JP6624396B2 - Steel sheet manufacturing method - Google Patents
Steel sheet manufacturing method Download PDFInfo
- Publication number
- JP6624396B2 JP6624396B2 JP2018057981A JP2018057981A JP6624396B2 JP 6624396 B2 JP6624396 B2 JP 6624396B2 JP 2018057981 A JP2018057981 A JP 2018057981A JP 2018057981 A JP2018057981 A JP 2018057981A JP 6624396 B2 JP6624396 B2 JP 6624396B2
- Authority
- JP
- Japan
- Prior art keywords
- slab
- width direction
- steel sheet
- distance
- maximum value
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910000831 Steel Inorganic materials 0.000 title claims description 53
- 239000010959 steel Substances 0.000 title claims description 53
- 238000004519 manufacturing process Methods 0.000 title claims description 14
- 238000007711 solidification Methods 0.000 claims description 84
- 230000008023 solidification Effects 0.000 claims description 84
- 238000009749 continuous casting Methods 0.000 claims description 26
- 238000005266 casting Methods 0.000 claims description 24
- 230000005499 meniscus Effects 0.000 claims description 24
- 238000000034 method Methods 0.000 claims description 21
- 238000001816 cooling Methods 0.000 claims description 20
- 238000005520 cutting process Methods 0.000 claims description 17
- 239000000498 cooling water Substances 0.000 claims description 10
- 238000005098 hot rolling Methods 0.000 claims description 8
- 238000010438 heat treatment Methods 0.000 claims description 2
- 238000005204 segregation Methods 0.000 description 59
- 239000011572 manganese Substances 0.000 description 22
- 238000009826 distribution Methods 0.000 description 18
- 238000004364 calculation method Methods 0.000 description 12
- 238000012546 transfer Methods 0.000 description 12
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 11
- 239000000463 material Substances 0.000 description 7
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 4
- 229910001209 Low-carbon steel Inorganic materials 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 229910052739 hydrogen Inorganic materials 0.000 description 4
- 239000001257 hydrogen Substances 0.000 description 4
- 239000002436 steel type Substances 0.000 description 4
- 238000005452 bending Methods 0.000 description 3
- 238000005336 cracking Methods 0.000 description 3
- 238000004453 electron probe microanalysis Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 238000005096 rolling process Methods 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 210000001787 dendrite Anatomy 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 239000007791 liquid phase Substances 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 239000007790 solid phase Substances 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- 238000011144 upstream manufacturing Methods 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 238000013019 agitation Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000015271 coagulation Effects 0.000 description 1
- 238000005345 coagulation Methods 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 238000007596 consolidation process Methods 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 239000010779 crude oil Substances 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
Images
Landscapes
- Metal Rolling (AREA)
- Continuous Casting (AREA)
Description
本発明は、鋼板の製造方法に関し、詳しくは、中心偏析の少ない連続鋳造鋳片の製造を通じて偏析に対して厳格な鋼種の鋼板を製造する方法に関する。 The present invention relates to a method for producing a steel sheet, and more particularly, to a method for producing a steel sheet of a steel type strictly resistant to segregation through the production of a continuous cast slab having a small center segregation.
一般に、連続鋳造鋳片は、その凝固過程において、炭素や燐、硫黄、マンガンなどの溶質元素が、凝固時の再分配により未凝固の液相側に濃化し、これがデンドライト樹間にトラップされてミクロ偏析となることが知られている。即ち、連続鋳造鋳片は、凝固収縮や熱収縮、連続鋳造機のロール間で発生する凝固シェルのバルジングなどによって、鋳片の厚み中心部に空隙が形成されたり、負圧が生じたりするため、この部分に溶鋼が吸収されていくのが普通である。特に、凝固末期の連続鋳造鋳片は未凝固部分に十分な量の溶鋼が存在していないことから、上記ミクロ偏析によって濃縮された溶鋼がそこに流動し、連続鋳造鋳片の中心部に集積して凝固するようになる。このようにして形成される偏析スポットは、溶質元素の濃度が溶鋼の初期濃度に比べて格段に高濃度となっており、これを一般に、マクロ偏析と呼び、またその存在部位からこれを、中心偏析と呼んでいる。 In general, in continuous casting slabs, during the solidification process, solute elements such as carbon, phosphorus, sulfur, and manganese concentrate in the unsolidified liquid phase due to redistribution during solidification, and this is trapped between dendrite trees. It is known that micro segregation occurs. In other words, continuous cast slabs, due to solidification shrinkage and heat shrinkage, bulging of the solidified shell generated between the rolls of the continuous casting machine, etc., voids are formed in the center of the thickness of the slab, or negative pressure is generated. Usually, molten steel is absorbed into this part. In particular, since continuous cast slabs at the end of solidification do not have a sufficient amount of molten steel in the unsolidified portion, the molten steel concentrated by the microsegregation flows there and accumulates at the center of the continuous cast slab. To solidify. In the segregation spot formed in this way, the concentration of the solute element is much higher than the initial concentration of the molten steel, and this is generally called macrosegregation. We call it segregation.
近年、連続鋳造鋳片に発生する前記中心偏析については、これを低減させることが求められており、特にラインパイプ材などのような偏析厳格鋼種に対する要求レベルはより厳しさを増しているのが実情である。例えば、ラインパイプ材は、原油や天然ガスなどの輸送用に使用されるが、中心偏析部位にMnSやNb炭化物が生成していると、腐食反応によって生成し、鋼内部に侵入した水素が鋼中のMnSやNb炭化物のまわりに拡散、集積し、その内圧により割れを誘発する。しかも、中心偏析部位は硬くなっているのでその割れが伝播する。これが水素誘起割れ(HIC)である。従って、鋳片の中心偏析を低減することの重要性は大きい。 In recent years, for the center segregation occurring in continuous cast slabs, it has been required to reduce this, and in particular, the required level for segregation strict steel grades such as line pipe materials is becoming more severe. It is a fact. For example, line pipe materials are used for transporting crude oil, natural gas, etc., but if MnS or Nb carbide is generated at the center segregation site, it is generated by a corrosion reaction, and hydrogen that has entered inside the steel is It diffuses and accumulates around the MnS and Nb carbides inside and induces cracks due to its internal pressure. In addition, since the center segregation portion is hard, the crack propagates. This is hydrogen-induced cracking (HIC). Therefore, it is important to reduce the center segregation of the slab.
これに対処すべく、従来、連続鋳造工程において鋳片の中心偏析を低減するか、無害化する対策が多数提案されている。 In order to cope with this, conventionally, many measures have been proposed to reduce or detoxify the center segregation of the slab in the continuous casting process.
