JP2010069499A - Method for producing continuously cast slab - Google Patents

Method for producing continuously cast slab Download PDF

Info

Publication number
JP2010069499A
JP2010069499A JP2008238763A JP2008238763A JP2010069499A JP 2010069499 A JP2010069499 A JP 2010069499A JP 2008238763 A JP2008238763 A JP 2008238763A JP 2008238763 A JP2008238763 A JP 2008238763A JP 2010069499 A JP2010069499 A JP 2010069499A
Authority
JP
Japan
Prior art keywords
slab
center
solid phase
thickness
segregation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008238763A
Other languages
Japanese (ja)
Other versions
JP5380968B2 (en
Inventor
Koichi Tsutsumi
康一 堤
Makoto Suzuki
真 鈴木
Hiroshi Awajiya
浩 淡路谷
Shunichi Kawanami
俊一 川波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2008238763A priority Critical patent/JP5380968B2/en
Publication of JP2010069499A publication Critical patent/JP2010069499A/en
Application granted granted Critical
Publication of JP5380968B2 publication Critical patent/JP5380968B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Continuous Casting (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a continuously cast slab, which has less central segregation by reducing adverse influence on the central segregation caused by slab straightening in the straightening zone, thereby enhancing the effect of light rolling reduction even in the case a light rolling reduction zone provided for reducing the central segregation of a slab is superimposed on the range of a straightening zone. <P>SOLUTION: When a continuously cast slab 11 is produced using a continuous casting machine 1 where two or more pairs of roll groups 17 for imparting a rolling draft corresponding to a solidification-shrinkage amount to a slab are installed so as to be superimposed in the range of a straightening zone 16 for straightening a circular slab into the planar one, casting conditions are regulated in such a manner that the solid phase ratio of the central part in the thickness of the slab at the point of time in which the slab passes through the straightening zone reaches ≤0.3 or ≥0.7, and further, the slab is subjected to rolling reduction at a rolling reduction rate of 0.5 to 1.5 mm/min using the two or more pairs of roll groups. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、連続鋳造鋳片の製造方法に関し、詳しくは、中心偏析の軽微な鋼の連続鋳造鋳片を製造することのできる、連続鋳造鋳片の製造方法に関するものである。   The present invention relates to a method for producing a continuous cast slab, and more particularly, to a method for producing a continuous cast slab that can produce a continuous cast slab of light steel with a central segregation.

鋼の凝固過程では、炭素、燐、硫黄などの溶質元素は、凝固時の再分配により未凝固の液相側に濃化される。これがデンドライト樹間に形成されるミクロ偏析である。連続鋳造機により鋳造されつつある鋳片の凝固収縮や、連続鋳造機のロール間で発生する凝固シェルのバルジング(以下、「ロール間バルジング」と記す)などによって、鋳片中心部に空隙が形成されたり負圧が生じたりすると、この部分に溶鋼が吸引されるが、凝固末期の未凝固相には十分な量の溶鋼が存在しないので、上記のミクロ偏析によって濃縮された溶鋼が流動し、鋳片中心部に集積して凝固する。このようにして形成された偏析スポットは、溶質元素の濃度が溶鋼の初期濃度に比べ格段に高濃度となっている。これを一般にマクロ偏析と呼び、その存在部位から、中心偏析と呼んでいる。   In the solidification process of steel, solute elements such as carbon, phosphorus and sulfur are concentrated on the unsolidified liquid phase side by redistribution during solidification. This is the microsegregation formed between dendrite trees. A void is formed in the center of the slab due to solidification shrinkage of the slab being cast by the continuous casting machine and bulging of the solidified shell that occurs between the rolls of the continuous casting machine (hereinafter referred to as “inter-roll bulging”). If a negative pressure is generated, molten steel is sucked into this part, but since there is not a sufficient amount of molten steel in the unsolidified phase at the end of solidification, the molten steel concentrated by the above microsegregation flows, Accumulate and solidify in the center of the slab. In the segregation spot formed in this way, the concentration of the solute element is much higher than the initial concentration of the molten steel. This is generally called macrosegregation, and is called central segregation because of its existence site.

中心偏析は、鋼製品の品質を劣化させる。例えば、石油輸送用や天然ガス輸送用のラインパイプ材においては、サワーガスの作用により中心偏析を起点として水素誘起割れ(「HIC」ともいう)が発生する。また、飲料用の缶製品に用いられる深絞り材においては、成分の偏析により加工性に異方性が出現することもある。そのため、連続鋳造工程から圧延工程に至るまで、鋳片の中心偏析を低減する対策が多数提案されている。   Central segregation degrades the quality of steel products. For example, in line pipe materials for oil transportation and natural gas transportation, hydrogen-induced cracking (also referred to as “HIC”) occurs from the center segregation due to the action of sour gas. Further, in deep drawn materials used for beverage can products, anisotropy may appear in workability due to segregation of components. Therefore, many measures for reducing the center segregation of the slab have been proposed from the continuous casting process to the rolling process.

そのなかで、効果的に且つ安価に鋳片の中心偏析を低減する手段として、連続鋳造機内において、未凝固相を有する凝固末期の鋳片をロールによって凝固収縮量程度の圧下速度で徐々に圧下しながら鋳造する方法(以下、「軽圧下」と呼ぶ)が提案されている(例えば特許文献1を参照)。   Among them, as a means to reduce the center segregation of the slab effectively and inexpensively, the slab at the end of solidification having an unsolidified phase is gradually reduced by a roll at a reduction speed of about the solidification shrinkage amount in a continuous casting machine. A casting method (hereinafter referred to as “light reduction”) has been proposed (for example, see Patent Document 1).

この軽圧下技術は、鋳造方向に並んだ複数対のロールを用い、凝固収縮量に見合った圧下速度及び圧下量で鋳片を徐々に圧下して未凝固相の体積を減少させ、鋳片中心部における空隙或いは負圧部の形成を防止すると同時に、デンドライト樹間に形成される濃化溶鋼の流動を防止し、これによって鋳片の中心偏析を軽減するという技術である。従って、軽圧下技術においては、一般的に、鋳片の完全凝固位置を軽圧下帯の範囲内に制御することが行われている。ここで、軽圧下帯とは、鋳片に凝固収縮量に見合った量の圧下を付与する複数対のロール群のことである。   This light reduction technology uses multiple pairs of rolls aligned in the casting direction, and gradually reduces the volume of the unsolidified phase by reducing the volume of the slab at a reduction speed and reduction amount commensurate with the amount of solidification shrinkage. This is a technique for preventing the formation of voids or negative pressure parts in the parts and at the same time preventing the flow of the concentrated molten steel formed between the dendrite trees, thereby reducing the center segregation of the slab. Therefore, in the light reduction technology, generally, the complete solidification position of the slab is controlled within the range of the light reduction zone. Here, the light reduction belt is a group of a plurality of pairs of rolls that imparts a reduction in an amount corresponding to the amount of solidification shrinkage to the slab.

