JPH0740019A - Method for reducing center segregation in cast slab in continuous casting for steel - Google Patents

Method for reducing center segregation in cast slab in continuous casting for steel

Info

Publication number
JPH0740019A
JPH0740019A JP18610293A JP18610293A JPH0740019A JP H0740019 A JPH0740019 A JP H0740019A JP 18610293 A JP18610293 A JP 18610293A JP 18610293 A JP18610293 A JP 18610293A JP H0740019 A JPH0740019 A JP H0740019A
Authority
JP
Japan
Prior art keywords
slab
forging
solidification
molten steel
center segregation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18610293A
Other languages
Japanese (ja)
Inventor
Koichi Kushida
宏一 櫛田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP18610293A priority Critical patent/JPH0740019A/en
Publication of JPH0740019A publication Critical patent/JPH0740019A/en
Pending legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PURPOSE:To reduce the center segregation, such as C, P, S, in a cast slab obtd. by continuous casting for steel. CONSTITUTION:Electromagnetic stirring devices 7a, 7b, 7c are arranged at the inner part of a mold 1, on the way of a strand and just before squeezing device 8, respectively. The electromagnetic stirring is executed to the unsolidified molten steel in the cast slab 2 in the prescribed magnetic flux density, and also the squeezing is continuously executed at the step before completion of the solidification becoming <=80mm unsolidified thickness in the cast slab 2 by using the reciprocative moving type squeezing device 8. As the squeezed part becomes equi-axed crystals, the formation of white band is restrained and also, as the squeezed solute elements are diffused into the whole unsolidified molten steel, the segregation can be reduced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、鋼の連続鋳造により得
られる鋳片に生成する中心偏析を軽減する方法に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for reducing center segregation generated in a slab obtained by continuous casting of steel.

【0002】[0002]

【従来の技術】鋼の連鋳鋳片の中心偏析は、鋳片の最終
凝固部となる厚みの中心部で、C、Mn、P、S等の溶鋼
成分が濃化して正偏析となって現われるものであり、従
来の連続鋳造法では避け難い品質欠陥の一つであった。
中心偏析の生成機構は、連続鋳造で得られた鋳片の凝固
先端部の凝固収縮や凝固シェルのバルジング等によって
生じる空孔が真空吸引力となり、凝固先端部に濃化溶鋼
を吸い込み鋳片の厚み中心部に正偏析となって残留する
ものと考えられている。このような、連続鋳造によって
得られるブルーム、スラブ等の鋳片に現われる中心偏析
を軽減する従来技術としては、溶鋼の過熱度を低下させ
て鋳型に鋳込む低温鋳造法、鋳型内の溶鋼やストランド
内の溶鋼を電磁攪拌することにより等軸晶を得る方法が
普及している。これらの方法は、いずれも凝固組織中の
等軸晶の比率を増やすことによって偏析の分散化を図
り、中心偏析が高い割合になるのを抑制しようとするも
のであるが、それぞれ一長一短があり、ミクロ偏析まで
防止できず偏析改善効果は必ずしも十分ではなかった。
2. Description of the Related Art The center segregation of continuous cast slabs of steel is a positive segregation due to the concentration of molten steel components such as C, Mn, P and S at the center of the thickness which is the final solidified part of the slab. It appears and is one of the quality defects that cannot be avoided by the conventional continuous casting method.
The center segregation generation mechanism is that the holes generated by solidification shrinkage of the solidification tip of the slab obtained by continuous casting and bulging of the solidification shell become the vacuum suction force, sucking the concentrated molten steel into the solidification tip and It is considered that the positive segregation remains in the center of the thickness. Such a conventional technique for reducing center segregation that appears in slabs such as blooms and slabs obtained by continuous casting is a low-temperature casting method in which the degree of superheat of molten steel is reduced and cast into a mold, molten steel or strands in the mold. A method of obtaining equiaxed crystals by electromagnetically stirring the molten steel inside has become widespread. All of these methods are intended to disperse segregation by increasing the proportion of equiaxed crystals in the solidified structure, and to suppress the central segregation from becoming a high proportion, but each has advantages and disadvantages, Even microsegregation could not be prevented and the effect of improving segregation was not always sufficient.

【0003】また特開昭54−107831号公報には、ロール
軽圧下法による中心偏析軽減方法が開示されている。こ
の方法は、鋳型内の溶鋼が凝固過程で生じる体積収縮を
鋳片の凝固完了点前近傍でロール圧下により補償して凝
固末期に生じる濃化溶鋼を抑制し、中心偏析を軽減しよ
うとするものである。この方法はロールにより鋳片を圧
下することにあるが、ロールでの圧下では、鋳片の表面
に加えた圧下量の10%程度しか未凝固部が減少せず、濃
化溶鋼の下方への移動を阻止することができず鋳片の中
心偏析軽減が不十分である。
Japanese Unexamined Patent Publication No. 54-107831 discloses a method of reducing center segregation by a roll light rolling method. This method attempts to reduce the center segregation by compensating for the volumetric shrinkage of molten steel in the mold during the solidification process by compensating the molten steel in the vicinity of the solidification completion point of the slab by rolling reduction to suppress the concentrated molten steel occurring at the final stage of solidification. Is. This method consists in rolling down the slab with a roll, but with rolling down, the unsolidified portion is reduced by only about 10% of the amount of reduction applied to the surface of the slab, and The movement cannot be blocked and the center segregation of the cast slab is not sufficiently reduced.

