JP2008207201A - Method for manufacturing continuously cast slab - Google Patents

Method for manufacturing continuously cast slab Download PDF

Info

Publication number
JP2008207201A
JP2008207201A JP2007044924A JP2007044924A JP2008207201A JP 2008207201 A JP2008207201 A JP 2008207201A JP 2007044924 A JP2007044924 A JP 2007044924A JP 2007044924 A JP2007044924 A JP 2007044924A JP 2008207201 A JP2008207201 A JP 2008207201A
Authority
JP
Japan
Prior art keywords
slab
solid phase
thickness
center
cast slabs
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007044924A
Other languages
Japanese (ja)
Inventor
Makoto Suzuki
真 鈴木
Tetsuo Mochida
哲男 持田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2007044924A priority Critical patent/JP2008207201A/en
Publication of JP2008207201A publication Critical patent/JP2008207201A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Continuous Casting (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing continuously cast slabs, which method can expand an optimum casting condition by improving the efficiency of light rolling reduction in continuously casting molten steel while applying the light rolling reduction to the cast slabs, and can manufacture the cast slabs having the small central segregation and being capable of satisfying the recent severe quality requirement. <P>SOLUTION: When the continuously cast slabs are manufactured, the rolling reduction of the cast slabs 12 is started from the position where the solid phase rate at the central portion of the thickness of the cast slabs 12 is lower than 0.4, and is continued until the position where the solid phase rate at least at the central portion of the thickness of the cast slabs 12 becomes higher than 0.7. In this case, the surface temperature at the middle portion of the long side of the cross section of the cast slabs is kept to be higher than 750°C until the position where the solid phase ratio at the middle portion of the thickness of the cast slabs becomes at least 0.5, and the surface temperature at the middle portion of the long side of the cross section of the cast slabs is kept to be lower than 850°C at the position where the solid phase ratio at the middle portion of the thickness of the cast slabs is higher than 0.5, and the rolling reduction is continued. Thus, the cast slabs having the small central segregation can be manufactured. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、連続鋳造鋳片の製造方法に関し、詳しくは、中心偏析の軽微な鋼の連続鋳造鋳片を製造することのできる、連続鋳造鋳片の製造方法に関するものである。   The present invention relates to a method for producing a continuous cast slab, and more particularly, to a method for producing a continuous cast slab that can produce a continuous cast slab of light steel with a central segregation.

鋼の凝固現象では、炭素、燐、硫黄などの溶質元素は、凝固時の再分配により、通常、未凝固の液相側に濃化される。これがデンドライト樹間に形成されるミクロ偏析である。鋳片が凝固する際の凝固収縮や、連続鋳造機のロール間で発生するバルジングなどによって、鋳片中心部に空隙が形成されたり、負圧が生じたりすると、このミクロ偏析によって濃縮された溶鋼が流動し、鋳片中心部に集積して凝固する。このようにして形成された偏析スポットは、溶鋼の初期濃度に比べ格段に高濃度となっている。これを一般にマクロ偏析と呼び、その存在部位から、中心偏析と呼んでいる。   In the solidification phenomenon of steel, solute elements such as carbon, phosphorus and sulfur are usually concentrated on the unsolidified liquid phase side by redistribution during solidification. This is the microsegregation formed between dendrite trees. When a void is formed in the center of the slab or negative pressure is generated due to solidification shrinkage when the slab solidifies or bulging between rolls of a continuous casting machine, the molten steel concentrated by this microsegregation Flows and accumulates in the center of the slab and solidifies. The segregation spot formed in this way has a much higher concentration than the initial concentration of molten steel. This is generally called macrosegregation, and is called central segregation because of its existence site.

このような中心偏析は、一般に、鋼製品の品質を劣化させる。例えば、石油・天然ガス輸送用のラインパイプ材においては、サワーガスの作用により中心偏析を起点として水素誘起割れが発生する。また、飲料用の缶製品に用いられる深絞り材においては、成分の偏析により加工性に異方性が出現することもある。そのため、鋳造工程から圧延工程に至るまで、鋳片の中心偏析を低減する対策が多数提案されている。   Such central segregation generally degrades the quality of steel products. For example, in a line pipe material for oil / natural gas transportation, hydrogen-induced cracking occurs starting from central segregation due to the action of sour gas. Further, in deep drawn materials used for beverage can products, anisotropy may appear in workability due to segregation of components. Therefore, many countermeasures for reducing the center segregation of the slab have been proposed from the casting process to the rolling process.

そのなかで、効果的に鋳片の中心偏析を低減する手段として、連続鋳造機内において、未凝固相を有する凝固末期の鋳片を凝固収縮量程度の圧下量で圧下する方法(以下、「軽圧下」と呼ぶ)が多数提案されている。この軽圧下技術は、圧下量が鋳片の凝固収縮量と熱収縮量とを加えた収縮量と同等の値となるように、つまり、凝固末期の未凝固相の収縮量に応じて凝固界面が鋳片の中心に向かって移動するように、圧下効率を考慮した圧下速度及び圧下量で鋳片を徐々に圧下して、鋳片中心部における空隙の形成を防止すると同時に濃化溶鋼の流動を防止し、これによって鋳片の中心偏析を軽減することを目的としている。   Among them, as a means for effectively reducing the center segregation of the slab, a method of reducing the slab at the end of solidification having an unsolidified phase with a reduction amount of about the solidification shrinkage (hereinafter referred to as “lightening” Many have been proposed. In this light reduction technology, the amount of reduction is equal to the amount of shrinkage obtained by adding the amount of solidification shrinkage and heat shrinkage of the slab, that is, depending on the amount of shrinkage of the unsolidified phase at the end of solidification. As the steel moves toward the center of the slab, the slab is gradually reduced at a reduction speed and a reduction amount that considers the reduction efficiency to prevent the formation of voids at the center of the slab and at the same time the flow of the concentrated molten steel This is intended to reduce the center segregation of the slab.