一方、非特許文献1は、軽圧下技術を詳細に検討し、鋳片に軽圧下を付与する時期として、鋳片中心部の固相率が0.3〜0.7の範囲が最適である、換言すれば、鋳片中心部の固相率が0.3未満及び0.7を超える時期は圧下する必要がないと報告している。これは、鋳片中心部の固相率が0.3未満の範囲は未凝固相に未だ十分な量の溶鋼が存在し、仮に鋳片中心部に空隙或いは負圧部が形成されたとしても、未凝固相からの溶鋼の補充が十分に行なわれることから中心偏析には至らず、一方、鋳片中心部の固相率が0.7を超えると粘性の関係から未凝固溶鋼は流動できず、仮に鋳片中心部に空隙或いは負圧部が形成されたとしても、中心偏析は形成されないという考えに基づくものである。
特開昭49−121738号公報 福島ら、材料とプロセス、vol.1(1988)p.202
On the other hand, Non-Patent Document 1 examines the light reduction technology in detail, and the optimum time when the light reduction is applied to the slab is in the range of 0.3 to 0.7 in the solid phase ratio at the center of the slab. In other words, it is reported that it is not necessary to reduce the solid phase ratio at the center of the slab at less than 0.3 and more than 0.7. This is because even if there is a sufficient amount of molten steel in the unsolidified phase in the range where the solid fraction of the slab center is less than 0.3, and a void or negative pressure part is formed in the slab center, However, since the replenishment of molten steel from the unsolidified phase is sufficiently performed, center segregation does not occur. On the other hand, when the solid phase ratio at the center of the slab exceeds 0.7, the unsolidified molten steel can flow due to the viscosity relationship. However, even if a void or a negative pressure portion is formed at the center of the slab, the center segregation is not formed.
JP 49-121738 A Fukushima et al., Materials and Processes, vol. 1 (1988) p. 202

近年の大量生産用の連続鋳造機は、湾曲型連続鋳造機及び垂直曲げ型連続鋳造機が主体であり、両者の連続鋳造機ともに鋳片を最終的には水平方向に搬出させるために、湾曲部における円弧状の鋳片を平板状の鋳片に矯正する矯正帯を有している。ここで、垂直曲げ型連続鋳造機とは、鋳型直下に2〜5m程度の垂直部を有し、その下方に湾曲部を有する連続鋳造機である。   In recent years, continuous casting machines for mass production are mainly curved type continuous casting machines and vertical bending type continuous casting machines. Both continuous casting machines are curved in order to finally carry out the slab in the horizontal direction. There is a straightening band for correcting the arc-shaped slab in the portion into a flat-plate slab. Here, the vertical bending type continuous casting machine is a continuous casting machine having a vertical portion of about 2 to 5 m directly below the mold and a curved portion below the vertical portion.

中心偏析が問題となる鋼種については、未凝固鋳片を矯正することによる内部割れの発生を防止する、或いは、溶鋼静圧を小さくしてロール間バルジングを小さくするなどの観点から、従来、矯正帯に至るまでに凝固を完了させた操業が一般的であった。この場合、軽圧下帯も自ずと矯正帯よりも上流側に設置されていた。   For steel grades where center segregation is a problem, it has been conventionally corrected from the viewpoint of preventing internal cracks by correcting unsolidified slabs or reducing the bulging between rolls by reducing the static pressure of molten steel. It was common to complete the solidification before reaching the belt. In this case, the light pressure lower zone was naturally installed upstream of the correction zone.

しかしながら最近は、生産性向上の目的で高速鋳造が志向されており、中心偏析が問題となる鋼種であっても鋳造速度の高速化が行われている。鋳造速度の高速化にあたっては、多点矯正による矯正応力の分散やロールピッチの短縮によるロール間バルジングの低減化などが施されている。鋳造速度の高速化により、凝固完了位置は矯正帯よりも下流側に至り、これに応じて軽圧下帯も下流側に配置され、その結果、軽圧下帯が矯正帯の範囲に重なる場合が発生するようになった。   Recently, however, high-speed casting has been aimed at improving productivity, and the casting speed has been increased even for steel types in which central segregation is a problem. In order to increase the casting speed, dispersion of straightening stress by multipoint straightening and reduction of bulging between rolls by shortening the roll pitch are performed. Due to the higher casting speed, the solidification completion position reaches the downstream side of the correction band, and accordingly the light pressure lower band is also arranged downstream, and as a result, the light pressure lower band may overlap the range of the correction band. It was way.

本発明者らは、軽圧下帯が矯正帯の範囲に重なった場合、或る条件下では鋳片を軽圧下しても中心偏析の改善効果が少ないことを確認した。これは、矯正帯における鋳片の矯正時に矯正応力によってデンドライト樹間の濃化溶鋼が流動し、この濃化溶鋼の流動が中心偏析に悪影響を与えていると考えられる。   The inventors of the present invention have confirmed that, when the lightly pressed zone overlaps the range of the correction zone, under certain conditions, the effect of improving the center segregation is small even if the slab is slightly reduced. This is thought to be due to the flow of concentrated molten steel between dendritic trees caused by straightening stress during the slab correction in the straightening zone, and the flow of this concentrated molten steel has an adverse effect on the central segregation.

本発明は上記事情に鑑みてなされたもので、その目的とするところは、鋳片の中心偏析を軽減するために設けた軽圧下帯が矯正帯の範囲に重なり合った場合であっても、矯正帯での鋳片矯正による中心偏析への悪影響を少なくし、軽圧下の効果を高め、近年の厳しい品質要求にも対処可能である、中心偏析の軽微な鋳片を製造することのできる、連続鋳造鋳片の製造方法を提供することである。   The present invention has been made in view of the above circumstances, and the object of the present invention is to correct even if the light reduction zone provided to reduce the center segregation of the slab overlaps the range of the correction zone. Continuously capable of producing small slabs with central segregation, which can reduce the adverse effects on center segregation by strip slab correction, enhance the effect of light reduction, and cope with severe quality requirements in recent years. It is providing the manufacturing method of a cast slab.

上記課題を解決するための第1の発明に係る連続鋳造鋳片の製造方法は、円弧状の鋳片を平板状の鋳片に矯正するための矯正帯の範囲に、鋳片に凝固収縮量に見合った量の圧下を付与するための複数対のロール群が重なって設置された連続鋳造機を用いて連続鋳造鋳片を製造するにあたり、前記矯正帯を通過する時点の鋳片厚み中心部の固相率が0.3以下または0.7以上となるように鋳造条件を調整するとともに、鋳片厚み中心部の固相率が0.4以下の時点から鋳片厚み中心部の固相率が0.7以上の時点まで、前記複数対のロール群を用いて0.5〜1.5mm/分の圧下速度で鋳片を圧下することを特徴とするものである。   The method for producing a continuous cast slab according to the first invention for solving the above-mentioned problems is a range of a correction band for correcting an arc-shaped slab into a flat slab, and a solidification shrinkage amount on the slab. When producing a continuous cast slab using a continuous casting machine in which a plurality of pairs of rolls for providing a reduction corresponding to the amount of roll is overlapped, the center part of the slab thickness when passing through the correction strip The casting condition is adjusted so that the solid phase ratio of the slab thickness is 0.3 or less or 0.7 or more, and the solid phase ratio of the slab thickness center portion from the time when the solid phase ratio of the slab thickness center portion is 0.4 or less The slab is crushed at a rolling speed of 0.5 to 1.5 mm / min using the plurality of pairs of roll groups until the rate is 0.7 or more.

第2の発明に係る連続鋳造鋳片の製造方法は、第1の発明において、前記矯正帯を通過する時点の鋳片厚み中心部の固相率が0.3以下であり、且つ、前記複数対のロール群が、矯正帯の出側から鋳造方向下流側の5m以上の範囲まで設置されていることを特徴とするものである。   The method for producing a continuous cast slab according to a second invention is the method according to the first invention, wherein the solid phase ratio at the center of the slab thickness when passing through the correction band is 0.3 or less, and the plurality The pair of roll groups is installed from the exit side of the correction band to a range of 5 m or more on the downstream side in the casting direction.