【0004】すなわち、鋳片内溶鋼の凝固末期における
凝固不安定な領域にて適正な圧下量に調整するのが極め
て困難である。ロールによる圧下量が過大になると、そ
の応力分布により凝固界面に割れを生じることが不可避
であり、鋳片品質に悪影響を及ぼすという致命的な欠点
がある。また、鋳片の中心偏析を有利に防止する方法と
して特開昭63−183765号公報には、連続鋳造にて得られ
た鋳片の凝固完了点前の段階で鍛圧加工を施すことが提
案されている。この提案は、連続鋳造にて得られた鋳片
の凝固完了点前の段階で、凝固界面と凝固界面とを鍛圧
装置を用いて鍛圧加工を施すことにより圧着させてしま
うと共に、凝固末期の濃化溶鋼を上方に移動させて中心
偏析を軽減するものである。この手段によれば、鋳片の
内部割れや中心の正偏析を軽減することができるが、凝
固シェルは柱状晶またはデンドライト組織のままである
ので凝固界面の溶鋼流動が発生し易い。このため凝固完
了部の間にある未凝固の濃化溶鋼を全て排出してしまう
ため、逆に中心部に負偏析帯ができホワイトバンドが形
成され、中心偏析を防止する利点を害することになる。
That is, it is extremely difficult to adjust the amount of reduction to an appropriate amount in the region where solidification of molten steel in a slab in the final stage of solidification is unstable. If the amount of reduction by the roll is too large, it is inevitable that the solidification interface is cracked due to the stress distribution, which has a fatal drawback that the quality of the cast piece is adversely affected. Further, as a method for advantageously preventing the center segregation of the slab, Japanese Patent Laid-Open No. 63-183765 proposes to subject the slab obtained by continuous casting to forging at a stage before the solidification completion point. ing. In this proposal, at the stage before the solidification completion point of the slab obtained by continuous casting, the solidification interface and the solidification interface are pressure-bonded by forging using a forging device, and the solidification at the end of solidification is performed. By moving the molten steel upward, central segregation is reduced. By this means, it is possible to reduce internal cracking of the slab and positive segregation of the center, but since the solidified shell remains a columnar crystal or dendrite structure, molten steel flow at the solidification interface is likely to occur. For this reason, since all the unsolidified concentrated molten steel between the solidification completed parts is discharged, a negative segregation zone is formed in the center and a white band is formed, which impairs the advantage of preventing center segregation. .

【0005】また特開昭60−148651号公報には、鋼の連
続鋳造における鋳片の凝固完了点よりかなり離れた上流
側の不完全凝固領域に電磁攪拌装置を設けて、鋳片の不
完全凝固領域の溶鋼を電磁攪拌すると共に、鋳片の凝固
完了点近傍に設けた往復移動式の鍛圧装置を用いて、鋳
片が凝固を完了する前の段階で連続的に鍛圧加工する方
法が提案されている。
Further, in JP-A-60-148651, an electromagnetic stirrer is provided in an incomplete solidification region on the upstream side, which is considerably distant from the solidification completion point of the slab in the continuous casting of steel, so that the slab is incomplete. A method of electromagnetically stirring the molten steel in the solidification region and using a reciprocating forging device installed near the solidification completion point of the slab to continuously forge the slab before the solidification is completed is proposed. Has been done.

【0006】前記特開昭60−148651号公報の従来技術で
は、鍛圧装置の位置からかなり離れた上流側で電磁攪拌
を行い、微細な等軸晶を得ることにより、不完全凝固領
域の凝固界面が柱状晶となっているものに比べ、樹間の
溶質濃度の高い未凝固溶鋼を容易に搾り出し難くし、負
偏析帯を形成することなく、中心偏析のより効果的な改
善を図ることを示唆している。
In the prior art of Japanese Patent Laid-Open Publication No. 60-148651, electromagnetic stirring is performed on the upstream side far away from the position of the forging machine, and fine equiaxed crystals are obtained. It is suggested that unsolidified molten steel with a high solute concentration between trees is difficult to be squeezed out easily and that the center segregation is improved more effectively without forming a negative segregation zone, compared to the case where the columnar crystal is is doing.

【0007】[0007]

【発明が解決しようとする課題】前述した特開昭63−18
3765号公報に提案された連続鍛圧による方法は、鋳片中
心部の未凝固溶鋼が残存する不完全凝固領域が完全凝固
する前に鍛圧を行い、完全固相かそれに近い状態にする
ものである。このため、鍛圧部の不完全凝固の溶質の高
い未凝固溶鋼は、鍛圧部から不完全凝固領域に向って強
制的に搾り出され、この部分の溶鋼と混合する。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention
The method by continuous forging pressure proposed in Japanese Patent No. 3765 is to perform forging pressure before the incompletely solidified region in which the unsolidified molten steel in the center of the slab remains remains completely solidified, and to make it into a completely solid phase or a state close to it. . Therefore, the unsolidified molten steel with incompletely solidified solute in the forging portion is forcibly squeezed out from the forging portion toward the incompletely solidified region and mixed with the molten steel in this portion.