例えば、連続鋳造機内における未凝固層を有する凝固末期の鋳片を、鋳片支持ロールによって凝固収縮量と熱収縮量との和に相当する圧下量で徐々に圧下しながら鋳造する方法が提案されている。(特許文献1、特許文献2)。これらの技術、即ち鋳片を凝固収縮量および熱収縮量の和に相当する圧下量で圧下するという、「軽圧下」あるいは「軽圧下法」と呼ばれているこの技術は、鋳造方向に並んだ複数対のロールを用いて、凝固収縮量および熱収縮量の和に見合う圧下量で鋳片を徐々に圧下し、未凝固層の体積を減少させることにより、鋳片中心部における空隙あるいは負圧部の形成を防止すると同時に、デンドライト樹間に形成される濃化溶鋼の流動を防止し、これによって鋳片の中心偏析を軽減する方法である。 For example, a method has been proposed in which a slab at the end of solidification having an unsolidified layer in a continuous casting machine is cast while gradually reducing the slab by a slab support roll at a reduction amount corresponding to the sum of the amount of solidification shrinkage and the amount of heat shrinkage. ing. (Patent Document 1, Patent Document 2). These techniques, called "light reduction" or "light reduction method", in which a slab is reduced by a reduction amount corresponding to the sum of the amount of solidification shrinkage and the amount of heat shrinkage, are arranged in the casting direction. By using a plurality of pairs of rolls, the slab is gradually reduced by a reduction amount corresponding to the sum of the amount of solidification shrinkage and the amount of heat shrinkage, and the volume of the unsolidified layer is reduced. This is a method of preventing the formation of a pressurized portion and, at the same time, preventing the flow of concentrated molten steel formed between dendrite trees, thereby reducing the center segregation of the slab.
なお、近年の連続鋳造機は、複数のロール対を備えたセグメントで構成されるセグメント方式の連続鋳造機が主流であり、軽圧下を実施する圧下ロール群(『軽圧下帯』という)もまた、複数のセグメントから構成され、相対するロール開度を、セグメントの入り側と出側とで、入り側を出側より大きく調整することで、軽圧下帯を形成するようにしている。 In recent years, continuous casters of the segment type, which are composed of segments having a plurality of roll pairs, are the mainstream, and a group of rolls for performing light reduction (hereinafter referred to as “light reduction zone”) are also used. , A plurality of segments, and the opposite roll opening is adjusted so that the entrance side is larger than the exit side between the entrance side and the exit side of the segment, thereby forming a low pressure lower zone.
しかしながら、前記軽圧下方法については以下のような問題点があった。それは、軽圧下により偏析度はある程度は低減できるものの、鋳片幅方向での凝固完了位置が異なる場合には、偏析改善効果が十分ではないという点にある。それは、凝固完了位置が鋳片幅方向の他の位置と比べて鋳造方向下流側に延びている場合、既に凝固が完了した部分が抵抗となって軽圧下が付与され難くなるためであり、場合によっては前記した水素誘起割れが発生してしまう可能性もある。 However, the light rolling method has the following problems. The reason is that although the degree of segregation can be reduced to some extent by light reduction, when the solidification completion position in the slab width direction is different, the effect of improving segregation is not sufficient. This is because if the solidification completion position extends downstream in the casting direction compared to other positions in the slab width direction, the part where solidification has already been completed becomes a resistance, making it difficult to apply light reduction, In some cases, the hydrogen-induced cracking described above may occur.
これに対し、前記軽圧下法のもつ問題点を解決する方法として、従来、幅方向での凝固完了(クレーターエンド)位置の形状を改善する方法、即ち、W型のクレーターエンド形状を改善する方法というのが提案されている。例えば、特許文献3に記載の方法では、圧下を有効に機能させるために、2次冷却の鋳込み方向の冷却を制御することにより、スラブ幅方向の不均一凝固を解消することを提案している。 On the other hand, as a method for solving the problems of the light reduction method, a method of improving the shape of the solidification completion (crater end) position in the width direction, that is, a method of improving the shape of the W-shaped crater end is conventionally used. It has been proposed. For example, the method described in Patent Literature 3 proposes eliminating non-uniform solidification in the slab width direction by controlling the cooling in the casting direction of the secondary cooling in order to effectively function the reduction. .
その他、クレーターエンド形状に関し、特許文献4では、鋳造中のクレーターエンド形状に応じて鋳型での撹拌強度を調整し、最終凝固位置を軽圧下帯に収めるために山谷差を2m以内に制御する方法を提案している。なお、以下の説明において、単に最終凝固位置というときは、鋳片厚み方向の最終凝固位置の鋳片引き抜き方向の位置(メニスカスからの距離)を意味するものとする。 In addition, regarding the crater end shape, Patent Literature 4 discloses a method in which the agitation intensity in a mold is adjusted according to the crater end shape during casting, and the peak-valley difference is controlled within 2 m in order to keep the final solidification position in a low pressure zone. Has been proposed. In the following description, the term “final solidification position” simply means the position (distance from the meniscus) of the final solidification position in the slab thickness direction in the slab withdrawal direction.
このように、前述した従来技術については、軽圧下付与のもつ前述した課題だけでなく、凝固完了位置に幅方向に差が生じた場合、凝固が先に完了した幅方向の位置から液相を介して未凝固の幅方向の位置に濃化溶鋼が流動するため、幅方向で最終凝固位置が最も鋳造方向下流側となる幅位置の周辺に濃化溶鋼が集積することになり、そのために、部分的には偏析が不可避に発生してしまう。従って、クレーターエンド形状をW型からU型またはV型に制御したとしても、幅方向で同時に凝固が完了しない限りは、中心偏析が不可避に発生してしまい、昨今の特に偏析に対して厳格な鋼種においては対応できないという課題が残されていた。 As described above, in the conventional technology described above, not only the above-described problem of the application of the light reduction, but also when a difference occurs in the width direction in the solidification completion position, the liquid phase is formed from the width direction position where the solidification is completed first. Because the thickened molten steel flows to the unsolidified width direction position through, the thickened molten steel will accumulate around the width position where the final solidification position is the most downstream in the casting direction in the width direction. Partial segregation will inevitably occur. Therefore, even if the crater end shape is controlled from the W-shape to the U-shape or the V-shape, unless the solidification is simultaneously completed in the width direction, center segregation will inevitably occur, and severe segregation in recent years is particularly severe. There was a problem that steel types could not be used.