例えば、特許文献1には、鋳片厚み中心部の固相率が0.1ないし0.3から流動限界固相率までの領域で、鋳片表面温度を900℃以下に維持しつつ、0.5mm/分ないし2.5mm/分の圧下速度で鋳片を連続的に軽圧下する方法が提案されている。特許文献2には、鋳型直下で積極的にバルジング力を凝固シェルに作用させて、鋳片内未凝固相の厚さを増大させ、次いで、鋳片を軽圧下することにより、中心偏析の発生を低減する方法が提案されている。   For example, Patent Document 1 discloses that the slab surface temperature is maintained at 900 ° C. or lower in the region where the solid phase ratio at the center of the slab thickness is from 0.1 to 0.3 to the flow limit solid phase ratio. A method has been proposed in which a slab is continuously lightly reduced at a reduction speed of 5 mm / min to 2.5 mm / min. In Patent Document 2, bulging force is applied to the solidified shell positively directly under the mold to increase the thickness of the unsolidified phase in the slab, and then the slab is lightly reduced to generate center segregation. A method for reducing the above has been proposed.

特許文献3には、鋳片を軽圧下しながら、鋳片厚み中心部が凝固完了するまで鋳片表面温度が500℃程度になるまで強冷却し、鋳片の熱収縮速度を0.25〜1.0mm/分の範囲に制御することで、凝固シェルの熱収縮によって未凝固相の体積を減少させ、未凝固相の流動を抑えて中心偏析を軽減する方法が提案されている。特許文献4には、未凝固部を含む鋳片を一旦バルジングさせ、その後、バルジング相当分を軽圧下する技術において、鋳型直下から軽圧下直前までの二次冷却の比水量を、鋳片1kg当たり1.0リットル(以下、「L/鋼kg」と記す)以上、3.0L/鋼kg以下として鋳片表面温度を1000℃未満に制御する方法が提案されている。また、特許文献5には、鋳型直下から鋳片の曲げ矯正点までの二次冷却帯における二次冷却の比水量を1.0L/鋼kg以下として鋳片を表面温度が1000℃以上となるように冷却し、更に、鋳片の曲げ矯正点から軽圧下を開始する位置までの二次冷却帯の比水量を0.2〜1.5L/鋼kgとして鋳片を表面温度が1000℃以下となるように冷却した上で、この鋳片を軽圧下する方法が提案されている。
特開昭62−158555号公報 特開昭62−34461号公報 特開2001−138021号公報 特開平11−123513号公報 特開2001−62551号公報
In Patent Document 3, while the slab is lightly reduced, it is strongly cooled until the slab surface temperature reaches about 500 ° C. until the central part of the slab thickness is completely solidified, and the thermal shrinkage rate of the slab is set to 0.25 to 0.25. By controlling to the range of 1.0 mm / min, a method has been proposed in which the volume of the unsolidified phase is reduced by the thermal contraction of the solidified shell and the flow of the unsolidified phase is suppressed to reduce the central segregation. In Patent Document 4, in the technique of once bulging a slab including an unsolidified portion and then lightly reducing the bulging equivalent, the specific water amount of secondary cooling from immediately below the mold to immediately before the light pressure is reduced per kg of slab. A method has been proposed in which the slab surface temperature is controlled to be less than 1000 ° C. at 1.0 liter (hereinafter referred to as “L / steel kg”) or more and 3.0 L / steel kg or less. Further, Patent Document 5 discloses that the specific water amount of secondary cooling in the secondary cooling zone from directly under the mold to the bending correction point of the slab is 1.0 L / kg or less, and the surface temperature of the slab is 1000 ° C. or more. And the surface temperature of the slab is 1000 ° C. or less with a specific water volume of the secondary cooling zone from the bending correction point of the slab to the position where light reduction starts to 0.2 to 1.5 L / steel kg. There has been proposed a method in which the slab is lightly reduced after cooling so that
JP-A-62-158555 JP-A-62-34461 JP 2001-138021 A JP 11-123513 A JP 2001-62551 A

軽圧下技術では、200mm以上の厚みを有する鋳片の表面を圧下することにより、鋳片中心部の凝固界面にその圧下力を作用させているが、その圧下量の全てが厚み中心部の圧下に有効なわけではなく、鋳片の凝固した部分、つまり凝固シェルの強度・剛性などによって、圧下効率はおよそ10%から70%程度の範囲で変化すると考えられている。   In the light rolling technique, the rolling force is applied to the solidification interface at the center of the slab by rolling down the surface of the slab having a thickness of 200 mm or more. However, it is considered that the rolling efficiency changes within a range of about 10% to 70% depending on the solidified portion of the slab, that is, the strength and rigidity of the solidified shell.

圧下効率が低いと、圧下を付与しても、中心偏析の低減効果は十分には期待できない。それに加えて、圧下効率の低い状態で、それを補うために圧下量を増加させることは、連続鋳造機の鋳片支持ロール及びセグメントなどの構造物に負荷がかかり、設備的な不具合の原因や、ロールベアリングなどの設備寿命低下の原因になる。つまり、軽圧下技術では圧下効率が高くなる条件で鋳片を圧下することが重要となる。   If the rolling efficiency is low, even if rolling is applied, the effect of reducing the center segregation cannot be sufficiently expected. In addition, increasing the amount of reduction in order to compensate for this in a state where the reduction efficiency is low places a load on the structure such as the slab support roll and segments of the continuous casting machine, This will cause a reduction in the service life of equipment such as roll bearings. In other words, in the light reduction technique, it is important to reduce the slab under conditions that increase the reduction efficiency.