【0008】このとき、搾り出された溶質濃度の高い未
凝固溶鋼は不完全凝固領域の未凝固溶鋼と十分に混合せ
ず、固相の割合(固相率)の低い鋳片の不完全凝固領域
の中心近傍で固相を再溶解しながら溶質濃度の高い未凝
固溶鋼の領域を形成する。この未凝固溶鋼の領域は、鋳
造による鍛圧の進行と共に新たに搾り出される溶質濃度
の高い未凝固溶鋼によりさらに溶質濃度が濃化し、鋳造
方向に変化する。その結果、鍛圧後の鋳片中心部の溶質
濃度は鋳造による鍛圧の進行と共に高く変化し、所望の
中心偏析軽減効果が得られない場合があった。
At this time, the unsolidified molten steel having a high solute concentration squeezed out does not sufficiently mix with the unsolidified molten steel in the incompletely solidified region, and the incomplete solidification of the slab having a low solid phase ratio (solid phase ratio). An area of unsolidified molten steel having a high solute concentration is formed while re-melting the solid phase near the center of the area. In this unsolidified molten steel region, the solute concentration is further enriched by the unsolidified molten steel having a high solute concentration which is newly squeezed out as the forging pressure by casting progresses, and changes in the casting direction. As a result, the solute concentration at the center of the cast slab after the forging pressure changed highly with the progress of the forging pressure due to casting, and the desired center segregation reducing effect could not be obtained in some cases.

【0009】また前述した特開昭60−148651号公報に提
案された鍛圧装置からなり離れた上流側に設けた電磁攪
拌装置によって電磁攪拌を行うだけでは微細な等軸晶を
得られない場合があり、長時間鋳造時には鋳造による鍛
圧の進行と共に、鍛圧後の鋳片中心部の溶質濃度が変化
し、所望の中心偏析軽減効果が得られない場合があっ
た。
Further, there is a case where a fine equiaxed crystal cannot be obtained only by performing electromagnetic stirring by the electromagnetic stirring device provided on the upstream side, which is composed of the forging device proposed in the above-mentioned JP-A-60-148651. However, when casting for a long time, the solute concentration at the center of the slab after the forging changes with the progress of the forging pressure due to the casting, and the desired effect of reducing center segregation may not be obtained.

【0010】本発明は前述従来技術の電磁攪拌装置と鍛
圧装置とを組み合わせた鋳片の中心偏析軽減方法を改善
し、正偏析はもちろんのこと負偏析によるホワイトバン
ドをも軽減することができる鋼の連続鋳造における、鋳
片の中心偏析軽減方法を提供することを目的とするもの
である。
The present invention improves the method for reducing the center segregation of cast slabs by combining the above-mentioned conventional electromagnetic stirrer and forging device, and can reduce not only positive segregation but also white band due to negative segregation. It is an object of the present invention to provide a method for reducing center segregation of a slab in continuous casting of.

【0011】[0011]

【課題を解決するための手段】前記目的を達成するため
の本発明は、鋼の連続鋳造における鋳片の凝固完了点よ
り上流側に電磁攪拌装置を設けて、該鋳片の不完全凝固
領域の溶鋼を電磁攪拌すると共に、鋳片の凝固完了点近
傍に設けた往復動式の鍛圧装置を設けて、該鋳片が凝固
を完了する前の段階で連続的に鍛圧加工することによっ
て鋳片の中心偏析を軽減する方法において、前記電磁攪
拌装置を鋳型の内部と、鋳片が不完全凝固領域にあるス
トランドの途中と、鍛圧装置の直前とから選択される少
くとも一箇所に配置し、前記モールド内部の電磁攪拌装
置をMEMSとし、ストランドの途中の電磁攪拌装置を
SEMSとし、また鍛圧装置の直前の電磁攪拌装置をF
EMSとしたとき、下記の表1に示す磁束密度B(ガウ
ス)の条件で電磁力を印加して、電磁攪拌すると共に、
前記往復移動式の鍛圧装置を用いて鋳片の未凝固厚が80
mm以下となる凝固完了前の段階で連続的に鍛圧加工する
ことを特徴とする鋼の連続鋳造における鋳片の中心偏析
軽減方法である。
The present invention for achieving the above object is to provide an electromagnetic stirrer upstream of a solidification completion point of a slab in continuous casting of steel to provide an incomplete solidification region of the slab. Electromagnetic stirring of the molten steel, and a reciprocating forging device provided in the vicinity of the solidification completion point of the slab are provided, and the slab is continuously forged in the stage before the solidification of the slab is completed. In the method of reducing the center segregation, the electromagnetic stirrer is placed in at least one place selected from the inside of the mold, the middle of the strand in which the slab is in the incompletely solidified region, and immediately before the forging device. The electromagnetic stirrer inside the mold is MEMS, the electromagnetic stirrer in the middle of the strand is SEMS, and the electromagnetic stirrer immediately before the forging device is F.
When using EMS, an electromagnetic force is applied under the conditions of the magnetic flux density B (Gauss) shown in Table 1 below, and electromagnetic stirring is performed.
The unsolidified thickness of the cast piece is 80 using the reciprocating forging device.
A method for reducing center segregation of a slab in continuous casting of steel, which is characterized by performing continuous forging at a stage before completion of solidification of less than mm.

