WO2014142597A1 - Casting equipment and casting method using same - Google Patents

Casting equipment and casting method using same Download PDF

Info

Publication number
WO2014142597A1
WO2014142597A1 PCT/KR2014/002153 KR2014002153W WO2014142597A1 WO 2014142597 A1 WO2014142597 A1 WO 2014142597A1 KR 2014002153 W KR2014002153 W KR 2014002153W WO 2014142597 A1 WO2014142597 A1 WO 2014142597A1
Authority
WO
WIPO (PCT)
Prior art keywords
casting
cast
steel
solidification
cast steel
Prior art date
Application number
PCT/KR2014/002153
Other languages
French (fr)
Korean (ko)
Inventor
오경식
이주동
최정윤
김성줄
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=51537132&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2014142597(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to US14/776,797 priority Critical patent/US20160023269A1/en
Priority to EP14762821.8A priority patent/EP2974810B1/en
Priority to BR112015020565A priority patent/BR112015020565B1/en
Priority to ES14762821.8T priority patent/ES2693560T3/en
Priority to JP2015553667A priority patent/JP6055114B2/en
Priority to CN201480010997.7A priority patent/CN105026073B/en
Publication of WO2014142597A1 publication Critical patent/WO2014142597A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/12Accessories for subsequent treating or working cast stock in situ
    • B22D11/128Accessories for subsequent treating or working cast stock in situ for removing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/12Accessories for subsequent treating or working cast stock in situ
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/04Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds
    • B22D11/041Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds for vertical casting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • B22D11/11Treating the molten metal
    • B22D11/114Treating the molten metal by using agitating or vibrating means
    • B22D11/115Treating the molten metal by using agitating or vibrating means by using magnetic fields
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/12Accessories for subsequent treating or working cast stock in situ
    • B22D11/1213Accessories for subsequent treating or working cast stock in situ for heating or insulating strands
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/12Accessories for subsequent treating or working cast stock in situ
    • B22D11/122Accessories for subsequent treating or working cast stock in situ using magnetic fields
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/12Accessories for subsequent treating or working cast stock in situ
    • B22D11/124Accessories for subsequent treating or working cast stock in situ for cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/14Plants for continuous casting
    • B22D11/141Plants for continuous casting for vertical casting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/16Controlling or regulating processes or operations
    • B22D11/20Controlling or regulating processes or operations for removing cast stock
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D7/00Casting ingots, e.g. from ferrous metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D7/00Casting ingots, e.g. from ferrous metals
    • B22D7/06Ingot moulds or their manufacture
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D9/00Machines or plants for casting ingots
    • B22D9/003Machines or plants for casting ingots for top casting