本発明によれば、矯正帯の範囲に、鋳片に圧下力を付与するための複数対のロール群、つまり軽圧下帯が重なって設置された連続鋳造機を用いて鋳片を軽圧下しつつ鋳造する場合に、矯正帯を通過する時点での鋳片厚み中心部の固相率を0.3以下または0.7以上に調整するので、厚み中心部の固相率を0.3以下に調整した場合には、鋳片厚み中心部には未凝固相が十分に存在し、鋳片の矯正によって生ずるデンドライト樹間の濃化溶鋼は未凝固相により希釈され、該濃化溶鋼による中心偏析への影響を軽減することができ、一方、固相率を0.7以上に調整した場合には、鋳片を矯正してもデンドライト樹間の濃化溶鋼は粘性の関係から流動せず、従って、どちらの場合も鋳片矯正による中心偏析への悪影響を防止でき、軽圧下の効果を十分に発揮でき、中心偏析の軽微な鋳片を製造することが可能となる。   According to the present invention, the slab is lightly reduced by using a plurality of pairs of rolls for applying a reduction force to the slab in the range of the correction band, that is, a continuous casting machine in which the light reduction belts are overlapped. In the case of casting while adjusting the solid fraction of the center part of the slab thickness at the time of passing through the correction band to 0.3 or less or 0.7 or more, the solid fraction of the center part of the thickness is 0.3 or less. In the case of adjusting to slab thickness, there is a sufficient unsolidified phase at the center of the slab thickness, and the concentrated molten steel between dendrites formed by straightening the slab is diluted by the unsolidified phase, and the center by the concentrated molten steel The effect on segregation can be reduced. On the other hand, when the solid phase ratio is adjusted to 0.7 or more, the concentrated molten steel between dendrites does not flow due to the viscosity relationship even if the slab is corrected. Therefore, in both cases, the negative effect on the center segregation due to slab correction can be prevented, and the effect of light pressure reduction Sufficiently be exhibited, it is possible to manufacture the minor slab of center segregation.

以下、本発明を具体的に説明する。先ず、本発明に至った経緯について説明する。   The present invention will be specifically described below. First, the background to the present invention will be described.

本発明者らは、矯正帯の範囲に軽圧下帯が重なって設置された連続鋳造機で鋳片を軽圧下しながら鋳造する際に、矯正帯における鋳片の矯正による中心偏析への悪影響を少なくすることを目的として、垂直曲げ型の連続鋳造機を用い、鋳造条件を変化させて鋳造条件と中心偏析との関係を調査する試験を実施した。そして、得られた鋳片を圧延して厚鋼板とし、この厚鋼板からUOE鋼管を製造し、鋳片の偏析度調査及びUOE鋼管のHIC試験(耐水素誘起割れ評価試験)を実施した。   The inventors have a negative influence on the center segregation due to the correction of the slab in the correction band when casting the slab in the continuous casting machine in which the light reduction band overlaps the range of the correction band and casting the slab. For the purpose of reducing the amount, a test was conducted to investigate the relationship between casting conditions and center segregation by changing the casting conditions using a vertical bending type continuous casting machine. Then, the obtained slab was rolled into a thick steel plate, a UOE steel pipe was manufactured from this thick steel plate, and a segregation degree investigation of the slab and a HIC test (hydrogen resistance induced cracking evaluation test) of the UOE steel pipe were performed.

用いた垂直曲げ型連続鋳造機の矯正帯は、鋳型内湯面からの距離が19.4m〜20.6mの範囲にあり、また、鋳型内湯面からの距離が15m〜32mの範囲の任意の位置に、鋳造速度に応じて軽圧下帯を設置できるように構成された連続鋳造機である。試験鋳造においては、軽圧下帯の長さを6mとし、この軽圧下帯内の後端部(鋳造方向下流側部)が鋳片の凝固完了位置となるように、鋳造速度に応じて軽圧下帯の設置位置を決定した。軽圧下帯における圧下速度は1.2mm/分とした。   The straightening belt of the vertical bending type continuous casting machine used has a distance from the molten metal surface in the mold in the range of 19.4 m to 20.6 m, and any position in the range of the distance from the molten metal surface in the mold to 15 m to 32 m. In addition, the continuous casting machine is configured such that a light pressure belt can be installed according to the casting speed. In test casting, the length of the light pressure lower belt is 6 m, and light reduction is performed according to the casting speed so that the rear end portion (downstream side in the casting direction) in the light pressure lower belt is the solidification completion position of the slab. The installation position of the belt was determined. The reduction speed in the light reduction zone was 1.2 mm / min.

化学成分が、C:0.05質量%(以下、「%」と記す)、Si:0.3%、Mn:1.3%、P:0.005%、S:0.005%、Ti:0.01%、sol.Al:0.04%、Nb:0.04%、Cu;0.15%である溶鋼を、鋳造速度(Vc)が1.05m/分(水準1)、1.25m/分(水準2)、1.40m/分(水準3)の3水準の鋳造速度で、幅1950mm、厚み250mmの鋳型に鋳造した。タンディッシュ内の溶鋼過熱度は38℃とした。二次冷却水量は、比水量で1.5〜1.8L/kgである。尚、比水量とは、鋳造される鋳片1kgあたりの冷却水量を表す数値である。   Chemical components are C: 0.05 mass% (hereinafter referred to as “%”), Si: 0.3%, Mn: 1.3%, P: 0.005%, S: 0.005%, Ti : 0.01%, sol.Al: 0.04%, Nb: 0.04%, Cu; 0.15% of molten steel, casting speed (Vc) is 1.05 m / min (level 1), 1 It was cast into a mold having a width of 1950 mm and a thickness of 250 mm at three casting speeds of .25 m / min (level 2) and 1.40 m / min (level 3). The degree of superheated molten steel in the tundish was 38 ° C. The amount of secondary cooling water is 1.5 to 1.8 L / kg in terms of specific water. The specific water amount is a numerical value representing the cooling water amount per 1 kg of cast slab.

図1に、上記の鋳造条件で鋳造したときの鋳型内湯面からの距離と鋳片厚み中心部の固相率との関係を、二次元伝熱凝固計算により求めた結果を示す。図1において、固相率1.0の位置が凝固完了位置であり、この位置が軽圧下帯の後端部になるように、それぞれの鋳造速度に応じて軽圧下帯を設置した。図1に示すように、鋳造速度が1.05m/分である水準1では、矯正帯に至る以前に凝固が完了し、鋳造速度が1.25m/分である水準2では、鋳片厚み中心部の固相率が約0.4の時点で矯正帯を通過し、鋳造速度が1.40m/分である水準3では、矯正帯における鋳片厚み中心部の固相率が0.05以下となる条件である。軽圧下帯における総圧下量は、水準1で6.9mm(1.2×6/1.05)、水準2で5.8mm(1.2×6/1.25)、水準3で5.1mm(1.2×6/1.40)である。   FIG. 1 shows the result of two-dimensional heat transfer solidification calculation for the relationship between the distance from the molten metal surface in the mold and the solid phase rate at the center of the slab thickness when casting is performed under the above casting conditions. In FIG. 1, the light pressure lowering belt is installed in accordance with each casting speed so that the solidification rate 1.0 is the solidification completion position and this position is the rear end of the light pressure lowering belt. As shown in FIG. 1, at level 1 where the casting speed is 1.05 m / min, solidification is completed before reaching the correction zone, and at level 2 where the casting speed is 1.25 m / min, the slab thickness is centered. At the level 3 where the solid phase ratio of the part passes through the correction band at a time of about 0.4 and the casting speed is 1.40 m / min, the solid phase ratio at the center of the slab thickness in the correction band is 0.05 or less. This is a condition. The total amount of reduction in the light pressure zone is 6.9 mm (1.2 x 6 / 1.05) at level 1, 5.8 mm (1.2 x 6 / 1.25) at level 2, and 5.1 mm (1.2 x 6 / 1.40) at level 3. It is.