【0012】[0012]

【表2】 [Table 2]

【0013】[0013]

【作用】図1に本発明を適用するのに好適な鍛圧装置の
上流側に電磁攪拌装置を備えた連続鋳造機を示し、鋳型
1からの鋳片2をサポートロール3で支持しながらピン
チロール4を用いて引き抜きつつ鍛圧装置8に備えた上
下一対の金型5で鋳片2の未凝固末端部(クレータエン
ド)と各々の油圧シリンダ6の往復動によって連続的に
鍛圧加工を行う。このような鍛圧加工を行っている状態
では、中心偏析に対して悪影響を及ぼすC、Mn、P、S
等の溶質元素が濃化した溶鋼は金型5による大圧下によ
り上流側の拡散領域に押し上げられる一方、鋳片2の凝
固シェル2aは連続的に圧着され、これによって中心偏
析の軽減された鋳片となる。
FIG. 1 shows a continuous casting machine equipped with an electromagnetic stirrer on the upstream side of a forging device suitable for applying the present invention, in which a slab 2 from a mold 1 is supported by a support roll 3 and a pinch roll. 4 is drawn out, and a pair of upper and lower molds 5 provided in the forging device 8 continuously perform forging by reciprocating motion of the unsolidified end portion (crater end) of the cast piece 2 and each hydraulic cylinder 6. In the state where such forging is performed, C, Mn, P, S that adversely affect center segregation
Molten steel in which solute elements such as is concentrated is pushed up to the upstream diffusion region by the large pressure by the die 5, while the solidified shell 2a of the slab 2 is continuously pressure-bonded, which results in casting with reduced center segregation. It becomes one piece.

【0014】ところが金型5を用いてこのような鋳片2
の未凝固末端部大圧下を連続的に行うと凝固せずに排出
される溶質元素の濃化溶鋼が鍛圧部より上流側に定まる
拡散領域に蓄積され、鋳片2の連続的圧下長さの増大に
伴ってその濃度が上昇してくるため、徐々に中心偏析軽
減効果が少くなる。そこで本発明では、拡散領域の溶鋼
中にC、Mn、P、S等の溶質元素が拡散して蓄積される
のを防止するため鋳片2の凝固完了点より上流側に電磁
攪拌装置7を設け鋳片2内の未凝固溶鋼を電磁攪拌する
ものである。
However, such a slab 2 is formed by using the mold 5.
When the large-scale reduction of the unsolidified end portion of the steel is continuously performed, the solute element-enriched molten steel discharged without solidification is accumulated in the diffusion region defined upstream of the forging portion, and the continuous reduction length of the slab 2 is reduced. Since the concentration increases with the increase, the effect of reducing center segregation gradually decreases. Therefore, in the present invention, in order to prevent solute elements such as C, Mn, P, and S from diffusing and accumulating in the molten steel in the diffusion region, an electromagnetic stirrer 7 is provided upstream of the solidification completion point of the cast piece 2. The unsolidified molten steel in the provided slab 2 is electromagnetically stirred.

【0015】具体的には、鋳型1の内部に電磁攪拌装置
7aを設け、鋳片2が不完全凝固領域にある鋳片2の移
動経路のストランド途中に電磁攪拌装置7bを設け、ま
た鍛圧装置8の直前位置に電磁攪拌装置7cを設けるも
のである。これら電磁攪拌装置7a、7b、7cによっ
て溶質元素が滞留する拡散領域の溶鋼を攪拌することに
よって溶鋼中のC、Mn、P、S等の溶質元素を鋳片2内
の未凝固溶鋼全体に可及的に均一に拡散させるものであ
る。このような鋳型1内での電磁力の印加(MEM
S)、ストランド途中での印加(SEMS)、鍛圧装置
8前での印加(FEMS)により鋳片2に負偏析による
ホワイトバンドを形成することなく中心偏析を安定した
状態で軽減するものである。これら電磁力の印加は単独
でも効果があるが適宜の組み合わせで並用した場合には
さらに効果が大きくなる。
Specifically, an electromagnetic stirrer 7a is provided inside the mold 1, an electromagnetic stirrer 7b is provided in the middle of the strand of the moving path of the slab 2 in the incomplete solidification region of the slab 2, and a forging device is also provided. An electromagnetic stirrer 7c is provided immediately in front of 8. By stirring the molten steel in the diffusion region in which the solute elements are retained by these electromagnetic stirring devices 7a, 7b, 7c, the solute elements such as C, Mn, P, S in the molten steel can be applied to the entire unsolidified molten steel in the slab 2. It diffuses as uniformly as possible. Application of electromagnetic force in the mold 1 (MEM
S), application in the middle of the strand (SEMS), and application in front of the forging device 8 (FEMS) reduce central segregation in a stable state without forming a white band due to negative segregation on the slab 2. The application of these electromagnetic forces is effective alone, but the effect is further increased when used in an appropriate combination.

【0016】鋳型1内の電磁攪拌装置(MEMS)7
a、鋳片移動経路途中の電磁攪拌装置(SEMS)7
b、鍛圧装置前の電磁攪拌装置(FEMS)7cをそれ
ぞれ単独で電磁力を印加した場合の、磁束密度B(ガウ
ス)と、鍛圧装置8により鍛圧加工する部分の未凝固厚
(mm)と鍛圧後の鋳片中心偏析比(C/Co)との関係を
図2〜図4に示す。ただしCoは注入溶鋼の溶質濃度を示
し、Cは鍛圧後の軸芯部濃度を示す。
Electromagnetic stirring device (MEMS) 7 in the mold 1
a, electromagnetic stirrer (SEMS) 7 on the way of moving slab
b, the magnetic flux density B (Gauss), the unsolidified thickness (mm) of the portion to be forged by the forging device 8 and the forging pressure when the electromagnetic force is applied individually to the electromagnetic stirrer (FEMS) 7c before the forging device. The subsequent relationship with the slab center segregation ratio (C / Co) is shown in FIGS. However, Co indicates the solute concentration of the injected molten steel, and C indicates the concentration of the shaft core after forging.