本発明は、従来技術が抱えている前述した各種の課題を解決する技術の確立を目指し、特に、中心偏析の少ない連続鋳造鋳片の製造を実現して、偏析に対して厳格な鋼種の鋼板を有利に製造するための方法を開発し提案することにある。 The present invention aims to establish a technology that solves the above-mentioned various problems of the conventional technology, and in particular, realizes the production of a continuous cast slab with a small center segregation, and a steel plate of a steel type severe against segregation. To develop and propose a method for advantageously producing
上記課題を解決するため開発した本発明の特徴的な構成は以下に述べるとおりである。
即ち、本発明は、連続鋳造したスラブ鋳片を熱間圧延して鋼板を製造する方法において、連続鋳造機によってスラブ鋳片を連続鋳造する際に、
スラブ厚み方向の凝固が完了する最終凝固位置のメニスカスからの距離をZとし、該スラブ幅方向位置をXとするとき、該最終凝固位置のメニスカスからの距離Z(X)は、スラブ幅方向両端部側で極大値を有するとともにスラブ幅方向中央部で極小値を有し、前記極大値と前記極小値との間は、幅方向位置Xにおける前記距離Z(X)の絶対値|dZ/dX|で0.5m/m以上の勾配を有するものとなり、かつ、スラブ幅方向両端部側の前記極大値のスラブ幅方向位置が、それぞれスラブ幅方向端面からスラブ厚みの0.2倍以上、0.7倍以下の距離となるように連続鋳造し、引続き所望の引抜き方向長さとなるように幅方向に切断してスラブ鋳片とし、
その後、予め前記スラブ鋳片から、前記極大値のスラブ幅方向位置を含むスラブ幅方向両端部側を切断して除去した後、切断部除去後の残部中央部側のスラブ鋳片本体部分を加熱し熱間圧延して鋼板とするか、または、
幅方向に切断して得られた前記スラブ鋳片をまず加熱してから熱間圧延することにより鋼板とし、その後、このようにして得られた鋼板から、前記極大値のスラブ幅方向位置を含むスラブ幅方向両端部に対応する部分を切断して除去することにより、切り取り残部となる中央部側を製品鋼板とすることを特徴とする、鋼板の製造方法である。
The characteristic configuration of the present invention developed to solve the above problems is as described below.
That is, the present invention is a method of manufacturing a steel sheet by hot rolling a continuously cast slab slab, when the slab slab is continuously cast by a continuous casting machine,
When the distance from the meniscus at the final solidification position at which solidification in the slab thickness direction is completed is Z, and the position at the slab width direction is X, the distance Z (X) from the meniscus at the final solidification position is both ends in the slab width direction. part side has a minimum value in the slab width direction central portion and having a maximum at, between the front Symbol maximum value the minimum value, the absolute value of the distance Z in the width direction position X (X) | dZ / dX | has a gradient of 0.5 m / m or more, and the slab width direction position of the maximum value at both ends in the slab width direction is at least 0.2 times the slab thickness from the slab width direction end face, Continuous casting so as to have a distance of 0.7 times or less, and subsequently cut in the width direction so as to have a desired drawing direction length to form a slab cast,
Then, after previously cutting and removing both ends of the slab slab in the slab width direction including the position of the maximum value in the slab width direction, heating the slab slab slab body portion on the remaining central portion side after the cut portion is removed. Hot-rolled to a steel sheet, or
The slab slab obtained by cutting in the width direction is first heated and then hot-rolled into a steel sheet, and thereafter, from the steel sheet thus obtained, including the position of the maximum value in the slab width direction. A method for manufacturing a steel sheet, characterized in that a part corresponding to both ends in the slab width direction is cut and removed so that a central part side, which is a remaining uncut part, is a product steel sheet.
また、本発明では、前記スラブ鋳片の連続鋳造に当たり、スラブ幅方向両端部側の前記極大値のスラブ幅方向位置がそれぞれ、スラブ幅方向端面からスラブ幅Wの0.025倍以上、0.075倍以下の範囲内の距離となるように連続鋳造することが好ましい。 In the present invention, in the continuous casting of the slab slab, the maximum value of the slab width direction position at both ends in the slab width direction is 0.025 times or more of the slab width W from the slab width direction end face, respectively. It is preferable to perform continuous casting so that the distance is within a range of 075 times or less.
また、本発明では、スラブ鋳片から前記極大値のスラブ幅方向位置を含むスラブ幅方向両端部側を切断して除去する場合に、切断され除去される前記スラブ幅方向両端部位が、前記極大値のスラブ幅方向位置から50mm中央部側の幅方向位置を含むか、または、熱間圧延された前記鋼板から前記極大値のスラブ幅方向位置を含むスラブ幅方向両端部に対応する部分を切断除去する場合に、切断して除去するスラブ幅方向両端部に対応する部分が、前記極大値のスラブ幅方向位置から50mm中央部側の幅方向位置に対応する部分を含む、ように切断することが好ましい。 Further, in the present invention, when cutting and removing both ends in the slab width direction including the position of the maximum value in the slab width direction from the slab slab, the both ends in the slab width direction to be cut and removed are the maximum size. Cut the portion corresponding to the slab width direction both ends including the maximum slab width direction position including the width direction position of the central value from the slab width direction position of 50 mm from the slab width direction position or the hot rolled steel sheet. When removing, the cutting is performed so that the portions corresponding to both ends in the slab width direction to be cut and removed include the portions corresponding to the width direction positions 50 mm central side from the slab width direction position of the maximum value. Is preferred.
また、本発明では、前記スラブ鋳片を連続鋳造する際に、長辺面のシェル厚が少なくとも30mmになるまでは長辺面全幅に2次冷却水を噴射して冷却し、その直ぐ下流側では幅中央部のみに2次冷却水を噴射して冷却し、その後は、冷却幅を順次に幅中央部から広げて冷却することが好ましい。 Further, in the present invention, when continuously casting the slab slab, secondary cooling water is injected over the entire width of the long side surface to cool until the shell thickness of the long side surface becomes at least 30 mm, and the downstream side thereof is immediately downstream. In this case, it is preferable to cool by spraying the secondary cooling water only to the center portion of the width, and then to increase the cooling width sequentially from the center portion of the width for cooling.
さらに、前記距離Z(X)の絶対値|dZ/dX|が0.5m/m以上の勾配を示す範囲は、スラブ幅方向中央部の前記極小値の幅方向位置からの距離が100mm以上、スラブ幅方向両端部側の前記極大値の幅方向位置から幅中心側への距離が100mm以上の位置であることが好ましい。 Further, the range in which the absolute value | dZ / dX | of the distance Z (X) indicates a gradient of 0.5 m / m or more is 100 mm or more from the width direction position of the minimum value at the center of the slab width direction ; it is preferable that the distance from the widthwise position of the maximum of the slab width direction end portion side in the width center side is located above 100 mm.
前記のように構成される本発明によれば、偏析部をスラブ幅方向両端部近傍に集め、鋳片またはこれを熱間圧延して製造した鋼板からその部分を機械的に除去するようにしたため、偏析の極めて少ない鋳片または熱間圧延鋼板を確実に製造することができ、ひいては偏析に対して厳格な鋼種の鋼板をも有利に製造することができるようになる。 According to the present invention configured as described above, the segregated portions are gathered near both ends in the slab width direction, so that the slab or the steel plate manufactured by hot rolling the same is mechanically removed from the portion. In addition, a slab or a hot-rolled steel sheet with extremely low segregation can be reliably manufactured, and thus a steel sheet of a steel type strictly resistant to segregation can be advantageously manufactured.
発明者らは、種々の条件でスラブ連続鋳造を実施し、クレーターエンド形状と幅方向の偏析分布の関係について調査した。以下にその調査結果について説明する。 The inventors carried out slab continuous casting under various conditions and investigated the relationship between the crater end shape and the segregation distribution in the width direction. The results of the survey are described below.