この観点から、上記従来技術を検証すると、上記特許文献1は、鋳片表面温度を900℃以下に維持しつつ、鋳片を連続的に圧下する方法であるが、この方法では、軽圧下を付与する範囲全域に亘って鋳片の表面温度が低いことから、凝固シェルの強度が高く、鋳片圧下の効果は凝固シェルを変形させることに費やされることになり、中心偏析の発生する鋳片厚み中心部における圧下効率は低下する。特に、特許文献2などに示されるように、軽圧下を付与する前に予め鋳片をバルジングさせる場合には、軽圧下付与領域で鋳片表面温度を900℃以下にすることによって、凝固シェルの強度が高くなり、凝固シェルがバルジングした状態のままとなって、軽圧下が十分に作用せず、中心偏析の悪化を招くことになる。尚、特許文献2は、圧下時の鋳片表面温度に関しては具体的に記載していない。   From this point of view, when the above prior art is verified, Patent Document 1 is a method of continuously reducing the slab while maintaining the slab surface temperature at 900 ° C. or less. Since the surface temperature of the slab is low over the entire range to be applied, the strength of the solidified shell is high, and the effect of the slab pressure reduction is spent on deforming the solidified shell, and the slab where central segregation occurs The rolling efficiency at the center of thickness decreases. In particular, as shown in Patent Document 2 and the like, in the case where the slab is bulged in advance before the light reduction is applied, the surface temperature of the slab is set to 900 ° C. or less in the light reduction application region to thereby reduce the solidified shell. The strength becomes high and the solidified shell remains in a bulging state, so that the light reduction does not work sufficiently and the center segregation is deteriorated. Patent Document 2 does not specifically describe the slab surface temperature during rolling.

特許文献3は、軽圧下時の鋳片表面温度を500℃程度まで急冷する技術であり、この場合にも、特許文献1と同様に鋳片圧下の効果が凝固シェルを変形させることに費やされることになる。特許文献4,5は表面温度を1000℃以下に制御するとしているが、上限を定めているのみで下限値はなく、どのように制御するのか具体的でない。   Patent Document 3 is a technique for rapidly cooling the slab surface temperature to about 500 ° C. at the time of light reduction, and in this case as well as Patent Document 1, the effect of slab reduction is spent on deforming the solidified shell. It will be. In Patent Documents 4 and 5, the surface temperature is controlled to 1000 ° C. or lower, but only an upper limit is set, there is no lower limit value, and it is not specific how to control the surface temperature.

即ち、上記特許文献1〜5では、鋳片を軽圧下する場合に具体的にどのように鋳片表面温度を制御すべきかが明確でなく、改善の余地がある。   That is, in Patent Documents 1 to 5, it is not clear how the slab surface temperature should be controlled when the slab is lightly reduced, and there is room for improvement.

本発明は上記事情に鑑みてなされたもので、その目的とするところは、鋳片の中心偏析を軽減するべく、鋳片に軽圧下を付与しながら溶鋼を連続鋳造するに当たり、軽圧下の効率を高め、最適条件を拡大することが可能であり、近年の厳しい品質要求にも対処可能な鋳片を製造することのできる、連続鋳造鋳片の製造方法を提供することである。   The present invention has been made in view of the above circumstances, and its purpose is to reduce the efficiency of light reduction when continuously casting molten steel while applying light reduction to the slab in order to reduce the center segregation of the slab. It is possible to provide a method for producing a continuous cast slab capable of producing a cast slab capable of increasing the optimum conditions and expanding optimum conditions and capable of producing a slab that can cope with severe quality requirements in recent years.

上記課題を解決するための本発明に係る連続鋳造鋳片の製造方法は、鋳片の厚み中心部の固相率が0.4以下の時点から鋳片の圧下を開始し、少なくとも鋳片の厚み中心部の固相率が0.7以上になる時点まで鋳片の圧下を継続して連続鋳造鋳片を製造する際に、鋳片の厚み中心部の固相率が少なくとも0.5になる時点までは、鋳片の長辺側中央部の表面温度を750℃以上に保ち、鋳片の厚み中心部の固相率が0.5を超え且つ圧下を継続している時点で、鋳片の長辺側中央部の表面温度を850℃以下として、中心偏析の軽微な鋳片を製造することを特徴とするものである。   In order to solve the above problems, the method for producing a continuous cast slab according to the present invention starts the slab reduction from the time when the solid phase ratio at the thickness center of the slab is 0.4 or less, and at least the slab When producing a continuous cast slab by continuously reducing the slab until the solid phase ratio at the center of the thickness reaches 0.7 or more, the solid phase ratio at the center of the slab thickness is at least 0.5. Up to the point in time, the surface temperature of the central part on the long side of the slab is kept at 750 ° C. or higher, the solid phase ratio in the central part of the thickness of the slab exceeds 0.5 and the reduction is continued. The surface temperature of the central part on the long side of the piece is set to 850 ° C. or less, and a slab with a slight center segregation is manufactured.

本発明によれば、鋳片を軽圧下するに当たり、二次冷却水量を制御して軽圧下前及び軽圧下中の鋳片の表面温度を所定の範囲に規定するので、軽圧下が最終凝固部に有効に作用し、軽圧下による濃化溶鋼の流動抑制効果が発揮され、且つ、ロール間バルジングも低減できるので、鋳片の中心偏析を大幅に低減することができる。その結果、近年の厳しい品質要求にも対処可能な鋳片を安定して製造することができる。   According to the present invention, when the slab is lightly reduced, the surface temperature of the slab before and during light reduction is regulated within a predetermined range by controlling the amount of secondary cooling water. Since the effect of suppressing the flow of the concentrated molten steel due to light pressure is exhibited and the bulging between rolls can be reduced, the center segregation of the slab can be greatly reduced. As a result, it is possible to stably manufacture a slab that can cope with recent severe quality requirements.

以下、本発明を具体的に説明する。   Hereinafter, the present invention will be specifically described.

本発明では、鋳片の厚み中心部の固相率が0.4以下の時点から鋳片の軽圧下を開始し、少なくとも鋳片の厚み中心部の固相率が0.7以上になる時点まで軽圧下を継続して連続鋳造鋳片を製造する際に、鋳片の厚み中心部の固相率が少なくとも0.5になるまでは、鋳片の長辺側中央部の表面温度を750℃以上に保つ。   In the present invention, when the solid phase ratio at the center of the slab thickness is 0.4 or less, light reduction of the slab is started, and at least the solid phase ratio at the center of the thickness of the slab becomes 0.7 or more. When the continuous cast slab is manufactured by continuing to lightly reduce the surface temperature of the central part of the long side of the slab to 750 until the solid phase ratio at the thickness center of the slab reaches at least 0.5. Keep above ℃.