【0017】図2は鋳型1内の(MEMS)7aの磁束
密度Bの印加条件と、鍛圧部鋳片の未凝固厚(mm)と、
鍛圧後の鋳片中心のカーボン偏析比(C/Co)との関係
を示す。図2から(MEMS)7aの磁束密度Bを増す
と凝固シェル2aの等軸晶形成が助長されるため鋳片中
心偏析比(C/Co)を許容範囲 0.9≦C/Co≦ 1.1内と
することができる鋳片内の未凝固厚(mm)の範囲が広が
り、より安定した中心偏析比(C/Co)が達成できるこ
とが分かる。なお、MEMSの場合、磁束密度Bが 500
ガウス以上でほぼ効果は飽和し、ホワイトバンド抑制効
果は一定となる。
FIG. 2 shows the application conditions of the magnetic flux density B of the (MEMS) 7a in the mold 1 and the unsolidified thickness (mm) of the forged part slab.
The relationship with the carbon segregation ratio (C / Co) of the slab center after forging is shown. From FIG. 2, increasing the magnetic flux density B of the (MEMS) 7a promotes the formation of the equiaxed crystal of the solidified shell 2a, so that the slab center segregation ratio (C / Co) is set within the allowable range 0.9 ≦ C / Co ≦ 1.1. It can be seen that the range of unsolidified thickness (mm) in the slab that can be obtained is widened and a more stable center segregation ratio (C / Co) can be achieved. In the case of MEMS, the magnetic flux density B is 500
Above Gauss, the effect is almost saturated, and the white band suppression effect is constant.

【0018】図3はストランドの途中に設けた(SEM
S)7bの磁束密度Bの印加条件と、鍛圧部鋳片の未凝
固厚(mm)と、鍛圧後の鋳片中心偏析比(C/Co)との
関係を示す。図3から(SEMS)7bの磁束密度Bを
増すと同様にして等軸晶の形成が助長され鋳片中心偏析
比(C/Co)を許容範囲 0.9≦C/Co≦ 1.1内とするこ
とができる鋳片内の未凝固厚(mm)の範囲が広がりより
1.0に近い中心偏析比(C/Co)が達成できることが分
かる。なおSEMSの場合、磁束密度Bが1000ガウス以
上では、その効果は飽和しホワイトバンドの抑制効果が
一定となる。MEMSでは 500ガウス以上であったがS
EMSでは1000ガウス以上が必要となる。
FIG. 3 shows a structure provided in the middle of the strand (SEM
S) The relationship between the application condition of the magnetic flux density B of 7b, the unsolidified thickness (mm) of the forging part cast, and the cast center segregation ratio (C / Co) after forging is shown. As shown in FIG. 3, by increasing the magnetic flux density B of (SEMS) 7b, the formation of equiaxed crystals is promoted and the slab center segregation ratio (C / Co) can be set within the allowable range 0.9 ≦ C / Co ≦ 1.1. The range of unsolidified thickness (mm) in the slab that can be expanded
It can be seen that a center segregation ratio (C / Co) close to 1.0 can be achieved. In the case of SEMS, when the magnetic flux density B is 1000 gauss or more, the effect is saturated and the white band suppressing effect becomes constant. It was over 500 gauss in MEMS, but S
EMS requires over 1000 gauss.

【0019】図4は鍛圧装置8直前のファイナル(FE
MS)7cの磁束密度Bの印加条件と、鍛圧部鋳片未凝
固厚(mm)と、鍛圧後の鋳片中心偏析比(C/Co)との
関係を示す。図4から、同様にして、(FEMS)7c
の磁束密度Bを増すと鋳片中心偏析比(C/Co)を許容
範囲 0.9≦C/Co≦ 1.1内とすることができる鋳片内の
未凝固厚(mm)の範囲が広がり、より安定した中心偏析
比(C/Co)が達成できることが分かる。FEMSの場
合、磁束密度Bが 500ガウス程度でSEMSの1000ガウ
スとほぼ同程度の効果が得られ、 500ガウス以上印加す
ることによりホワイトバンドの抑制効果は飽和する。
FIG. 4 shows the final (FE
The relationship between the application condition of the magnetic flux density B of MS) 7c, the unsolidified thickness (mm) of the slab at the forging part, and the slab center segregation ratio (C / Co) after the forging is shown. Similarly from FIG. 4, (FEMS) 7c
If the magnetic flux density B of is increased, the center segregation ratio (C / Co) of the slab can be set within the allowable range 0.9 ≦ C / Co ≦ 1.1. It can be seen that the center segregation ratio (C / Co) can be achieved. In the case of FEMS, when the magnetic flux density B is about 500 gauss, an effect almost equal to 1000 Gauss of SEMS is obtained, and by applying more than 500 gauss, the white band suppressing effect is saturated.