まず、軽圧下を付与せずに連続鋳造を行った場合の、クレーターエンド形状とスラブ鋳片幅方向の偏析度分布を調査した。なお、鋳片は低炭素鋼を垂直曲げ型連鋳機を用いて連続鋳造したものである。サイズは250mm厚×2100幅のスラブ鋳片であり、鋳造速度は1.4m/minである。図1は、クレーターエンド形状(スラブ厚さ方向の最終凝固位置のメニスカスからの距離Z)と、スラブ幅方向の偏析度分布を示す図である。なお、以下の図1〜7では、スラブ鋳片の幅方向位置Xは、幅方向の中心を原点として、半幅分のみの分布を示している。クレーターエンド形状については、予め特開平4−231158号公報に開示されているような伝熱・凝固計算で予測した最終凝固位置の少し上流側で鋳片に縦波超音波を複数個所(幅方向)で印加し、その伝搬時間等から各印加位置における未凝固部の厚みを求めた結果と伝熱・凝固計算で予測した未凝固部の厚みとの比較に基づいて、各幅位置において予め伝熱・凝固計算で予測した最終凝固位置を補正することによって算出した。 First, the crater end shape and the segregation degree distribution in the width direction of the slab slab when the continuous casting was performed without applying the light reduction were investigated. The cast slab was obtained by continuously casting low carbon steel using a vertical bending type continuous casting machine. The size is a slab slab having a thickness of 250 mm and a width of 2100, and the casting speed is 1.4 m / min. FIG. 1 is a diagram showing a crater end shape (distance Z from a meniscus at a final solidification position in a slab thickness direction) and a segregation degree distribution in a slab width direction. In the following FIGS. 1 to 7, the width direction position X of the slab slab shows a distribution of only a half width with the center in the width direction as the origin. Regarding the crater end shape, longitudinal wave ultrasonic waves were applied to the slab at a plurality of positions (width direction) slightly upstream of the final solidification position predicted by heat transfer / solidification calculation as disclosed in JP-A-4-231158 in advance. ), And based on a comparison between the result of determining the thickness of the unsolidified portion at each application position from the propagation time and the thickness of the unsolidified portion predicted by the heat transfer / solidification calculation, the transfer is performed in advance at each width position. It was calculated by correcting the final solidification position predicted by the heat / solidification calculation.
なお、図1〜4及び図6に示した最終凝固位置のプロットは、スラブ幅方向の中心からスラブ幅方向に100mmピッチで上記のようにして測定した結果に基づくものであり、また、各測定点の中間でのクレーターエンド形状は、スプライン曲線で測定点を補間して求めたものであり、また、最終凝固位置の幅方向最端部の測定点付近のクレーターエンド形状については、伝熱・凝固計算によってより細かい計算メッシュで予測した幅方向最端部の測定値に基づいてシフトさせて補正することで求めたものである。 The plots of the final solidification position shown in FIGS. 1 to 4 and FIG. 6 are based on the results of the above measurement at a pitch of 100 mm from the center of the slab width direction in the slab width direction. The crater end shape in the middle of the points is obtained by interpolating the measurement points with a spline curve, and the crater end shape near the measurement point at the end in the width direction of the final solidification position is determined by heat transfer It is obtained by shifting and correcting based on the measured value of the end portion in the width direction predicted by a finer calculation mesh by the solidification calculation.
次に、偏析度については、EPMAで鋳片の鋳造方向に垂直な断面における厚み方向中心部の全幅に亘ってMn濃度を定量分析し、Mn偏析度として算出した。ここで、Mn偏析度とは、板厚中心部から十分に離れた位置におけるMn濃度の平均値に対する、EPMAで分析した中心偏析部のMn濃度の比のことをいう。 Next, regarding the degree of segregation, the Mn concentration was quantitatively analyzed by EPMA over the entire width of the center in the thickness direction in a cross section perpendicular to the casting direction of the slab, and was calculated as the degree of Mn segregation. Here, the degree of Mn segregation refers to the ratio of the Mn concentration of the center segregated portion analyzed by EPMA to the average value of the Mn concentration at a position sufficiently distant from the center of the sheet thickness.
図1に示すように、Mn偏析度はほぼクレーターエンド形状(最終凝固位置で示す)に沿った分布になっていることが判った。ここで着目すべきは、軽圧下を付与していなくても、先に凝固した幅方向位置にあるスラブ鋳片の偏析度はその後に凝固した位置のものよりも良好であるということである。このことは、前述したように、先に凝固が完了した幅方向位置から、未凝固状態の幅方向位置に向って濃化溶鋼が移動したためと考えられる。 As shown in FIG. 1, it was found that the Mn segregation degree had a distribution substantially along the crater end shape (indicated by the final solidification position). It should be noted here that the segregation degree of the slab slab in the width direction position that has previously solidified is better than that in the position that subsequently solidifies, even if no light reduction is applied. It is considered that this is because, as described above, the concentrated molten steel moved from the width direction position where solidification was completed first to the width direction position where solidification was not completed.
次に、軽圧下を付与して上記と同じ条件での連続鋳造を行った。圧下勾配は0.6mm/mであり、凝固収縮量を十分に補償すると考えられる量である。図2は、このときのクレーターエンド形状と幅方向の偏析度分布を示す図である。この図に示すとおり、軽圧下を付与している場合であっても、幅方向のMn偏析度分布はクレーターエンド形状に沿ったものとなっている。また、全体的にみると、Mn偏析度は軽圧下を付与していない場合よりも付与したほうが良好な結果を示しているが、軽圧下を付与していない場合における先に凝固した幅方向位置のMn偏析度よりも、軽圧下を付与している場合における最後に凝固した幅方向位置のMn偏析度の方が大きいという結果となった。 Next, continuous casting was performed under the same conditions as above by applying light reduction. The rolling gradient is 0.6 mm / m, which is an amount that is considered to sufficiently compensate for the amount of coagulation shrinkage. FIG. 2 is a diagram showing the crater end shape and the segregation degree distribution in the width direction at this time. As shown in this figure, even when a slight reduction is applied, the distribution of Mn segregation degree in the width direction follows the crater end shape. Also, when viewed as a whole, the Mn segregation degree shows better results when the reduction is applied than when the reduction is not applied, but the width direction position solidified earlier when the reduction is not applied. The result is that the degree of Mn segregation at the position in the width direction that was finally solidified in the case of applying the light reduction is greater than the degree of Mn segregation of the Mn.