Definitions

  • the present invention relates to a casting facility and a casting method using the same, and more particularly, to provide a casting facility and a casting method using the same, which can easily manufacture the cast steel for ultra-thick steel, and improve the quality and error rate and productivity of the cast steel.
  • the ultra-thick steel has a thickness of 100mm or more, and limits the reduction ratio (casting thickness / product thickness) according to its use to manage internal quality such as porosity, and mechanical properties such as impact and toughness.
  • the reduction ratio (casting thickness / product thickness) according to its use to manage internal quality such as porosity, and mechanical properties such as impact and toughness.
  • offshore structural steels require ultra-thick steel materials with a reduction ratio of 4 or more, and pressure and wind structural steels require a reduction ratio of 3 or more.
  • ultra-thick steels are manufactured through predetermined post-processing such as forging and hot rolling of cast steel produced by ingot or continuous casting.
  • predetermined post-processing such as forging and hot rolling of cast steel produced by ingot or continuous casting.
  • the ingot is forged and manufactured into an ultra-steel product or an additional rolling process is applied.
  • the ultra-thick steel which requires high rolling reduction, is made through a rolling process after forging a cast steel cast ingot because most of the internal quality is important.
  • the ultra-thick steel is manufactured by rolling the continuously cast steel casting. This is very good compared to the ingot in the real rate is superior to the ingot process in terms of production cost, but when producing a steel grade that requires a high reduction ratio, there is a problem that the thickness of the ultra-thick steel due to the limited cast steel thickness.
  • the ultra-thick steel is relatively thick compared to the general cast, it takes a long time until the cast completely solidified after casting. If the existing casting method for continuous casting of molten steel produces a cast steel for thick-walled steel that is thicker than the thickness of the general cast steel produced by the general machine, the machine equipment needs to be solidified to the inside of the cast. It will be very long, which will require huge initial costs in terms of production costs due to the large size of the equipment.
  • the probability of occurrence of defects in cast steel is higher than that of ingot material, and there is a high possibility that internal defects in cast steel remain in ultra-thick steel products.
  • the continuous casting equipment for casting production is optimized for mass production, there is a disadvantage in small-lot production.
  • the present invention provides a casting facility and a casting method using the same, which is easy to manufacture cast steel for ultra-thick steel.
  • the present invention provides a casting facility and a casting method using the same that can increase the quality and error rate of the cast.
  • the present invention provides a casting facility and a casting method using the same that can increase the productivity of the cast steel and the efficiency of the process equipment.
  • Casting equipment forming a passage through which molten steel, the casting part for casting the molten steel into a cast steel, and is disposed spaced apart from the casting portion and receives the cast steel from the casting portion, It is disposed on at least one of the side of the support and includes a support for supporting the slab, and a solidification unit provided with a first quality controller provided on the outside of the cast to induce the solidification of the cast.
  • the first quality controller is provided with a first stirrer disposed close to the outer side of the cast slab, which can move up and down in the longitudinal direction of the cast slab, spaced below the first stirrer, and which can move up and down in the longitudinal direction of the cast slab.
  • 2 may include a stirrer and a first heater installed to be able to move back and forth to the upper region of the cast steel, and to heat the upper portion of the cast steel.
  • the first stirrer may be a coil wound around the cast piece in a circular shape.
  • the casting part may include a receiving part having a space in which the molten steel is accommodated, a drawer for drawing the cast piece downward from the receiving part, and a second quality controller provided outside the passage.
  • the receiving portion may include a mold forming a path through which the molten steel supplied to the tundish passes, and the mold may be formed such that the cast steel has a thickness of 800 mm or less and a width of 2000 mm or less.
  • the second quality controller is disposed outside the mold, and advances to the stirring unit including at least one or more agitators for stirring at least one of the molten steel and the non-solidified molten steel in the cast steel. It may be installed to include a second heater for heating the upper portion of the cast.
  • the stirring unit is disposed in close proximity to the mold and provided with a third stirrer capable of lifting up and down in the drawing direction of the cast steel, and spaced below the third stirrer, and including a fourth stirrer capable of lifting up and down in the drawing direction of the cast steel. can do.
  • the third stirrer may be a coil wound around the mold or around the cast piece in a circular shape.
  • the casting part may be provided with a pusher for separating the cast piece from the drawer, and the pusher may be installed to reciprocate forward and backward toward the solidification part.
  • the caster may be transferred from the casting part to the solidification part, or a conveyor may be provided to transfer the slab from the solidification part to the outside of the solidification part.
  • a process of preparing molten steel to prepare a casting a process of casting the molten steel in a casting part to open and close the passage through the molten steel, produced through the casting And transferring the cast steel to a solidification part, and after the solidification of the cast steel is completed, the cast steel is transferred to a later process.
  • the casting process of the molten steel may be repeated in the casting part.
  • the process of transferring the cast steel to the solidification part may be performed while the molten steel is transferred to the casting part to prepare the casting.
  • the cast steel may complete the solidification in the casting portion or transferred to the solidification portion may complete the solidification.
  • the molten steel may be cast at a circumferential speed of 0.3 m or less per minute.
  • the casting facility and the casting method using the same it is possible to improve the error rate of the cast produced by the continuous casting. That is, when solidifying the cast slab cast in the casting portion in the casting portion or the solidification portion, by delaying the solidification of the upper portion of the slab by using a second heater or the first heater, the pipe length generated on the upper portion of the slab to reduce the The error rate can be improved.
  • the molten steel remaining in the mold is stirred to improve the internal quality.
  • the unsolidified molten steel in the casting is stirred to increase the equiaxed crystallization rate, decrease segregation / porosity, and pipes generated at the end of the cast steel. Internal defects can be reduced.
  • the present invention can continuously cast another cast in the casting portion during the process of solidification of the cast in the solidification portion. Therefore, since the time required for solidification of the cast steel for the ultra-thick steel cast can be completed in the solidification part, casting of molten steel may not be interrupted, thereby increasing the productivity of the cast steel and the efficiency of the process equipment.
  • FIG. 1 is a view showing a casting facility according to an embodiment of the present invention.
  • FIG. 2 is a flow chart showing a casting method according to an embodiment of the present invention.
  • FIG. 3 is a view showing an operating state of the casting equipment according to the casting method of FIG.
  • FIG. 1 is a view showing a casting facility according to an embodiment of the present invention.
  • 2 is a flow chart showing a casting method according to an embodiment of the present invention.
  • 3 is a view showing an operating state of a casting facility according to the casting method of FIG. At this time, (a) to (f) of Figure 3 sequentially shows the change of the casting equipment operating to produce the cast steel.
  • a casting facility 1 is a facility for producing cast steel for ultra-thick steel, forming a passage through which molten steel passes, and casting part 1a for casting molten steel into cast steel 1a. And a cast part 1a spaced apart from the cast part 1a, the caster receives the cast from the cast part 1a, and is disposed on at least one of the side surfaces of the cast part to support the cast part, and is provided outside the cast part. It comprises a solidification unit 1b is provided with a first quality controller 600 for inducing solidification of the convenience.
  • the casting part 1a is a section in which continuous casting of the refined molten steel is performed.
  • a second quality controller 300 provided outside the passage.
  • the receiving part 100 forms a space for receiving molten steel until casting of molten steel is started, and the ladle 120 in which the molten steel is accommodated, and the tundish 140 and the tundish receiving the molten steel from the ladle 120 140) includes a mold 160 spaced apart from the bottom.
  • the ladle 120 is a container for accommodating molten steel that has been refined, and may be variously manufactured in a hollow shape in which an inner space capable of accommodating molten steel is formed. In general, the ladle 120 may be provided in plurality in order to increase the circulation rate of the continuous casting equipment.
  • the tundish 140 is manufactured in a hollow container shape capable of accommodating molten steel supplied from the ladle 120 therein.
  • the outlet of the molten steel is formed at the bottom of the tundish 140, the molten steel accommodated in the tundish 140 may be discharged to the outside through the outlet.
  • the molten steel accommodated in the tundish 140 is injected into the mold 160 after separation of the inclusions contained in the molten steel by staying in the tundish 140 for a predetermined time.
  • the mold 160 is provided to shape the molten steel injected from the tundish 140 into an appropriate size and produce the cast steel.
  • the mold 160 forms a width and a thickness of a path through which the molten steel passes.
  • the mold 160 of the present invention may be formed to have a thickness of less than 800mm and a width of less than 2000mm to correspond to the size of the cast steel for the ultra-thick steel. That is, by using the mold 160, the thickness of which is significantly increased compared to the mold of the conventional casting equipment, it is possible to make the cast steel subjected to the forging and rolling process to have a thickness used for the ultra-thin steel.
  • a vibrator (not shown) may be provided to transmit vibration to the mold 160 so that the piece is easily drawn out of the mold 160.
  • the configuration of the guide roll 170, the cooling nozzle and the vibrator need not be limited to a specific configuration in the present invention, its various configurations and operation methods are already well known to those skilled in the art, detailed description thereof will be omitted.
  • the drawer 200 is a device for drawing the cast slab from the receiving portion 100 to the lower portion, is initially disposed inside the mold to receive the molten steel to prevent the molten steel outflow to the mold 160, the initial solidified cast slab
  • the surface plate 220 connected to the 240, and the driver 240 for drawing the cast slab to the bottom.
  • the surface plate 220 is provided to connect the cast steel and the driver 240, and a plate having a surface of a specific shape is used to facilitate the connection with the cast steel.
  • the shape and material of the surface plate 220 is not limited, but is preferably made of a material that does not cause deformation due to the high temperature of the cast when in contact with the cast.
  • the driver 240 is a device for lowering the surface plate 220, and the base plate 220 connected to the driver 240 may be lowered to draw the cast slab connected to the surface plate 220 downward.
  • the driver 240 may be lowered when the cast steel is drawn out, and an apparatus capable of lifting and lowering may be used to place the surface plate 220 in the mold 160 at the beginning of casting. That is, the driver 240 may be a device capable of lifting and lowering.
  • the second quality controller 300 is provided to improve the quality of the cast steel drawn from the drawer 200, and is disposed outside the mold 160 to form the molten steel in the mold 160 and the unsolidified molten steel in the cast steel.
  • a stirring unit 320 including at least one stirrer for stirring at least one and a second heater 340 is installed to be able to advance to the lower region of the mold 160 to heat the upper portion of the cast.
  • Stirring unit 320 is a device for improving the quality of the cast steel provided with at least one stirrer on the outside of the mold 160, the third stirrer (close to the mold 160 is possible to move up and down in the drawing direction of the cast steel ( 322 and a fourth stirrer 324 spaced below the third stirrer 322 and capable of lifting up and down in the drawing direction of the cast steel. That is, the stirring unit 320 may increase the quality of the cast steel by agitating at least one of molten steel accommodated in the molten state in the mold 160 and unsolidified molten steel in the manufactured cast steel.
  • the third stirrer 322 is spaced apart from the side of the mold 160 by a predetermined distance, and the molten steel contained in the mold 160 is stirred during casting. And when casting is started, the predetermined distance is dropped with the cast steel, and the unsolidified molten steel in the cast steel is stirred. That is, when molten steel is injected into the mold 160, the third stirrer 322 stirs the molten steel by flowing electromagnetic to the molten steel from the side of the mold 160, and when the injection of the molten steel in the mold 160 is completed, While lowering together, the unsolidified molten steel inside the cast can be stirred.
  • an electromagnetic stirrer EMS
  • the electromagnetic stirrer that can be used as the third stirrer 322 has a frequency (Hz) of a low range typically, which is a frequency sufficient to stir the molten steel in the molten state.
  • the fourth stirrer 324 is provided below the third stirrer 322 to be spaced a predetermined distance, and descends in the drawing direction of the cast steel and stirs the unsolidified molten steel in the cast steel.
  • the fourth stirrer 324 may use a final coagulation device (FEMS; Final Electro Magnetic Stirrer).
  • FEMS Final Electro Magnetic Stirrer
  • the fourth stirrer 324 is disposed in the lower portion relative to the third stirrer 322, and within the solidification portion of the lower region of the cast steel (the lower region from the center in the longitudinal direction of the cast steel) where the solidification of the cast steel is somewhat advanced. It is preferable to use a stirring device having a higher frequency (Hz) than the third stirrer 322 because the molten steel present must be stirred.
  • Hz frequency
  • the stirring unit 320 can increase the equiaxed crystallization in the slab by stirring the solidified and solidified molten steel in the cast, and can reduce the occurrence of segregation and voids.
  • the present invention is not limited to the stirring portion of the slab to which the third stirrer 322 and the fourth stirrer 324 and the stirrer lifting and lowering width in which the stirrers are raised and lowered, the movement range varies depending on the casting conditions Can be operated.
  • the second heater 340 is disposed outside the mold 160 and installed to be able to move forward and backward in the immediate lower region (the drawing path of the cast steel) of the mold to heat the upper portion (tail portion) of the cast steel cast.
  • an induction heating method induction heating device; EMH, Electro Magnetic Heater
  • the second heater 340 indirectly heats the upper side of the cast using electromagnetic generated from the induction heating coil by the supply of power, and is wound so as to be spaced apart at regular intervals from the four direction sides of the cast.
  • the second heater 340 is preferably used induction coil having a shape corresponding to the cross-sectional shape of the cast steel, but is not limited to this may be wound in various forms.
  • the casting unit (1a) may be provided with a pusher 400 for transferring the cast slab to the solidification unit (1b) after the casting of molten steel is completed.
  • the pusher 400 is disposed at a position opposite to the solidification portion 1b of the side of the casting portion 1a, and pushes the side of the cast steel to separate the cast steel from the drawer 200 to the solidification portion 1b. It is a device that delivers.
  • the pusher 400 may be an apparatus capable of reciprocating a predetermined distance, for example, a stepping motor, a piston / actuator, a solenoid, or the like may be used.
  • the piston cylinder mechanism is used as the pusher 400, the piston is inserted into the cylinder and reciprocated so that the cast can be returned to its original state after being pushed toward the solidification portion 1b.
  • the apparatus for transmitting the cast piece 1a of the caster 1a to the solidification unit 1b is not limited to the pusher 400, and various devices may be used.
  • the solidification portion 1b is a place where the cast steel is received to solidify the cast steel cast from the above-described casting portion 1a.
  • the solidification portion 1b is disposed on at least one of the side surfaces of the cast steel to support the cast steel, and It is provided on the outside includes a first quality controller 600 for inducing solidification of the cast steel.
  • the solidification part 1b receives the cast steel at a predetermined distance from the casting part 1a, transfers the cast steel to a post process (for example, forging or rolling) after the solidification of the cast steel is completed.
  • the support part 500 is provided to allow the cast piece to be stably positioned at the solidification part 1b, the support block 520 disposed in contact with the lower part of the cast piece, and the support frame 540 disposed to surround a part of the side surface of the cast piece. It includes. However, the configuration of the support unit 500 is not limited thereto, and the cast unit may be supported by various apparatuses and methods within a range that does not prevent movement of the first quality controller 600.
  • the support block 520 may be a block having a shape similar to that of the surface plate 220 of the casting part 1a.
  • the support block 520 serves to support the lower part of the slab disposed in the solidification part 1b in the drawing direction, that is, the longitudinal direction.
  • the support frame 540 may be disposed to surround a part of the side surface of the cast steel, as shown in FIG. 1 and spaced apart a predetermined distance from the side surface of the cast steel in order to suppress and prevent the slab disposed in the longitudinal direction from falling.
  • the first quality controller 600 is provided on the outside of the cast steel to ensure the quality of the cast steel, the first stirrer 620 and the first stirrer disposed close to the outside of the cast steel can be lowered in the longitudinal direction of the cast steel, A second stirrer 640 spaced apart from the lower portion of 620 and capable of lifting up and down in the longitudinal direction of the cast steel and a first heater 660 for heating the upper portion of the cast steel. That is, since the solidification of the naturally cooled cast steel is not completed, the first quality controller 600 may have the same or similar device as the casting part 1a to continue the treatment process for improving the quality of the cast steel.
  • the first stirrer 620 is a device for stirring the unsolidified molten steel in the cast steel delivered to the solidification unit 1b, and is disposed spaced apart from the cast steel by a predetermined distance.
  • the first stirrer 620 is lowered to be disposed on the side of the cast when the cast is delivered to the solidification unit (1b) in a state arranged at the same or similar height as the third stirrer (322) of the casting (1a) It can be installed to be descendable.
  • the first stirrer 620 is disposed above the outer side of the cast steel. That is, it is disposed above the center of the cast steel with respect to the longitudinal direction of the cast steel.
  • the upper unsolidified region of the cast steel to be stirred by the first stirrer 620 is relatively less solidified than the lower portion of the cast steel, and thus includes a large amount of unsolidified molten steel in the cast steel as compared to the lower region of the cast steel.
  • EMS electromagnetic stirrer
  • the first stirrer 620 is a device similar to the third stirrer 322 is used, but the magnitude or frequency of operating time of the frequency generated by the first stirrer 620 and the third stirrer 322 may be different, respectively. have. That is, the third stirrer 322 applies a frequency within about 1 Hz because it stirs the molten steel in the mold 160 or stirs the molten steel in the initial cast where the solidification proceeds. At this time, the third stirrer 322 is operated until the molten steel is injected into the mold 160 and the molten steel is cast as a cast and transferred to the solidification part 1b.
  • the first stirrer 620 is solidified shell having no mold and thicker than the cast steel cast in the casting part, due to the characteristics of the cast steel delivered to the solidifying unit (1b), the magnetic field of the first stirrer 620 is thickened solidification To agitate the unsolidified molten steel in the slab through the shell, operate at a frequency of up to 5 Hz until the casting is completed. However, since the solidification state of the cast steel occurs in a variety of forms according to the casting conditions and casting conditions, the application frequency of the third stirrer 322 and the first stirrer 620 is applied in various operating patterns in the range of 0 ⁇ 5Hz Can be. In addition, the first stirrer 620 located in the solidification portion 1b of FIG.
  • 3D may stir the unsolidified molten steel in the slab to uniform the temperature of the unsolidified molten steel in the slab when the solidification portion 1a solidifies the slab.
  • the first heater 660 heats the upper side of the cast steel to prevent the top of the cast from pre-solidification can be very effective when reducing the pipe defects in the cast.
  • the third stirrer 322 located in the casting part 1a of FIG. 3F stirs the unsolidified molten steel in the slab when the casting part 1a solidifies, thereby making the temperature of the unsolidified molten steel in the slab uniform.
  • the two-heater heats the upper side of the cast steel, preventing the top of the cast from presolidifying, which can be very efficient when reducing pipe defects in the cast.
  • the second stirrer 640 is provided to be spaced apart from the lower portion of the first stirrer 620 by a predetermined distance and is installed to be able to move up and down in the longitudinal direction of the cast steel to stir the unsolidified molten steel in the cast steel. That is, the second stirrer 640 is disposed below the center of the cast steel with respect to the longitudinal direction of the cast steel, and the fourth stirrer 324 to stir the unsolidified molten steel in the outer lower region of the cast steel where solidification has been performed for a predetermined time. Similar to the final coagulation device (FEMS; Final Electro Magnetic Stirrer) may be used, the magnitude of the frequency or the operating time of the second stirrer 640 and the fourth stirrer 324 may be different.
  • FEMS Final Electro Magnetic Stirrer
  • the fourth stirrer 322 applies a frequency within a maximum of 3 Hz in order to stir the unsolidified molten steel in the slab in which the solidification is progressing in the casting part 1a.
  • the fourth stirrer 324 operates until the cast steel cast from the casting part 1a is transferred to the solidification part 1b.
  • the second stirrer 640 forms a solidifying shell thicker than the cast steel cast in the casting part due to the characteristics of the cast steel delivered to the solidifying part 1b, and operates until the casting of the cast steel is completed by applying a frequency of up to 6 Hz. do.
  • the application frequency of the fourth stirrer 324 and the second stirrer 600 is applied in various operating patterns in the range of 0 ⁇ 6Hz Can be.
  • the first stirrer 620 and the second stirrer 640 are provided with a plurality to stir the unsolidified molten steel in different areas of the cast steel, respectively, but in the slab in the solidified portion (1b)
  • the apparatus and method for stirring the solidified molten steel is not limited thereto. That is, one stirrer may be provided and the shape of various methods and apparatuses capable of stirring the entire region from the upper side to the lower side of the slab may be changed while the frequency of the stirrer is changed.
  • the first stirrer 620 and the second stirrer 640 stir the molten steel until the slab transferred to the solidification part 1b is solidified, similarly to the stirring unit 320 of the casting part 1a. It is possible to increase the equiaxed crystal yield and to reduce the degree of segregation and voids to increase the quality of the cast.
  • the third stirrer 322 and the first stirrer 620 applied to the present invention is applied to a significantly increased size than the mold applied in the existing continuous casting machine, in order to secure a uniform stirring force of the molten steel in the mold,
  • the coil wound around or around the cast steel in a circular shape was disposed in a circular shape so as to perform rotational stirring on the non-solidified molten steel in the mold or the cast steel to ensure a uniform stirring force.
  • the first heater 660 is installed so as to be able to move forward and backward from the outer side of the cast steel to the upper region of the cast steel so as to heat the upper portion of the cast steel to heat the upper portion (tail portion) of the cast steel delivered to the solidification portion 1b. It is a device for. Since the first heater 660 is similar in configuration and effect to the second heater 340 described above, a detailed description thereof will be omitted.
  • the above-described casting facility 1 is provided with a conveyor for transferring the cast from the casting portion 1a to the solidification portion 1b, and transferring the cast steel from the solidification portion 1b to the outside of the solidification portion 1b, that is, a post process. Can be.
  • the conveyer 700 is disposed on one side of the solidification portion 1b and is formed to be capable of moving forward and backward to the casting portion or the solidification portion, and is an apparatus for transferring the cast steel.
  • the feeder 700 is in contact with the cast in the cast (1a) to tilt the cast or to move the cast from the cast (1a) to the solidifying portion (1b) and the tilting portion 720, the tilting portion 720 It includes a driver 740 for controlling the operation of.
  • the tilting unit 720 is disposed on one side of the cast steel, and is tilted or moved back and forth by the driving unit to move the cast steel, and connects the support block 520 of the solidification unit 1b to transfer the cast steel. That is, a support block 520 for supporting the cast steel is connected to one side of the tilting unit 720 and the cast steel is disposed on the support block 520 to transfer the cast steel from the casting portion 1a to the solidification portion 1b. have.
  • the tilting part 720 is transferred from the coagulation part 1b to the outside of the coagulation part, the tilting part 720 is inclined in the state in which the slab is in contact with one side of the tilting part 720 and is disposed in the conveying direction.
  • the cast steel may be seated on the tilting portion.
  • the roller 725 may be mounted on the side in contact with the tilting unit 720 and the cast steel to facilitate the transfer of the cast steel.
  • the driving unit 740 controls the operation of the tilting unit 720, and the tilting unit 720 may move forward and backward and move closer to or away from the casting unit 1a.
  • the driving unit 740 may be in communication with the roller table 800 for guiding the tilting unit 720 and the slab to a later process by tilting the tilting unit 720.
  • the driving unit 740 may be a device capable of reciprocating a predetermined distance, such as the pusher 400 of the casting unit 1a, for example, when using a piston cylinder mechanism, the tilting unit at one end of the piston 720 may be connected to enable the angle adjustment.
  • the above method and apparatus are used as the feeder 700 for transferring the cast steel, but the apparatus and the operating method used in the feeder 700 are not limited thereto, and the casting part 1a is provided.
  • Various apparatuses and methods capable of easily transferring the slab when transferring the slab from the coagulation unit 1b or from the coagulation unit 1b to a post process are available.
  • the casting method according to an embodiment of the present invention, the process of preparing the casting by preparing molten steel, the process of casting the molten steel in the casting to enable the opening and closing of the passage through the molten steel, casting It includes the process of transporting the produced cast through the solidification unit.
  • the molten steel after the refining is received in the ladle 120, and then transferred to the casting to start casting.
  • the molten steel transferred to the casting part is supplied to the tundish 140 from the ladle 120, and then a process of the casting part 1a is performed by injecting the molten steel into the mold after the floating separation of the inclusions in the tundish 140 for a predetermined time ( S100).
  • a process of the casting part 1a is performed by injecting the molten steel into the mold after the floating separation of the inclusions in the tundish 140 for a predetermined time ( S100).
  • the surface plate 220 is placed in the mold to complete the casting preparation in a state in which the molten steel injected into the mold 160 is blocked from being discharged to the outside (S120).
  • the drawer 200 is operated to lower the surface plate 220, and casting starts as the cast (S 1 ) connected to the surface plate 220 is drawn to the bottom Cast steel is produced (S140).
  • the third stirrer 322 is operated to stir the molten steel in the mold.
  • the cast steel produced is manufactured to a maximum thickness of 800 mm and a maximum width of 2000 mm, and cast at a casting speed of 0.3 m or less per minute.
  • the mold 160 It is necessary to use the mold 160 with increased thickness of the cast steel to obtain the final product with increased thickness due to the characteristics of the ultra-thin steel, and the reason for casting at a low casting speed of 0.3 m / min is that the thick steel cast steel has a solidification rate. It is necessary to secure the internal quality by suppressing the occurrence of segregation by casting at a low circumferential speed to ensure the internal quality, and to secure a solidified shell of sufficient thickness during casting.
  • the third stirrer 322 continuously stirs the molten steel in the mold, and the molten steel that is not solidified inside the cast steel is continuously stirred through the fourth stirrer 324 due to the thick thickness of the cast steel and the solidification proceeds. do.
  • the third stirrer 322 and the fourth stirrer 324 can refine the structure of the cast steel by continuously stirring the molten steel, thereby improving the quality of the cast steel and improving the equiaxed crystallinity of the cast steel.
  • the cast steel S 1 located in the casting part 1a is separated from the surface plate by the pusher 400 and supported by the conveyor 700 to move to the solidification part. (S200).
  • the cast (S 1 ) is received by the pushing force by the pusher 400, it may be transferred to the solidification unit (1b) in the state that the solidification of the surface to the extent that it does not deform.
  • the stirring unit 320 moving from the casting portion (1a) to the upper and lower solidification of the cast steel is returned to its original position so as not to interfere with the transfer of the cast steel (S 1 ).
  • the process (S300) of the solidification part 1b progresses a process of finally completing the solidification of the slab S 1 . That is, since the cast (S 1 ) is solidified in the solidification unit 1b, the casting process may proceed in the casting unit 1a.
  • the first quality controller 600 provided in the solidified portion (1b) is disposed to be spaced apart from the outer surface of the slab to descend or rise at the original position.
  • a first agitator 620, a second agitator 640 is disposed in the main outer surface of convenience for stirring the non-solidified molten steel inside the cast steel (S 1), the cast steel (S 1) It will work until the coagulation is complete.
  • the first heater 660 indirectly heats the upper portion of the cast steel in each region, so that the upper portion of the cast steel is solidified while suppressing the release of heat from the side of the upper portion of the cast steel. do.
  • This may indirectly heat the upper side of the cast steel to inhibit or prevent presolidification of unsolidified areas of the upper portion of the cast, thereby minimizing solidification shrinkage defects such as pipes. Therefore, the error rate of the upper part of the cast can be improved to increase the error rate of the final cast.
  • the slab is inclined by the tilting unit 720 of the feeder 700, the tilting of the feeder 700
  • the unit 720 communicates with the roller table 800 disposed in the vicinity of the feeder 700, and the cast steel is transferred to the post process along the roller table 800 (S360).
  • the repetition of the process of FIGS. 3A to 3F is not limited to the number of times but may be repeatedly. That is, as shown in (b) of FIG. 2, after the process of the casting part 1a is completed, the cast part (S 1 ) moves to the solidification part to perform the casting part (the solidification process) during the solidification part process (casting solidification process). In 1a), the process of the casting part 1a is re-produced to produce another cast (S2) and repeatable until a desired quantity is obtained.
  • the process of the casting unit 1a is no longer progressed, that is, the cast steel (S2) of Figure 3e is transferred to the solidification unit (1b) after the last cast in the casting unit (1a)
  • the slab Se of the casting part 1a is not transferred to the solidification part 1b, and solidification can be completed in the casting part 1a. That is, by using the second quality controller 300 provided in the casting part (1a) can be transferred to the post-process after completing the solidification of the cast (Se) (S360).
  • the second heater 340 of the casting part 1a may indirectly heat the upper portion of the slab Se and serve as the first heater 660 of the solidification part 1b.
  • the last produced cast (Se) may be transferred to the post-process after completing the solidification process after being transferred to the coagulation unit (1b) like the previously produced cast (S 1 , S 2 ). Therefore, the position where the last cast (S e ) is solidified is not limited.
  • Table 1 shows the results of the change in the thickness of the cast steel under various process conditions for producing the ultra-thick steel materials and the error rate of the finally produced cast steel.
  • the initial thickness of the cast steel represents the thickness of the cast steel when no separate post-process is performed on the cast slab.
  • the slab thickness in the middle stage represents the thickness of the slab after the forging step of tapping or pressing the slab
  • the thickness of the slab in the final stage represents the thickness of the slab after the rolling process.
  • the cast steel of Comparative Example 1 is a cast steel produced through an ingot process, and can be obtained by supplying molten steel to the mold and cooling it.
  • the cast thus produced had an initial thickness of 1500 mm. Thereafter, after the forging process and the rolling process to form a thickness for the ultra-thick steel material, and finally has a thickness of 178mm.
  • the overall error rate has a low value of 52%.
  • the slab of Comparative Example 2 is a slab slab produced through a general casting facility, it can be produced by continuously injecting and solidifying molten steel supplied from the steelmaking furnace into the mold.
  • the cast steel thus produced has a very high real value of 95%.
  • the casting equipment generally used has a thickness of 150 mm after completing the rolling process because the thickness of the initial cast is produced to 450 mm.
  • the thickness of 150mm is limited when using the cast steel for the ultra-thick steel.
  • the cast of the embodiment is a cast made through the casting facility according to an embodiment of the present invention, the cast is produced through a mold having a thickness of up to 800mm and a width of 2000mm.
  • the cast steel of the embodiment is produced with an initial thickness of 800 mm, and after the forging and rolling process, finally has a thickness of 178 mm.
  • the casting equipment is separated into a casting part and a solidification part, and a process for preventing the pre-solidification of the upper part of the casting part in the solidification part, it can be confirmed that the real rate of the cast steel has 89%.
  • the slab of the Example has a substantially higher rate of error of about 40% compared to the slab of Comparative Example 1, and has a thickness suitable for the cast steel for ultra-thick steel compared to the slab of Comparative Example 2. That is, the cast steel produced using the equipment of the embodiment can solve the problems of the cast steel produced through ingot casting and conventional continuous casting.
  • the ultra-thick steel material produced according to the embodiment did not observe surface defects (eg, corner cracks) that can be visually observed, and the macro quality was also achieved by applying molten steel stirrer in the slab to achieve 100% isotropic rate. Occurrence of segregation was not observed. Therefore, it can be seen that the quality of the ultra-thick steel produced by applying the embodiment of the present invention is improved.
  • the continuous casting equipment is divided into a casting part and a solidification part, the cast is completed in the casting part is transferred to the solidification part, and after the solidification of the cast in the solidification part is transferred to the post-process It is easy to manufacture ultra-thick steel and can improve the quality and error rate of the final cast.
  • the solidification unit after casting the cast from the casting portion to the solidification unit, the solidification unit to complete the solidification of the cast through the first quality controller and to suppress or prevent the pre-solidification of the upper portion of the cast to reduce the formation of the pipe It can improve the quality of the convenience. As a result, due to the improvement of the quality of the cast, it is possible to improve the error rate of the cast because it does not perform unhealthy part cutting which is a problem of ingot casting.
  • the casting portion can be cast in the later cast iron can solve the problem of the conventional batch process such as ingot casting. As a result, it is possible to increase the productivity of the cast steel. And the cast slab produced at the end of the casting process is not transferred to the solidification unit, it is possible to complete the solidification through the second quality controller provided in the casting unit. Thus, the efficiency of the process can be increased.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)

Abstract

The present invention relates to casting equipment for producing a casting with a large cross-section for a very thick steel material and a casting method using the same, and the casting equipment includes: a casting part with a passage for a molten steel for casting the molten steel into a casting; a support part arranged separately from the casting part for receiving and supporting the casting in at least one of the sides of the casting; and a solidifying part arranged outside the casting provided with a first quality control device for solidifying the casting, whereby the casting method includes the steps of: preparing a molten steel for casting; casting the molten steel in the casting part with the passage opened or closed into a casting; conveying the casting to the solidifying part; and conveying the solidified casting to a subsequent process so as to improve the quality of the casting, thus increasing substantially the yield rate of castings. In addition, the molten steel is continuously stirred through the quality control device and a solidification inducement device from the start of casting to the end of solidifying the casting so as to enhance the equiaxed surface ratio of the casting, and decrease segregation/porosity and the internal defects such as a pipe generated at an end of the casting. Also, when producing a casting with a large cross-section for a very thick steel material, the casting part can produce another casting continuously while the previous casting is solidified in the solidifying part, thus saving the time consumed for solidifying the casting for a very thick steel material by means of the continuous solidifying part. This prevents the casting process from being stopped, thereby enhancing the productivity of a casting and the efficiency of the casting equipment.

