 0.015 to 0.420, the rolling reduction amount of each roll of the multi-stage roll is approximately evenly distributed so that the rolling reduction speed of the rolls satisfies 0.40 to 2.5 mm / min. A rolling apparatus for a continuous casting apparatus, characterized in that a distance between a reference roll and an anti-reference roll of a roll pair is set and arranged.
【0007】請求項4の発明では、鋳片の軸芯固相率f
S が好ましくは0.2ないし0.8の領域に対し鋳片を
圧下するための基準側ロールと反基準側ロールからなる
多段のロール対を配設したことを特徴とする請求項3の
発明の手段における連続鋳造装置の圧下装置である。According to the fourth aspect of the present invention, the axial solid fraction f of the slab is f.
4. The invention according to claim 3, wherein a multi-stage roll pair including a reference side roll and an anti-reference side roll for rolling down the slab is provided in the region where S is preferably 0.2 to 0.8. It is a rolling down device of the continuous casting device in the means.
【0008】請求項5の発明では、多段のロール対の段
数が2〜10段であることを特徴とする請求項3または
請求項4の発明の手段における連続鋳造装置の圧下装置
である。According to a fifth aspect of the present invention, the number of stages of the multi-stage roll pair is from 2 to 10, and the rolling apparatus of the continuous casting apparatus according to the means of the third or fourth aspect of the present invention is characterized.
【0009】[0009]
【作用】本発明の方法は、鋼の連続鋳造において鋳造速
度VC の許容範囲を0.40〜0.60m/分に拡大し
て生産性の向上を図る。この場合、鋳片の軸芯固相率f
S が0.0を超え1.0未満の範囲の領域の凝固収縮部
に対し、鋳片の軸芯固相率fS が1.0の等温線の内側
の各位置における未凝固領域を、圧下比を0.015〜
0.420及び圧下速度を0.40〜2.5mm/分とし
て圧下すると、凝固末期の凝固収縮に見合う圧下量、圧
下速度が確保されて、適切な圧力が凝固収縮部の未凝固
領域に作用し、濃化溶鋼の下向きの流動が防止され、中
心偏析の発生が抑制され、偏析が良好なやや上向きの流
れのものとなる。この場合の、鋳片の常態部分の炭素濃
度C0 に対する軸芯部の炭素濃度Cの割合C/C0 で中
心偏析を表示すると、C/C0 は0.95〜1.10を
偏析が良好な範囲とする。圧下比は総圧下量(mm)/最
上段ロール位置の未凝固厚み(mm)である。圧下速度は
総圧下量(mm)/鋳片の多段ロールの通過時間(分)で
ある。The method of the present invention is applied to the casting speed in continuous casting of steel.
Degree VC The allowable range of 0.40 to 0.60 m / min
To improve productivity. In this case, the axial solid fraction f of the cast slab
S Solidification shrinkage part in the range where is greater than 0.0 and less than 1.0
On the other hand, the axial solid fraction f of the cast slabS Inside the isotherm with 1.0
The unsolidified region at each position of
0.420 and rolling speed 0.40 to 2.5 mm / min
The amount of pressure,
The lower speed is secured and the appropriate pressure is applied to the solidification shrinkage area.
It acts on the area and prevents downward flow of concentrated molten steel,
A slightly upward flow with good segregation, which suppresses the occurrence of core segregation.
Be the one In this case, the carbon concentration of the normal part of the slab
Degree C0 Ratio of carbon concentration C in the shaft core to C / C0 In
Displaying the segregation of the heart, C / C0 Is 0.95 to 1.10
The segregation is within a good range. Reduction ratio is total reduction amount (mm) / max.
The unsolidified thickness (mm) at the upper roll position. The rolling speed is
Total rolling amount (mm) / passage time (minutes) of multi-stage roll of slab
is there.