軽圧下を行わない連続鋳造の場合には、中心偏析抑制の観点からは、一般的に鋳片表面を強冷却する方が効果的である。その理由は、内部に未凝固相を有する連続鋳造鋳片を強冷却することにより、鋳片表層部の温度が低下して、鋳片の凝固シェルの強度が高まるので、鋳片支持ロール間における鋳片のバルジングが少なくなり、このロール間バルジングに起因する未凝固相の流動を抑えることができるからである。また、強冷却を行うことで、凝固シェル自体の熱収縮によって未凝固部分の体積が減少し、未凝固相の流動を抑えることができるからである。   In the case of continuous casting without light reduction, it is generally effective to strongly cool the slab surface from the viewpoint of suppressing center segregation. The reason is that by strongly cooling a continuous cast slab having an unsolidified phase inside, the temperature of the slab surface layer portion is lowered and the strength of the solidified shell of the slab is increased. This is because the bulging of the slab is reduced and the flow of the unsolidified phase due to the bulging between rolls can be suppressed. Further, by performing strong cooling, the volume of the unsolidified portion is reduced by the thermal contraction of the solidified shell itself, and the flow of the unsolidified phase can be suppressed.

しかしながら、軽圧下によって中心偏析を防止する技術においては、鋳片を強冷却することは必ずしも得策ではない。鋳片の温度が低下すると、凝固シェルの変形抵抗が増加する。そのことは、上記のように、ロール間バルジングの防止には有効であるが、軽圧下に対しては抵抗となって、鋳片表面を圧下しても、中心偏析で問題となる鋳片の厚み中心部には圧下の効果が及ばないことになる。   However, in the technique of preventing center segregation by light reduction, it is not always a good idea to strongly cool the slab. When the temperature of the slab decreases, the deformation resistance of the solidified shell increases. As described above, this is effective in preventing bulging between rolls, but it becomes a resistance against light pressure, and even if the surface of the slab is squeezed, the slab becomes a problem due to center segregation. The reduction effect does not reach the center of thickness.

この問題を解決するために、本発明では、鋳片の厚み中心部の固相率が少なくとも0.5になるまでは、鋳片の長辺側中央部の表面温度を750℃以上に保つ。これによって、温度が低く、変形抵抗の大きい凝固シェルが、軽圧下開始前に形成されることを防止することができる。変形抵抗が小さいと、一般的には圧延されて鋳造方向や鋳片幅方向への変形が起こりやすくなるが、この時点では、鋳片の厚み中心部には未凝固部分があり、しかも、鋳片厚み中心部の固相率が0.5程度であり、一般に強度が発現する最高温度とされるZST(Zero Strength Temperature ;抗張力がゼロになる温度)に相当する固相率(一般に、固相率0.6ないし0.7程度とされる)よりも低い固相率であるので、鋳片表面に加えられる圧下は、その大半が未凝固部分の圧下に有効に費やされる。また、鋳片の長辺側中央部の表面温度を750℃以上に保つ期間は、鋳片中心部の固相率が0.5程度までの期間であるので、仮に凝固シェルの強度が十分でなく、ロール間バルジングが発生したとしても、厚み中心部の固相率が0.5程度であれば、溶鋼の流動は比較的容易であり、偏析度(もともとの溶鋼濃度に対する濃化倍率)の高い中心偏析を引き起こす原因にはなりにくいという利点もある。   In order to solve this problem, in the present invention, the surface temperature of the central part on the long side of the slab is kept at 750 ° C. or higher until the solid phase ratio at the thickness center of the slab becomes at least 0.5. As a result, it is possible to prevent a solidified shell having a low temperature and a large deformation resistance from being formed before the light reduction starts. If the deformation resistance is small, it is generally rolled and easily deformed in the casting direction or in the width direction of the slab, but at this point, there is an unsolidified portion at the center of the thickness of the slab, and the casting is cast. The solid phase ratio at the center of one thickness is about 0.5, and the solid phase ratio corresponding to ZST (Zero Strength Temperature; the temperature at which the tensile strength becomes zero), which is generally the maximum temperature at which strength is developed (generally, solid phase) Therefore, most of the reduction applied to the surface of the slab is effectively spent on the reduction of the unsolidified portion. In addition, the period during which the surface temperature of the central part on the long side of the slab is maintained at 750 ° C. or higher is a period in which the solid phase ratio at the center part of the slab is up to about 0.5. Even if bulging between rolls occurs, if the solid phase ratio at the thickness center is about 0.5, the flow of the molten steel is relatively easy and the segregation degree (concentration ratio with respect to the original molten steel concentration) There is also an advantage that it is difficult to cause high center segregation.

一方、鋳片中心部の固相率が0.5を超えた以降は、鋳片に軽圧下を付与している時点で、鋳片の長辺側中央部の表面温度を850℃以下にすることが、軽圧下を未凝固部分に効率的に作用させる上で有効である。   On the other hand, after the solid phase ratio in the center portion of the slab exceeds 0.5, the surface temperature of the central portion on the long side of the slab is set to 850 ° C. or less at the time when light reduction is applied to the slab. This is effective in causing light pressure to effectively act on the uncoagulated portion.