Description

주조 설비 및 이를 이용한 주조 방법Casting equipment and casting method using the same
본 발명은 주조 설비 및 이를 이용한 주조 방법에 관한 것으로서, 더욱 상세하게는 극후강재용 주편을 용이하게 제조하고 주편의 품질과 실수율 및 생산성을 향상시킬 수 있는 주조 설비 및 이를 이용한 주조 방법을 제공한다.The present invention relates to a casting facility and a casting method using the same, and more particularly, to provide a casting facility and a casting method using the same, which can easily manufacture the cast steel for ultra-thick steel, and improve the quality and error rate and productivity of the cast steel.
일반적으로 극후강재는 100㎜ 이상의 두께를 갖고, 그 사용용도에 따라 압하비(주편 두께/제품 두께)에 제한을 두어 공극률(Porosity) 등의 내부품질 및 충격, 인성 등의 기계적 물성치를 관리하고 있다. 예를 들어 해양구조용 강은 압하비 4 이상의 극후강재가 요구되고, 압력용 및 풍력구조용 강 등은 3 이상의 압하비가 요구된다. In general, the ultra-thick steel has a thickness of 100mm or more, and limits the reduction ratio (casting thickness / product thickness) according to its use to manage internal quality such as porosity, and mechanical properties such as impact and toughness. . For example, offshore structural steels require ultra-thick steel materials with a reduction ratio of 4 or more, and pressure and wind structural steels require a reduction ratio of 3 or more.
현재, 극후강재는 잉곳 또는 연속 주조법으로 생산된 주편을 단조 및 열간압연과 같은 소정의 후공정을 통해 제조되고 있다. 이때, 전자인 잉곳 공정으로 극후강재를 제조하는 경우, 잉곳을 단조 처리하여 극후강재 제품으로 제조하거나 추가의 압연공정을 적용한다. 특히, 높은 압하비를 요구하는 극후강재는 내부 품질이 중요시되기 때문에 대부분 잉곳으로 주조한 주편을 단조작업 한 뒤, 압연공정을 통해 제조된다. Currently, ultra-thick steels are manufactured through predetermined post-processing such as forging and hot rolling of cast steel produced by ingot or continuous casting. At this time, in the case of manufacturing the ultra-steel material by the ingot process, which is the former, the ingot is forged and manufactured into an ultra-steel product or an additional rolling process is applied. In particular, the ultra-thick steel, which requires high rolling reduction, is made through a rolling process after forging a cast steel cast ingot because most of the internal quality is important.
이처럼, 잉곳으로 주조한 주편을 이용해 극후강재를 제조할 경우에는 높은 압하비를 갖는 극후강재 생산에 대응이 가능하고, 극후강재 수요 특성상 스몰-랏(small-lot) 생산에 유리한 공정이다. 그러나, 잉곳 방식을 사용하여 제작된 주편은 압탕부 및 주탕부에 발생하는 불건전 부위를 제거하기 위해 불건전 부위의 절단이 요구된다. 이에, 주편의 상하부 영역의 절단으로 주편의 실수율 열위가 야기되어 극후강재를 생산하기 위한 생산비용이 증가한다. As such, in the case of manufacturing ultra-thick steel using cast steel cast ingots, it is possible to cope with the production of ultra-thick steel having a high reduction ratio, and it is an advantageous process for small-lot production due to the demand for ultra-thick steel. However, slabs manufactured using the ingot method are required to cut the unhealthy parts in order to remove the unhealthy parts occurring in the hot water part and the hot water part. Thus, the cutting of the upper and lower regions of the cast steel causes the real rate inferiority of the cast steel to increase the production cost for producing the ultra-thick steel.
한편, 후자인 연속주조법으로 생산되는 주편을 이용해 극후강재를 제조하는 경우에는, 일반적으로 연속주조 된 주편을 압연하는 방식으로 극후강재를 제조한다. 이는 실수율에서는 잉곳 대비 매우 우수하여 생산비용 측면에서는 잉곳공정에 비해 우수하나, 높은 압하비를 요구하는 강종을 생산할 경우에는 제한된 주편 두께로 인해 극후강재의 두께 역시 제한되는 문제점이 있다. On the other hand, in the case of manufacturing the ultra-thin steel using the cast produced by the latter continuous casting method, in general, the ultra-thick steel is manufactured by rolling the continuously cast steel casting. This is very good compared to the ingot in the real rate is superior to the ingot process in terms of production cost, but when producing a steel grade that requires a high reduction ratio, there is a problem that the thickness of the ultra-thick steel due to the limited cast steel thickness.
그리고, 극후강재는 상대적으로 일반 주편에 비해 두꺼워, 주조된 후 주편이 완전히 응고되기까지 장시간이 소요된다. 만약 용강을 연속주조하며 절단하는 기존의 주조법에서 일반 연주기에서 생산하는 일반 주편의 두께보다 두께가 두꺼운 극후강재용 주편을 생산할 경우에는, 주편 내부까지 응고가 완료되어 절단공정을 진행하기 위해서는 연주기 설비가 매우 길어지게 되며, 이는 설비의 대형화로 생산비용 측면에서 막대한 초기비용이 소모된다. In addition, the ultra-thick steel is relatively thick compared to the general cast, it takes a long time until the cast completely solidified after casting. If the existing casting method for continuous casting of molten steel produces a cast steel for thick-walled steel that is thicker than the thickness of the general cast steel produced by the general machine, the machine equipment needs to be solidified to the inside of the cast. It will be very long, which will require huge initial costs in terms of production costs due to the large size of the equipment.
또한, 잉곳재료에 비해 주편 내부 결함 발생확률이 높아, 극후강재 제품에도 연주 주편의 내부 결함이 잔존해 있을 가능성이 높다. 그리고 주편 생산을 위한 연속주조 설비가 대량생산에 최적화되어 있어 스몰-랏 생산 측면에는 불리한 문제점이 따른다.  In addition, the probability of occurrence of defects in cast steel is higher than that of ingot material, and there is a high possibility that internal defects in cast steel remain in ultra-thick steel products. In addition, since the continuous casting equipment for casting production is optimized for mass production, there is a disadvantage in small-lot production.
이에, 일반 주조 설비에서는 생산이 용이하지 않은 높은 압하비를 갖는 극후강재용 주편 제조를 위한 새로운 설비 및 공정 개발이 절실하게 요구된다. 즉, 강의 품질 측면에서는 잉곳주편 대비 동등하거나 잉곳 주편 이상의 내부품질과 실수율 향상이 가능하고, 생산적 측면에서는 다양한 종류의 스몰-랏 극후강재 생산에 유리하고, 잉곳 주편 생산 대비 생산성을 증가시킬 수 있는 설비 및 공정이 요구된다.Therefore, the development of new equipment and processes for the production of cast steel for ultra-thick steel materials having a high reduction ratio, which is not easy to produce in the general casting equipment is urgently required. In other words, in terms of quality of steel, it is possible to improve the internal quality and error rate more than or equal to that of ingot cast, and in terms of productivity, it is advantageous to produce various kinds of small-lot ultra-thick steel, and to increase productivity compared to ingot cast. And processes are required.
본 발명은 극후강재용 주편의 제조가 용이한 주조 설비 및 이를 이용한 주조 방법을 제공한다.The present invention provides a casting facility and a casting method using the same, which is easy to manufacture cast steel for ultra-thick steel.
본 발명은 주편의 품질 및 실수율을 증가시킬 수 있는 주조 설비 및 이를 이용한 주조 방법을 제공한다.The present invention provides a casting facility and a casting method using the same that can increase the quality and error rate of the cast.
본 발명은 주편의 생산성 및 공정설비의 효율성을 증가시킬 수 있는 주조 설비 및 이를 이용한 주조 방법을 제공한다.The present invention provides a casting facility and a casting method using the same that can increase the productivity of the cast steel and the efficiency of the process equipment.
본 발명의 실시 형태에 따른 주조 설비는, 용강이 경유하는 통로를 형성하고,상기 용강을 주편으로 주조하기 위한 주조부 및 상기 주조부에 이격되어 배치되며 상기 주조부로부터 주편을 전달받고, 상기 주편의 측면 중 적어도 어느 한 곳에 배치되어 상기 주편을 지지하는 지지부와, 상기 주편의 외측에 구비되어 상기 주편의 응고를 유도시키는 제1 품질제어기가 구비되는 응고부를 포함한다.Casting equipment according to an embodiment of the present invention, forming a passage through which molten steel, the casting part for casting the molten steel into a cast steel, and is disposed spaced apart from the casting portion and receives the cast steel from the casting portion, It is disposed on at least one of the side of the support and includes a support for supporting the slab, and a solidification unit provided with a first quality controller provided on the outside of the cast to induce the solidification of the cast.
상기 제1 품질제어기는 상기 주편의 외측에 근접 배치되어 상기 주편의 길이방향으로 승하강 가능한 제1 교반기와, 상기 제1 교반기의 하부로 이격되어 구비되고, 상기 주편의 길이방향으로 승하강 가능한 제2 교반기 및 상기 주편의 직상부 영역으로 진퇴 가능하도록 설치되어, 상기 주편의 상부를 가열시키는 제1 가열기를 포함할 수 있다. The first quality controller is provided with a first stirrer disposed close to the outer side of the cast slab, which can move up and down in the longitudinal direction of the cast slab, spaced below the first stirrer, and which can move up and down in the longitudinal direction of the cast slab. 2 may include a stirrer and a first heater installed to be able to move back and forth to the upper region of the cast steel, and to heat the upper portion of the cast steel.
상기 제1 교반기는 상기 주편 주위에 권취된 코일이 원형의 형태로 배치될 수 있다. The first stirrer may be a coil wound around the cast piece in a circular shape.
상기 주조부는 상기 용강이 수용되는 공간을 갖는 수용부, 상기 수용부로부터 상기 주편을 하부로 인발시키는 인발기, 상기 통로의 외측에 구비되는 제2 품질제어기를 포함할 수 있다. The casting part may include a receiving part having a space in which the molten steel is accommodated, a drawer for drawing the cast piece downward from the receiving part, and a second quality controller provided outside the passage.
상기 수용부는 턴디쉬로 공급된 상기 용강이 통과하는 경로를 형성하는 주형을 포함하고, 상기 주형은 상기 주편이 800㎜ 이하의 두께 및 2000㎜ 이하의 폭을 갖도록 형성될 수 있다. The receiving portion may include a mold forming a path through which the molten steel supplied to the tundish passes, and the mold may be formed such that the cast steel has a thickness of 800 mm or less and a width of 2000 mm or less.
상기 제2 품질제어기는 상기 주형의 외측에 배치되어, 상기 용강 및 상기 주편 내 미응고된 용강 중 적어도 어느 하나를 교반하기 위한 적어도 하나 이상의 교반기를 포함하는 교반유닛 및 상기 주형의 직하부 영역으로 진퇴 가능하도록 설치되어 상기 주편의 상부를 가열시키는 제2 가열기를 포함할 수 있다. The second quality controller is disposed outside the mold, and advances to the stirring unit including at least one or more agitators for stirring at least one of the molten steel and the non-solidified molten steel in the cast steel. It may be installed to include a second heater for heating the upper portion of the cast.
상기 교반유닛은 상기 주형에 근접 배치되어 상기 주편의 인발방향으로 승하강 가능한 제3 교반기와, 상기 제3 교반기의 하부로 이격되어 구비되고, 상기 주편의 인발방향으로 승하강 가능한 제4 교반기를 포함할 수 있다. The stirring unit is disposed in close proximity to the mold and provided with a third stirrer capable of lifting up and down in the drawing direction of the cast steel, and spaced below the third stirrer, and including a fourth stirrer capable of lifting up and down in the drawing direction of the cast steel. can do.
상기 제3 교반기는 상기 주형 주위 또는 상기 주편 주위에 권취된 코일이 원형의 형태로 배치될 수 있다. The third stirrer may be a coil wound around the mold or around the cast piece in a circular shape.
상기 주조부에는 상기 주편을 상기 인발기로부터 분리하기 위한 푸쉬어가 구비되고, 상기 푸쉬어는 상기 응고부쪽으로 전후진 왕복 이동가능하도록 설치될 수 있다. The casting part may be provided with a pusher for separating the cast piece from the drawer, and the pusher may be installed to reciprocate forward and backward toward the solidification part.
상기 주조부로부터 상기 응고부로 상기 주편을 이송시키거나, 상기 응고부로부터 상기 응고부 외부로 상기 주편을 이송시키는 이송기가 구비될 수 있다. The caster may be transferred from the casting part to the solidification part, or a conveyor may be provided to transfer the slab from the solidification part to the outside of the solidification part.
본 발명의 실시 예에 따른 주조 방법은, 용강을 마련하여 주조를 준비하는 과정, 상기 용강이 경유하는 통로를 개방 및 폐쇄 가능하게 하는 주조부에서 상기 용강을 주조하는 과정, 상기 주조를 통해 제작된 주편을 응고부로 이송시키는 과정을 포함하고, 상기 주편의 응고가 완료된 후 상기 주편을 후공정으로 이송한다. In the casting method according to an embodiment of the present invention, a process of preparing molten steel to prepare a casting, a process of casting the molten steel in a casting part to open and close the passage through the molten steel, produced through the casting And transferring the cast steel to a solidification part, and after the solidification of the cast steel is completed, the cast steel is transferred to a later process.
상기 주편을 응고부로 이송시킨 이후에 상기 주조부에서 상기 용강의 주조 과정이 반복될 수 있다. After the cast is transferred to the solidification part, the casting process of the molten steel may be repeated in the casting part.
상기 용강을 주조하는 과정이 반복되는 경우, 상기 주편을 응고부로 이송시키는 과정은 상기 주조부에 용강이 이송되어 상기 주조를 준비하는 과정이 이루어지는 동안 수행될 수 있다. When the process of casting the molten steel is repeated, the process of transferring the cast steel to the solidification part may be performed while the molten steel is transferred to the casting part to prepare the casting.
상기 용강을 주조하는 과정이 1회 주조인 단연주의 경우, 상기 주편은 주조부에서 응고를 완료하거나 응고부로 이송된 후 응고를 완료할 수 있다. In the case of the yeonyeonju casting the molten steel is a one-time casting, the cast steel may complete the solidification in the casting portion or transferred to the solidification portion may complete the solidification.
상기 용강은 분당 0.3m 이하의 주속으로 주조될 수 있다. The molten steel may be cast at a circumferential speed of 0.3 m or less per minute.
본 발명의 실시 예에 따른 주조 설비 및 이를 이용한 주조 방법에 의하면, 연속주조에 의해 생산되는 주편의 실수율을 향상시킬 수 있다. 즉, 주조부에서 주조된 주편을 주조부 또는 응고부에서 응고를 수행할 때, 제2 가열기 또는 제1 가열기를 이용하여 주편 상부의 응고를 지연시킴으로써, 주편 상부에 생기는 파이프 길이를 감소시켜 주편의 실수율을 향상시킬 수 있다. According to the casting facility and the casting method using the same according to an embodiment of the present invention, it is possible to improve the error rate of the cast produced by the continuous casting. That is, when solidifying the cast slab cast in the casting portion in the casting portion or the solidification portion, by delaying the solidification of the upper portion of the slab by using a second heater or the first heater, the pipe length generated on the upper portion of the slab to reduce the The error rate can be improved.
그리고 주조시에는 주형 내에 잔류하는 용강을 교반하여 내부품질을 향상시키고, 주조가 완료된 후에는 주편 내의 미응고 용강을 교반하여 주편의 등축정율 증대, 편석/공극률 저감 및 주편 말단부에 발생하는 파이프와 같은 내부결함을 감소시킬 수 있다. In casting, the molten steel remaining in the mold is stirred to improve the internal quality.After casting is completed, the unsolidified molten steel in the casting is stirred to increase the equiaxed crystallization rate, decrease segregation / porosity, and pipes generated at the end of the cast steel. Internal defects can be reduced.
또한, 본 발명은 응고부에서 주편의 응고가 진행되는 공정 중에 주조부에서 또 다른 주편을 연속적으로 주조하는 것이 가능하다. 이에, 극후강재용 주편의 응고로 인해 소요되는 시간을 응고부에서 완료할 수 있기 때문에 용강의 주조가 중단되지 않을 수 있어 주편의 생산성 및 공정 설비의 효율성을 증가시킬 수 있다.In addition, the present invention can continuously cast another cast in the casting portion during the process of solidification of the cast in the solidification portion. Therefore, since the time required for solidification of the cast steel for the ultra-thick steel cast can be completed in the solidification part, casting of molten steel may not be interrupted, thereby increasing the productivity of the cast steel and the efficiency of the process equipment.
도 1은 본 발명의 실시 예에 따른 주조 설비를 나타내는 도면이다. 1 is a view showing a casting facility according to an embodiment of the present invention.
도 2는 본 발명의 실시 예에 따른 주조 방법을 나타내는 순서도이다.2 is a flow chart showing a casting method according to an embodiment of the present invention.
도 3은 도 2의 주조 방법에 따른 주조 설비의 작동상태를 나타내는 도면이다.3 is a view showing an operating state of the casting equipment according to the casting method of FIG.
이하, 첨부된 도면을 참조하여 본 발명의 실시 예를 더욱 상세히 설명하기로 한다. 그러나 본 발명은 이하에서 개시되는 실시 예에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시 예들은 본 발명의 개시가 완전하도록 하며, 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이다. 도면상에서 동일 부호는 동일한 요소를 지칭한다.Hereinafter, with reference to the accompanying drawings will be described an embodiment of the present invention in more detail. However, the present invention is not limited to the embodiments disclosed below, but will be implemented in various forms, and only the embodiments are intended to complete the disclosure of the present invention and to those skilled in the art to fully understand the scope of the invention. It is provided to inform you. Like numbers refer to like elements in the figures.
도 1은 본 발명의 실시 예에 따른 주조 설비를 나타내는 도면이다. 도 2는 본 발명의 실시 예에 따른 주조 방법을 나타내는 순서도이다. 도 3는 도 2의 주조 방법에 따른 주조 설비의 작동상태를 나타내는 도면이다. 이때, 도 3의 (a) ~ (f)는 주편을 생산하기 위해 작동하는 주조 설비의 변화를 순차적으로 나타낸다. 1 is a view showing a casting facility according to an embodiment of the present invention. 2 is a flow chart showing a casting method according to an embodiment of the present invention. 3 is a view showing an operating state of a casting facility according to the casting method of FIG. At this time, (a) to (f) of Figure 3 sequentially shows the change of the casting equipment operating to produce the cast steel.
도 1을 참조하면, 본 발명의 실시 예에 따른 주조 설비(1)는 극후강재용 주편을 생산하기 위한 설비로서, 용강이 경유하는 통로를 형성하고, 용강을 주편으로 주조하기 위한 주조부(1a) 및 주조부(1a)에 이격되어 배치되며 주조부(1a)로부터 주편을 전달받고, 주편의 측면 중 적어도 어느 한 곳에 배치되어 주편을 지지하는 지지부(500)와, 주편의 외측에 구비되어 주편의 응고를 유도시키는 제1 품질제어기(600)가 구비되는 응고부(1b)를 포함한다.Referring to FIG. 1, a casting facility 1 according to an embodiment of the present invention is a facility for producing cast steel for ultra-thick steel, forming a passage through which molten steel passes, and casting part 1a for casting molten steel into cast steel 1a. And a cast part 1a spaced apart from the cast part 1a, the caster receives the cast from the cast part 1a, and is disposed on at least one of the side surfaces of the cast part to support the cast part, and is provided outside the cast part. It comprises a solidification unit 1b is provided with a first quality controller 600 for inducing solidification of the convenience.