【0010】本発明の方法を実施するための基準側ロー
ルと反基準側ロールからなる多段のロール対は、反基準
側ロールの鋳片圧下用のロール凸部の幅を該ロール設置
位置における鋳片の未凝固幅に10〜30mm加えた幅と
する。即ち、多段ロールの各段の未凝固層の幅xを鋳片
の凝固プロフィールから求め、この未凝固層の幅x(鋳
片の広幅面側の幅)に10〜100mmを加えたものをロ
ール幅とする。この場合、凝固プロフィールは軸芯部固
相率fS =1.0における等温線で示され、鋳片のメニ
スカスの位置を原点とし、鋳片の軸芯部を縦軸とし、縦
軸にメニスカスからの到達時間tmin の平方根をとり、
横軸に軸芯空の鋳片の幅広面側の未凝固厚みxmmを採る
とき、数式1で凝固プロフィールは表される。A multi-stage roll pair consisting of a reference side roll and an anti-reference side roll for carrying out the method of the present invention has a width of a roll convex portion for reducing a cast piece of the anti-reference side roll, which is cast at the roll installation position. The width is 10 to 30 mm added to the unsolidified width of the piece. That is, the width x of the unsolidified layer at each stage of the multi-stage roll is determined from the solidification profile of the cast piece, and the roll x is obtained by adding 10 to 100 mm to the width x of the unsolidified layer (width on the wide surface side of the cast piece). Width. In this case, the solidification profile is indicated by an isotherm at the solid core fraction f S = 1.0 of the shaft, the origin of the meniscus of the slab, the ordinate of the core of the slab, and the meniscus on the ordinate. Take the square root of the arrival time tmin from
When the unsolidified thickness xmm of the wide surface side of the slab with an empty shaft is taken on the abscissa, the solidification profile is represented by Formula 1.
【0011】[0011]
【数1】ax2 +bx+c=√t=√L/VC ここに、 x:鋳片の幅広面側の未凝固厚み(mm) a、b、c:係数 t:メニスカスからの到達時間(分) L:メニスカスからの到達距離(m) VC :鋳造速度(m/分)## EQU1 ## ax 2 + bx + c = √t = √L / V C, where: x: unsolidified thickness of wide surface side of slab (mm) a, b, c: coefficient t: arrival time from meniscus (minutes) ) L: Reaching distance from the meniscus (m) V C : Casting speed (m / min)
【0012】ロール凸部の高さは40〜60mmとし、各
段の平均圧下量は0.5〜4.0mmとする。そして、多
段ロールの段数を2〜10段とする。従って、各段のロ
ールによって圧下された鋳片ブルームの形状は、図4に
示すようになり、徐々に圧下するので鋳片は割れること
がない。即ち、圧下の抵抗を少なくし、圧下したブルー
ムの形状を図4のようになだらかな凹型にして圧延時の
折れ込みなどの疵の発生を防ぐ。The height of the roll convex portion is 40 to 60 mm, and the average reduction amount of each step is 0.5 to 4.0 mm. Then, the number of stages of the multi-stage roll is set to 2 to 10. Therefore, the shape of the slab bloom pressed by the rolls in each stage is as shown in FIG. 4, and the slab does not crack because the slab blooms gradually. That is, the reduction resistance is reduced and the shape of the reduced bloom is made into a gentle concave shape as shown in FIG. 4 to prevent the occurrence of flaws such as folds during rolling.
【0013】最大ロール幅(最上段ロール幅R1 :片
側)は次のようにして定める。fS =0.2〜0.8の
間を有効圧下位置とする。鋳造速度VC に対応して求め
られる鋳片の軸芯からの未凝固幅xに対して少し大きく
とる。最大ロール幅(最上段ロール幅R1 )は、実操業
における最大鋳造速度VC とロール位置から求められる
√tに対応した未凝固厚みx1 から、最上段ロール幅R
1 =x1 +(10〜60)mmとする。The maximum roll width (uppermost roll width R 1 : one side) is determined as follows. The effective rolling-down position is set between f S = 0.2 and 0.8. The value is set to be slightly larger than the unsolidified width x from the axial center of the slab, which is required corresponding to the casting speed V C. The maximum roll width (uppermost roll width R 1 ) is determined from the maximum casting speed V C in actual operation and the unsolidified thickness x 1 corresponding to √t obtained from the roll position.
And 1 = x 1 + (10~60) mm.