鋳片中心部の固相率が大きくなると、凝固シェルのみならず、未凝固部分もデンドライト組織の接触が起こり、強度を発現し始める。この時点では、凝固シェルの強度・変形抵抗が十分ではないと、鋳片表面に加えられた圧下は、凝固シェルの変形に費やされる比率が高まり、中心偏析低減のための未凝固部分の圧下には有効に効かないことになる。この現象は、鋳片の厚み中心部の固相率がおよそ0.7程度以上で顕著になるが、鋳片への二次冷却強度の変更が鋳片の厚み全体に影響を与えるには、或る程度の時間差を要するので、予め中心部の固相率が0.5を超えた時点で二次冷却強度を強めて、早急に鋳片の長辺側中央部の表面温度が850℃以下になるように制御する。また、このことにより、最終凝固部近傍でのロール間バルジングの発生も防止できる。   When the solid phase ratio at the center of the slab increases, not only the solidified shell but also the unsolidified portion comes into contact with the dendrite structure and begins to develop strength. At this time, if the strength and deformation resistance of the solidified shell are not sufficient, the reduction applied to the surface of the slab increases the ratio spent on the deformation of the solidified shell, which reduces the unsolidified portion to reduce central segregation. Will not work effectively. This phenomenon becomes prominent when the solid phase ratio at the thickness center of the slab is about 0.7 or more, but the change in the secondary cooling strength to the slab affects the entire thickness of the slab. Since a certain time lag is required, the secondary cooling strength is strengthened when the solid fraction of the central portion exceeds 0.5 in advance, and the surface temperature of the central portion on the long side of the slab is rapidly reduced to 850 ° C. or less. Control to become. This also prevents the occurrence of bulging between rolls in the vicinity of the final solidified part.

鋳片中心部の固相率は、実際に確認することは困難であるが、一般的に、伝熱計算などで推定することが可能である。   Although it is difficult to actually confirm the solid phase ratio at the center of the slab, it can be generally estimated by heat transfer calculation or the like.

このように、本発明では未凝固鋳片を軽圧下する際に、鋳片の冷却強度を適切に決定するので、軽圧下による濃化溶鋼の流動抑制効果が有効に作用し、中心偏析を効果的に低減することができる。尚、鋳片の軽圧下は、鋳片厚み中心部の固相率が0.4以下の時点から開始し、少なくとも鋳片厚み中心部の固相率が0.7以上となる時点まで行う。これは、鋳片厚み中心部の固相率が0.4を越えてから軽圧下を開始しても、それ以前に濃化溶鋼の流動が発生する可能性があり、これにより中心偏析が発生し、軽圧下の効果を十分に発揮することができず、また、溶鋼の流動は、固相率が0.7を超えるまで発生する可能性があり、それよりも早期に軽圧下を停止してしまうと、濃化溶鋼の流動が発生し、これにより中心偏析が発生して、軽圧下の効果を十分に発揮することができないからである。   Thus, in the present invention, when the unsolidified slab is lightly reduced, the cooling strength of the slab is appropriately determined, so that the flow control effect of the concentrated molten steel due to the light reduction is effective, and the center segregation is effective. Can be reduced. The light reduction of the slab starts from the time when the solid phase ratio at the center portion of the slab thickness is 0.4 or less, and is performed until at least the solid phase ratio at the center portion of the slab thickness becomes 0.7 or more. This is because, even if light reduction starts after the solid phase ratio at the center of the slab thickness exceeds 0.4, the flow of concentrated molten steel may occur before that, which causes center segregation. However, the effect of light reduction cannot be fully exhibited, and the flow of molten steel may occur until the solid phase ratio exceeds 0.7, and the light reduction is stopped earlier than that. If this occurs, the flow of the concentrated molten steel occurs, which causes central segregation, and the effect of light reduction cannot be fully exhibited.

次に、本発明の具体的な実施方法を、図面を参照して説明する。図1は、本発明を実施した垂直曲げ型のスラブ連続鋳造機の側面概要図である。   Next, a specific implementation method of the present invention will be described with reference to the drawings. FIG. 1 is a schematic side view of a vertical bending slab continuous casting machine embodying the present invention.

図1に示すように、スラブ連続鋳造機1には、鋳型5が設置され、この鋳型5の上方所定位置には、取鍋(図示せず)から供給される溶鋼11を鋳型5に中継供給するためのタンディッシュ2が設置されている。一方、鋳型5の下方には、サポートロール6、ガイドロール7及びピンチロール8からなる複数対の鋳片支持ロールが配置されている。このうち、ピンチロール8は、鋳片12を支持すると同時に鋳片12を引抜くための駆動ロールである。鋳造方向に隣り合う鋳片支持ロールの間隙には、水スプレーノズル或いはエアーミストスプレーノズルなどのスプレーノズル(図示せず)が配置された二次冷却帯が構成され、二次冷却帯のスプレーノズルから噴霧される冷却水(「二次冷却水」ともいう)によって鋳片12は引抜かれながら冷却されるようになっている。タンディッシュ2の底部には、溶鋼11の流量を調整するためのスライディングノズル3が設置され、このスライディングノズル3の下面には、浸漬ノズル4が設置されている。また、鋳片支持ロールの下流側には、鋳造された鋳片12を搬送するための複数の搬送ロール9が設置されており、この搬送ロール9の上方には、鋳造される鋳片12から所定の長さの鋳片12aを切断するための鋳片切断機10が配置されている。   As shown in FIG. 1, a slab continuous casting machine 1 is provided with a mold 5, and a molten steel 11 supplied from a ladle (not shown) is relay-supplied to the mold 5 at a predetermined position above the mold 5. A tundish 2 is installed. On the other hand, below the mold 5, a plurality of pairs of slab support rolls including a support roll 6, a guide roll 7 and a pinch roll 8 are arranged. Among these, the pinch roll 8 is a drive roll for drawing the slab 12 at the same time as supporting the slab 12. A secondary cooling zone in which a spray nozzle (not shown) such as a water spray nozzle or an air mist spray nozzle is arranged in the gap between the slab support rolls adjacent in the casting direction is configured. The slab 12 is cooled while being drawn out by cooling water sprayed from (also referred to as “secondary cooling water”). A sliding nozzle 3 for adjusting the flow rate of the molten steel 11 is installed at the bottom of the tundish 2, and an immersion nozzle 4 is installed on the lower surface of the sliding nozzle 3. Further, on the downstream side of the slab support roll, a plurality of transport rolls 9 for transporting the cast slab 12 are installed, and above the transport roll 9, from the cast slab 12 to be cast. A slab cutting machine 10 for cutting a slab 12a having a predetermined length is disposed.