次に、前記の軽圧下付与の条件に加えて、幅方向で均一な水量密度分布となるように、2次冷却の重なり等を排除し、さらに幅切りをしない状態で鋳造を行い、クレーターエンド形状ができるだけフラットに近くなる連続鋳造を行った。その結果をクレーターエンド形状とMn偏析度の幅方向分布との関係として図3に示す。前記2例に比べてMn偏析度はより良好になっているが、最終凝固位置の幅方向位置による差が小さくなっても、周辺よりも後に凝固が完了する幅方向位置の偏析度は、先に凝固した幅方向位置の偏析度よりも大きい。また、図1〜図3のいずれの場合においても、Mn偏析度が大きい幅方向位置は、最終凝固位置のメニスカスからの距離Zが極大値となる幅方向位置に対応している。なお、図1〜図3では、幅中心を原点として、スラブ鋳片の半幅分のみのデータを示しているが、反対側の半幅分も概ね対称な分布を示しており、何れの場合も最終凝固位置のメニスカスからの距離Zは幅中心部で極大値となっていた。 Next, in addition to the above-described conditions of the application of the light reduction, the overlap of the secondary cooling and the like are eliminated so that the water density distribution becomes uniform in the width direction. Continuous casting was performed to make the shape as flat as possible. The results are shown in FIG. 3 as the relationship between the crater end shape and the distribution of Mn segregation degree in the width direction. Although the Mn segregation degree is better than that of the two examples, even if the difference in the width direction position of the final solidification position is smaller, the segregation degree of the width direction position where solidification is completed later than the periphery is higher. It is larger than the degree of segregation at the width direction position that has solidified. In each of FIGS. 1 to 3, the width direction position where the degree of Mn segregation is large corresponds to the width direction position where the distance Z from the meniscus at the final solidification position has a maximum value. In FIGS. 1 to 3, only the half width of the slab slab is shown with the width center as the origin, but the half width on the opposite side also shows a generally symmetric distribution. The distance Z from the meniscus at the solidification position had a maximum value at the center of the width.
これらの事実から、発明者らは、幅方向位置におけるクレーターエンド形状について意図的に山谷をつけ、最終凝固位置のメニスカスからの距離Zをスラブの幅方向位置Xの関数としたとき、前記最終凝固位置のメニスカスからの距離Z(X)が、スラブ幅方向両端部側に極大値を有するとともにスラブ幅方向中央部に1つの極小値を有し、かつ、スラブ幅方向両端部側の前記極大値と前記極小値との間ではそれぞれ単調に変化するXの関数となり、そして、スラブ幅方向両端部側の前記極大値のスラブ幅方向位置が、それぞれスラブ幅方向端面からスラブ厚みの0.2倍以上、0.7倍以下の距離となるように連続鋳造を行えば、いわゆる偏析部を、幅方向両端部側近傍に集約することができると同時に、それを機械的に除去可能な位置に形成することができることを知見した。 From these facts, the inventors intentionally add a valley to the crater end shape at the width direction position, and when the distance Z from the meniscus at the final solidification position is a function of the width direction position X of the slab, the final solidification The distance Z (X) of the position from the meniscus has a maximum value at both ends in the slab width direction, has one minimum value at the center in the slab width direction, and has the maximum value at both ends in the slab width direction. And the minimum value is a function of X that changes monotonically, and the slab width direction position of the maximum value at both ends of the slab width direction is 0.2 times the slab thickness from the slab width direction end face. As described above, if continuous casting is performed so as to have a distance of 0.7 times or less, so-called segregated portions can be concentrated near both ends in the width direction, and at the same time, a position where it can be mechanically removed. And knowledge that can be formed.
これらの知見は、スラブ鋳片の幅中央部から両短辺方向に向けて、凝固が順次に完了することを意味している。もし、この条件を満たさない場合、例えば、最終凝固位置のメニスカスからの距離Zが、スラブ幅方向中央部の極小値とスラブ幅方向両端部側に現れる極大値との間でスラブ幅方向位置Xに対して単調に変化せず、さらに中間に極大値をもつ場合には、その極大値の幅方向位置で部分的に偏析が大きくなることを意味している。さらに、集約位置(Zの極大値となる幅方向位置)が短辺側付近でない場合、後に機械的に除去する際に、製品の歩留まりが著しく低下することになる。 These findings mean that solidification is sequentially completed from the center of the width of the slab slab to both short side directions. If this condition is not satisfied, for example, the distance Z from the meniscus at the final solidification position is a position X in the slab width direction between the minimum value at the center in the slab width direction and the maximum value appearing at both ends in the slab width direction. Does not monotonically change and has a local maximum value in the middle, which means that the segregation partially increases at the width direction position of the local maximum value. Furthermore, if the consolidation position (the position in the width direction at which the maximum value of Z is located) is not near the short side, the yield of the product will be significantly reduced when mechanical removal is performed later.
なお、最終凝固位置がスラブ幅方向両端部側で最下流側となる幅方向位置というのは、可能な限り短辺側であることが必要である。その理由は、後工程において機械的に除去するので、歩留まりが悪化し、コストが増加してしまうからである。しかしながら、短辺のシェル厚を薄くし過ぎることは、短辺バルジングやブレークアウトを招くため、スラブ幅方向両端部側で最終凝固位置が最下流側となる幅位置(スラブ幅方向で見た両端部側の最終凝固位置)はスラブ幅方向端面から、スラブ厚みの0.2倍以上、0.7倍以下の距離にすることが好ましい。また、このスラブ幅方向で見た両端部側の最終凝固位置は、短辺シェル厚の確保と歩留まりを両立させる観点から、スラブ幅方向の端面からスラブ幅Wの0.025倍以上、0.075倍以下の距離であることが好ましい。 In addition, the width direction position where the final solidification position is the most downstream side at both ends in the slab width direction needs to be as short as possible. The reason is that mechanical removal is performed in a later step, so that the yield is deteriorated and the cost is increased. However, if the shell thickness on the short side is too thin, bulging or breakout on the short side is caused. Therefore, the width position at which the final solidification position is the most downstream side at both ends in the slab width direction (both ends viewed in the slab width direction). (The final solidification position on the part side) is preferably at least 0.2 times and 0.7 times the slab thickness from the end face in the slab width direction. In addition, the final solidification position at both ends as viewed in the slab width direction is 0.025 times or more of the slab width W from the end face in the slab width direction from the viewpoint of ensuring both short side shell thickness and yield. The distance is preferably 075 times or less.
一方、短辺のシェル厚は、短辺側の2次冷却スプレーの水量で制御することができる。この場合、冷却を抑えるために、水量を零にしても、大気との温度差によって輻射冷却が発生してしまうため、必要に応じて、エッジヒーター等を使って輻射も制御する。 On the other hand, the shell thickness on the short side can be controlled by the amount of water of the secondary cooling spray on the short side. In this case, even if the amount of water is reduced to zero in order to suppress cooling, radiation cooling occurs due to a temperature difference from the atmosphere. Therefore, radiation is controlled using an edge heater or the like as necessary.
また、短辺バルジングやブレークアウトのリスク低減を図るため、短辺側に複数のサポートロールを設置してもよい。 Also, a plurality of support rolls may be provided on the short side to reduce the risk of short side bulging and breakout.