【0014】2段目以下のロールの幅Rn は次のように
して定める。まず、各段のロールの位置での未凝固幅x
n を求める。次いで、(イ)直上のロール幅(Rn-1 )
に対して10〜30mm小さくする。従って、下段に進む
ほどロール幅は狭まる。(ロ)未凝固幅xn に対して1
0〜60mm加える。(イ)及び(ロ)の条件からRnを
決める。各段のロール位置でfS >0.8のとき、即
ち、凝固末期の非流動域では、条件(ロ)を無視する。The width R n of the roll on the second stage and below is determined as follows. First, the unsolidified width x at each roll position
Find n . Then, (a) the roll width immediately above (R n-1 ).
10 to 30 mm smaller than. Therefore, the roll width becomes narrower toward the lower stage. (B) 1 for the unsolidified width x n
Add 0 to 60 mm. R n is determined from the conditions (a) and (b). When f S > 0.8 at the roll position of each stage, that is, in the non-fluid region at the end of solidification, the condition (b) is ignored.
【0015】[0015]
【実施例】本発明は、図6に示す縦型の連続鋳造装置に
おいて、鋳片引抜き部の1SEC から5SEC のロールに加
えて6SEC の新圧下装置4の6本の圧下ロール群を新規
に設置し、5SEC の2本のロールと6SEC の6本のロー
ルで8本の多段の圧下ロールを構成する。7SEC はピン
チロールである。図6において、1はとりべ、2はタン
ディッシュ、3は鋳型である。この連続鋳造装置におい
て、380mm×490mmの横断面の軸受鋼SUJ2のブ
ルームを連続鋳造する。この時の、5SEC の2本のロー
ルと6SEC の6本のロールで8本の多段の圧下ロールの
形状を図1に示す。図2にその反基準側のロールのプロ
フィールを示す。図5に鋳片ブルームの凝固収縮部の未
凝固域7に及ぼす圧下力6の様子を示す。図3は鋳片の
凝固収縮部における軸芯固相率fS の等温線を示す図で
あり、また多段ロールの各段の片側のロール幅を示す図
である。EXAMPLE In the present invention, in the vertical continuous casting apparatus shown in FIG. 6, in addition to the rolls of 1SEC to 5SEC in the slab draw-out section, a group of 6 rolling down rolls of the new rolling down device 4 of 6SEC is newly installed. Then, 2 rolls of 5SEC and 6 rolls of 6SEC constitute 8 multi-stage rolling rolls. 7SEC is a pinch roll. In FIG. 6, 1 is a ladle, 2 is a tundish, and 3 is a mold. In this continuous casting apparatus, a bloom of bearing steel SUJ2 having a cross section of 380 mm × 490 mm is continuously cast. Fig. 1 shows the shape of 8 multi-stage rolling rolls consisting of 2 rolls of 5SEC and 6 rolls of 6SEC. FIG. 2 shows the profile of the roll on the non-reference side. FIG. 5 shows the state of the pressing force 6 exerted on the unsolidified region 7 of the solidification shrinkage portion of the slab bloom. FIG. 3 is a diagram showing an isotherm of the axial solid phase fraction f S in the solidification contraction portion of the cast slab, and is also a diagram showing the roll width on one side of each stage of the multi-stage roll.
【0016】表1に、鋳造速度VC を0.55m/分と
する本実施例における多段の圧下ロールの諸元の値を示
す。Table 1 shows the values of the specifications of the multi-stage rolling rolls in this example, in which the casting speed V C was 0.55 m / min.
【0017】[0017]
【表1】 [Table 1]
【0018】上記の多段圧下ロールを使用した結果、鋳
片における中心偏析を示すC/C0の値は0.95〜
1.05で極めて良好であった。As a result of using the above-mentioned multi-stage reduction roll, the value of C / C 0 showing the center segregation in the slab is 0.95 to
It was extremely good at 1.05.
【0019】[0019]
【発明の効果】以上説明したように、本発明は縦型連続
鋳造装置において、ロール幅が下段になるに連れて減少
する多段の圧下ロールとすることで、鋳片の軸芯固相率
fS が0.0を超え1.0未満の凝固収縮部において、
鋳片に適宜の圧下を行うことができ、凝固に伴う収縮に
よる溶鋼の下向きの流れを阻止して中心偏析を効率良く
改善することができ、その結果、鋳造速度の許容範囲を
拡大することができ、生産効率の向上が図れ、また中心
偏析のない高級鋼が製造できるなど、従来にない優れた
効果を奏することができる。As described above, according to the present invention, in the vertical type continuous casting apparatus, the axial solid fraction f of the cast slab is f by using the multi-stage reduction roll whose width decreases as the roll width becomes lower. In the solidification shrinkage part where S is more than 0.0 and less than 1.0,
Appropriate reduction can be applied to the slab, the downward flow of molten steel due to contraction accompanying solidification can be prevented, and center segregation can be efficiently improved, and as a result, the allowable range of casting speed can be expanded. Therefore, the production efficiency can be improved, and high-grade steel without center segregation can be produced.