【0020】鋳型内の(MEMS)7aとストランド途
中の(SEMS)7bと鍛圧装置直前のファイナル(F
EMS)7bとを単独または組合わせて鋳片内の未凝固
溶鋼を電磁攪拌するための磁束密度Bの印加条件を表2
に示す。なお、表2には比較のため各電磁攪拌装置を使
用しない場合も示す。この場合、鍛圧装置による鍛圧部
鋳片の未凝固厚は80mm以下という限定条件の上限に合わ
せて未凝固厚を80mmとして、当該部分の鋳片を連続的に
鍛圧加圧することによって上下の凝固界面を圧着させ
た。表2において○印は鋳片の中心偏析比(C/Co)が
0.9≦(C/Co)≦ 1.1の許容範囲に入る場合を示し、
×印は前記許容範囲を外れてホワイトバンドを形成する
場合を示している。
The (MEMS) 7a in the mold, the (SEMS) 7b in the middle of the strand, and the final (F
Table 2 shows the application conditions of the magnetic flux density B for electromagnetically stirring the unsolidified molten steel in the slab, either alone or in combination with EMS) 7b.
Shown in. For comparison, Table 2 also shows the case where each electromagnetic stirring device is not used. In this case, the unsolidified thickness of the forged part cast piece by the forging device is 80 mm in accordance with the upper limit of the limiting condition of 80 mm or less, and the upper and lower solidified interfaces are continuously forged by pressurizing and pressing the cast piece of the part. Was crimped. In Table 2, ◯ indicates the center segregation ratio (C / Co) of the slab.
Shows the case where it is within the allowable range of 0.9 ≦ (C / Co) ≦ 1.1,
The mark x indicates the case where a white band is formed outside the allowable range.

【0021】[0021]

【表3】 [Table 3]

【0022】表2の結果に基いて鋳型内部のMEMS
と、ストランド途中のSEMSと鍛圧装置直前のファイ
ナルFEMSとをそれぞれ単独または組み合わせると共
に、鋳片の未凝固厚80mmで鍛圧加工した場合における鋳
片の中心偏析比(C/Co)が 0.9≦(C/Co)≦ 1.1に
入ることができる磁束密度Bの印加条件を表3にまとめ
た。
Based on the results in Table 2, the MEMS inside the mold
And SEMS in the middle of the strand and the final FEMS immediately before the forging machine are used alone or in combination, and the center segregation ratio (C / Co) of the slab is 0.9 ≦ (C / Co) ≤ 1.1, the conditions for applying the magnetic flux density B are summarized in Table 3.

【0023】[0023]

【表4】 [Table 4]

【0024】表3に示した磁束密度Bの数値より大きな
強度で、MEMS、SEMSまたはFEMSを単独また
は組み合わせて印加するとEMS無しの従来に比較して
未凝固厚が大きな領域で中心偏析比を許容範囲である
0.9≦C/Co≦ 1.1に入れると共にホワイトバンドの形
成を軽減することができることになる。
When the strength, which is larger than the value of the magnetic flux density B shown in Table 3, is applied alone or in combination with MEMS, SEMS or FEMS, the center segregation ratio is allowed in a region where the unsolidified thickness is large as compared with the conventional case without EMS. Is a range
By setting 0.9 ≦ C / Co ≦ 1.1, it is possible to reduce the formation of white band.

【0025】[0025]

【実施例】C:0.80wt%、Si:0.8 wt%、Mn:0.5 wt
%、P:0.005 wt%、S:0.008 wt%、Al:0.04wt%、
を含有し、残部は実質的にFeの組成になり、硬鋼線材用
素材となる鋳片サイズ 400× 560mmのブルームを得るべ
く溶鋼を鋳造速度0.75m/ minで連続鋳造し、図1に示
すストランド途中の電磁攪拌装置(SEMS)7b〔鍛
圧装置10より上流側の約9mの位置に配置〕および鍛圧
装置直前の電磁攪拌装置(FEMS)7cを用いて、
(SEMS)7bには1000ガウスの磁束密度でまた(F
EMS)7cには 500ガウスの磁束密度で電磁力を印加
して鋳片2内の未凝固溶鋼を電磁攪拌すると共に、未凝
固厚80mmの状態で鍛圧装置8に備えた上下の金型5を用
いて厚下量 110mmで大圧下した。
EXAMPLES C: 0.80 wt%, Si: 0.8 wt%, Mn: 0.5 wt
%, P: 0.005 wt%, S: 0.008 wt%, Al: 0.04 wt%,
Fig. 1 is a continuous drawing of molten steel at a casting speed of 0.75m / min in order to obtain a bloom with a slab size of 400 x 560mm, which is a material for hard steel wire rods. Using an electromagnetic stirrer (SEMS) 7b [arranged at a position of about 9 m upstream of the forging machine 10] in the middle of the strand and an electromagnetic stirrer (FEMS) 7c immediately before the forging machine,
(SEMS) 7b has a magnetic flux density of 1000 gauss and (F
Electromagnetic force is applied to the EMS) 7c with a magnetic flux density of 500 gauss to electromagnetically stir the unsolidified molten steel in the slab 2, and the upper and lower molds 5 provided in the forging device 8 with the unsolidified thickness of 80 mm are provided. A large reduction was performed with a thickness reduction of 110 mm.