주조부(1a)는 정련된 용강의 연속 주조가 수행되는 구간으로서, 용강이 수용되는 수용부(100)와, 수용부(100)로부터 주편을 하부로 인발시키는 인발기(200), 용강이 경유하는 통로의 외측에 구비되는 제2 품질제어기(300)를 포함한다. The casting part 1a is a section in which continuous casting of the refined molten steel is performed. The receiving part 100 in which the molten steel is accommodated, the drawer 200 for drawing the cast slab from the receiving part 100 downward, and the molten steel are passed through. And a second quality controller 300 provided outside the passage.
수용부(100)는 용강의 주조가 시작되기까지 용강을 수용하는 공간을 형성하며, 용강이 수용되는 래들(120)과, 래들(120)로부터 용강을 공급받는 턴디쉬(140) 및 턴디쉬(140) 하부에 이격되어 배치되는 주형(160)을 포함한다. The receiving part 100 forms a space for receiving molten steel until casting of molten steel is started, and the ladle 120 in which the molten steel is accommodated, and the tundish 140 and the tundish receiving the molten steel from the ladle 120 140) includes a mold 160 spaced apart from the bottom.
래들(120)은 정련을 완료한 용강을 수용하기 위한 용기로서, 용강을 수용할 수 있는 내부공간이 형성된 중공의 형상으로 다양하게 제작될 수 있다. 일반적으로 래들(120)은 연속주조설비의 순환율을 증가시키기 위해 복수로 구비될 수 있다.The ladle 120 is a container for accommodating molten steel that has been refined, and may be variously manufactured in a hollow shape in which an inner space capable of accommodating molten steel is formed. In general, the ladle 120 may be provided in plurality in order to increase the circulation rate of the continuous casting equipment.
턴디쉬(140)는 래들(120)로부터 공급되는 용강을 내부에 수용할 수 있는 중공의 용기 형상으로 제작된다. 그리고 턴디쉬(140)의 바닥부에는 용강이 배출되는 배출구가 형성되어, 배출구를 통해 턴디쉬(140) 내에 수용된 용강이 외부로 배출될 수 있다. 이때, 턴디쉬(140)에 수용된 용강은 일정시간 턴디쉬(140) 내에 체류함으로써 용강 내 포함된 개재물의 부상분리 후 주형(160)으로 주입된다. The tundish 140 is manufactured in a hollow container shape capable of accommodating molten steel supplied from the ladle 120 therein. In addition, the outlet of the molten steel is formed at the bottom of the tundish 140, the molten steel accommodated in the tundish 140 may be discharged to the outside through the outlet. At this time, the molten steel accommodated in the tundish 140 is injected into the mold 160 after separation of the inclusions contained in the molten steel by staying in the tundish 140 for a predetermined time.
주형(160)은 턴디쉬(140)에서 주입되는 용강을 적정 크기로 형상화하여 주편으로 제작하기 위해 구비되는 것으로서, 주형(160)은 용강이 통과되는 경로의 폭과 두께를 형성한다. 이때, 본 발명의 주형(160)은 극후강재용 주편의 크기에 대응하기 위해 주편이 800㎜ 이하의 두께 및 2000㎜ 이하의 폭을 갖도록 형성될 수 있다. 즉, 종래의 주조 설비의 주형에 비해 두께가 대폭 증가된 주형(160)을 사용함으로써, 단조 및 압연 공정을 거친 주편이 극후강재용으로 사용되는 두께를 가질 수 있도록 할 수 있다. The mold 160 is provided to shape the molten steel injected from the tundish 140 into an appropriate size and produce the cast steel. The mold 160 forms a width and a thickness of a path through which the molten steel passes. At this time, the mold 160 of the present invention may be formed to have a thickness of less than 800mm and a width of less than 2000mm to correspond to the size of the cast steel for the ultra-thick steel. That is, by using the mold 160, the thickness of which is significantly increased compared to the mold of the conventional casting equipment, it is possible to make the cast steel subjected to the forging and rolling process to have a thickness used for the ultra-thin steel.
한편, 주형(160)을 통해 초기쉘이 형성된 주편을 주형(160) 외부로 안내하는 가이드롤(170), 가이드롤(170)로부터 안내된 주편을 냉각하는 냉각노즐(미도시) 및 주형 내 주편이 용이하게 주형(160) 외부로 인발되도록 주형(160)에 진동을 전달하는 진동기(미도시)가 구비될 수 있다. 이때, 가이드롤(170), 냉각노즐 및 진동기의 구성은 본 발명에서 특정 구성으로 제한할 필요가 없고, 그 다양한 구성 및 작동 방법은 당업자에게 이미 널리 알려진 기술이므로 상세한 설명은 생략하기로 한다. On the other hand, the guide roll 170 for guiding the cast steel with the initial shell formed through the mold 160 to the outside of the mold 160, a cooling nozzle (not shown) for cooling the cast steel guided from the guide roll 170 and the mold in the mold A vibrator (not shown) may be provided to transmit vibration to the mold 160 so that the piece is easily drawn out of the mold 160. At this time, the configuration of the guide roll 170, the cooling nozzle and the vibrator need not be limited to a specific configuration in the present invention, its various configurations and operation methods are already well known to those skilled in the art, detailed description thereof will be omitted.
인발기(200)는 수용부(100)로부터 주편을 하부로 인발하기 위한 장치로서, 초기에 주형 내부에 배치되어 용강을 받아 주형(160) 하부로의 용강 유출을 방지하며 초기 응고된 주편을 구동기(240)와 연결하는 정반(220)과, 주편을 하부로 인발하는 구동기(240)를 포함한다.The drawer 200 is a device for drawing the cast slab from the receiving portion 100 to the lower portion, is initially disposed inside the mold to receive the molten steel to prevent the molten steel outflow to the mold 160, the initial solidified cast slab The surface plate 220 connected to the 240, and the driver 240 for drawing the cast slab to the bottom.
정반(220)은 주편과 구동기(240)를 연결하기 위해 구비되는 것으로서, 주편과의 연결을 용이하게 하기 위해 특정한 형상의 면을 갖는 플레이트가 사용된다. 본 발명에서는 정반(220)의 형태 및 재질에 대해서는 한정하지 않으나 주편과 접촉하였을 때 고온의 주편으로 인해 변형이 발생하지 않는 재질로 제작되는 것이 좋다.The surface plate 220 is provided to connect the cast steel and the driver 240, and a plate having a surface of a specific shape is used to facilitate the connection with the cast steel. In the present invention, the shape and material of the surface plate 220 is not limited, but is preferably made of a material that does not cause deformation due to the high temperature of the cast when in contact with the cast.
구동기(240)는 정반(220)을 하강시키기 위한 장치로서, 구동기(240)와 연결된 정반(220)이 하강함으로써 정반(220)과 연결된 주편을 하부로 인발시킬 수 있다. 구동기(240)는 주편이 인발될 때에는 하부로 하강하고, 주조가 시작되는 초기에는 정반(220)을 주형(160) 내에 위치하도록 하기 위해 승강할 수 있는 장치가 사용될 수 있다. 즉, 구동기(240)는 승강 및 하강가능한 장치가 사용될 수 있다. The driver 240 is a device for lowering the surface plate 220, and the base plate 220 connected to the driver 240 may be lowered to draw the cast slab connected to the surface plate 220 downward. The driver 240 may be lowered when the cast steel is drawn out, and an apparatus capable of lifting and lowering may be used to place the surface plate 220 in the mold 160 at the beginning of casting. That is, the driver 240 may be a device capable of lifting and lowering.
제2 품질제어기(300)는 인발기(200)로부터 인발된 주편의 품질을 향상시키기 위해 구비되는 것으로서, 주형(160)의 외측에 배치되어 주형(160) 내 용강 및 주편 내 미응고된 용강 중 적어도 어느 하나를 교반하기 위한 적어도 하나 이상의 교반기를 포함하는 교반유닛(320) 및 주형(160)의 직하부 영역으로 진퇴 가능하도록 설치되어 주편의 상부를 가열시키는 제2 가열기(340)를 포함한다.The second quality controller 300 is provided to improve the quality of the cast steel drawn from the drawer 200, and is disposed outside the mold 160 to form the molten steel in the mold 160 and the unsolidified molten steel in the cast steel. A stirring unit 320 including at least one stirrer for stirring at least one and a second heater 340 is installed to be able to advance to the lower region of the mold 160 to heat the upper portion of the cast.
교반유닛(320)은 주형(160)의 외측에 적어도 하나 이상의 교반기를 구비하여 주편의 품질을 향상시키기 위한 장치로서, 주형(160)에 근접 배치되어 주편의 인발방향으로 승하강 가능한 제3 교반기(322)와, 제3 교반기(322)의 하부로 이격되어 구비되고 주편의 인발방향으로 승하강 가능한 제4 교반기(324)를 포함한다. 즉, 교반유닛(320)은 주형(160) 내 용융 상태로 수용된 용강 및 제조된 주편 내 미 응고된 용강 중 적어도 어느 하나를 교반시켜 주편의 조직을 미세화하여 주편의 품질을 증가시킬 수 있다. Stirring unit 320 is a device for improving the quality of the cast steel provided with at least one stirrer on the outside of the mold 160, the third stirrer (close to the mold 160 is possible to move up and down in the drawing direction of the cast steel ( 322 and a fourth stirrer 324 spaced below the third stirrer 322 and capable of lifting up and down in the drawing direction of the cast steel. That is, the stirring unit 320 may increase the quality of the cast steel by agitating at least one of molten steel accommodated in the molten state in the mold 160 and unsolidified molten steel in the manufactured cast steel.
제3 교반기(322)는 도 1에 도시된 바와 같이, 주형(160)의 측면에 소정거리 이격되어 배치되어, 주조 중에는 주형(160) 내 수용된 용강을 교반한다. 그리고 주조가 시작되면 주편과 함께 소정거리 하강하여 주편 내 미응고된 용강을 교반한다. 즉, 제3 교반기(322)는 주형(160)에 용강이 주입되면 주형(160)의 측면에서 용강에 전자기를 흘려주어 용강을 교반하고, 주형(160)내 용강의 주입이 완료되면, 주편과 함께 하부로 하강하면서 주편 내부의 미응고된 용강을 교반할 수 있다. 이때, 제3 교반기(322)로는 전자기 교반장치(EMS; Electro Magnetic Stirrer)가 사용될 수 있다. 이때, 제3 교반기(322)로 사용될 수 있는 전자기 교반장치는 통상적으로 낮은 영역대의 주파수(Hz)를 갖고, 이는 용융상태의 용강을 교반시키기 충분한 주파수이다. As shown in FIG. 1, the third stirrer 322 is spaced apart from the side of the mold 160 by a predetermined distance, and the molten steel contained in the mold 160 is stirred during casting. And when casting is started, the predetermined distance is dropped with the cast steel, and the unsolidified molten steel in the cast steel is stirred. That is, when molten steel is injected into the mold 160, the third stirrer 322 stirs the molten steel by flowing electromagnetic to the molten steel from the side of the mold 160, and when the injection of the molten steel in the mold 160 is completed, While lowering together, the unsolidified molten steel inside the cast can be stirred. In this case, an electromagnetic stirrer (EMS) may be used as the third stirrer 322. At this time, the electromagnetic stirrer that can be used as the third stirrer 322 has a frequency (Hz) of a low range typically, which is a frequency sufficient to stir the molten steel in the molten state.
제4 교반기(324)는 제3 교반기(322)의 하부로 소정거리 이격되어 구비되고 주편의 인발방향으로 승하강하며 주편 내 미 응고된 용강을 교반한다. 이때, 제4 교반기(324)는 응고말기 전자교반장치(FEMS; Final Electro Magnetic Stirrer)가 사용될 수 있다. 제4 교반기(324)는 상대적으로 제3 교반기(322)에 비해 하부에 배치되고, 주편의 응고가 어느정도 진행된 주편의 하부영역(주편의 길이방향을 기준으로 중심에서부터의 하부영역)의 응고부위 내에 존재하는 용강을 교반시켜야 하기 때문에 제3 교반기(322)보다 높은 주파수(Hz)를 갖는 교반 장치가 사용되는 것이 바람직하다. The fourth stirrer 324 is provided below the third stirrer 322 to be spaced a predetermined distance, and descends in the drawing direction of the cast steel and stirs the unsolidified molten steel in the cast steel. In this case, the fourth stirrer 324 may use a final coagulation device (FEMS; Final Electro Magnetic Stirrer). The fourth stirrer 324 is disposed in the lower portion relative to the third stirrer 322, and within the solidification portion of the lower region of the cast steel (the lower region from the center in the longitudinal direction of the cast steel) where the solidification of the cast steel is somewhat advanced. It is preferable to use a stirring device having a higher frequency (Hz) than the third stirrer 322 because the molten steel present must be stirred.
이처럼, 교반유닛(320)은 주형 내 응고 및 주편 내 미응고 용강을 교반함으로써 주편 내 등축정율을 증대시킬 수 있고, 편석 및 공극이 발생하는 것을 감소시킬 수 있다. 한편, 본 발명에서는 제3 교반기(322) 및 제4 교반기(324)가 교반하는 주편의 교반부위 및 교반기들이 승강 및 하강하는 승하강 폭에 대해서는 한정하지 않고, 주조 조건에 따라 그 이동 범위를 다양하게 하여 운용할 수 있다. As such, the stirring unit 320 can increase the equiaxed crystallization in the slab by stirring the solidified and solidified molten steel in the cast, and can reduce the occurrence of segregation and voids. On the other hand, the present invention is not limited to the stirring portion of the slab to which the third stirrer 322 and the fourth stirrer 324 and the stirrer lifting and lowering width in which the stirrers are raised and lowered, the movement range varies depending on the casting conditions Can be operated.
제2 가열기(340)는 주형(160)의 외측에 배치되고, 주형의 직하부 영역(주편의 인발방향 경로)으로 전진 및 후퇴 가능하도록 설치되어 주조된 주편의 상부(테일부)를 가열하기 위한 장치로서, 본 실시 예에서는 유도가열에 의한 방식(유도가열장치; EMH, Electro Magnetic Heater)을 사용하였다. 제2 가열기(340)는 전원의 공급에 의해 유도가열 코일에서 발생되는 전자기를 이용하여 주편의 상부 측면을 간접 가열시키며, 주편의 4방향 측면에서 일정 간격으로 이격되어 둘러쌀 수 있도록 권취된다. 이에, 제2 가열기(340)는 주편의 단면 형상에 대응하는 형상을 갖는 유도코일이 사용되는 것이 바람직하나, 이에 한정되지 않고 다양한 형태로 권취될 수 있다. The second heater 340 is disposed outside the mold 160 and installed to be able to move forward and backward in the immediate lower region (the drawing path of the cast steel) of the mold to heat the upper portion (tail portion) of the cast steel cast. As the device, in the present embodiment, an induction heating method (induction heating device; EMH, Electro Magnetic Heater) was used. The second heater 340 indirectly heats the upper side of the cast using electromagnetic generated from the induction heating coil by the supply of power, and is wound so as to be spaced apart at regular intervals from the four direction sides of the cast. Thus, the second heater 340 is preferably used induction coil having a shape corresponding to the cross-sectional shape of the cast steel, but is not limited to this may be wound in various forms.
한편, 주조부(1a)에는 용강의 주조가 완료된 후 주편을 응고부(1b)로 전달하기 위한 푸쉬어(400)가 구비될 수 있다.On the other hand, the casting unit (1a) may be provided with a pusher 400 for transferring the cast slab to the solidification unit (1b) after the casting of molten steel is completed.
푸쉬어(400)는 주조부(1a)의 측면 중 응고부(1b)와 대향하는 위치에 배치되며, 주편의 측면을 밀어내며 인발기(200)로부터 주편을 분리하여 응고부(1b)쪽으로 주편을 전달하는 장치이다. 이때, 푸쉬어(400)는 일정거리를 왕복 이동할 수 있는 장치가 사용될 수 있으며, 예컨대, 스테핑 모터(stepping motor), 피스톤·실린더기구(actuator), 솔레노이드(solenoid) 등이 사용될 수 있다. 일례로, 푸쉬어(400)로 피스톤·실린더기구를 사용하는 경우, 피스톤이 실린더 내부로 삽탈하며 왕복운동 함으로써, 주편을 응고부(1b)쪽으로 밀어낸 후에 다시 원상태로 복귀할 수 있다. 이때, 주조부(1a)의 주편을 응고부(1b)로 전달하는 장치는 푸쉬어(400)에 한정되지 않고 다양한 장치가 사용될 수도 있다. The pusher 400 is disposed at a position opposite to the solidification portion 1b of the side of the casting portion 1a, and pushes the side of the cast steel to separate the cast steel from the drawer 200 to the solidification portion 1b. It is a device that delivers. In this case, the pusher 400 may be an apparatus capable of reciprocating a predetermined distance, for example, a stepping motor, a piston / actuator, a solenoid, or the like may be used. For example, when the piston cylinder mechanism is used as the pusher 400, the piston is inserted into the cylinder and reciprocated so that the cast can be returned to its original state after being pushed toward the solidification portion 1b. In this case, the apparatus for transmitting the cast piece 1a of the caster 1a to the solidification unit 1b is not limited to the pusher 400, and various devices may be used.
응고부(1b)는 전술한 주조부(1a)로부터 주조된 주편을 응고시키기 위해 주편을 전달받는 곳으로서, 주편의 측면 중 적어도 어느 한 곳에 배치되어 주편을 지지하는 지지부(500)와, 주편의 외측에 구비되어 주편의 응고를 유도시키는 제1 품질제어기(600)를 포함한다. 응고부(1b)는 주조부(1a)로부터 소정거리 이격된 곳에서 주편을 전달받고, 주편의 응고를 완료한 뒤 후공정(예컨대, 단조 또는 압연)으로 주편을 이송시킨다. The solidification portion 1b is a place where the cast steel is received to solidify the cast steel cast from the above-described casting portion 1a. The solidification portion 1b is disposed on at least one of the side surfaces of the cast steel to support the cast steel, and It is provided on the outside includes a first quality controller 600 for inducing solidification of the cast steel. The solidification part 1b receives the cast steel at a predetermined distance from the casting part 1a, transfers the cast steel to a post process (for example, forging or rolling) after the solidification of the cast steel is completed.
지지부(500)는 주편이 응고부(1b)에서 안정적으로 위치할 수 있도록 구비되는 것으로서, 주편의 하부에 접촉배치되는 지지블록(520)과, 주편의 측면 일부를 감싸며 배치되는 지지 프레임(540)을 포함한다. 그러나, 지지부(500)의 구성은 이에 한정되지 않고, 제1 품질제어기(600)의 이동에 방해가 되지 않는 범위 내에서 다양한 장치 및 방법으로 주편을 지지할 수 있다. The support part 500 is provided to allow the cast piece to be stably positioned at the solidification part 1b, the support block 520 disposed in contact with the lower part of the cast piece, and the support frame 540 disposed to surround a part of the side surface of the cast piece. It includes. However, the configuration of the support unit 500 is not limited thereto, and the cast unit may be supported by various apparatuses and methods within a range that does not prevent movement of the first quality controller 600.
지지블록(520)은 주조부(1a)의 정반(220)과 유사한 형상의 블록이 사용된다. 지지블록(520)은 인발방향, 즉, 길이방향으로 응고부(1b)에 배치되는 주편의 하부를 받치는 역할을 한다. The support block 520 may be a block having a shape similar to that of the surface plate 220 of the casting part 1a. The support block 520 serves to support the lower part of the slab disposed in the solidification part 1b in the drawing direction, that is, the longitudinal direction.
지지 프레임(540)은 길이방향으로 배치되는 주편이 넘어지는 것을 억제 및 방지하기 위해서 주편의 측면에 소정거리 이격되어 도 1에 확대 도시된 것처럼, 주편의 측면 일부를 감싸며 배치될 수 있다.The support frame 540 may be disposed to surround a part of the side surface of the cast steel, as shown in FIG. 1 and spaced apart a predetermined distance from the side surface of the cast steel in order to suppress and prevent the slab disposed in the longitudinal direction from falling.
제1 품질제어기(600)는 주편의 외측에 구비되어 주편의 품질을 확보하기 위한 장치로서, 주편의 외측에 근접 배치되어 주편의 길이 방향으로 승하강 가능한 제1 교반기(620)와, 제1 교반기(620)의 하부로 이격되어 구비되고, 주편의 길이방향으로 승하강 가능한 제2 교반기(640) 및 주편의 상부를 가열시키는 제1 가열기(660)를 포함한다. 즉, 자연냉각되는 주편의 응고가 완료되지 않은 상태이기 때문에 제1 품질제어기(600)는 주조부(1a)와 동일 혹은 유사한 장치를 구비하여 주편의 품질향상을 위한 처리 공정을 지속할 수 있다. The first quality controller 600 is provided on the outside of the cast steel to ensure the quality of the cast steel, the first stirrer 620 and the first stirrer disposed close to the outside of the cast steel can be lowered in the longitudinal direction of the cast steel, A second stirrer 640 spaced apart from the lower portion of 620 and capable of lifting up and down in the longitudinal direction of the cast steel and a first heater 660 for heating the upper portion of the cast steel. That is, since the solidification of the naturally cooled cast steel is not completed, the first quality controller 600 may have the same or similar device as the casting part 1a to continue the treatment process for improving the quality of the cast steel.