【図1】本発明の多段圧下ロールの実施例を示す図であ
る。FIG. 1 is a diagram showing an embodiment of a multi-stage rolling roll of the present invention.
【図2】本発明の多段圧下ロールの実施例おける各段の
ロールのプロフィールを示す図である。FIG. 2 is a view showing a roll profile of each stage in an example of the multi-stage rolling roll of the present invention.
【図3】鋳片の凝固収縮部における軸芯固相率fS の等
温線と各段の片側のロール幅を示す図である。FIG. 3 is a diagram showing an isotherm of a solid core fraction f S of a shaft and a roll width on one side of each stage in a solidification shrinkage portion of a cast piece.
【図4】各段のロールによって圧下された鋳片ブルーム
の形状を示す図である。FIG. 4 is a view showing the shape of a cast slab bloom pressed by rolls of each stage.
【図5】鋳片ブルームの凝固収縮部の未凝固域に及ぼす
圧下力を示す図である。FIG. 5 is a diagram showing a pressing force exerted on a non-solidified region of a solidification shrinkage portion of a slab bloom.
【図6】本発明の新圧下装置を備えた縦型連続鋳造装置
を模式的に示す図である。FIG. 6 is a diagram schematically showing a vertical continuous casting apparatus equipped with the new reduction device of the present invention.
1 とりべ 2 タンディシュ 3 鋳型 4 新圧下装置 5 ピンチロール 6 圧下力 7 未凝固域 8 反基準側ロール 9 基準側ロール 10 鋳片 1 Ladle 2 Tundish 3 Mold 4 New reduction device 5 Pinch roll 6 Reduction force 7 Unsolidified area 8 Anti-reference side roll 9 Reference side roll 10 Cast piece
───────────────────────────────────────────────────── フロントページの続き (72)発明者 竹本 林 兵庫県姫路市飾磨区中島字一文字3007番地 山陽特殊製鋼株式会社内 (72)発明者 橋爪 弘 兵庫県姫路市飾磨区中島字一文字3007番地 山陽特殊製鋼株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hayashi Takemoto, 3007 Nakajima, Himeji, Himeji, Nakajima, Sanryo Special Steel Co., Ltd. Special Steel Co., Ltd.
Claims (5)
において、鋳造速度VC を0.40〜0.60m/分と
し、鋳片の軸芯固相率fS が0.0を超え1.0未満の
領域の凝固収縮部に対し、鋳片の軸芯固相率fS が1.
0の等温線の内側の各位置における未凝固領域を、圧下
比を0.015〜0.420及び圧下速度を0.40〜
2.5mm/分として鋳片の幅広面の片面から厚さ方向に
多段圧縮することにより収縮による溶鋼の下向きの流れ
を阻止して中心偏析を改善することを特徴とする連続鋳
造における鋳片の圧下方法。1. A method for producing a steel material cast slab by continuous casting, casting to the velocity V C 0.40~0.60m / min, 1 beyond the axis solid fraction f S 0.0 of the slab With respect to the solidification shrinkage portion in the region of less than 0.0, the solid core fraction f S of the cast slab is 1.
The unsolidified region at each position inside the isotherm of 0 has a reduction ratio of 0.015 to 0.420 and a reduction rate of 0.40.
2.5 mm / min. Multi-stage compression from one side of the wide surface of the slab in the thickness direction to prevent downward flow of molten steel due to contraction and improve center segregation. Reduction method.
2ないし0.8の間の凝固収縮部に対し、多段圧縮する
ことを特徴とする請求項1記載の連続鋳造における鋳片
の圧下方法。Wherein the axis solid fraction of the cast piece f S is preferably 0.
2. The method for reducing a cast piece in continuous casting according to claim 1, wherein the solidification shrinkage portion between 2 and 0.8 is subjected to multi-stage compression.