鋳造後の鋳片から偏析検査用の試料を採取して偏析度を調査した。具体的には、スラブ鋳片の幅方向の1/2位置及び1/4位置から鋳造方向の断面試料を切り出し、この断面から鋳片厚み方向に1mmずつスライス加工して分析試料を採取した。この分析試料を燃焼ガス分析法により炭素分析した。鋳片の偏析度は、鋳片の厚み方向1/4位置の炭素分析値を偏析の無い基準値(CO)とし、各位置の炭素分析値(Ci)と前記基準値(CO)との比(Ci/CO)を偏析度として評価した。 A sample for segregation inspection was collected from the cast slab and the degree of segregation was investigated. Specifically, a cross-sectional sample in the casting direction was cut out from the ½ and 1/4 positions in the width direction of the slab cast piece, and an analysis sample was collected by slicing 1 mm in the thickness direction of the cast piece from this cross section. This analysis sample was analyzed for carbon by the combustion gas analysis method. As for the segregation degree of the slab, the carbon analysis value at the 1/4 position in the thickness direction of the slab is defined as a reference value (C O ) without segregation, and the carbon analysis value (C i ) at each position and the reference value (C O ). The ratio (C i / C O ) was evaluated as the degree of segregation.

また、製品段階での評価として実施したUOE鋼管におけるHIC試験は、試験溶液をNACE溶液(5%NaCl+0.5%CH3COOHの硫化水素飽和溶液、pH=3.7)とし、浸漬時間を96時間、試験溶液温度を25℃とした。表1に、鋳造条件及び鋳片の偏析度、UOE鋼管のHIC試験の結果を示す。 Moreover, the HIC test in the UOE steel pipe carried out as an evaluation at the product stage is a NACE solution (5% NaCl + 0.5% CH 3 COOH hydrogen sulfide saturated solution, pH = 3.7), and the immersion time is 96. The test solution temperature was 25 ° C. for a time. Table 1 shows the casting conditions, the segregation degree of the slab, and the results of the HIC test of the UOE steel pipe.

Figure 2010069499
Figure 2010069499

表1に示すように、圧下速度が同一であっても、矯正帯での矯正時の鋳片厚み中心部の固相率が1.0である水準1及び固相率が最大で0.04である水準3では中心偏析が軽微であり、一方、矯正時の鋳片厚み中心部の固相率が0.4である水準2では中心偏析が悪化した。即ち、矯正帯における矯正時点での鋳片厚み中心部の固相率が適切でないと、鋳片の矯正によって生ずるデンドライト樹間の濃化溶鋼の流動が中心偏析へ悪影響を与えることが確認できた。鋳造条件を更に細分化した試験鋳造(後述の[実施例1]を参照)から、矯正帯における鋳片矯正時の鋳片厚み中心部の固相率が0.3以下または0.7以上の場合には、中心偏析が軽減されることが分かった。   As shown in Table 1, even when the rolling speed is the same, level 1 where the solid phase ratio at the center of the slab thickness during correction in the correction band is 1.0 and the maximum solid phase ratio is 0.04. On the other hand, at level 3 where the center segregation was slight, on the other hand, at level 2 where the solid phase ratio at the center of the slab thickness during correction was 0.4, the center segregation deteriorated. That is, it was confirmed that the flow of concentrated molten steel between dendrite trees caused by the correction of the slab has an adverse effect on the center segregation if the solid phase ratio at the center of the slab thickness at the time of correction in the correction band is not appropriate. . From the test casting in which the casting conditions are further subdivided (see [Example 1] described later), the solid phase ratio at the center of the slab thickness at the time of slab correction in the correction band is 0.3 or less or 0.7 or more In some cases, it has been found that central segregation is reduced.

本発明は、上記検討結果に基づいてなされたものであり、鋳片を矯正するための矯正帯の範囲に軽圧下帯が重なって設置された連続鋳造機を用いて連続鋳造鋳片を製造するにあたり、矯正帯を通過する時点の鋳片厚み中心部の固相率が0.3以下または0.7以上となるように鋳造条件を調整するとともに、鋳片厚み中心部の固相率が0.4以下の時点から鋳片厚み中心部の固相率が0.7以上の時点まで、前記軽圧下帯において0.5〜1.5mm/分の圧下速度で鋳片を圧下することを特徴とする。   The present invention has been made on the basis of the above examination results, and produces a continuous cast slab using a continuous casting machine in which a light-reduced belt is placed in the range of a straightening band for correcting the slab. In this case, the casting conditions are adjusted so that the solid phase ratio at the center portion of the slab thickness when passing through the correction zone is 0.3 or less or 0.7 or more, and the solid phase ratio at the center portion of the slab thickness is 0. The slab is squeezed at a reduction speed of 0.5 to 1.5 mm / min in the light reduction zone from a time point of 4 or less to a time point when the solid phase ratio at the center of the slab thickness is 0.7 or more. And

鋳片の軽圧下は、鋳片厚み中心部の固相率が0.4以下の時点から開始し、少なくとも鋳片厚み中心部の固相率が0.7以上となる時点まで行う。これは、鋳片厚み中心部の固相率が0.4を越えてから軽圧下を開始しても、それ以前に濃化溶鋼の流動が発生する可能性があり、これにより中心偏析が発生し、軽圧下の効果を十分に発揮することができず、また、溶鋼の流動は、固相率が0.7を超えるまで発生する可能性があり、それよりも早期に軽圧下を停止してしまうと、濃化溶鋼の流動が発生し、これにより中心偏析が発生して、軽圧下の効果を十分に発揮することができないからである。   The slab is lightly pressed at a time when the solid phase ratio at the center of the slab thickness is 0.4 or less and at least until the solid phase ratio at the center of the slab thickness is 0.7 or more. This is because, even if light reduction starts after the solid phase ratio at the center of the slab thickness exceeds 0.4, the flow of concentrated molten steel may occur before that, which causes center segregation. However, the effect of light reduction cannot be fully exhibited, and the flow of molten steel may occur until the solid phase ratio exceeds 0.7, and the light reduction is stopped earlier than that. If this occurs, the flow of the concentrated molten steel occurs, which causes central segregation, and the effect of light reduction cannot be fully exhibited.

また、圧下速度は0.5〜1.5mm/分の範囲内とする。圧下速度が0.5mm/分未満の場合は圧下速度が凝固収縮量に対して小さ過ぎて、濃化溶鋼の流動を抑えることができない恐れがあり、一方、圧下速度が1.5mm/分を超える場合は、圧下速度が凝固収縮量よりも大きくなり、濃化溶鋼を絞り出すことによって、鋳片中心部に負偏析を形成する恐れがあるからである。また、総圧下量は2〜6mm程度とすれば十分である。   The rolling speed is in the range of 0.5 to 1.5 mm / min. When the rolling speed is less than 0.5 mm / min, the rolling speed is too small with respect to the solidification shrinkage, and the flow of the concentrated molten steel may not be suppressed. On the other hand, the rolling speed is 1.5 mm / min. When exceeding, the reduction speed becomes larger than the amount of solidification shrinkage, and by squeezing out the concentrated molten steel, there is a possibility that negative segregation may be formed in the center part of the slab. Further, it is sufficient that the total reduction amount is about 2 to 6 mm.

次に、本発明の具体的な実施方法を、図面を参照して説明する。図2は、本発明を実施した垂直曲げ型のスラブ連続鋳造機の側面概要図である。   Next, a specific implementation method of the present invention will be described with reference to the drawings. FIG. 2 is a schematic side view of a vertical bending slab continuous casting machine embodying the present invention.