鋳片12の凝固完了位置15を挟んで鋳造方向の前後には、対向するガイドロール7との間隔(「ロール間隔」と呼ぶ)を鋳造方向下流に向かって順次狭くなるように設定された、複数対のガイドロール群から構成される軽圧下帯16が設置されている。ここでは、その全域または一部選択した領域で、鋳片12に軽圧下を行うことが可能である。軽圧下帯16の各ガイドロール間にも鋳片12を冷却するためのスプレーノズルが配置されている。尚、ロール間隔が鋳造方向下流に向かって順次狭くなるように設定された状態を、「ロール勾配」とも称している。   Before and after the casting direction 15 across the solidification completion position 15 of the slab 12, the distance between the opposing guide rolls 7 (referred to as “roll interval”) was set so as to be gradually narrowed toward the downstream in the casting direction. A light pressure lower belt 16 composed of a plurality of pairs of guide rolls is provided. Here, it is possible to lightly reduce the slab 12 over the entire region or a partially selected region. A spray nozzle for cooling the slab 12 is also disposed between the guide rolls of the light pressure lower belt 16. A state in which the roll interval is set so as to become narrower toward the downstream in the casting direction is also referred to as “roll gradient”.

浸漬ノズル4を介して鋳型5に注入された溶鋼11は、鋳型5で冷却されて凝固シェル13を形成し、内部に未凝固相14を有する鋳片12として、鋳型5の下方に設けたサポートロール6、ガイドロール7及びピンチロール8に支持されつつ、ピンチロール8の駆動力により鋳型5の下方に連続的に引抜かれる。鋳片12は、これらの鋳片支持ロールを通過する間、二次冷却帯の二次冷却水で冷却され、凝固シェル13の厚みを増大し、軽圧下帯16で軽圧下されながら凝固完了位置15で内部までの凝固を完了する。鋳片12は、鋳片切断機10によって切断されて鋳片12aとなる。   The molten steel 11 injected into the mold 5 through the immersion nozzle 4 is cooled by the mold 5 to form a solidified shell 13, and a support provided below the mold 5 as a slab 12 having an unsolidified phase 14 inside. While being supported by the roll 6, the guide roll 7, and the pinch roll 8, it is continuously pulled out below the mold 5 by the driving force of the pinch roll 8. While the slab 12 passes through these slab support rolls, the slab 12 is cooled by the secondary cooling water in the secondary cooling zone, the thickness of the solidified shell 13 is increased, and the solidification completion position while being lightly reduced by the light pressure lowering zone 16. 15 completes the solidification to the inside. The slab 12 is cut by the slab cutting machine 10 to become a slab 12a.

このような連続鋳造操業の種々の鋳造条件において、予め伝熱計算などを用いて凝固シェル13の厚み並びに鋳片厚み中心部の固相率を求めておき、軽圧下帯16に入る時点での鋳片厚み中心部の固相率が0.4以下になるように、鋳片引抜き速度及び二次冷却水量などの鋳造条件を調整する。軽圧下を開始する時点の鋳片厚み中心部の固相率は0.4以下であればいくらであっても構わない。尚、軽圧下帯の設置範囲が鋳造方向に長く、軽圧下帯の中でも軽圧下を付与するロール群と軽圧下を付与しないロール群が存在する場合には、実際に軽圧下を付与するロール群のみを上記の軽圧下帯16とみなして操業すればよい。   Under various casting conditions in such a continuous casting operation, the thickness of the solidified shell 13 and the solid phase ratio at the center of the slab thickness are obtained in advance by using heat transfer calculation, etc. The casting conditions such as the slab drawing speed and the amount of secondary cooling water are adjusted so that the solid phase ratio at the center of the slab thickness is 0.4 or less. The solid phase ratio at the center of the slab thickness at the start of light reduction may be any amount as long as it is 0.4 or less. In addition, when the installation range of the light reduction belt is long in the casting direction, and there are a roll group that applies light reduction and a roll group that does not apply light reduction, the roll group that actually applies light reduction. Only the above-mentioned light pressure lower belt 16 may be regarded as an operation.

二次冷却帯は、通常、単一または複数のロールセグメント毎に二次冷却ゾーンが設定されており、各冷却ゾーン毎に二次冷却水量を決めることができる。この機能を用いて、鋳片厚み中心部の固相率が少なくとも0.5になるまでは、鋳片12の長辺側中央部の表面温度を750℃以上に保ち、更にそれに加えて、鋳片厚み中心部の固相率が0.5を超えたなら、鋳片12の長辺側中央部の表面温度が850℃以下になるように、二次冷却強度の調整を実施する。この場合、二次冷却強度変更の効果は直ちに鋳片表面温度として現れない場合もあるので、鋳片厚み中心部の固相率が0.5を超えたなら、瞬時に鋳片12の長辺側中央部の表面温度を850℃以下にするという意味ではない。多少の時間遅れがあっても構わない。要は、鋳片厚み中心部の固相率が0.5を超えたなら、軽圧下中の鋳片12の長辺側中央部の表面温度を、可能な限り迅速に850℃以下にするということである。   In the secondary cooling zone, a secondary cooling zone is usually set for each single or a plurality of roll segments, and the amount of secondary cooling water can be determined for each cooling zone. By using this function, the surface temperature of the central part of the long side of the slab 12 is kept at 750 ° C. or more until the solid phase ratio at the center part of the slab thickness becomes at least 0.5, and in addition to that, If the solid phase ratio at the center part of the piece thickness exceeds 0.5, the secondary cooling strength is adjusted so that the surface temperature of the central part on the long side of the slab 12 is 850 ° C. or lower. In this case, since the effect of changing the secondary cooling strength may not immediately appear as the slab surface temperature, the long side of the slab 12 instantly if the solid phase ratio at the center of the slab thickness exceeds 0.5 This does not mean that the surface temperature of the side center is 850 ° C. or lower. It does not matter if there is some time delay. In short, if the solid phase ratio at the center part of the slab thickness exceeds 0.5, the surface temperature of the central part on the long side of the slab 12 during light reduction is set to 850 ° C. or less as quickly as possible. That is.