제1 교반기(620)는 응고부(1b)로 전달된 주편 내에 미응고된 용강을 교반하기 위한 장치로서, 주편으로부터 소정거리 이격되어 배치된다. 제1 교반기(620)는 주조부(1a)의 제3 교반기(322)와 동일하거나 유사한 높이에 배치된 상태에서 주편이 응고부(1b)로 전달되면 하강하여 주편의 측면에 배치될 수 있도록 승하강 가능하도록 설치될 수 있다. 제1 교반기(620)는 주편의 외측 상부에 배치된다. 즉, 주편의 길이방향을 기준으로 주편의 중심보다 상부에 배치된다. 이때, 제1 교반기(620)가 교반시키는 주편의 상부 미응고 영역은 상대적으로 주편의 하부보다 응고가 덜 진행된 상태이므로 주편의 하부영역에 비해 주편 내 미응고된 용강을 다량 포함한다. 이에 제3 교반기(322)와 유사한 전자기 교반장치 (EMS; Electro Magnetic Stirrer)가 사용될 수 있다. The first stirrer 620 is a device for stirring the unsolidified molten steel in the cast steel delivered to the solidification unit 1b, and is disposed spaced apart from the cast steel by a predetermined distance. The first stirrer 620 is lowered to be disposed on the side of the cast when the cast is delivered to the solidification unit (1b) in a state arranged at the same or similar height as the third stirrer (322) of the casting (1a) It can be installed to be descendable. The first stirrer 620 is disposed above the outer side of the cast steel. That is, it is disposed above the center of the cast steel with respect to the longitudinal direction of the cast steel. At this time, the upper unsolidified region of the cast steel to be stirred by the first stirrer 620 is relatively less solidified than the lower portion of the cast steel, and thus includes a large amount of unsolidified molten steel in the cast steel as compared to the lower region of the cast steel. Thus, an electromagnetic stirrer (EMS) similar to the third stirrer 322 may be used.
한편, 제1 교반기(620)는 제3 교반기(322)와 유사한 장치가 사용되나, 제1 교반기(620)와 제3 교반기(322)가 발생하는 주파수의 크기 또는 작동하는 시간은 각각 상이할 수 있다. 즉, 제3 교반기(322)는 주형(160) 내 용강을 교반하거나, 고상화가 진행된 초기의 주편 내부의 용강을 교반하기 때문에 약 1 Hz 이내의 주파수를 적용한다. 이때, 제3 교반기(322)는 주형(160)에 용강이 주입되고 용강이 주편으로 주조되어 응고부(1b)로 이송되기 전까지 작동한다. 제1 교반기(620)는 응고부(1b)로 전달된 주편의 특성상, 주형이 없고 주조부에서 주조된 주편보다 더 두꺼운 응고쉘을 형성하고 있어, 제1교반기(620)의 자장이 두꺼워진 응고쉘을 통과하여 주편내 미응고 용강을 교반하기 위해서는 최대 5Hz의 주파수를 적용하여 주편의 주조가 완료될 때까지 작동한다. 그러나, 주조상황 및 주조조건에 따라 주편의 응고상태는 매우 다양한 형태로 발생하기 때문에, 제3교반기(322) 및 제 1교반기(620)의 적용 주파수는 0~5Hz의 범위에서 다양한 운전 패턴으로 적용될 수 있다. 또한, 도 3d의 응고부(1b)에 위치한 제1 교반기(620)는 응고부(1a)에서 주편을 응고시킬 때 주편내 미응고 용강을 교반하여 주편내 미응고 용강의 온도을 균일하게 함으로써, 제 1가열기(660)가 주편의 상부 측면을 가열하여 주편의 상부가 선응고 되는 것을 방지 하여 주편내 파이프 결함을 저감 시킬 때 매우 효율적으로 작용 될 수 있다. 마찬가지로, 도 3f의 주조부(1a)에 위치한 제 3교반기(322)는 주조부(1a)에서 주편을 응고시킬 때 주편내 미응고 용강을 교반하여 주편내 미응고 용강의 온도을 균일하게 함으로써, 제 2가열기가 주편의 상부 측면을 가열하여 주편의 상부가 선응고 되는 것을 방지 하여 주편내 파이프 결함을 저감 시킬 때 매우 효율적으로 작용 될 수 있다.On the other hand, the first stirrer 620 is a device similar to the third stirrer 322 is used, but the magnitude or frequency of operating time of the frequency generated by the first stirrer 620 and the third stirrer 322 may be different, respectively. have. That is, the third stirrer 322 applies a frequency within about 1 Hz because it stirs the molten steel in the mold 160 or stirs the molten steel in the initial cast where the solidification proceeds. At this time, the third stirrer 322 is operated until the molten steel is injected into the mold 160 and the molten steel is cast as a cast and transferred to the solidification part 1b. The first stirrer 620 is solidified shell having no mold and thicker than the cast steel cast in the casting part, due to the characteristics of the cast steel delivered to the solidifying unit (1b), the magnetic field of the first stirrer 620 is thickened solidification To agitate the unsolidified molten steel in the slab through the shell, operate at a frequency of up to 5 Hz until the casting is completed. However, since the solidification state of the cast steel occurs in a variety of forms according to the casting conditions and casting conditions, the application frequency of the third stirrer 322 and the first stirrer 620 is applied in various operating patterns in the range of 0 ~ 5Hz Can be. In addition, the first stirrer 620 located in the solidification portion 1b of FIG. 3D may stir the unsolidified molten steel in the slab to uniform the temperature of the unsolidified molten steel in the slab when the solidification portion 1a solidifies the slab. The first heater 660 heats the upper side of the cast steel to prevent the top of the cast from pre-solidification can be very effective when reducing the pipe defects in the cast. Similarly, the third stirrer 322 located in the casting part 1a of FIG. 3F stirs the unsolidified molten steel in the slab when the casting part 1a solidifies, thereby making the temperature of the unsolidified molten steel in the slab uniform. The two-heater heats the upper side of the cast steel, preventing the top of the cast from presolidifying, which can be very efficient when reducing pipe defects in the cast.
제2 교반기(640)는 제1 교반기(620)의 하부로 소정거리 이격되어 구비되고 주편의 길이방향으로 승하강 가능하도록 설치되어 주편 내 미응고된 용강을 교반한다. 즉, 제2 교반기(640)는 주편의 길이방향을 기준으로 주편의 중심보다 하부에 배치되고, 일정시간 동안 응고가 진행된 주편 외측 하부영역 내 미응고된 용강을 교반시키기 위해 제4 교반기(324)와 유사한 응고말기 전자교반장치(FEMS; Final Electro Magnetic Stirrer)가 사용될 수 있으나, 제2 교반기(640)와 제4 교반기(324)가 발생하는 주파수의 크기 또는 작동하는 시간은 각각 상이할 수 있다. 즉, 제4 교반기(322)는 주조부(1a)에서 응고가 진행되고 있는 주편내 미응고 용강을 교반하기 위해 최대 3 Hz 이내의 주파수를 적용한다. 이때, 제4 교반기(324)는 주조부(1a)에서 주조된 주편이 응고부(1b)로 이송되기 전까지 작동한다. 제2 교반기(640)는 응고부(1b)로 전달된 주편의 특성상, 주조부에서 주조된 주편보다 두꺼운 응고쉘을 형성하고 있어, 최대 6Hz의 주파수를 적용하여 주편의 주조가 완료될 때까지 작동한다. 그러나, 주조상황 및 주조조건에 따라 주편의 응고상태는 매우 다양한 형태로 발생하기 때문에, 제4교반기(324) 및 제 2교반기(600)의 적용 주파수는 0~6Hz의 범위에서 다양한 운전 패턴으로 적용될 수 있다.The second stirrer 640 is provided to be spaced apart from the lower portion of the first stirrer 620 by a predetermined distance and is installed to be able to move up and down in the longitudinal direction of the cast steel to stir the unsolidified molten steel in the cast steel. That is, the second stirrer 640 is disposed below the center of the cast steel with respect to the longitudinal direction of the cast steel, and the fourth stirrer 324 to stir the unsolidified molten steel in the outer lower region of the cast steel where solidification has been performed for a predetermined time. Similar to the final coagulation device (FEMS; Final Electro Magnetic Stirrer) may be used, the magnitude of the frequency or the operating time of the second stirrer 640 and the fourth stirrer 324 may be different. That is, the fourth stirrer 322 applies a frequency within a maximum of 3 Hz in order to stir the unsolidified molten steel in the slab in which the solidification is progressing in the casting part 1a. At this time, the fourth stirrer 324 operates until the cast steel cast from the casting part 1a is transferred to the solidification part 1b. The second stirrer 640 forms a solidifying shell thicker than the cast steel cast in the casting part due to the characteristics of the cast steel delivered to the solidifying part 1b, and operates until the casting of the cast steel is completed by applying a frequency of up to 6 Hz. do. However, since the solidification state of the cast steel occurs in a variety of forms according to the casting conditions and casting conditions, the application frequency of the fourth stirrer 324 and the second stirrer 600 is applied in various operating patterns in the range of 0 ~ 6Hz Can be.
한편, 본 실시예에서는 제1 교반기(620)와 제2 교반기(640)가 복수로 구비되어 각각 주편의 상이한 영역 내의 미응고된 용강을 교반시키는 것으로 나타나 있으나, 응고부(1b)에서 주편 내 미응고 용강을 교반하는 장치 및 방법은 이에 한정되지 않는다. 즉, 하나의 교반기가 구비되고 교반기의 주파수가 변경되면서 주편의 상부에서 하부까지의 전영역을 교반시킬 수 있는 다양한 방법 및 장치의 형상으로 변경될 수 있다. On the other hand, in the present embodiment, the first stirrer 620 and the second stirrer 640 are provided with a plurality to stir the unsolidified molten steel in different areas of the cast steel, respectively, but in the slab in the solidified portion (1b) The apparatus and method for stirring the solidified molten steel is not limited thereto. That is, one stirrer may be provided and the shape of various methods and apparatuses capable of stirring the entire region from the upper side to the lower side of the slab may be changed while the frequency of the stirrer is changed.
이처럼, 제1 교반기(620)와 제2 교반기(640)는 응고부(1b)로 전달된 주편이 응고가 완료될 때까지 용강을 교반함으로써 주조부(1a)의 교반유닛(320)과 마찬가지로 주편 내 등축정율을 증대시킬 수 있고, 편석 및 공극이 발생하는 정도를 감소시켜 주편의 품질을 증가시킬 수 있다. As described above, the first stirrer 620 and the second stirrer 640 stir the molten steel until the slab transferred to the solidification part 1b is solidified, similarly to the stirring unit 320 of the casting part 1a. It is possible to increase the equiaxed crystal yield and to reduce the degree of segregation and voids to increase the quality of the cast.
한편, 본 발명에 적용된 제3교반기(322) 및 제1교반기(620)는 기존의 연속주조기에서 적용된 주형보다 대폭 증가된 사이즈가 적용되어, 주형내 용강의 균일한 교반력 확보를 위해, 주형(160)의 주위 또는 주편의 주위에 권취된 코일을 원형으로 배치하여 주형 내 또는 주편 내 미응고 용강에 회전형태의 교반을 실시하여 균일한 교반력이 확보되도록 하였다.On the other hand, the third stirrer 322 and the first stirrer 620 applied to the present invention is applied to a significantly increased size than the mold applied in the existing continuous casting machine, in order to secure a uniform stirring force of the molten steel in the mold, The coil wound around or around the cast steel in a circular shape was disposed in a circular shape so as to perform rotational stirring on the non-solidified molten steel in the mold or the cast steel to ensure a uniform stirring force.
제1 가열기(660)는 주편의 외측에서, 주편의 상부를 가열하기 위해 주편의 직상부 영역으로 전진 및 후퇴 가능하도록 설치되어 응고부(1b)로 전달된 주편의 상부(테일부)를 가열하기 위한 장치이다. 제1 가열기(660)는 장치의 구성 및 효과가 전술한 제2 가열기(340)와 유사함으로써 자세한 설명은 생략하기로 한다. The first heater 660 is installed so as to be able to move forward and backward from the outer side of the cast steel to the upper region of the cast steel so as to heat the upper portion of the cast steel to heat the upper portion (tail portion) of the cast steel delivered to the solidification portion 1b. It is a device for. Since the first heater 660 is similar in configuration and effect to the second heater 340 described above, a detailed description thereof will be omitted.
전술한 주조 설비(1)에는 주조부(1a)에서 응고부(1b)로 주편을 이송시키고, 응고부(1b)로부터 응고부(1b) 외부, 즉, 후공정으로 주편을 이송시키는 이송기가 구비될 수 있다. The above-described casting facility 1 is provided with a conveyor for transferring the cast from the casting portion 1a to the solidification portion 1b, and transferring the cast steel from the solidification portion 1b to the outside of the solidification portion 1b, that is, a post process. Can be.
이송기(700)는 응고부(1b)의 일측에 배치되어, 주조부 또는 응고부쪽으로 진퇴 가능하도록 형성되어, 주편을 이송하기 위한 장치이다. 이송기(700)는 주조부(1a)에서 주편에 접촉하여 주편을 틸팅시키거나 주편을 주조부(1a)로부터 응고부(1b)로 운반하기 위한 틸팅부(720)와, 틸팅부(720)의 동작을 제어하는 구동부(740)를 포함한다. The conveyer 700 is disposed on one side of the solidification portion 1b and is formed to be capable of moving forward and backward to the casting portion or the solidification portion, and is an apparatus for transferring the cast steel. The feeder 700 is in contact with the cast in the cast (1a) to tilt the cast or to move the cast from the cast (1a) to the solidifying portion (1b) and the tilting portion 720, the tilting portion 720 It includes a driver 740 for controlling the operation of.
틸팅부(720)는 주편의 일측에 배치되고, 구동부에 의해 틸팅되거나 전후진하며 주편을 이동시키는 것으로서, 응고부(1b)의 지지블록(520)을 연결하여 주편을 이송한다. 즉, 틸팅부(720)의 일측에 주편을 지지하는 지지블록(520)이 연결되고 지지블록(520) 상에 주편이 배치되어 주편을 주조부(1a)에서 응고부(1b)로 이송할 수 있다. 틸팅부(720)는 응고부(1b)에서 응고부 외부로 주편을 이송시킬 때에는, 틸팅부(720)의 일측에 주편이 접촉한 상태에서 틸팅부(720)가 기울어 지고, 이송방향으로 배치된 틸팅부 상에 주편이 안착하도록 할 수 있다. 이때, 틸팅부(720)와 주편이 접촉하는 측면에는 주편의 이송을 용이하게 하기 위하여 롤러(725)가 장착될 수도 있다. The tilting unit 720 is disposed on one side of the cast steel, and is tilted or moved back and forth by the driving unit to move the cast steel, and connects the support block 520 of the solidification unit 1b to transfer the cast steel. That is, a support block 520 for supporting the cast steel is connected to one side of the tilting unit 720 and the cast steel is disposed on the support block 520 to transfer the cast steel from the casting portion 1a to the solidification portion 1b. have. When the tilting part 720 is transferred from the coagulation part 1b to the outside of the coagulation part, the tilting part 720 is inclined in the state in which the slab is in contact with one side of the tilting part 720 and is disposed in the conveying direction. The cast steel may be seated on the tilting portion. At this time, the roller 725 may be mounted on the side in contact with the tilting unit 720 and the cast steel to facilitate the transfer of the cast steel.
구동부(740)는 틸팅부(720)의 동작을 제어하는 것으로서, 틸팅부(720)가 전진 및 후진하며 주조부(1a)와 가까워지거나 멀어지도록 할 수 있다. 또한, 구동부(740)는 틸팅부(720)가 기울어지도록 하여 틸팅부(720)와 주편을 후공정으로 안내하는 롤러테이블(800)과 연통하도록 할 수 있다. 이때, 구동부(740)는 주조부(1a)의 푸쉬어(400)와 같이 일정거리를 왕복 이동할 수 있는 장치가 사용될 수 있고, 예컨대, 피스톤·실린더기구를 사용하는 경우, 피스톤의 일단에 틸팅부(720)가 각도 조절이 가능하도록 연결될 수 있다. The driving unit 740 controls the operation of the tilting unit 720, and the tilting unit 720 may move forward and backward and move closer to or away from the casting unit 1a. In addition, the driving unit 740 may be in communication with the roller table 800 for guiding the tilting unit 720 and the slab to a later process by tilting the tilting unit 720. In this case, the driving unit 740 may be a device capable of reciprocating a predetermined distance, such as the pusher 400 of the casting unit 1a, for example, when using a piston cylinder mechanism, the tilting unit at one end of the piston 720 may be connected to enable the angle adjustment.
이와 같이, 본 실시예에서는 주편을 이송시키는 이송기(700)로 상기와 같은 방법 및 장치를 사용하였으나, 이송기(700)에 사용되는 장치 및 작동방법은 이에 한정되지 않고, 주조부(1a)에서 응고부(1b)로 주편을 이송하거나 응고부(1b)에서 후공정으로 주편을 이송할 때에 주편을 용이하게 이송할 수 있는 다양한 장치 및 방법이 사용 가능하다.As described above, in the present embodiment, the above method and apparatus are used as the feeder 700 for transferring the cast steel, but the apparatus and the operating method used in the feeder 700 are not limited thereto, and the casting part 1a is provided. Various apparatuses and methods capable of easily transferring the slab when transferring the slab from the coagulation unit 1b or from the coagulation unit 1b to a post process are available.
이하에서는 전술한 주조 설비를 이용한 주조 방법에 대해 설명한다.Hereinafter, the casting method using the above-described casting equipment will be described.
도 2를 참조하면, 본 발명의 실시 예에 따른 주조 방법은, 용강을 마련하여 주조를 준비하는 과정과, 용강이 경유하는 통로를 개방 및 폐쇄 가능하게 하는 주조부에서 용강을 주조하는 과정, 주조를 통해 제작된 주편을 응고부로 이송시키는 과정을 포함한다.Referring to Figure 2, the casting method according to an embodiment of the present invention, the process of preparing the casting by preparing molten steel, the process of casting the molten steel in the casting to enable the opening and closing of the passage through the molten steel, casting It includes the process of transporting the produced cast through the solidification unit.
먼저, 정련이 완료된 용강은 래들(120)에 수용된 후, 주조를 시작하기 위해 주조부로 이송된다. 주조부로 이송된 용강은 래들(120)로부터 턴디쉬(140)로 공급된 후, 턴디쉬(140) 내에서 일정시간 개재물의 부상분리 후 주형으로 주입함으로써 주조부(1a)의 공정을 수행된다(S100). 이때, 도3a에 도시된 것처럼, 주형 내에 정반(220)이 위치시켜 주형(160)에 주입된 용강이 외부로 배출되는 것을 차단한 상태한 상태로 주조 준비를 완료한다(S120). First, the molten steel after the refining is received in the ladle 120, and then transferred to the casting to start casting. The molten steel transferred to the casting part is supplied to the tundish 140 from the ladle 120, and then a process of the casting part 1a is performed by injecting the molten steel into the mold after the floating separation of the inclusions in the tundish 140 for a predetermined time ( S100). At this time, as shown in Figure 3a, the surface plate 220 is placed in the mold to complete the casting preparation in a state in which the molten steel injected into the mold 160 is blocked from being discharged to the outside (S120).