図2に示すように、スラブ連続鋳造機1には、溶鋼10を注入して凝固させるための鋳型5が設置され、この鋳型5の上方所定位置には、取鍋(図示せず)から供給される溶鋼10を鋳型5に中継供給するためのタンディッシュ2が設置されている。一方、鋳型5の下方には、鋳型直下にクーリンググリッド6が設置され、このクーリンググリッド6の下方に複数対の鋳片支持ロール7が配置されている。鋳片支持ロール7には、鋳片11を引き抜くための駆動ロールであるピンチロールと、ガイドロールとが含まれるが、図面ではこれらを区別せずに表示している。鋳造方向に隣り合う鋳片支持ロール7の間隙には、水スプレーノズル或いはエアーミストスプレーノズルなどのスプレーノズル(図示せず)が配置された二次冷却帯が構成され、二次冷却帯のスプレーノズルから噴霧される冷却水(「二次冷却水」ともいう)によって鋳片11は引き抜かれながら冷却されるようになっている。尚、クーリンググリッド6とは、鋳片11を面で支持するプレート(図示せず)と、このプレートの隙間に設けられたスプレーノズル(図示せず)とで構成された鋳片支持装置である。   As shown in FIG. 2, the slab continuous casting machine 1 is provided with a mold 5 for injecting molten steel 10 to solidify, and a predetermined position above the mold 5 is supplied from a ladle (not shown). A tundish 2 for relaying and supplying molten steel 10 to the mold 5 is installed. On the other hand, below the mold 5, a cooling grid 6 is installed immediately below the mold, and a plurality of pairs of slab support rolls 7 are disposed below the cooling grid 6. The slab support roll 7 includes a pinch roll which is a drive roll for pulling out the slab 11 and a guide roll, but these are shown without distinction in the drawing. A secondary cooling zone in which a spray nozzle (not shown) such as a water spray nozzle or an air mist spray nozzle is arranged is formed in the gap between the slab support rolls 7 adjacent to each other in the casting direction. The slab 11 is cooled while being drawn out by cooling water sprayed from the nozzle (also referred to as “secondary cooling water”). The cooling grid 6 is a slab support device constituted by a plate (not shown) for supporting the slab 11 with a surface and a spray nozzle (not shown) provided in a gap between the plates. .

鋳型5の出口から1mないし4m程度離れた位置に配置される複数対の鋳片支持ロール7は、鋳片11の支持・案内方向が鉛直方向から湾曲方向へと方向を変える曲げ部15を構成している。つまり、鋳型5から鉛直方向に引き抜かれた平板上の鋳片11は曲げ部15で次第に円弧状に曲げられ、半径が一定の湾曲部へと矯正されるようになっている。同様に湾曲部が水平線に接触する位置の近傍に配置される複数対の鋳片支持ロール7は、鋳片11の支持・案内方向が湾曲方向から水平方向へと方向を変える矯正帯16を構成している。つまり、円弧状の鋳片11は矯正帯16で次第に平板上に曲げ戻され、水平部へと矯正されるようになっている。尚、湾曲型連続鋳造機の場合には曲げ部15は存在せず、鋳型から湾曲部を構成し、矯正帯16のみが存在する。また、図2では、曲げ部15及び矯正帯16ともに複数対の鋳片支持ロール7で構成されているが、一対の鋳片支持ロール7のみで構成してもよい。   A plurality of pairs of slab support rolls 7 disposed at a position about 1 m to 4 m away from the exit of the mold 5 constitute a bending portion 15 in which the support / guide direction of the slab 11 changes its direction from a vertical direction to a bending direction. is doing. That is, the slab 11 on the flat plate drawn out from the mold 5 in the vertical direction is gradually bent into an arc shape by the bending portion 15 and is corrected to a curved portion having a constant radius. Similarly, the plurality of pairs of slab support rolls 7 disposed in the vicinity of the position where the curved portion comes into contact with the horizontal line constitutes a correction band 16 in which the support / guide direction of the slab 11 changes from the curved direction to the horizontal direction. is doing. That is, the arc-shaped slab 11 is gradually bent back on the flat plate by the correction band 16 and corrected to the horizontal portion. In the case of a curved continuous casting machine, the bent portion 15 does not exist, the curved portion is formed from the mold, and only the correction band 16 exists. Further, in FIG. 2, both the bending portion 15 and the correction band 16 are configured by a plurality of pairs of slab support rolls 7, but may be configured by only a pair of slab support rolls 7.

タンディッシュ2の底部には、溶鋼10の流量を調整するためのスライディングノズル3が設置され、このスライディングノズル3の下面には、浸漬ノズル4が設置されている。また、鋳片支持ロール7の下流側には、鋳造された鋳片11を搬送するための複数の搬送ロール8が設置されており、この搬送ロール8の上方には、鋳造される鋳片11から所定の長さの鋳片11aを切断するための鋳片切断機9が配置されている。   A sliding nozzle 3 for adjusting the flow rate of the molten steel 10 is installed on the bottom of the tundish 2, and an immersion nozzle 4 is installed on the lower surface of the sliding nozzle 3. A plurality of transport rolls 8 for transporting the cast slab 11 is installed on the downstream side of the slab support roll 7. Above the transport roll 8, the cast slab 11 to be cast is provided. A slab cutting machine 9 for cutting a slab 11a having a predetermined length is disposed.

矯正帯16を含み、矯正体16の鋳造方向前後には、対向する鋳片支持ロール同士の間隔(「ロール間隔」と呼ぶ)を鋳造方向下流に向かって順次狭くなるように設定された、複数対の鋳片支持ロール群から構成される軽圧下帯17が設置されている。軽圧下帯17では、その全域または一部選択した領域で、鋳片11に軽圧下を行うことが可能である。軽圧下帯17の各鋳片支持ロール間にも鋳片11を冷却するためのスプレーノズルが配置されている。尚、ロール間隔が鋳造方向下流に向かって順次狭くなるように設定された状態を、「ロール勾配」とも称している。   A plurality of slab support rolls, which include the correction band 16, and are set so that the interval between the slab support rolls facing each other (referred to as “roll interval”) is sequentially narrowed toward the downstream in the casting direction. A light pressure lower belt 17 composed of a pair of slab support rolls is installed. In the light reduction belt 17, it is possible to perform light reduction on the slab 11 in the entire region or a partially selected region. A spray nozzle for cooling the slab 11 is also disposed between the slab support rolls of the light pressure lower belt 17. A state in which the roll interval is set so as to become narrower toward the downstream in the casting direction is also referred to as “roll gradient”.

浸漬ノズル4を介して鋳型5に注入された溶鋼10は、鋳型5で冷却されて凝固シェル12を形成し、内部に未凝固相13を有する鋳片11として、鋳型5の下方に設けたクーリンググリッド6及び鋳片支持ロール7に支持されつつ、ピンチロールの駆動力により鋳型5の下方に連続的に引き抜かれる。鋳片11は、クーリンググリッド6及び鋳片支持ロール7を通過する間、二次冷却帯の二次冷却水で冷却され、凝固シェル12の厚みを増大させつつ、軽圧下帯17で軽圧下されて徐々に厚みを減少させながら、凝固完了位置14で内部までの凝固を完了する。凝固を完了した鋳片11は、鋳片切断機9によって切断されて鋳片11aとなる。   The molten steel 10 injected into the mold 5 through the immersion nozzle 4 is cooled by the mold 5 to form a solidified shell 12, and a cooling provided below the mold 5 as a slab 11 having an unsolidified phase 13 inside. While being supported by the grid 6 and the slab support roll 7, it is continuously pulled out below the mold 5 by the driving force of the pinch roll. The slab 11 is cooled by the secondary cooling water in the secondary cooling zone while passing through the cooling grid 6 and the slab support roll 7, and is lightly reduced by the light pressure lower zone 17 while increasing the thickness of the solidified shell 12. The solidification to the inside is completed at the solidification completion position 14 while gradually reducing the thickness. The slab 11 that has been solidified is cut by the slab cutting machine 9 to become a slab 11a.

このような連続鋳造操業において、予め伝熱計算などを用いて凝固シェル12の厚み並びに鋳片厚み中心部の固相率を求めておき、矯正帯16を通過する時点での鋳片11の厚み中心部の固相率が0.3以下となるように、鋳片厚み、鋳造速度、二次冷却水量などの鋳造条件を調整する。   In such a continuous casting operation, the thickness of the solidified shell 12 and the solid phase ratio at the center of the slab thickness are obtained in advance using heat transfer calculation or the like, and the thickness of the slab 11 at the time when it passes through the correction strip 16. The casting conditions such as the thickness of the slab, the casting speed, and the amount of secondary cooling water are adjusted so that the solid phase ratio at the center is 0.3 or less.