このようにして鋼の連続鋳造を実施することで、鋳片12には軽圧下が効果的且つ有効に作用し、凝固収縮などに伴う濃化溶鋼の流動が抑制されて、鋳片12aの中心偏析を大幅に低減することができる。   By carrying out continuous casting of steel in this way, light reduction effectively and effectively acts on the slab 12, and the flow of the concentrated molten steel accompanying solidification shrinkage is suppressed, and the center of the slab 12a Segregation can be greatly reduced.

図1に示すようなスラブ連続鋳造機を用い、二次冷却強度、軽圧下速度を変化させて鋳造した。そのスラブ鋳片から試験片を採取し、各試験片の中心偏析を調査して、二次冷却強度の中心偏析に及ぼす影響を調査した。   Using a slab continuous casting machine as shown in FIG. 1, casting was performed while changing the secondary cooling strength and the light rolling speed. A test piece was collected from the slab slab, the center segregation of each test piece was investigated, and the influence of the secondary cooling strength on the center segregation was investigated.

用いた連続鋳造機は、鋳型直下に2.8mの垂直部を有し、それに続く湾曲部の半径が10mである垂直曲げ型のスラブ連続鋳造機で、軽圧下帯を鋳型内溶鋼湯面から16〜32mの範囲に設置してある。この軽圧下帯の範囲内で、鋳造条件に合わせて、軽圧下を行う位置・範囲・圧下量(圧下速度)を設定することができる。この連続鋳造機を用いて、炭素含有量が0.04〜0.05質量%の耐サワーラインパイプ用鋼を、厚み250mm、幅2100mmの鋳片として引抜き速度1.4m/分で鋳造した。   The continuous casting machine used is a vertical bending type slab continuous casting machine that has a vertical part of 2.8 m directly under the mold and the radius of the curved part that follows it is 10 m. It is installed in the range of 16-32m. Within the range of the light reduction zone, the position, range, and reduction amount (reduction speed) for light reduction can be set according to the casting conditions. Using this continuous casting machine, steel for a sour line pipe having a carbon content of 0.04 to 0.05% by mass was cast as a cast piece having a thickness of 250 mm and a width of 2100 mm at a drawing speed of 1.4 m / min.

この鋳造をシミュレートした伝熱計算を行い、各冷却条件における鋳片厚み中心部の固相率を推算した。軽圧下帯では鋳片厚み方向中心部の計算固相率が0.2ないし0.3となるまでは軽圧下せずに鋳片を支持するのみとし、それ以降のロール勾配を鋳造方向距離1m当たり0.9mm、即ち、軽圧下速度に換算すると1.26mm/分(=1.4×0.9)とした。   The heat transfer calculation simulating this casting was performed to estimate the solid phase ratio at the center of the slab thickness under each cooling condition. In the lightly reduced belt, the slab is only supported without light reduction until the calculated solid fraction in the center of the slab thickness direction becomes 0.2 to 0.3, and the roll gradient thereafter is set at a casting direction distance of 1 m. 0.9 mm per unit, that is, 1.26 mm / min (= 1.4 × 0.9) when converted to a light rolling speed.

このような鋳造条件で、二次冷却条件を、計算固相率を基準として種々変化させ、鋳片試験片の中心偏析調査結果の比較評価を行った。その条件と、各条件での中心偏析の調査結果を表1に示す。尚、表1に示す「C/C0 」は炭素濃度の偏析度を表し、評価の欄の「○」印は良好、「×」印は不良、「△」印はやや不良を表している。 Under such casting conditions, the secondary cooling conditions were variously changed based on the calculated solid phase ratio, and the comparative evaluation of the center segregation investigation results of the slab specimens was performed. Table 1 shows the conditions and the results of investigation of center segregation under each condition. “C / C 0 ” shown in Table 1 represents the segregation degree of the carbon concentration, “◯” mark in the evaluation column is good, “X” mark is bad, and “Δ” mark is somewhat bad. .

Figure 2008207201
Figure 2008207201

表1に示すように、鋳片の中心偏析は、引抜き速度、軽圧下量などが同じであっても、二次冷却条件によって変化し、具体的には、鋳片の表面温度を基準にして中心偏析を判別できることが判明した。   As shown in Table 1, the center segregation of the slab varies depending on the secondary cooling conditions even when the drawing speed, the amount of light reduction, etc. are the same, specifically, based on the surface temperature of the slab. It was found that central segregation can be discriminated.

本発明を実施した垂直曲げ型のスラブ連続鋳造機の側面概要図である。It is a side surface schematic diagram of the vertical bending type slab continuous casting machine which implemented the present invention.

符号の説明Explanation of symbols

1 スラブ連続鋳造機
2 タンディッシュ
3 スライディングノズル
4 浸漬ノズル
5 鋳型
6 サポートロール
7 ガイドロール
8 ピンチロール
9 搬送ロール
10 鋳片切断機
11 溶鋼
12 鋳片
13 凝固シェル
14 未凝固相
15 凝固完了位置
16 軽圧下帯
DESCRIPTION OF SYMBOLS 1 Slab continuous casting machine 2 Tundish 3 Sliding nozzle 4 Immersion nozzle 5 Mold 6 Support roll 7 Guide roll 8 Pinch roll 9 Conveyance roll 10 Slab cutting machine 11 Molten steel 12 Cast slab 13 Solidified shell 14 Unsolidified phase 15 Solidification completion position 16 Light pressure lower belt

Claims (1)