주조의 준비가 완료된 후, 도3b와 같이, 인발기(200)가 작동하여 정반(220)을 아래로 하강시키고, 정반(220)과 연결된 주편(S1)이 하부로 인발되면서 주조가 시작되면서 주편이 생산된다(S140). 이때, 주조가 시작되기 전, 제3 교반기(322)를 작동시켜 주형 내의 용강을 교반시킨다. 생산되는 주편은 최대 두께 800㎜, 최대 폭 2000㎜의 크기로 제작되고, 분당 0.3m 이하의 주속으로 주조된다. 이는 극후강재의 특성상 두께가 증가된 최종 제품을 얻기 위해 주편의 두께가 증가된 주형(160)을 사용하여야 하며, 분당 0.3m의 낮은 주속으로 주조되는 이유는 두께가 두꺼운 극후강재용 주편은 응고속도가 일반 주편과 달리 더디기 때문에 낮은 주속으로 주조하여 편석 등의 발생을 억제하여 내부품질을 확보하고, 주조하는 동안 충분한 두께의 응고쉘을 확보하는 것이 필요하기 때문이다.After the preparation of the casting is completed, as shown in Figure 3b, the drawer 200 is operated to lower the surface plate 220, and casting starts as the cast (S 1 ) connected to the surface plate 220 is drawn to the bottom Cast steel is produced (S140). At this time, before the casting is started, the third stirrer 322 is operated to stir the molten steel in the mold. The cast steel produced is manufactured to a maximum thickness of 800 mm and a maximum width of 2000 mm, and cast at a casting speed of 0.3 m or less per minute. It is necessary to use the mold 160 with increased thickness of the cast steel to obtain the final product with increased thickness due to the characteristics of the ultra-thin steel, and the reason for casting at a low casting speed of 0.3 m / min is that the thick steel cast steel has a solidification rate. It is necessary to secure the internal quality by suppressing the occurrence of segregation by casting at a low circumferential speed to ensure the internal quality, and to secure a solidified shell of sufficient thickness during casting.
주조가 진행되는 동안, 제3 교반기(322)는 지속적으로 주형 내 용강을 교반시키고 주편의 두께가 두꺼운 특성상 주편 내부에 미응고된 용강은 제4 교반기(324)를 통해 지속적으로 교반되며 응고가 진행된다. 이처럼, 제3 교반기(322) 및 제4 교반기(324)는 용강을 지속적으로 교반함으로써 주편의 조직을 미세화할 수 있어 주편의 품질을 향상시킬 수 있고, 주편의 등축정율도 향상시킬 수 있다.While casting is in progress, the third stirrer 322 continuously stirs the molten steel in the mold, and the molten steel that is not solidified inside the cast steel is continuously stirred through the fourth stirrer 324 due to the thick thickness of the cast steel and the solidification proceeds. do. As described above, the third stirrer 322 and the fourth stirrer 324 can refine the structure of the cast steel by continuously stirring the molten steel, thereby improving the quality of the cast steel and improving the equiaxed crystallinity of the cast steel.
주조부(1a)에서 주조가 완료되면(S160), 주조부(1a)에 위치한 주편(S1)은 푸쉬어(400)에 의해 정반에서 분리되고 이송기(700)에 지지되어 응고부로 이동한다(S200). 이때, 주편(S1)은 푸쉬어(400)에 의해 미는 힘을 전달받았을 때, 변형되지 않을 정도로 표면의 응고가 진행된 상태에서 응고부(1b)로 이송될 수 있다. 한편, 주조부(1a)에서 상하부로 이동하며 주편을 응고하는 교반유닛(320)은 주편(S1)의 이송에 방해가 되지 않도록 원위치로 복귀한다. When casting is completed in the casting part 1a (S160), the cast steel S 1 located in the casting part 1a is separated from the surface plate by the pusher 400 and supported by the conveyor 700 to move to the solidification part. (S200). At this time, when the cast (S 1 ) is received by the pushing force by the pusher 400, it may be transferred to the solidification unit (1b) in the state that the solidification of the surface to the extent that it does not deform. On the other hand, the stirring unit 320 moving from the casting portion (1a) to the upper and lower solidification of the cast steel is returned to its original position so as not to interfere with the transfer of the cast steel (S 1 ).
주편이 응고부(1b)로 이송된 후, 응고부(1b)의 공정(S300)은 주편(S1)의 응고를 최종적으로 완료시키는 공정이 진행된다. 즉, 주편(S1)이 응고부(1b)에서 응고됨으로써 주조부(1a)에서는 주조의 공정이 진행될 수 있다. 주편(S1)의 응고가 시작되면 응고부(1b)에 구비되는 제1 품질제어기(600)가 본래의 위치에서 하강하거나 상승하여 주편의 외측면에 이격되어 배치된다. 즉, 도 3d에 도시된 것처럼, 제1 교반기(620)와 제2 교반기(640)는 주편(S1)내부에 미응고된 용강을 교반하기 위해 주편의 외측면에 배치되어 주편(S1)의 응고가 완료될 때까지 작동한다. After the cast piece is transferred to the solidification part 1b, the process (S300) of the solidification part 1b progresses a process of finally completing the solidification of the slab S 1 . That is, since the cast (S 1 ) is solidified in the solidification unit 1b, the casting process may proceed in the casting unit 1a. When the solidification of the cast steel (S 1 ) is started, the first quality controller 600 provided in the solidified portion (1b) is disposed to be spaced apart from the outer surface of the slab to descend or rise at the original position. That is, as illustrated in 3d, a first agitator 620, a second agitator 640 is disposed in the main outer surface of convenience for stirring the non-solidified molten steel inside the cast steel (S 1), the cast steel (S 1) It will work until the coagulation is complete.
그리고, 주편을 응고시키는 과정에 있어, 제1 가열기(660)는 각각의 영역 내에서 주편의 상부를 간접가열하고, 이에 따라 주편 상부의 측면에서 열이 방출되는 것을 최대한 억제되면서 주편 상부가 응고되도록 한다. 이는 주편 상부 측면을 간접 가열시켜 주편의 상부의 미 응고된 부위가 선 응고 되는 것을 억제 또는 방지할 수 있어 파이프와 같은 응고 수축 결함을 최소화시킬 수 있다. 이에 주편 상부의 실수율을 향상시켜 최종적인 주편의 실수율을 증가시킬 수 있다. In the process of solidifying the cast steel, the first heater 660 indirectly heats the upper portion of the cast steel in each region, so that the upper portion of the cast steel is solidified while suppressing the release of heat from the side of the upper portion of the cast steel. do. This may indirectly heat the upper side of the cast steel to inhibit or prevent presolidification of unsolidified areas of the upper portion of the cast, thereby minimizing solidification shrinkage defects such as pipes. Therefore, the error rate of the upper part of the cast can be improved to increase the error rate of the final cast.
이처럼, 응고부(1b)에서 주편의 응고가 완료(S340)되면, 도 3e에 도시된 것처럼, 이송기(700)의 틸팅부(720)에 의해서 주편이 기울어지며, 이송기(700)의 틸팅부(720)는 이송기(700)의 근방에 배치되는 롤러테이블(800)과 연통되고, 주편은 롤러테이블(800)을 따라 후공정으로 이송(S360)된다. As such, when the solidification of the cast in the solidification unit 1b is completed (S340), as shown in Figure 3e, the slab is inclined by the tilting unit 720 of the feeder 700, the tilting of the feeder 700 The unit 720 communicates with the roller table 800 disposed in the vicinity of the feeder 700, and the cast steel is transferred to the post process along the roller table 800 (S360).
이처럼, 도 3a ~ 도 3f의 과정의 반복은 횟수에 한정되지 않고 반복적으로 가능하다. 즉, 도 2의 (b)에 도시된 바와 같이, 주조부(1a)의 공정이 완료된 후, 주편(S1)이 응고부로 이동하여 응고부 공정(주편 응고과정)을 수행하는 동안 주조부(1a)에서는 주조부(1a)의 공정이 재진행되어 또 다른 주편(S2)을 생산하며 원하는 수량을 얻을 때까지 반복 가능하다. As such, the repetition of the process of FIGS. 3A to 3F is not limited to the number of times but may be repeatedly. That is, as shown in (b) of FIG. 2, after the process of the casting part 1a is completed, the cast part (S 1 ) moves to the solidification part to perform the casting part (the solidification process) during the solidification part process (casting solidification process). In 1a), the process of the casting part 1a is re-produced to produce another cast (S2) and repeatable until a desired quantity is obtained.
이와 같은 과정을 반복한 뒤, 더 이상 주조부(1a)의 공정이 진행되지 않을 경우, 즉, 도 3e의 주편(S2)이 응고부(1b)로 이송된 후 주조부(1a)에서 마지막 주편(Se)가 생산되었을 때, 주조부(1a)의 주편(Se)은 응고부(1b)로 이송되지 않고 주조부(1a)에서 응고를 완료할 수 있다. 즉, 주조부(1a)에 구비된 제2 품질제어기(300)를 이용하여 주편(Se)의 응고를 완료한 뒤 후공정으로 이송할 수 있다(S360). 이때, 주조부(1a)의 제2 가열기(340)가 주편(Se)의 상부를 간접가열하며 응고부(1b)의 제1 가열기(660)의 역할을 수행할 수 있다. 그러나, 마지막으로 생산된 주편(Se)은 이전에 생산된 주편(S1, S2)과 마찬가지로 응고부(1b)로 이송된 후에 응고과정을 완료한 뒤 후공정으로 이송할 수도 있다. 이에, 마지막 주편(Se)이 응고되는 위치에 대해서는 한정하지 않는다. After repeating the above process, if the process of the casting unit 1a is no longer progressed, that is, the cast steel (S2) of Figure 3e is transferred to the solidification unit (1b) after the last cast in the casting unit (1a) When Se is produced, the slab Se of the casting part 1a is not transferred to the solidification part 1b, and solidification can be completed in the casting part 1a. That is, by using the second quality controller 300 provided in the casting part (1a) can be transferred to the post-process after completing the solidification of the cast (Se) (S360). In this case, the second heater 340 of the casting part 1a may indirectly heat the upper portion of the slab Se and serve as the first heater 660 of the solidification part 1b. However, the last produced cast (Se) may be transferred to the post-process after completing the solidification process after being transferred to the coagulation unit (1b) like the previously produced cast (S 1 , S 2 ). Therefore, the position where the last cast (S e ) is solidified is not limited.
이하, 실험 예를 통하여 본 발명의 효과를 보다 구체적으로 살펴보기로 한다.Hereinafter, the effects of the present invention will be described in more detail through experimental examples.
[표 1]은 극후강재를 생산하기 위한 다양한 공정조건에서의 주편 두께의 변화 및 최종적으로 생산된 주편의 실수율의 결과를 나타낸다. [Table 1] shows the results of the change in the thickness of the cast steel under various process conditions for producing the ultra-thick steel materials and the error rate of the finally produced cast steel.
표 1
주편두께(㎜) 실수율 (%)
초기 중기 말기
비교예1 1500 300 178 52
비교예2 450 - 150 95
실시예 800 300 178 89
Table 1
Cast thickness (mm) Real rate (%)
Early Mid-term last period
Comparative Example 1 1500 300 178 52
Comparative Example 2 450 - 150 95
Example 800 300 178 89
여기서, 초기의 주편 두께는 주조 완료된 주편에 별도의 후 공정이 수행되지 않았을 때의 주편의 두께를 나타낸다. 또한, 중기의 주편 두께는 주편을 두들기거나 누르는 단조공정 후의 주편 두께를 나타내며, 말기의 주편 두께는 압연공정 후의 주편 두께를 나타낸다. Here, the initial thickness of the cast steel represents the thickness of the cast steel when no separate post-process is performed on the cast slab. In addition, the slab thickness in the middle stage represents the thickness of the slab after the forging step of tapping or pressing the slab, and the thickness of the slab in the final stage represents the thickness of the slab after the rolling process.
[표 1]에 도시된 각각의 주편(비교예1, 비교예2, 실시예)은 주조공정을 거친 후, 단조 및 압연 공정 중 적어도 어느 하나를 행한 뒤에 최종적으로 극후강재용 주편으로 생산된 주편이며, [표 1]로부터 다음과 같은 결과를 확인할 수 있다. Each cast (Comparative Example 1, Comparative Example 2, Example) shown in Table 1 after the casting process, after performing at least one of the forging and rolling process, finally produced cast steel for the ultra-thick steel cast From Table 1, the following results can be confirmed.
[비교예1]Comparative Example 1
비교예1의 주편은 잉곳 공정을 통해 제작된 주편으로서, 용강을 주형에 공급하여 냉각시켜 얻을 수 있다. 이처럼 생산된 주편은 1500㎜의 초기 두께를 갖는다. 이후에, 극후강재용 두께로 형성하기 위해 단조 공정 및 압연 공정을 거친 후 최종적으로 178㎜의 두께를 갖는다. 그러나, 전체 실수율은 52%로 낮은 값을 갖는 것을 확인할 수 있다. The cast steel of Comparative Example 1 is a cast steel produced through an ingot process, and can be obtained by supplying molten steel to the mold and cooling it. The cast thus produced had an initial thickness of 1500 mm. Thereafter, after the forging process and the rolling process to form a thickness for the ultra-thick steel material, and finally has a thickness of 178mm. However, it can be seen that the overall error rate has a low value of 52%.
[비교예2]Comparative Example 2
비교예2의 주편은 일반적인 주조 설비를 통해 제작된 슬라브 주편으로서, 제강로에서 공급된 용강을 주형에 연속적으로 주입하고 응고시키는 방식으로 제작될 수 있다. 이처럼 생산된 주편은 실수율이 95%로 매우 높은 값을 갖는다. 그러나, 일반적으로 사용되는 주조 설비는 초기 주편의 두께가 450㎜로 제작되기 때문에 압연 공정을 완료한 후의 두께가 150㎜를 갖는다. 이에, 극후강재용으로 주편을 사용시 150㎜의 두께가 한정되는 것을 확인할 수 있다. The slab of Comparative Example 2 is a slab slab produced through a general casting facility, it can be produced by continuously injecting and solidifying molten steel supplied from the steelmaking furnace into the mold. The cast steel thus produced has a very high real value of 95%. However, the casting equipment generally used has a thickness of 150 mm after completing the rolling process because the thickness of the initial cast is produced to 450 mm. Thus, it can be seen that the thickness of 150mm is limited when using the cast steel for the ultra-thick steel.
[실시예]EXAMPLE
실시예의 주편은 본 발명의 실시 예에 따른 주조 설비를 통해 제작된 주편으로서, 최대 800mm의 두께와 2000㎜의 폭을 갖는 주형을 통해 주편이 제작된다. 이에, 실시예의 주편은 초기 두께 800㎜로 생산되고 단조 및 압연 공정을 거친 후 최종적으로 178㎜의 두께를 갖는 것을 확인할 수 있다. 그리고, 실시예의 주편은 주조 설비가 주조부 및 응고부로 분리되어 응고부에서 주편의 상부 선응고를 방지하기 위한 공정을 수행함으로써, 주편의 실수율이 89%를 갖는 것을 확인할 수 있다.The cast of the embodiment is a cast made through the casting facility according to an embodiment of the present invention, the cast is produced through a mold having a thickness of up to 800mm and a width of 2000mm. Thus, it can be seen that the cast steel of the embodiment is produced with an initial thickness of 800 mm, and after the forging and rolling process, finally has a thickness of 178 mm. In addition, in the cast steel of the embodiment, the casting equipment is separated into a casting part and a solidification part, and a process for preventing the pre-solidification of the upper part of the casting part in the solidification part, it can be confirmed that the real rate of the cast steel has 89%.
이처럼, 실시예의 주편은 비교예1의 주편에 비해 약 40% 정도의 실수율이 대폭 상향되고, 비교예2의 주편에 비해 극후강재용 주편에 적합한 두께를 갖는다. 즉, 실시예의 설비를 이용하여 생산되는 주편은 잉곳 주조 및 종래의 연속 주조를 통해 생산된 주편의 문제점을 해결할 수 있다. As described above, the slab of the Example has a substantially higher rate of error of about 40% compared to the slab of Comparative Example 1, and has a thickness suitable for the cast steel for ultra-thick steel compared to the slab of Comparative Example 2. That is, the cast steel produced using the equipment of the embodiment can solve the problems of the cast steel produced through ingot casting and conventional continuous casting.
또한, 실시 예에 따라 제작된 극후강재는 육안으로 확인할 수 있는 표면결함(예컨대, 코너크랙)이 관찰되지 않았으며, 마크로 품질도 주편 내 용강 교반기의 적용으로 등축정율 100%를 달성하여 주편 내부에 발생하는 편석은 관찰되지 않았다. 따라서, 본 발명의 실시 예가 적용되어 생산된 극후강재의 품질이 향상된 것을 확인할 수 있다. In addition, the ultra-thick steel material produced according to the embodiment did not observe surface defects (eg, corner cracks) that can be visually observed, and the macro quality was also achieved by applying molten steel stirrer in the slab to achieve 100% isotropic rate. Occurrence of segregation was not observed. Therefore, it can be seen that the quality of the ultra-thick steel produced by applying the embodiment of the present invention is improved.
상술한 바와 같이, 본 발명의 실시 예에 따르면, 연속주조설비를 주조부와 응고부로 나뉘어 주조부에서 주조가 완료된 주편이 응고부로 이송되고, 응고부에서 주편의 응고가 완료된 후 후공정으로 이송됨으로써 극후강재의 제조가 용이하고 최종적으로 생산되는 주편의 품질과 실수율을 향상시킬 수 있다. As described above, according to an embodiment of the present invention, the continuous casting equipment is divided into a casting part and a solidification part, the cast is completed in the casting part is transferred to the solidification part, and after the solidification of the cast in the solidification part is transferred to the post-process It is easy to manufacture ultra-thick steel and can improve the quality and error rate of the final cast.
더욱 상세하게는, 주조부에서 제작된 주편을 응고부로 이송시킨 뒤, 응고부에서 제1 품질제어기를 통해 주편의 응고를 완료시키고 주편 상부의 선응고를 억제 또는 방지하여 파이프의 형성을 감소시킴으로써 주편의 품질을 향상시킬 수 있다. 이에, 주편의 품질 향상으로 인해 잉곳주조의 문제점인 불건전부위 절단을 수행하지 않기 때문에 주편의 실수율을 향상시킬 수 있다. More specifically, after casting the cast from the casting portion to the solidification unit, the solidification unit to complete the solidification of the cast through the first quality controller and to suppress or prevent the pre-solidification of the upper portion of the cast to reduce the formation of the pipe It can improve the quality of the convenience. As a result, due to the improvement of the quality of the cast, it is possible to improve the error rate of the cast because it does not perform unhealthy part cutting which is a problem of ingot casting.
또한, 주편이 응고부로 이송된 후 응고부에서 응고되는 동안, 주조부에서는 후기 주편을 주조할 수 있기 때문에 종래의 잉곳 주조등 배치공정의 문제점을 해결할 수 있다. 이에, 결과적으로 주편의 생산성을 증가시킬 수 있다. 그리고 주조공정의 마지막에 생산되는 주편은 응고부로 이송되지 않고, 주조부에 구비된 제2 품질제어기를 통해 응고를 완료시킬 수 있다. 이에, 공정의 효율성을 증가시킬 수 있다. In addition, while the cast is transferred to the solidification portion, while the solidification in the solidification portion, the casting portion can be cast in the later cast iron can solve the problem of the conventional batch process such as ingot casting. As a result, it is possible to increase the productivity of the cast steel. And the cast slab produced at the end of the casting process is not transferred to the solidification unit, it is possible to complete the solidification through the second quality controller provided in the casting unit. Thus, the efficiency of the process can be increased.
본 발명을 첨부 도면과 전술된 바람직한 실시 예를 참조하여 설명하였으나, 본 발명은 그에 한정되지 않으며, 후술 되는 특허청구범위에 의해 한정된다. 따라서, 본 기술분야의 통상의 지식을 가진 자라면 후술 되는 특허청구범위의 기술적 사상에서 벗어나지 않는 범위 내에서 본 발명을 다양하게 변형 및 수정할 수 있다.Although the invention has been described with reference to the accompanying drawings and the preferred embodiments described above, the invention is not limited thereto, but is defined by the claims that follow. Accordingly, one of ordinary skill in the art may variously modify and modify the present invention without departing from the technical spirit of the following claims.
S : 주편 1 : 주조 설비S: Casting 1: Casting Equipment
1a : 주조부 1b : 응고부 1a: casting part 1b: solidification part
100 : 수용부 200 : 인발기100: accommodating part 200: drawing machine
300 : 제2 품질제어기 320 : 교반유닛300: second quality controller 320: stirring unit
340 : 제2 가열기 400 : 푸쉬어340: second heater 400: pusher
500 : 지지부 600 : 제1 품질제어기500: support portion 600: first quality controller
620 : 제1 교반기 640 : 제2 교반기620: first stirrer 640: second stirrer
660 : 제1 가열기 700 : 이송기660: first heater 700: feeder