て、鋳造速度VC を0.40〜0.60m/分として鋳
片の軸芯固相率fS が0.0を超え1.0未満の領域の
凝固収縮部に対し鋳片を圧下するための基準側ロールと
反基準側ロールからなる多段のロール対を配設し、反基
準側ロールの鋳片圧下用のロール凸部の幅を該ロール設
置位置における鋳片の未凝固幅に10〜100mm加えた
幅とし、該ロール凸部の高さを5〜60mmとし、並び
に、圧下比0.015〜0.420において、ロールの
圧下速度が0.40〜2.5mm/分を満足するように多
段ロールの各ロールの圧下量を略均等配分して各ロール
対の基準ロールと反基準ロールの間隔を設定して配設し
たことを特徴とする連続鋳造装置の圧下装置。In the slab withdrawal region of 3. A continuous casting apparatus, the axis solid fraction f S of the slab casting speed V C as 0.40~0.60M / min is less than 1.0 greater than 0.0 Arrange a multi-stage roll pair consisting of a reference side roll and an anti-reference side roll for rolling down the slab with respect to the solidification shrinkage part of the area, and set the width of the roll convex part for slab reduction of the anti-reference side roll. A width obtained by adding 10 to 100 mm to the unsolidified width of the cast piece at the roll installation position, a height of the roll convex portion of 5 to 60 mm, and a reduction rate of the roll at a reduction ratio of 0.015 to 0.420. So as to satisfy 0.40 to 2.5 mm / min, the reduction amount of each roll of the multi-stage roll is distributed substantially evenly, and the interval between the reference roll and the anti-reference roll of each roll pair is set and arranged. Characterizing continuous casting machine reduction device.
2ないし0.8の領域に対し鋳片を圧下するための基準
側ロールと反基準側ロールからなる多段のロール対を配
設したことを特徴とする請求項3記載の連続鋳造装置の
圧下装置。Wherein the axis solid fraction of the cast piece f S is preferably 0.
4. The rolling-down device for a continuous casting apparatus according to claim 3, wherein a multi-stage roll pair consisting of a reference side roll and an anti-reference side roll is provided for rolling down the slab in the region of 2 to 0.8. .
ることを特徴とする請求項3または請求項4に記載の連
続鋳造装置の圧下装置。5. The reduction device for a continuous casting device according to claim 3, wherein the number of stages of the multi-stage roll pair is 2 to 10.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30156694A JPH08132205A (en) | 1994-11-10 | 1994-11-10 | Method and device for improving center segregation of cast slab in continuous casting |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30156694A JPH08132205A (en) | 1994-11-10 | 1994-11-10 | Method and device for improving center segregation of cast slab in continuous casting |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH08132205A true JPH08132205A (en) | 1996-05-28 |
Family
ID=17898487
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP30156694A Pending JPH08132205A (en) | 1994-11-10 | 1994-11-10 | Method and device for improving center segregation of cast slab in continuous casting |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH08132205A (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012018239A2 (en) | 2010-08-06 | 2012-02-09 | 주식회사 포스코 | High carbon chromium bearing steel, and preparation method thereof |
JP2012030269A (en) * | 2010-08-02 | 2012-02-16 | Kobe Steel Ltd | Roll stand for continuous casting machine for performing partial high rolling-reduction of slab |
JP2012152781A (en) * | 2011-01-26 | 2012-08-16 | Jfe Steel Corp | Facility for round slab continuous casting for making seamless steel pipe |
WO2014178369A1 (en) * | 2013-05-02 | 2014-11-06 | 新日鐵住金株式会社 | Continuous casting facility |
EP2803427A4 (en) * | 2012-01-12 | 2016-01-06 | Nippon Steel & Sumitomo Metal Corp | Cast piece reduction device |
JP2016019993A (en) * | 2014-07-15 | 2016-02-04 | Jfeスチール株式会社 | Continuous casting method of steel |
JP2016059962A (en) * | 2014-09-22 | 2016-04-25 | 新日鐵住金株式会社 | Method for manufacturing thick steel plate |
JP2016059961A (en) * | 2014-09-22 | 2016-04-25 | 新日鐵住金株式会社 | Center porosity-reduced cast piece |