さらに、最終凝固位置のメニスカスからの距離Z(X)がスラブ幅方向両端部側の前記極大値と幅中央部の前記極小値との間で、幅方向位置Xに対してそれぞれ単調に変化するように連続鋳造する際には、距離Z(X)の幅方向位置Xに対する勾配の絶対値|dZ/dX|は0.5m/m以上となるように連続鋳造することが望ましい。その理由は、距離Zの幅方向勾配の絶対値が0.5m/m未満のときは、操業変化に伴う最終凝固位置の変動が生じた場合に、前記極大値と前記極小値との間の幅方向中間部に距離Zの極大値が発生してしまうおそれがあり、その位置では中心偏析が悪化してしまうからである。 Further, the distance Z (X) from the meniscus at the final solidification position monotonously changes with respect to the width direction position X between the maximum value at both ends in the slab width direction and the minimum value at the width center portion. In such continuous casting, it is preferable that the absolute value | dZ / dX | of the gradient with respect to the width direction position X of the distance Z (X) be at least 0.5 m / m. The reason is that, when the absolute value of the width direction gradient of the distance Z is less than 0.5 m / m, when a change in the final solidification position occurs due to a change in the operation, a difference between the maximum value and the minimum value is obtained. This is because a local maximum value of the distance Z may be generated in the middle portion in the width direction, and the center segregation is deteriorated at that position.
ただし、幅中央部の距離Zの極小値及び幅方向両端部側の極大値の近傍では、通常、幅方向位置Xの滑らかな関数である距離Zの幅方向勾配は、絶対値が0.5m/m未満の小さな傾きとならざるを得ない。しかし、これらの極小値及び極大値から100mm程度未満の近傍では、水量密度のばらつきなどで鋳片幅方向に冷却・凝固条件の変動が生じた場合でも、これらの極小値及び極大値の幅方向変位が生じるだけで、新たに別の極大値が生じて中心偏析の原因となるおそれは少ない。したがって、距離Zの幅方向勾配の絶対値は、スラブ幅方向に中央部の極小値からの距離が100mm以上、かつ幅方向両端部側の極大値から内側に距離が100mm以上の範囲において、0.5m/m以上とすることが望ましい。 However, in the vicinity of the minimum value of the distance Z at the center of the width and the maximum value at both ends in the width direction, the width direction gradient of the distance Z, which is a smooth function of the position X in the width direction, usually has an absolute value of 0.5 m. / M must be small. However, in the vicinity of less than about 100 mm from these minimum and maximum values, even if the cooling and solidification conditions fluctuate in the slab width direction due to variations in water density, etc., the minimum and maximum values in the width direction There is little possibility that another maximum value is newly generated just by displacement, which causes central segregation. Therefore, the absolute value of the gradient in the width direction of the distance Z is 0 in a range where the distance from the local minimum value at the center in the slab width direction is 100 mm or more and the distance inward from the local maximum value at both ends in the width direction is 100 mm or more. 0.5 m / m or more is desirable.
前記スラブ鋳片の幅中央部から短辺側に向けて凝固を順次に完了させるためには、2次冷却条件に幅方向で変化を持たせる工夫をする必要がある。ただし、鋳型直下において、幅中央部のみを冷却することは、ロール間バルジングの増加を招き、最終的には凝固末期における非定常バルジングの増加に繋がり、結果的に前記偏析度が上昇してしまう。これを防ぐには、長辺面のシェル厚が少なくとも30mm以上になるまでは、長辺面全幅に2次冷却水量を付与する方が好ましい。その後、その直ぐ下流側に幅中央部のみを冷却する冷却帯を設け、その後、冷却幅を順次に幅中央部から広げていけば、望ましい最終凝固位置形状が得られる。また、2次冷却水の水量密度をスラブ幅方向になだらかに変化させ、幅中央部で高水量密度に、幅両端部側で低水量密度になるような冷却帯を設けることでも、所望のクレーターエンド形状を実現できる。 In order to successively complete solidification from the center of the width of the slab slab to the shorter side, it is necessary to devise a secondary cooling condition that varies in the width direction. However, just below the mold, cooling only the width center portion causes an increase in inter-roll bulging, and ultimately leads to an increase in unsteady bulging in the final stage of solidification, and as a result, the degree of segregation increases. . In order to prevent this, it is preferable to apply the secondary cooling water to the entire width of the long side surface until the shell thickness of the long side surface becomes at least 30 mm or more. Thereafter, a cooling zone for cooling only the central portion of the width is provided immediately downstream thereof, and then, the cooling width is gradually increased from the central portion of the width to obtain a desired final solidification position shape. The desired crater can also be obtained by changing the water density of the secondary cooling water gently in the slab width direction and providing a cooling zone having a high water density at the center of the width and a low water density at both ends of the width. End shape can be realized.
また、2次冷却の熱伝達係数に対しては、スプレーの打力(水滴の衝突圧)も影響することが知られており、所望のクレーターエンド形状になるような熱伝達係数の分布となるように、幅中央部ほどスプレーノズルのスラブ表面からの高さを低くしてもよい。 It is also known that the heat transfer coefficient of the secondary cooling is affected by the spraying force (impact pressure of water droplets), and the distribution of the heat transfer coefficient becomes a desired crater end shape. As described above, the height of the spray nozzle from the slab surface may be reduced toward the center of the width.
本発明を実施する際の、スラブ鋳片の連続鋳造においては、前述したように、縦波超音波を用いた未凝固部厚みの測定を利用して求めたクレーターエンド形状が所定の要件を満たしていることを確認しながら連続鋳造することが望ましいが、伝熱・凝固計算で予め予測したクレーターエンド形状が所定の要件を満たすように2次冷却水の水量密度等の連続鋳造条件を設定することでも実施することができる。このとき、計算による予測と実際との誤差によって幅中央部の距離Zの極小値と幅方向両端部側の距離Zの極大値との中間の幅位置においてZの極大値が生じないようにするためには、伝熱・凝固計算で予測したクレーターエンド形状において、幅中央部の距離Zの極小値からの距離が100mm以上、かつ幅方向両端部側の距離Zの極大値から幅中心側に距離が100mm以上のスラブ幅方向範囲で、距離Zの幅方向勾配の絶対値が0.5m/m以上となるように、連続鋳造条件を設定することが望ましい。 In carrying out the present invention, in the continuous casting of the slab slab, as described above, the crater end shape obtained by measuring the thickness of the unsolidified portion using longitudinal ultrasonic waves satisfies predetermined requirements. It is desirable to perform continuous casting while confirming that the crater end shape predicted in advance by heat transfer / solidification calculation satisfies predetermined requirements. Can also be implemented. At this time, a maximum value of Z is prevented from being generated at an intermediate width position between the minimum value of the distance Z at the center of the width and the maximum value of the distance Z at both ends in the width direction due to an error between the prediction by calculation and the actual value. Therefore, in the crater end shape predicted by the heat transfer / solidification calculation, the distance from the minimum value of the distance Z at the center of the width is 100 mm or more, and from the maximum value of the distance Z at both ends in the width direction to the center of the width. It is desirable to set the continuous casting conditions such that the absolute value of the gradient in the width direction of the distance Z is 0.5 m / m or more in the slab width direction range where the distance is 100 mm or more.