鋳片の厚み中心部の固相率が0.4以下の時点から鋳片の圧下を開始し、少なくとも鋳片の厚み中心部の固相率が0.7以上になる時点まで鋳片の圧下を継続して連続鋳造鋳片を製造する際に、鋳片の厚み中心部の固相率が少なくとも0.5になる時点までは、鋳片の長辺側中央部の表面温度を750℃以上に保ち、鋳片の厚み中心部の固相率が0.5を超え且つ圧下を継続している時点で、鋳片の長辺側中央部の表面温度を850℃以下として、中心偏析の軽微な鋳片を製造することを特徴とする、連続鋳造鋳片の製造方法。   Start of slab reduction when the solid phase ratio at the center of the slab thickness is 0.4 or less, and reduce the slab until at least the solid phase ratio at the center of the slab thickness is 0.7 or more. When the continuous cast slab is continuously manufactured, the surface temperature of the central part on the long side of the slab is 750 ° C. or higher until the solid phase ratio at the thickness center of the slab becomes at least 0.5. When the solid phase ratio at the thickness center of the slab exceeds 0.5 and the reduction is continued, the surface temperature of the long side central portion of the slab is set to 850 ° C. or less, and the center segregation is slight. A method for producing a continuous cast slab characterized by producing a continuous slab.
JP2007044924A 2007-02-26 2007-02-26 Method for manufacturing continuously cast slab Pending JP2008207201A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007044924A JP2008207201A (en) 2007-02-26 2007-02-26 Method for manufacturing continuously cast slab

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007044924A JP2008207201A (en) 2007-02-26 2007-02-26 Method for manufacturing continuously cast slab

Publications (1)

Publication Number Publication Date
JP2008207201A true JP2008207201A (en) 2008-09-11

Family

ID=39783961

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007044924A Pending JP2008207201A (en) 2007-02-26 2007-02-26 Method for manufacturing continuously cast slab

Country Status (1)

Country Link
JP (1) JP2008207201A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010069499A (en) * 2008-09-18 2010-04-02 Jfe Steel Corp Method for producing continuously cast slab

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6245458A (en) * 1985-08-23 1987-02-27 Nippon Steel Corp Continuous casting method for steel
JPS62158555A (en) * 1985-12-30 1987-07-14 Nippon Steel Corp Continuous casting method
JPS63252655A (en) * 1987-04-08 1988-10-19 Nkk Corp Method for casting under light draft
JPS63252654A (en) * 1987-04-08 1988-10-19 Nkk Corp Method for casting under light draft
JPH06297125A (en) * 1993-04-16 1994-10-25 Kobe Steel Ltd Method for continuous casting of slab
JPH08132204A (en) * 1994-11-10 1996-05-28 Sumitomo Metal Ind Ltd Continuous casting method
JP2001062551A (en) * 1999-08-31 2001-03-13 Sumitomo Metal Ind Ltd Continuous casting method
JP2001259809A (en) * 2000-03-23 2001-09-25 Nkk Corp Continuous casting method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6245458A (en) * 1985-08-23 1987-02-27 Nippon Steel Corp Continuous casting method for steel
JPS62158555A (en) * 1985-12-30 1987-07-14 Nippon Steel Corp Continuous casting method
JPS63252655A (en) * 1987-04-08 1988-10-19 Nkk Corp Method for casting under light draft
JPS63252654A (en) * 1987-04-08 1988-10-19 Nkk Corp Method for casting under light draft
JPH06297125A (en) * 1993-04-16 1994-10-25 Kobe Steel Ltd Method for continuous casting of slab
JPH08132204A (en) * 1994-11-10 1996-05-28 Sumitomo Metal Ind Ltd Continuous casting method
JP2001062551A (en) * 1999-08-31 2001-03-13 Sumitomo Metal Ind Ltd Continuous casting method
JP2001259809A (en) * 2000-03-23 2001-09-25 Nkk Corp Continuous casting method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010069499A (en) * 2008-09-18 2010-04-02 Jfe Steel Corp Method for producing continuously cast slab

Similar Documents

Publication Publication Date Title
JP5776285B2 (en) Manufacturing method of continuous cast slab
JP6115735B2 (en) Steel continuous casting method
JP2012066303A (en) Continuous casting method and continuous casting apparatus of steel
JP2010082638A (en) Method for producing continuously cast slab
JP5380968B2 (en) Manufacturing method of continuous cast slab
WO2016103293A1 (en) Continuous casting method for steel
JP5045408B2 (en) Manufacturing method of continuous cast slab
JP6384679B2 (en) Manufacturing method of hot-rolled steel sheet
JP6075336B2 (en) Steel continuous casting method
JP4998734B2 (en) Manufacturing method of continuous cast slab
JP6044746B1 (en) Steel continuous casting method
JP2006192488A (en) Continuous casting method for steel
JP5870966B2 (en) Manufacturing method of continuous cast slab
JP2008207201A (en) Method for manufacturing continuously cast slab
JP2011005525A (en) Method for continuously casting steel cast slab
JP6152824B2 (en) Steel continuous casting method
JP2011147985A (en) Continuous casting method and apparatus
JP6852798B2 (en) Continuous steel casting method
JP2019155419A (en) Continuous casting method for slab
JP2008087055A (en) Method for completing continuous casting
JP3546297B2 (en) Method of reducing center segregation in continuous cast slab
JP5929836B2 (en) Steel continuous casting method
JP2008290113A (en) Continuous casting method of steel
JP5915453B2 (en) Steel continuous casting method
WO2016121355A1 (en) Continuous casting method for steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090821

A521 Written amendment

Effective date: 20100519

Free format text: JAPANESE INTERMEDIATE CODE: A523

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111027

A131 Notification of reasons for refusal

Effective date: 20111108

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120106

A02 Decision of refusal

Effective date: 20120131

Free format text: JAPANESE INTERMEDIATE CODE: A02

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120321

RD04 Notification of resignation of power of attorney

Effective date: 20120327

Free format text: JAPANESE INTERMEDIATE CODE: A7424