Claims (15)

  1. 용강이 경유하는 통로를 형성하고, 상기 용강을 주편으로 주조하기 위한 주조부 및A casting part for forming a passage through which molten steel passes and casting the molten steel into cast steel;
    상기 주조부에 이격되어 배치되며 상기 주조부로부터 주편을 전달받고, 상기 주편의 측면 중 적어도 어느 한 곳에 배치되어 상기 주편을 지지하는 지지부와;, 상기 주편의 외측에 구비되어 상기 주편의 응고를 유도시키는 제1 품질제어기;가 구비되는 응고부를 포함하는 주조 설비.A support part spaced apart from the casting part to receive the cast steel from the casting part, the support part being disposed on at least one of the side surfaces of the cast steel to support the cast steel, and provided at an outer side of the cast steel to induce solidification of the cast steel. Casting equipment comprising a solidification unit is provided;
  2. 청구항 1 에 있어서,The method according to claim 1,
    상기 제1 품질제어기는 상기 주편의 외측에 근접 배치되어 상기 주편의 길이방향으로 승하강 가능한 제1 교반기와;,The first quality controller comprises a first stirrer disposed proximate to the outside of the cast steel to move up and down in the longitudinal direction of the cast steel;
    상기 제1 교반기의 하부로 이격되어 구비되고, 상기 주편의 길이방향으로 승하강 가능한 제2 교반기; 및 A second stirrer spaced below the first stirrer and capable of lifting up and down in the longitudinal direction of the cast steel; And
    상기 주편의 직상부 영역으로 진퇴 가능하도록 설치되어, 상기 주편의 상부를 가열시키는 제1 가열기;를 포함하는 주조 설비.And a first heater installed to be able to move back and forth to the upper region of the cast steel, and heating the upper portion of the cast steel.
  3. 청구항 2 에 있어서,The method according to claim 2,
    상기 제1 교반기는 상기 주편 주위에 권취된 코일이 원형의 형태로 배치되는 주조 설비.The first stirrer is casting equipment in which a coil wound around the cast piece is arranged in a circular shape.
  4. 청구항 1 에 있어서,The method according to claim 1,
    상기 주조부는,The casting part,
    상기 용강이 수용되는 공간을 갖는 수용부;An accommodation portion having a space in which the molten steel is accommodated;
    상기 수용부로부터 상기 주편을 하부로 인발시키는 인발기;A drawer for drawing the cast piece downward from the accommodation portion;
    상기 통로의 외측에 구비되는 제2 품질제어기;를 포함하는 주조 설비.Casting equipment comprising a; second quality controller provided on the outside of the passage.
  5. 청구항 4 에 있어서,The method according to claim 4,
    상기 수용부는,The receiving portion,
    턴디쉬로 공급된 상기 용강이 통과하는 경로를 형성하는 주형;을 포함하고, 상기 주형은 상기 주편이 800㎜ 이하의 두께 및 2000㎜ 이하의 폭을 갖도록 형성되는 주조 설비.And a mold forming a path through which the molten steel supplied to the tundish passes, wherein the mold is formed such that the cast steel has a thickness of 800 mm or less and a width of 2000 mm or less.
  6. 청구항 4 에 있어서,The method according to claim 4,
    상기 제2 품질제어기는,The second quality controller,
    상기 주형의 외측에 배치되어, 상기 용강 및 상기 주편 내 미응고된 용강 중 적어도 어느 하나를 교반하기 위한 적어도 하나 이상의 교반기를 포함하는 교반유닛; 및A stirring unit disposed outside the mold and including at least one stirrer for stirring at least one of the molten steel and the unsolidified molten steel in the cast steel; And
    상기 주형의 직하부 영역으로 진퇴 가능하도록 설치되어 상기 주편의 상부를 가열시키는 제2 가열기;를 포함하는 주조 설비.And a second heater installed to be able to move back and forth to the lower portion of the mold and to heat the upper portion of the cast steel.
  7. 청구항 6 에 있어서,The method according to claim 6,
    상기 교반유닛은 상기 주형에 근접 배치되어, 상기 주편의 인발방향으로 승하강 가능한 제3 교반기와;,The stirring unit is disposed in close proximity to the mold, the third stirrer capable of lifting in the drawing direction of the cast steel;
    상기 제3 교반기의 하부로 이격되어 구비되고, 상기 주편의 인발방향으로 승하강 가능한 제4 교반기;를 포함하는 주조 설비.And a fourth stirrer spaced below the third stirrer and capable of lifting up and down in the drawing direction of the cast steel.
  8. 청구항 7 에 있어서,The method according to claim 7,
    상기 제3 교반기는 상기 주형 주위 또는 상기 주편 주위에 권취된 코일이 원형의 형태로 배치되는 주조 설비.The third stirrer is a casting facility in which a coil wound around the mold or around the cast piece is disposed in a circular shape.
  9. 청구항 1 에 있어서,The method according to claim 1,
    상기 주조부에는 상기 주편을 상기 인발기로부터 분리하기 위한 푸쉬어가 구비되고, 상기 푸쉬어는 상기 응고부쪽으로 전후진 왕복 이동가능하도록 설치되는 주조 설비.The casting unit is provided with a pusher for separating the cast from the drawer, the pusher is installed to be reciprocating forward and backward toward the solidification unit.
  10. 청구항 1 에 있어서,The method according to claim 1,
    상기 주조부로부터 상기 응고부로 상기 주편을 이송시키거나, 상기 응고부로부터 상기 응고부 외부로 상기 주편을 이송시키는 이송기가 구비되는 주조 설비.And a feeder for transferring the cast steel from the casting portion to the solidification portion or for transferring the cast steel from the solidification portion to the outside of the solidification portion.
  11. 주조 방법으로서,As the casting method,
    용강을 마련하여 주조를 준비하는 과정;Preparing molten steel to prepare a casting;
    상기 용강이 경유하는 통로를 개방 및 폐쇄 가능하게 하는 주조부에서 상기 용강을 주조하는 과정;Casting the molten steel in a casting part to open and close a passage through the molten steel;
    상기 주조를 통해 제작된 주편을 응고부로 이송시키는 과정; 을 포함하고,Transferring the cast steel produced through the casting to a solidification part; Including,
    상기 주편의 응고가 완료된 후, 상기 주편을 후공정으로 이송하는 주조 방법.After the solidification of the cast steel is completed, the casting method for transferring the cast steel to a later step.
  12. 청구항 11 에 있어서,The method according to claim 11,
    상기 주편을 응고부로 이송시킨 이후에, 상기 주조부에서 상기 용강의 주조 과정이 반복되는 주조 방법.Casting of the molten steel in the casting part after transferring the cast steel to a solidification part.
  13. 청구항 12 에 있어서,The method according to claim 12,
    상기 용강을 주조하는 과정이 반복되는 경우,If the process of casting the molten steel is repeated,
    상기 주편을 응고부로 이송시키는 과정은, 상기 주조부에 용강이 이송되어 상기 주조를 준비하는 과정이 이루어지는 동안 수행되는 주조 방법.The process of transferring the cast steel to the solidification unit, the casting method is performed while the molten steel is transferred to the casting unit to prepare the casting.
  14. 청구항 11 에 있어서,The method according to claim 11,
    상기 용강을 주조하는 과정이 1회 주조인 단연주의 경우, 상기 주편은 주조부에서 응고를 완료하거나 응고부로 이송된 후 응고를 완료하는 주조 방법.In the case of the yeonyeonju casting the molten steel is a one-time casting, the cast is a casting method of completing the solidification in the casting portion or after being transferred to the solidification portion to complete solidification.
  15. 청구항 11 에 있어서,The method according to claim 11,
    상기 용강은 분당 0.3m 이하의 주속으로 주조되는 주조 방법.The molten steel is cast at a circumferential speed of 0.3 m or less per minute.
PCT/KR2014/002153 2013-03-15 2014-03-14 Casting equipment and casting method using same WO2014142597A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US14/776,797 US20160023269A1 (en) 2013-03-15 2014-03-14 Casting equipment and casting method using same
EP14762821.8A EP2974810B1 (en) 2013-03-15 2014-03-14 Casting equipment and casting method using same
BR112015020565A BR112015020565B1 (en) 2013-03-15 2014-03-14 installation and casting method using the same
ES14762821.8T ES2693560T3 (en) 2013-03-15 2014-03-14 Casting equipment and casting method using same
JP2015553667A JP6055114B2 (en) 2013-03-15 2014-03-14 Casting equipment and casting method using the same
CN201480010997.7A CN105026073B (en) 2013-03-15 2014-03-14 Casting Equipment and the casting method using the Casting Equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2013-0027910 2013-03-15
KR1020130027910A KR101511723B1 (en) 2013-03-15 2013-03-15 Casting apparatus and method using it