なお、本発明の実施に当たり、必要に応じて軽圧下を付与しても問題はない。それは、軽圧下の付与により、最終凝固位置のメニスカスからの距離Zが極大値となる幅方向位置よりも内側において、偏析度がさらに良好なスラブ鋳片が得られるからである。ただし、スラブ鋳片の幅方向位置によって厚さ方向中心の固相率は異なるため、幅方向で圧下を付与すべき鋳造方向の位置もまた異なる。そのため、各幅方向位置での中心固相率に応じて、軽圧下を付与する鋳造方向位置を変えることが好ましい。例えば、特開2009―125770号公報に記載の分割型圧下ロール等を用いれば、幅方向位置によって軽圧下する鋳造方向位置を変えることができる。 In carrying out the present invention, there is no problem even if a slight reduction is applied as necessary. This is because the application of light pressure can provide a slab slab having a better segregation degree inside the width direction position where the distance Z from the meniscus at the final solidification position becomes a maximum value. However, since the solid phase ratio at the center in the thickness direction varies depending on the position in the width direction of the slab slab, the position in the casting direction where the reduction should be applied in the width direction also differs. Therefore, it is preferable to change the position in the casting direction where the light reduction is applied according to the center solid phase ratio at each position in the width direction. For example, if a split-type pressing roll described in Japanese Patent Application Laid-Open No. 2009-125770 is used, the position in the casting direction where light reduction is performed can be changed depending on the position in the width direction.
本発明は、中心偏析をスラブ幅方向両端部側に集中させたスラブ鋳片を用いることが好ましく、このようなスラブ鋳片を用いて熱間圧延し、製品鋼板を製造する方法である。この方法では、第1に、スラブ鋳片の幅方向における両端部側の、最終凝固位置のメニスカスからの距離Z(X)が極大値を示す幅方向位置を含むスラブ幅方向の両端部側の部分を切断して除去し、その後、該スラブ幅方向両端部のないスラブ鋳片の残部(切断部除去後の中央部側残部)を加熱して熱間圧延することにより鋼板製品を製造する。 The present invention preferably uses a slab slab in which center segregation is concentrated on both ends in the slab width direction, and is a method for hot rolling using such a slab slab to produce a product steel sheet. In this method, first, both ends in the width direction of the slab including the width direction position at which the distance Z (X) from the meniscus at the final solidification position shows a maximum value at both ends in the width direction of the slab slab. The portion is cut and removed, and thereafter, the remaining portion of the slab slab without the both ends in the slab width direction (the remaining portion on the central side after the removal of the cut portion) is heated and hot-rolled to produce a steel sheet product.
第2の方法は、スラブ鋳片の段階ではスラブ幅方向両端部を除去しないままの、最終凝固位置のメニスカスからの距離Z(X)が極大値となる幅位置を含むスラブ幅方向両端部を残した鋳片を加熱して熱間圧延をすることによってまず鋼板とし、その後、このようにして得られた鋼板から、スラブ幅方向両端部側の最終凝固位置のメニスカスからの距離Zが前記極大値となる幅位置を含むスラブ幅方向両端部に対応する部分を切断して除去し、所期した鋼板を得る方法である。 In the second method, both ends in the slab width direction including the width position where the distance Z (X) from the meniscus at the final solidification position becomes a maximum value without removing the both end portions in the slab width direction at the stage of the slab slab are removed. The remaining cast slab is heated and hot-rolled to form a steel sheet first, and then the distance Z from the meniscus at the final solidification position at both ends in the slab width direction from the meniscus is obtained from the steel sheet thus obtained. This is a method of cutting and removing portions corresponding to both ends in the slab width direction including a width position to be a value to obtain a desired steel plate.
なお、本発明では、中心偏析がスラブ幅方向両端部側の最終凝固位置のメニスカスからの距離Zの極大値の近傍で顕在化するので、切断して除去する範囲はそれの少しスラブ幅方向中心寄りとすることが好ましく、スラブ幅方向両端部側のスラブ幅方向で見た最終凝固位置の50mm以上スラブ幅方向中心寄りの位置で鋳片の切断をするか、または、熱間圧延後の鋼板から対応する部位の切断除去を行なうことが好ましい。連続鋳造するスラブ鋳片の寸法は、通常、所望の鋼板製品の寸法及び数量に応じて、次工程以後の熱間圧延等での加工条件から逆算して決定されるが、本発明では、更に、スラブ鋳片でのスラブ幅方向両端部側の切断分、または、圧延後の鋼板でのスラブ方向両端部側に対応する部分の切断分を予め予定したうえで決定される。実際に最終凝固位置のメニスカスからの距離Zが極大となる幅位置は、微妙な操業条件の変動のために必ずしも正確に予定した通りの位置になるとは限らず、多少の誤差を含むことがあるが、上記のように切断位置に余裕を見込んでおくことで、こうした誤差を吸収し、偏析が集約された箇所の影響を確実に除くことができる。連続鋳造中に測定したクレーターエンド形状に応じて、幅方向両端部側の切断位置とともにスラブ鋳片の切断長や、鋳造幅を変更する方法も考えられるが、予定外に幅方向両端部側の切断量を増大させた場合、溶鋼が不足して所望の製品寸法及び数量を充足できないおそれがあり、当該製品の生産計画への影響に注意が必要である。 In the present invention, since the center segregation becomes apparent in the vicinity of the maximum value of the distance Z from the meniscus at the final solidification position on both ends in the slab width direction, the range to be cut and removed is slightly centered in the slab width direction. Preferably, the slab is cut at a position closer to the center of the slab width direction by 50 mm or more than the final solidification position as viewed in the slab width direction at both ends of the slab width direction, or a steel sheet after hot rolling. It is preferable to cut and remove the corresponding site from the above. The size of the slab slab to be continuously cast is usually determined in accordance with the size and quantity of the desired steel sheet product by calculating back from the processing conditions in hot rolling and the like after the next step, but in the present invention, The cut amount at both ends in the slab width direction in the slab slab or the cut amount of the portion corresponding to both end portions in the slab direction in the rolled steel sheet is determined in advance. The width position where the distance Z from the meniscus of the final solidification position is actually the maximum is not always exactly as expected due to subtle fluctuations in operating conditions, and may include some errors. However, by allowing a margin in the cutting position as described above, such an error can be absorbed, and the influence of the portion where the segregation is concentrated can be reliably removed. Depending on the crater end shape measured during continuous casting, it is also conceivable to change the cutting length of the slab slab and the casting width together with the cutting position at both ends in the width direction. When the cutting amount is increased, there is a possibility that the desired product size and quantity cannot be satisfied due to lack of molten steel, and it is necessary to pay attention to the influence on the production plan of the product.