未凝固相13を有する鋳片11を矯正すると、矯正応力によりデンドライト樹間の濃化溶鋼が流動するが、鋳片11の厚み中心部の固相率が0.3以下の時点で鋳片11に矯正応力が付与された場合には、濃化溶鋼の排出が多くない上に、多量の未凝固相13が存在することから排出した濃化溶鋼は希釈され、それ以降の軽圧下帯17における軽圧下によって中心偏析が改善される。   When the slab 11 having the unsolidified phase 13 is straightened, the concentrated molten steel between the dendrite trees flows due to the straightening stress, but when the solid phase ratio at the center of the thickness of the slab 11 is 0.3 or less, the slab 11 When corrective stress is applied to the steel sheet, the concentrated molten steel is not discharged in a large amount, and a large amount of the unsolidified phase 13 is present, so that the discharged concentrated molten steel is diluted. Center segregation is improved by light reduction.

この場合、矯正帯16の出側から下流側に、軽圧下帯17を5m以上配置することが好ましい。軽圧下帯17が、矯正帯16の出側から下流側に5m以上配置されていないと、軽圧下帯17の出側でまだ未凝固のままとなり、軽圧下帯17を通過した以降に中心偏析が発生する恐れがあるからである。軽圧下帯17では、鋳片厚み中心部の固相率が0.4以下の時点から圧下を開始し、鋳片厚み中心部の固相率が0.7以上の時点まで圧下する必要があり、軽圧下帯17を矯正帯16の出側から下流側に5m以上配置することで、この条件を満足することができる。   In this case, it is preferable to arrange the light pressure lower belt 17 by 5 m or more from the exit side of the correction belt 16 to the downstream side. If the light pressure lower belt 17 is not disposed 5 m or more downstream from the outlet side of the correction belt 16, it remains unsolidified on the outlet side of the light pressure lower belt 17, and the center segregation after passing through the light pressure lower belt 17. This is because there is a risk of occurrence. In the light reduction zone 17, it is necessary to start the reduction from the time when the solid phase rate at the center portion of the slab thickness is 0.4 or less and to reduce to the time when the solid phase rate at the center portion of the slab thickness is 0.7 or more. This condition can be satisfied by disposing the light pressure lower belt 17 by 5 m or more from the outlet side of the correction belt 16 to the downstream side.

一方、これとは反対に、矯正帯16を通過する時点での鋳片11の厚み中心部の固相率が0.7以上となるように、鋳片厚み、鋳造速度、二次冷却水量などの鋳造条件を調整することも有効である。これは、鋳片11の厚み中心部の固相率が0.3を超え0.7未満の時点で鋳片11に矯正応力が付与されると、矯正によりデンドライト樹間の濃化溶鋼が流動し、軽圧下の効果を打ち消し、中心偏析を悪化させるが、矯正帯16を通過する時点での鋳片11の厚み中心部の固相率を0.7以上とすることで、矯正応力が付与されてもデンドライト樹間の濃化溶鋼は粘性の関係から流動せず、中心偏析を悪化させることがないからである。この場合、軽圧下帯17に入る時点での鋳片厚み中心部の固相率が0.4以下になるように、軽圧下帯17の長さを設定する必要がある。具体的には、矯正帯16の入側に長さ5m以上の軽圧下帯17を設置すれば十分である。
尚、軽圧下帯の設置範囲が鋳造方向に長く、軽圧下帯の中でも軽圧下を付与するロール群と軽圧下を付与しないロール群が存在する場合には、実際に軽圧下を付与するロール群のみを上記の軽圧下帯17とみなして操業すればよい。
On the other hand, the thickness of the slab, the casting speed, the amount of secondary cooling water, etc. so that the solid phase ratio at the center of the thickness of the slab 11 when passing through the correction band 16 is 0.7 or more. It is also effective to adjust the casting conditions. This is because when the solid phase ratio at the center of the thickness of the slab 11 exceeds 0.3 and less than 0.7, when the corrective stress is applied to the slab 11, the concentrated molten steel between the dendrite trees flows due to the correction. Although the effect of light pressure is canceled and the center segregation is worsened, the correction stress is given by setting the solid phase ratio at the center of the thickness of the slab 11 at the time of passing through the correction band 16 to 0.7 or more. This is because the concentrated molten steel between dendrite trees does not flow due to viscosity, and does not worsen central segregation. In this case, it is necessary to set the length of the light pressure lower belt 17 so that the solid phase ratio at the center of the slab thickness at the time of entering the light pressure lower belt 17 is 0.4 or less. Specifically, it is sufficient to install a light pressure belt 17 having a length of 5 m or more on the entry side of the correction belt 16.
In addition, when the installation range of the light reduction belt is long in the casting direction, and there are a roll group that applies light reduction and a roll group that does not apply light reduction, the roll group that actually applies light reduction. Only the above-mentioned light pressure lower belt 17 may be regarded as an operation.

軽圧下帯17における圧下速度は、ロール勾配と鋳片11の鋳造速度との積で得られるので、圧下速度が0.5〜1.5mm/分の範囲内の所定の値になるように軽圧下帯17のロール勾配を設定すればよい。例えば、鋳造速度が1.5m/分の場合に圧下速度を1.2mm/分とするときには、ロール勾配は鋳造方向距離1mあたり0.8mm(0.8=1.2/1.5)となる。   Since the reduction speed in the light reduction belt 17 is obtained by the product of the roll gradient and the casting speed of the slab 11, the reduction speed is light so that the reduction speed is a predetermined value within the range of 0.5 to 1.5 mm / min. What is necessary is just to set the roll gradient of the reduction zone 17. For example, when the rolling speed is 1.2 mm / min when the casting speed is 1.5 m / min, the roll gradient is 0.8 mm (0.8 = 1.2 / 1.5) per 1 m in the casting direction distance.

以上説明したように、本発明では、矯正帯16の範囲に、鋳片11に圧下力を付与するための複数対のロール群、つまり軽圧下帯17が重なって設置された連続鋳造機を用いて鋳片11を軽圧下しつつ鋳造する場合に、矯正帯16を通過する時点での鋳片厚み中心部の固相率を0.3以下または0.7以上に調整するので、固相率を0.3以下に調整した場合には、鋳片11の矯正によって生ずるデンドライト樹間の濃化溶鋼の流動による中心偏析への影響を軽減することができ、一方、固相率を0.7以上に調整した場合には、鋳片11を矯正してもデンドライト樹間の濃化溶鋼は流動せず、従って、どちらの場合も鋳片矯正による中心偏析への悪影響を防止でき、軽圧下の効果を十分に発揮でき、中心偏析の軽微な鋳片11aを製造することが可能となる。   As described above, the present invention uses a continuous casting machine in which a plurality of pairs of rolls for applying a reduction force to the slab 11, that is, a light reduction belt 17 is overlapped in the range of the correction band 16. Therefore, when casting the slab 11 with light pressure, the solid phase ratio at the center of the slab thickness at the time of passing through the correction band 16 is adjusted to 0.3 or less or 0.7 or more. Is adjusted to 0.3 or less, it is possible to reduce the influence on the central segregation due to the flow of the concentrated molten steel between dendritic trees caused by the correction of the slab 11, while the solid fraction is 0.7 In the case of the above adjustment, even if the slab 11 is corrected, the concentrated molten steel between the dendrite trees does not flow. Therefore, in both cases, the adverse effect on the center segregation due to the slab correction can be prevented, and the light pressure is reduced. The effect can be fully exerted, and a small slab 11a with central segregation is produced. Theft is possible.