Publications (1)

Publication Number Publication Date
WO2014142597A1 true WO2014142597A1 (en) 2014-09-18

Family

ID=51537132

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/002153 WO2014142597A1 (en) 2013-03-15 2014-03-14 Casting equipment and casting method using same

Country Status (9)

Country Link
US (1) US20160023269A1 (en)
EP (1) EP2974810B1 (en)
JP (1) JP6055114B2 (en)
KR (1) KR101511723B1 (en)
CN (1) CN105026073B (en)
BR (1) BR112015020565B1 (en)
ES (1) ES2693560T3 (en)
TR (1) TR201815354T4 (en)
WO (1) WO2014142597A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3296417A4 (en) * 2016-01-05 2018-03-28 Jiangyin Xingcheng Special Steel Works Co., Ltd Microalloyed steel for car carbon wheel hub bearing and manufacturing method therefor

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT515244A2 (en) * 2013-12-30 2015-07-15 Inteco Special Melting Technologies Gmbh Method for producing long ingots of large cross section
KR101642904B1 (en) * 2014-10-20 2016-08-10 주식회사 포스코 Semi-continuous casting equipment of vertical type and casting method therewith
KR101755400B1 (en) * 2015-09-16 2017-07-27 주식회사 포스코 Semi-continuous casting equipment of vertical type
EP3414033A1 (en) * 2016-02-12 2018-12-19 Rotelec S.A. Apparatus and method for casting ingots
EP3427863A1 (en) * 2017-07-11 2019-01-16 INTECO melting and casting technologies GmbH Method and system for the production of cast blocks from metal
CN108672668A (en) * 2018-03-29 2018-10-19 马鞍山钢铁股份有限公司 The method and its control device of casting blank solidification institutional framework in a kind of control casting process
CN108436046B (en) * 2018-05-23 2023-11-24 中冶京诚工程技术有限公司 Vertical continuous casting production equipment and method for oversized round billet
CN108817332B (en) * 2018-06-26 2020-04-21 辽宁科技大学 Method for controlling solidification quality of large-specification medium-high alloy steel vertical continuous casting billet
CN109317631B (en) * 2018-10-30 2020-08-07 武汉钢铁有限公司 Production method for improving texture uniformity of continuous casting square billet
KR102596672B1 (en) * 2020-08-11 2023-11-01 박성철 Refrigerator for grain having improved cooling efficiency by cooling aid material
CN113426970B (en) * 2021-06-11 2023-02-03 一重集团大连工程技术有限公司 Vertical semi-continuous production device and production process of large round billets with phi of 1000 mm-2000 mm

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0740019A (en) * 1993-07-28 1995-02-10 Kawasaki Steel Corp Method for reducing center segregation in cast slab in continuous casting for steel
KR20090065995A (en) * 2007-12-18 2009-06-23 주식회사 포스코 Manufacturing method of a ferrite stainless steel and continuous casting apparatus for the same
KR20100025929A (en) * 2008-08-28 2010-03-10 현대제철 주식회사 Crack prevention system of thin slab in continuous casting
KR20100085748A (en) * 2009-01-21 2010-07-29 주식회사 포스코 Semi-continuous casting equipment of vertical type and casting method therewith
KR20100139059A (en) * 2008-03-25 2010-12-31 에이비비 인코포레이티드 Modulated electromagnetic stirring of metals at advanced stage of solidification

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3620285A (en) 1969-03-21 1971-11-16 Olsson International Slab casting apparatus
US3667534A (en) 1971-03-11 1972-06-06 Sumitomo Metal Ind Steel ingot making method
JPS59218247A (en) * 1983-05-25 1984-12-08 Mitsubishi Heavy Ind Ltd Continuous casting method
JPS61212457A (en) * 1985-03-18 1986-09-20 Kobe Steel Ltd Vertical type continuous casting installation for slab having large section
JPS6340656A (en) * 1986-08-02 1988-02-22 Sumitomo Metal Ind Ltd Continuous caster for cast slab having large section
JP3104467B2 (en) * 1993-04-22 2000-10-30 神鋼電機株式会社 Vacuum melting continuous casting device capable of multipurpose casting
JP3146904B2 (en) * 1995-02-07 2001-03-19 株式会社神戸製鋼所 Vertical continuous casting method for large section slabs
CN1226471A (en) * 1999-01-04 1999-08-25 刘定平 Process for rolling thick metal plates and sectional materials with hot moulds and fluid pouring with magnet suspension temperature reducing
JP4774632B2 (en) * 2001-05-31 2011-09-14 大同特殊鋼株式会社 Slab, vertical die casting method and vertical die casting apparatus
CN101443144A (en) * 2006-05-16 2009-05-27 Sms迪马格股份公司 Method and strand-guiding device for guiding a cast strand
JP5116265B2 (en) * 2006-07-13 2013-01-09 新日鐵住金ステンレス株式会社 Austenitic stainless rolled steel sheet excellent in strength and ductility and method for producing the same
KR101149373B1 (en) * 2009-12-24 2012-05-30 주식회사 포스코 Apparatus for casting of vertical type and method for casting using it
KR101272712B1 (en) 2010-12-28 2013-06-10 주식회사 포스코 Continuous casting method and apparatus
TWI496633B (en) 2011-04-13 2015-08-21 Sms Siemag Ag Verfahren und vertikalstranggiessanlage zum herstellen von dicken brammen aus einer metallischen schmelze
CN202270944U (en) * 2011-09-30 2012-06-13 中冶南方工程技术有限公司 Extra-thick slab casting machine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0740019A (en) * 1993-07-28 1995-02-10 Kawasaki Steel Corp Method for reducing center segregation in cast slab in continuous casting for steel
KR20090065995A (en) * 2007-12-18 2009-06-23 주식회사 포스코 Manufacturing method of a ferrite stainless steel and continuous casting apparatus for the same
KR20100139059A (en) * 2008-03-25 2010-12-31 에이비비 인코포레이티드 Modulated electromagnetic stirring of metals at advanced stage of solidification
KR20100025929A (en) * 2008-08-28 2010-03-10 현대제철 주식회사 Crack prevention system of thin slab in continuous casting
KR20100085748A (en) * 2009-01-21 2010-07-29 주식회사 포스코 Semi-continuous casting equipment of vertical type and casting method therewith

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3296417A4 (en) * 2016-01-05 2018-03-28 Jiangyin Xingcheng Special Steel Works Co., Ltd Microalloyed steel for car carbon wheel hub bearing and manufacturing method therefor

Also Published As

Publication number Publication date
EP2974810A4 (en) 2016-09-28
BR112015020565B1 (en) 2020-02-04
BR112015020565A2 (en) 2017-07-18
CN105026073B (en) 2018-02-23
EP2974810B1 (en) 2018-07-25
JP6055114B2 (en) 2016-12-27
US20160023269A1 (en) 2016-01-28
TR201815354T4 (en) 2018-11-21
ES2693560T3 (en) 2018-12-12
KR101511723B1 (en) 2015-04-13
JP2016503730A (en) 2016-02-08
KR20140113040A (en) 2014-09-24
CN105026073A (en) 2015-11-04
EP2974810A1 (en) 2016-01-20

Similar Documents

Publication Publication Date Title
WO2014142597A1 (en) Casting equipment and casting method using same
CN106457371B (en) The semi-continuous casting of steel band
KR101053975B1 (en) Vertical semicontinuous casting device and casting method using the same
KR101149373B1 (en) Apparatus for casting of vertical type and method for casting using it
EP0876232B1 (en) Metal delivery system for continuous caster
WO2017047863A1 (en) Vertical casting equipment and vertical casting method using same
ITMI20111767A1 (en) METHOD AND RHEOCASTING SYSTEM
KR101642905B1 (en) Semi-continuous casting method of vettical type
KR20160092619A (en) Casting equipment of vertical type and method for casting using it
KR20190126333A (en) Semi-continuous casting equipment of slab and its method
JP2001138036A (en) Vacuum melting and casting apparatus
JPH07144255A (en) Vertical semicontinuous casting device for large cross section cast slab and carrying out method of cast slab
CN206732073U (en) A kind of alloy smelting pours into a mould slab ingot device
CN111482563B (en) Continuous casting production method of super-large section special-shaped blank
CN210188431U (en) Progressive solidification forming device for large cast ingot or cast blank
RU2309814C2 (en) Billet casting method and apparatus for performing the same (variants)
JPH05237614A (en) Method and apparatus for continuously casting annular steel product
AU710986B2 (en) Metal delivery system for continuous caster
JPS58187237A (en) Production of large sized steel ingot
JP2002011568A (en) Casting method using mold composed of two half-molds, and its mold/heat-sink and casting station facility
KR20200008193A (en) Manufacturing apparatus for an allumium alloy flange and manufacturing method thereof
CN114985693A (en) Equipment and method capable of producing ultra-large round billets
JPH0220643A (en) Method for casting slab
KR20160044866A (en) Semi-continuous casting equipment of vertical type and casting method therewith
JPH079088A (en) Production of cast billet by continuous casting equipment for producing small lot

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480010997.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14762821

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015553667

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2014762821

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: IDP00201505289

Country of ref document: ID

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112015020565

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14776797

Country of ref document: US

ENP Entry into the national phase

Ref document number: 112015020565

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20150826