【0026】図5に前記条件の本発明によるEMSを用
いて電磁力を印加すると共に鍛圧装置8を用いて大圧下
した場合と、EMS無しで鍛圧装置8による大圧下のみ
を行った場合の鋳片の厚み方向におけるC分布を示す。
図5に示すように未凝固大圧下のみの鋳片には負偏析に
よるホワイトバンドが発生するのに対し、電磁攪拌装置
EMSを用いる本発明ではホワイトバンドのないほぼ均
一なカーボン分布を示していることが判明した。
FIG. 5 shows castings in which electromagnetic force is applied using the EMS according to the present invention under the above conditions and large reduction is performed using the forging device 8 and when only large reduction is performed by the forging device 8 without EMS. The C distribution in the thickness direction of the piece is shown.
As shown in FIG. 5, white bands due to negative segregation are generated in a slab only under unsolidified large pressure, whereas the present invention using an electromagnetic stirrer EMS shows a substantially uniform carbon distribution without white bands. It has been found.

【0027】[0027]

【発明の効果】以上説明したように本発明では、電磁攪
拌装置を鋳型の内部と、ストランドの途中と、鍛圧装置
の直前とから選択される少くとも一箇所に配置して、鋳
片内の未凝固溶鋼を電磁攪拌すると共に、凝固厚が80mm
以下となる凝固完了前の段階で鍛圧装置を用いて大圧下
するので正偏析および負偏析の少ない鋳片を連続鋳造す
ることができ、所望の中心偏析改善効果が達成される。
As described above, in the present invention, the electromagnetic stirrer is arranged in at least one position selected from the inside of the mold, the middle of the strand, and immediately before the forging device, and the Electromagnetic stirring of unsolidified molten steel and solidification thickness of 80 mm
In the stage before the completion of solidification, which will be described below, large reduction is performed by using a forging device, so that a slab with less positive segregation and negative segregation can be continuously cast, and a desired effect of improving center segregation is achieved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による電磁攪拌および鍛圧加工を適用す
るのに好適な連続鋳造機の一例を示す模式図である。
FIG. 1 is a schematic view showing an example of a continuous casting machine suitable for applying electromagnetic stirring and forging processing according to the present invention.

【図2】鋳型内の電磁攪拌装置MEMSの磁束密度B
(ガウス)と、鍛圧部鋳片の未凝固厚(mm)と、中心偏
析比(C/Co)との関係を示す線図である。
FIG. 2 Magnetic flux density B of electromagnetic stirring device MEMS in the mold
(Gauss), the unsolidified thickness (mm) of the forging part cast piece, and a diagram showing the relationship between the center segregation ratio (C / Co).

【図3】ストランド途中の電磁攪拌装置SEMSの磁束
密度B(ガウス)と、鍛厚部鋳片の未凝固厚(mm)と、
中心偏析比(C/Co)との関係を示す線図である。
FIG. 3 shows the magnetic flux density B (Gauss) of the electromagnetic stirrer SEMS in the middle of the strand, and the unsolidified thickness (mm) of the forged thick slab,
It is a diagram which shows the relationship with a center segregation ratio (C / Co).

【図4】鍛圧装置直前の電磁攪拌装置FEMSの磁束密
度B(ガウス)と、鍛圧部鋳片の未凝固厚(mm)と、中
心偏析比(C/Co)との関係を示す線図である。
FIG. 4 is a diagram showing the relationship between the magnetic flux density B (Gauss) of the electromagnetic stirrer FEMS immediately before the forging device, the unsolidified thickness (mm) of the forged product cast, and the center segregation ratio (C / Co). is there.

【図5】EMSを用いる本発明の鍛圧法と、EMSを用
いない従来の鍛圧法とを鋳片の厚み方向における中心偏
析比(C/Co)を比較して示す線図である。
FIG. 5 is a diagram showing a comparison of center segregation ratio (C / Co) in the thickness direction of a slab between a forging method of the present invention using EMS and a conventional forging method not using EMS.

【符号の説明】[Explanation of symbols]

1 鋳型 2 鋳片 3 サポートロール 4 ピンチロール 5 金型 6 油圧シリンダ 7 電磁攪拌装置 8 鍛圧装置 1 Mold 2 Cast Piece 3 Support Roll 4 Pinch Roll 5 Mold 6 Hydraulic Cylinder 7 Electromagnetic Stirrer 8 Forging Device

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 鋼の連続鋳造における鋳片の凝固完了点
より上流側に電磁攪拌装置を設けて、該鋳片の不完全凝
固領域の溶鋼を電磁攪拌すると共に、鋳片の凝固完了点
近傍に設けた往復動式の鍛圧装置を設けて、該鋳片が凝
固を完了する前の段階で連続的に鍛圧加工することによ
って鋳片の中心偏析を軽減する方法において、前記電磁
攪拌装置を鋳型の内部と、鋳片が不完全凝固領域にある
ストランドの途中と、鍛圧装置の直前とから選択される
少くとも一箇所に配置し、前記モールド内部の電磁攪拌
装置をMEMSとし、ストランドの途中の電磁攪拌装置
をSEMSとし、また鍛圧装置の直前の電磁攪拌装置を
FEMSとしたとき、下記の表に示す磁束密度B(ガウ
ス)の条件で電磁力を印加して、電磁攪拌すると共に、
前記往復移動式の鍛圧装置を用いて鋳片の未凝固厚が80
mm以下となる凝固完了前の段階で連続的に鍛圧加工する
ことを特徴とする鋼の連続鋳造における鋳片の中心偏析
軽減方法。 【表1】
1. An electromagnetic stirrer is provided upstream of a solidification completion point of a slab in continuous casting of steel to electromagnetically stir molten steel in an incompletely solidified region of the slab and near the solidification completion point of the slab. In the method of reducing the center segregation of the slab by continuously forging in the stage before the solidification of the slab, the electromagnetic stirrer is used as a mold. Inside, the slab in the middle of the strand in the incompletely solidified region, and arranged at least at one place selected from just before the forging device, the electromagnetic stirring device inside the mold as the MEMS, the middle of the strand When the electromagnetic stirrer is SEMS and the electromagnetic stirrer immediately before the forging device is FEMS, electromagnetic force is applied under the conditions of the magnetic flux density B (Gauss) shown in the following table to stir electromagnetically,
The unsolidified thickness of the cast piece is 80 using the reciprocating forging device.
A method for reducing center segregation of a slab in continuous casting of steel, which comprises continuously performing forging processing in a stage before completion of solidification of less than mm. [Table 1]
JP18610293A 1993-07-28 1993-07-28 Method for reducing center segregation in cast slab in continuous casting for steel Pending JPH0740019A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18610293A JPH0740019A (en) 1993-07-28 1993-07-28 Method for reducing center segregation in cast slab in continuous casting for steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18610293A JPH0740019A (en) 1993-07-28 1993-07-28 Method for reducing center segregation in cast slab in continuous casting for steel