矯正帯の前後にわたって長さ14mの軽圧下帯を有する垂直曲げ型スラブ連続鋳造機を用いて、鋳片を軽圧下しつつ鋳造し、得られた鋳片を厚鋼板に圧延し、この厚鋼板からUOE鋼管を製造し、鋳片の偏析度調査及びUOE鋼管のHIC試験を実施した。   Using a vertical bending type slab continuous casting machine having a light pressure lower belt of 14 m in length before and after the straightening band, the slab is cast while being lightly reduced, and the resulting slab is rolled into a thick steel sheet. A UOE steel pipe was produced from the slab, and the segregation degree investigation of the slab and the HIC test of the UOE steel pipe were conducted.

化学成分が、C:0.05%、Si:0.3%、Mn:1.3%、P:0.005%、S:0.005%、Ti:0.01%、sol.Al:0.04%、Nb:0.04%、Cu;0.15%である溶鋼を、1.05〜1.60m/分の鋳造速度で、幅1950mm×厚み250mmまたは幅1950mm×厚み220mmの鋳型に鋳造した。タンディッシュ内の溶鋼過熱度は35〜48℃とした。二次冷却水量は、比水量で1.48〜1.77L/kgである。   Chemical components are C: 0.05%, Si: 0.3%, Mn: 1.3%, P: 0.005%, S: 0.005%, Ti: 0.01%, sol.Al: Mold with 0.04%, Nb: 0.04%, Cu; 0.15% at a casting speed of 1.05-1.60 m / min, width 1950 mm × thickness 250 mm or width 1950 mm × thickness 220 mm Cast into. The molten steel superheat degree in the tundish was 35 to 48 ° C. The amount of secondary cooling water is 1.48 to 1.77 L / kg in terms of specific water.

表2に、それぞれの鋳造条件及び鋳片の偏析度、UOE鋼管のHIC試験の結果を示す。尚、表2に示す固相率は二次元伝熱凝固計算により算出した値であり、また、鋳片の偏析度及びUOE鋼管のHIC試験は前述した方法と同一である。   Table 2 shows the casting conditions, the segregation degree of the slab, and the results of the HOE test of the UOE steel pipe. The solid phase ratio shown in Table 2 is a value calculated by two-dimensional heat transfer solidification calculation, and the segregation degree of the slab and the HIC test of the UOE steel pipe are the same as those described above.

Figure 2010069499
Figure 2010069499

本発明例1〜3及び比較例1,2では、鋳片厚みを250mm、圧下速度を1.2mm/分の一定として鋳造速度を変化させ、矯正帯での鋳片厚み中心部の固相率を変化させた。本発明例1〜3及び比較例1,2の結果からも明らかなように、矯正帯での鋳片厚み中心部の固相率を0.3以下または0.7以上とすることで、鋳片の偏析度は1.1以下となり、HIC試験は、割れが発生せずに合格であった。   In Invention Examples 1 to 3 and Comparative Examples 1 and 2, the casting speed was changed with a slab thickness of 250 mm and a reduction speed of 1.2 mm / min. Changed. As is clear from the results of Invention Examples 1 to 3 and Comparative Examples 1 and 2, by setting the solid phase ratio at the center of the slab thickness in the straightening zone to 0.3 or less or 0.7 or more, The segregation degree of the piece was 1.1 or less, and the HIC test passed without cracks.

本発明例4及び比較例3,4では、鋳片厚みを220mmとし、鋳造速度を1.60m/分の一定として圧下速度を変化させた。比較例3では圧下速度が本発明の範囲よりも小さく、逆に比較例4では圧下速度が本発明の範囲よりも大きい。比較例3では中心偏析は低減されず、一方、比較例4では負偏析が発生した。比較例4では、負偏析に起因して板厚中心部に硬度差が生じ、この硬度差によってHIC試験で割れが発生した。   In Invention Example 4 and Comparative Examples 3 and 4, the slab thickness was 220 mm, the casting speed was constant at 1.60 m / min, and the rolling speed was changed. In Comparative Example 3, the rolling speed is smaller than the range of the present invention, and in Comparative Example 4, the rolling speed is larger than the range of the present invention. In Comparative Example 3, central segregation was not reduced, while in Comparative Example 4, negative segregation occurred. In Comparative Example 4, due to negative segregation, a hardness difference occurred at the center of the plate thickness, and cracks occurred in the HIC test due to this hardness difference.

このように、軽圧下帯が矯正帯の前後にわたって配置された連続鋳造機において、矯正帯を通過する時点での鋳片厚み中心部の固相率を適切に調整することで、軽圧下の効果が有効に発現し、中心偏析の軽微な鋳片の製造が可能となる。   Thus, in the continuous casting machine in which the light pressure lowering zone is arranged before and after the correction belt, the effect of light pressure reduction can be achieved by appropriately adjusting the solid phase ratio at the center of the slab thickness when passing through the correction belt. Can be effectively produced, and it is possible to produce a slab with a slight center segregation.

試験水準1〜3における鋳型内湯面からの距離と鋳片厚み中心部の固相率との関係を示す図である。It is a figure which shows the relationship between the distance from the hot metal surface in a mold in test levels 1-3, and the solid-phase rate of slab thickness center part. 本発明を実施した垂直曲げ型のスラブ連続鋳造機の側面概要図である。It is a side surface schematic diagram of the vertical bending type slab continuous casting machine which implemented the present invention.

符号の説明Explanation of symbols

1 スラブ連続鋳造機
2 タンディッシュ
3 スライディングノズル
4 浸漬ノズル
5 鋳型
6 クーリンググリッド
7 鋳片支持ロール
8 搬送ロール
9 鋳片切断機
10 溶鋼
11 鋳片
12 凝固シェル
13 未凝固相
14 凝固完了位置
15 曲げ部
16 矯正帯
17 軽圧下帯
DESCRIPTION OF SYMBOLS 1 Slab continuous casting machine 2 Tundish 3 Sliding nozzle 4 Immersion nozzle 5 Mold 6 Cooling grid 7 Slab support roll 8 Transport roll 9 Slab cutting machine 10 Molten steel 11 Slab 12 Solidified shell 13 Unsolidified phase 14 Solidification completion position 15 Bending Part 16 Correction belt 17 Light pressure belt

Claims (2)

円弧状の鋳片を平板状の鋳片に矯正するための矯正帯の範囲に、鋳片に凝固収縮量に見合った量の圧下を付与するための複数対のロール群が重なって設置された連続鋳造機を用いて連続鋳造鋳片を製造するにあたり、前記矯正帯を通過する時点の鋳片厚み中心部の固相率が0.3以下または0.7以上となるように鋳造条件を調整するとともに、鋳片厚み中心部の固相率が0.4以下の時点から鋳片厚み中心部の固相率が0.7以上の時点まで、前記複数対のロール群を用いて0.5〜1.5mm/分の圧下速度で鋳片を圧下することを特徴とする、連続鋳造鋳片の製造方法。   A plurality of pairs of rolls for overlapping the amount of reduction corresponding to the amount of solidification shrinkage on the slab were installed in the range of the correction band for correcting the arc-shaped slab into a flat plate-shaped slab. When producing continuous cast slabs using a continuous casting machine, the casting conditions are adjusted so that the solid phase ratio at the center of the slab thickness when passing through the straightening zone is 0.3 or less or 0.7 or more In addition, from the time when the solid phase ratio at the center part of the slab thickness is 0.4 or less to the time when the solid phase ratio at the center part of the slab thickness is 0.7 or more, 0.5 pairs are used. A method for producing a continuous cast slab, wherein the slab is reduced at a reduction speed of ˜1.5 mm / min. 前記矯正帯を通過する時点の鋳片厚み中心部の固相率が0.3以下であり、且つ、前記複数対のロール群が、矯正帯の出側から鋳造方向下流側の5m以上の範囲まで設置されていることを特徴とする、請求項1に記載の連続鋳造鋳片の製造方法。   The solid phase ratio of the slab thickness center at the time of passing through the correction band is 0.3 or less, and the plurality of pairs of rolls are in a range of 5 m or more from the exit side of the correction band to the downstream side in the casting direction. The method for producing a continuous cast slab according to claim 1, wherein
JP2008238763A 2008-09-18 2008-09-18 Manufacturing method of continuous cast slab Active JP5380968B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008238763A JP5380968B2 (en) 2008-09-18 2008-09-18 Manufacturing method of continuous cast slab