JP2021535839A (en) * | 2018-08-31 | 2021-12-23 | 宝山鋼鉄股▲分▼有限公司 | Continuous curvature convex roll for bloom continuous casting and its manufacturing method |
-
1994
- 1994-11-10 JP JP30156694A patent/JPH08132205A/en active Pending
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012030269A (en) * | 2010-08-02 | 2012-02-16 | Kobe Steel Ltd | Roll stand for continuous casting machine for performing partial high rolling-reduction of slab |
WO2012018239A2 (en) | 2010-08-06 | 2012-02-09 | 주식회사 포스코 | High carbon chromium bearing steel, and preparation method thereof |
US9062359B2 (en) | 2010-08-06 | 2015-06-23 | Posco | High carbon chromium bearing steel, and preparation method thereof |
JP2012152781A (en) * | 2011-01-26 | 2012-08-16 | Jfe Steel Corp | Facility for round slab continuous casting for making seamless steel pipe |
EP2803427A4 (en) * | 2012-01-12 | 2016-01-06 | Nippon Steel & Sumitomo Metal Corp | Cast piece reduction device |
US10226801B2 (en) | 2012-01-12 | 2019-03-12 | Nippon Steel & Sumitomo Metal Corporation | Casting product reduction apparatus |
WO2014178369A1 (en) * | 2013-05-02 | 2014-11-06 | 新日鐵住金株式会社 | Continuous casting facility |
JP5843050B2 (en) * | 2013-05-02 | 2016-01-13 | 新日鐵住金株式会社 | Continuous casting equipment |
US9782824B2 (en) | 2013-05-02 | 2017-10-10 | Nippon Steel and Sumitomo Metal Corporation | Continuous casting equipment |
CN105050752A (en) * | 2013-05-02 | 2015-11-11 | 新日铁住金株式会社 | Continuous casting facility |
JP2016019993A (en) * | 2014-07-15 | 2016-02-04 | Jfeスチール株式会社 | Continuous casting method of steel |
JP2016059962A (en) * | 2014-09-22 | 2016-04-25 | 新日鐵住金株式会社 | Method for manufacturing thick steel plate |
JP2016059961A (en) * | 2014-09-22 | 2016-04-25 | 新日鐵住金株式会社 | Center porosity-reduced cast piece |
JP2021535839A (en) * | 2018-08-31 | 2021-12-23 | 宝山鋼鉄股▲分▼有限公司 | Continuous curvature convex roll for bloom continuous casting and its manufacturing method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4057119B2 (en) | Method and apparatus for high speed continuous casting equipment for reducing sheet thickness during solidification | |
JPH08132205A (en) | Method and device for improving center segregation of cast slab in continuous casting | |
JP2995519B2 (en) | Light reduction of continuous cast strand | |
JP3511973B2 (en) | Continuous casting method | |
JP2011147985A (en) | Continuous casting method and apparatus | |
JPH0741388B2 (en) | Method for producing continuously cast slabs with excellent internal quality | |
JP3149834B2 (en) | Steel slab continuous casting method | |
JP2937707B2 (en) | Steel continuous casting method | |
JP2000326060A (en) | Method and apparatus for producing continuously cast steel material | |
JP3111954B2 (en) | Continuous casting method | |
JPH0628790B2 (en) | Continuous casting method | |
JP3846676B2 (en) | Steel continuous casting method | |
JPH08257715A (en) | Continuous casting method | |
JP3114671B2 (en) | Steel continuous casting method | |
JPH02160151A (en) | Method for forming shape of cast billet in continuous casting machine | |
JP2990552B2 (en) | Light reduction method in continuous casting | |
JPS5997747A (en) | Production of ultrathin slab by continuous casting method | |
JP4250008B2 (en) | Manufacturing method of steel for strip steel | |
JPH0390263A (en) | Continuous casting method | |
JP2000343191A (en) | Manufacturing method of nitriding steel with improved center segregation by continuous casting and nitriding steel | |
JP2961478B2 (en) | Continuous casting method | |
JPH0390259A (en) | Continuous casting method | |
JP2949453B2 (en) | Continuous casting method | |
JPH09225598A (en) | Production of hot-rolled thin steel sheet | |
JP3015985B2 (en) | Continuous casting method |