Publications (1)

Publication Number Publication Date
JPH0740019A true JPH0740019A (en) 1995-02-10

Family

ID=16182403

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18610293A Pending JPH0740019A (en) 1993-07-28 1993-07-28 Method for reducing center segregation in cast slab in continuous casting for steel

Country Status (1)

Country Link
JP (1) JPH0740019A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008088361A3 (en) * 2007-01-08 2008-10-16 Anastasia Kolesnichenko Method and system of electromagnetic stirring for continuous casting of medium and high carbon steels
WO2014142597A1 (en) * 2013-03-15 2014-09-18 주식회사 포스코 Casting equipment and casting method using same
CN113500172A (en) * 2021-06-23 2021-10-15 中冶南方连铸技术工程有限责任公司 Method for determining optimal position under single-roller heavy pressure
CN117047059A (en) * 2023-10-10 2023-11-14 江苏省沙钢钢铁研究院有限公司 Continuous casting billet for wind tower steel and central quality control method thereof
CN113500172B (en) * 2021-06-23 2024-06-04 中冶南方连铸技术工程有限责任公司 Method for determining optimal position under single-roller heavy pressure

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008088361A3 (en) * 2007-01-08 2008-10-16 Anastasia Kolesnichenko Method and system of electromagnetic stirring for continuous casting of medium and high carbon steels
US7735544B2 (en) 2007-01-08 2010-06-15 Anastasia Kolesnichenko Method and system of electromagnetic stirring for continuous casting of medium and high carbon steels
WO2014142597A1 (en) * 2013-03-15 2014-09-18 주식회사 포스코 Casting equipment and casting method using same
CN105026073A (en) * 2013-03-15 2015-11-04 株式会社Posco Casting equipment and casting method using same
CN105026073B (en) * 2013-03-15 2018-02-23 株式会社Posco Casting Equipment and the casting method using the Casting Equipment
CN113500172A (en) * 2021-06-23 2021-10-15 中冶南方连铸技术工程有限责任公司 Method for determining optimal position under single-roller heavy pressure
CN113500172B (en) * 2021-06-23 2024-06-04 中冶南方连铸技术工程有限责任公司 Method for determining optimal position under single-roller heavy pressure
CN117047059A (en) * 2023-10-10 2023-11-14 江苏省沙钢钢铁研究院有限公司 Continuous casting billet for wind tower steel and central quality control method thereof
CN117047059B (en) * 2023-10-10 2023-12-19 江苏省沙钢钢铁研究院有限公司 Continuous casting billet for wind tower steel and central quality control method thereof

Similar Documents

Publication Publication Date Title
JPH0740019A (en) Method for reducing center segregation in cast slab in continuous casting for steel
JPH09206897A (en) Method for reducing center segregation of slab in continuous casting of steel
JPS63183765A (en) Continuous squeeze forming for cast slab in continuous casting
JPS61132247A (en) Continuous casting method
JP3671872B2 (en) Continuous casting method of steel
JP2004074233A (en) Method for reducing center segregation in continuously cast slab
JP2574582B2 (en) Adjustment method of slab strand segregation in continuous casting
JP3687535B2 (en) Continuous casting method of steel
JP3275835B2 (en) Continuous casting method and continuous casting machine
JPH05228597A (en) Method for controlling segregation in continuously
JP4250008B2 (en) Manufacturing method of steel for strip steel
JPH11156511A (en) Steel slab continuous casting method
JPH0577010A (en) Method for controlling segregation in continuously cast slab
JP4026792B2 (en) Billet continuous casting method
JP3237177B2 (en) Continuous casting method
JP3846676B2 (en) Steel continuous casting method
JP3114671B2 (en) Steel continuous casting method
JP3427546B2 (en) Dissimilar steel continuous casting method
JP3394730B2 (en) Continuous casting method of steel slab
JPS60162560A (en) Continuous casting method of steel
JP3488656B2 (en) Steel continuous casting method
JP2945060B2 (en) Manufacturing method of continuous cast slab without center porosity
JP3114679B2 (en) Continuous casting method
JPH11156509A (en) Continuous casting method
JPS60121054A (en) Continuous casting method