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008238763A JP5380968B2 (en) 2008-09-18 2008-09-18 Manufacturing method of continuous cast slab

Publications (2)

Publication Number Publication Date
JP2010069499A true JP2010069499A (en) 2010-04-02
JP5380968B2 JP5380968B2 (en) 2014-01-08

Family

ID=42201767

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008238763A Active JP5380968B2 (en) 2008-09-18 2008-09-18 Manufacturing method of continuous cast slab

Country Status (1)

Country Link
JP (1) JP5380968B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011224583A (en) * 2010-04-16 2011-11-10 Jfe Steel Corp Method for determining centerline segregation of continuously cast slab
EP2543454A1 (en) * 2011-07-08 2013-01-09 Siemens Aktiengesellschaft Process and apparatus for the manufacturing of long steel products in a continuous casting
JP2013010112A (en) * 2011-06-29 2013-01-17 Jfe Steel Corp Method for continuously casting cast slab for line pipe steel plate
JP2014217856A (en) * 2013-05-08 2014-11-20 新日鐵住金株式会社 Continuous casting cast piece and continuous casting method
JP2015009264A (en) * 2013-07-01 2015-01-19 Jfeスチール株式会社 Continuous casting method of steel
WO2019203137A1 (en) * 2018-04-17 2019-10-24 Jfeスチール株式会社 Continuous casting method of steel
WO2024037063A1 (en) * 2022-08-16 2024-02-22 江苏省沙钢钢铁研究院有限公司 High-carbon steel wire rod and production method therefor

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63286260A (en) * 1987-05-19 1988-11-22 Nkk Corp Light rolling reduction casting method
JPH0550201A (en) * 1991-08-20 1993-03-02 Nippon Steel Corp Light rolling reduction method in continuous casting
JP2000141002A (en) * 1998-11-10 2000-05-23 Sumitomo Metal Ind Ltd Continuous casting equipment capable of roll device replacement
JP2001259808A (en) * 2000-03-22 2001-09-25 Nkk Corp Method for continuously casting steel
JP2001259810A (en) * 2000-03-23 2001-09-25 Nkk Corp Continuous casting method
JP2008207201A (en) * 2007-02-26 2008-09-11 Jfe Steel Kk Method for manufacturing continuously cast slab

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63286260A (en) * 1987-05-19 1988-11-22 Nkk Corp Light rolling reduction casting method
JPH0550201A (en) * 1991-08-20 1993-03-02 Nippon Steel Corp Light rolling reduction method in continuous casting
JP2000141002A (en) * 1998-11-10 2000-05-23 Sumitomo Metal Ind Ltd Continuous casting equipment capable of roll device replacement
JP2001259808A (en) * 2000-03-22 2001-09-25 Nkk Corp Method for continuously casting steel
JP2001259810A (en) * 2000-03-23 2001-09-25 Nkk Corp Continuous casting method
JP2008207201A (en) * 2007-02-26 2008-09-11 Jfe Steel Kk Method for manufacturing continuously cast slab

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011224583A (en) * 2010-04-16 2011-11-10 Jfe Steel Corp Method for determining centerline segregation of continuously cast slab
JP2013010112A (en) * 2011-06-29 2013-01-17 Jfe Steel Corp Method for continuously casting cast slab for line pipe steel plate
EP2543454A1 (en) * 2011-07-08 2013-01-09 Siemens Aktiengesellschaft Process and apparatus for the manufacturing of long steel products in a continuous casting
WO2013007469A1 (en) * 2011-07-08 2013-01-17 Siemens Ag Process and apparatus for the manufacturing of long steel products in a continuous casting plant
RU2610997C2 (en) * 2011-07-08 2017-02-17 Прайметалз Текнолоджиз Джермани Гмбх Process and apparatus for manufacturing long steel products in continuous casting plant
CN108326247A (en) * 2011-07-08 2018-07-27 普锐特冶金技术德国有限公司 Technique and equipment for manufacturing the long material product of metal in casting apparatus
JP2014217856A (en) * 2013-05-08 2014-11-20 新日鐵住金株式会社 Continuous casting cast piece and continuous casting method
JP2015009264A (en) * 2013-07-01 2015-01-19 Jfeスチール株式会社 Continuous casting method of steel
WO2019203137A1 (en) * 2018-04-17 2019-10-24 Jfeスチール株式会社 Continuous casting method of steel
KR20200124752A (en) * 2018-04-17 2020-11-03 제이에프이 스틸 가부시키가이샤 Method for continuous casting of steel
CN111989175A (en) * 2018-04-17 2020-11-24 杰富意钢铁株式会社 Method for continuously casting steel
EP3782747A4 (en) * 2018-04-17 2021-02-24 JFE Steel Corporation Continuous casting method of steel
TWI727305B (en) * 2018-04-17 2021-05-11 日商Jfe鋼鐵股份有限公司 Continuous casting method of steel
CN111989175B (en) * 2018-04-17 2022-03-22 杰富意钢铁株式会社 Method for continuously casting steel
KR102387625B1 (en) 2018-04-17 2022-04-18 제이에프이 스틸 가부시키가이샤 Method of continuous casting of steel
US11471936B2 (en) 2018-04-17 2022-10-18 Jfe Steel Corporation Continuous casting method of steel
WO2024037063A1 (en) * 2022-08-16 2024-02-22 江苏省沙钢钢铁研究院有限公司 High-carbon steel wire rod and production method therefor

Also Published As

Publication number Publication date
JP5380968B2 (en) 2014-01-08

Similar Documents

Publication Publication Date Title
JP5380968B2 (en) Manufacturing method of continuous cast slab
JP6115735B2 (en) Steel continuous casting method
JP5600929B2 (en) Manufacturing method of continuous cast slab
KR101233226B1 (en) Device for the horizontal continuous casting of steel
JP2007160341A (en) Machine and method for continuously casting steel
JP5012056B2 (en) Steel continuous casting method
JP6384679B2 (en) Manufacturing method of hot-rolled steel sheet
JP5444807B2 (en) Method for preventing surface cracks in continuous cast slabs
JP2010082638A (en) Method for producing continuously cast slab
JP2011005524A (en) Method for continuously casting high carbon steel
JP2009066652A (en) Continuous casting method for steel, and continuous casting machine
JP2016172265A (en) Continuous casting method of steel
JP5045408B2 (en) Manufacturing method of continuous cast slab
JP6624396B2 (en) Steel sheet manufacturing method
JP5870966B2 (en) Manufacturing method of continuous cast slab
JP2011005525A (en) Method for continuously casting steel cast slab
JP4998734B2 (en) Manufacturing method of continuous cast slab
JP5648300B2 (en) Steel continuous casting method
WO2016162906A1 (en) Method for manufacturing slab using continuous casting machine
JP4692164B2 (en) Continuous casting method of high carbon steel
JP2011152580A (en) Continuous casting method for steel
JP4923643B2 (en) Steel continuous casting method
JP2001137901A (en) Rolling method in hot-charge of continuously cast slab
JP2019171447A (en) Method for continuously casting steel
JP2014231086A (en) Method for continuously casting steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110824

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120321

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120327

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130312

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130509

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130903

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130916

R150 Certificate of patent or registration of utility model

Ref document number: 5380968

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250