この実施例では、低炭素鋼ラインパイプ用材料を垂直曲げ型連続鋳造機で連続鋳造した材料を用いて鋼板を製造した。鋳型サイズは2100mm×250mmであり、鋳造速度は1.4m/minである。予め伝熱・凝固計算を実施し、長辺面のシェル厚が30mmになると予測される鋳造方向位置までは、長辺面全幅に2次冷却水を付与した。そこから、最終凝固位置のメニスカスからの距離Z(X)が、スラブ幅方向両端部側に極大値を有するとともにスラブ幅方向中央部に1つのみの極小値を有し、かつ、スラブ幅方向両端部側の前記極大値と前記極小値との間ではそれぞれ単調に変化するように、そして、幅中央部から短辺方向に向ってより遅れて凝固が進行するように、2次冷却を付与するスラブ長辺面の領域を幅中央部から順次幅方向に広げていった。 In this example, a steel sheet was manufactured using a material obtained by continuously casting a low-carbon steel line pipe material using a vertical bending type continuous casting machine. The mold size is 2100 mm x 250 mm and the casting speed is 1.4 m / min. Heat transfer / solidification calculations were performed in advance, and secondary cooling water was applied to the entire width of the long side surface up to the casting direction position where the shell thickness on the long side surface was predicted to be 30 mm. From there, the distance Z (X) from the meniscus at the final solidification position has a local maximum value at both ends in the slab width direction, has only one local minimum value at the center in the slab width direction, and has a slab width direction. Secondary cooling is applied so that the maximum value and the minimum value at both ends are monotonically changed, and solidification proceeds more slowly from the center of the width toward the shorter side. The area of the long side surface of the slab to be formed was sequentially widened in the width direction from the center of the width.
なお、最終凝固位置がスラブ幅方向両端部側で最下流になる幅方向位置については、短辺側の水量と連続鋳造機に設置したエッジヒーターで、スラブ幅方向端面からスラブ厚みの0.2倍以上、0.7倍以下の距離になるように制御した。なお、上記の最終凝固位置の形状は予め伝熱・凝固計算で予測し、また、連続鋳造機内には軽圧下帯を設け、23〜30mの範囲内で軽圧下を付与した。圧下勾配は0.7mm/mとした。 For the width direction position where the final solidification position is the most downstream at both ends in the slab width direction, the water amount on the short side and the edge heater installed in the continuous casting machine are used to measure the slab thickness from the slab width direction end face by 0.2 mm. The distance was controlled so as to be not less than twice and not more than 0.7 times. The shape of the final solidification position was predicted in advance by heat transfer / solidification calculation, and a light reduction zone was provided in the continuous casting machine, and light reduction was applied within a range of 23 to 30 m. The rolling gradient was 0.7 mm / m.
次に、予測した最終凝固位置の少し上流側で、鋳造中に幅方向に複数個所にわたって、超音波を印加し、縦波の伝播時間などから超音波印加位置における未凝固部の厚みを求め(例えば、特開2005−177860号公報参照)、求めた未凝固部の厚みに基づいて、各幅位置において予め伝熱・凝固計算で予測した最終凝固位置を補正することで、最終凝固位置の形状を求めた。その結果を図4に示す。図4におけるスラブの幅方向位置Xは、幅中心を原点として、半幅分のみの分布を示しているが、反対側の半幅分もほぼ対称な分布を示しており、最終凝固位置のメニスカスからの距離Z(X)は、スラブ幅方向両端部側に極大値を有するとともにスラブ幅方向中央部に1つのみの極小値を有し、かつ、スラブ幅方向両端部側の前記極大値と前記極小値との間ではそれぞれ単調に変化することを確認した。 Next, at a slightly upstream side of the predicted final solidification position, ultrasonic waves are applied over a plurality of locations in the width direction during casting, and the thickness of the unsolidified portion at the ultrasonic application position is determined from the propagation time of longitudinal waves ( For example, refer to Japanese Patent Application Laid-Open No. 2005-177860), by correcting the final solidification position predicted by the heat transfer / solidification calculation in advance at each width position based on the obtained thickness of the unsolidified portion, the shape of the final solidification position I asked. The result is shown in FIG. The width direction position X of the slab in FIG. 4 shows a distribution of only a half width from the center of the width as the origin, but the half width on the opposite side also shows a substantially symmetric distribution, and the distribution from the meniscus at the final solidification position is shown. The distance Z (X) has a local maximum at both ends in the slab width direction, has only one local minimum at the center in the slab width direction, and has the local maximum and the local minimum at both ends in the slab width direction. It was confirmed that each value monotonously changed.
また、最終凝固位置がスラブ幅方向両端部側で最下流側となる幅位置(スラブ幅方向より見た両端部側最終凝固位置)は、両端部側ともスラブ幅方向端面から約150mmの位置であり、スラブ厚みの約0.6倍の位置であることを確認した。 The width position where the final solidification position is the most downstream side at both ends in the slab width direction (the final solidification position at both ends as viewed from the slab width direction) is approximately 150 mm from the end face in the slab width direction on both end sides. Yes, it was confirmed that the position was about 0.6 times the slab thickness.
さらに、図4中にdZ/dX=0.5(m/m)の傾きの直線を破線で示しているが、スラブ幅中心の極小値からの距離が100mm以上、かつ両端部側の極大値から内側に距離が100mm以上の範囲において、距離Zの幅方向勾配が0.5m/m以上であった。 Further, in FIG. 4, a straight line having a slope of dZ / dX = 0.5 (m / m) is shown by a broken line, and the distance from the minimum value at the center of the slab width is 100 mm or more and the maximum value at both ends is In the range where the distance from the inside to the inside was 100 mm or more, the width direction gradient of the distance Z was 0.5 m / m or more.
次に、得られたスラブ鋳片の全幅からサンプルを切り出し、厚み中心部のMn濃度を、EPMAを用いて定量分析し、Mnの偏析度を鋳片幅方向で算出した。その結果を図5に示す。この図から明らかなとおり、幅方向両端部の偏析度が大きい箇所付近以外のMn偏析度は非常に良好であった。そして、各スラブ鋳片の幅方向両端部200mmをガス切断(溶断)によって除去した。その後、スラブを熱間圧延し、得られた熱間圧延鋼板からサンプルを切り出し、HIC(耐水素誘起割れ)試験を実施した。採取した幅位置は、鋼板の幅中央部、端面から1/4幅、1/8幅の3か所である。該HIC試験の結果は、いずれも割れが発生しておらず、CAR(割れが発生した面積の割合)は全て0%であった。 Next, a sample was cut out from the entire width of the obtained slab slab, and the Mn concentration at the center of the thickness was quantitatively analyzed using EPMA, and the Mn segregation degree was calculated in the slab width direction. The result is shown in FIG. As is clear from this figure, the Mn segregation degree was very good except for the vicinity of the place where the segregation degree at both ends in the width direction was large. And 200 mm of both ends in the width direction of each slab cast were removed by gas cutting (fusing). Thereafter, the slab was hot-rolled, a sample was cut out from the obtained hot-rolled steel sheet, and a HIC (hydrogen-induced cracking) test was performed. The sampled width positions are a central part of the width of the steel plate, and three places of 1 / width and 8 width from the end face. As a result of the HIC test, cracks did not occur in any case, and the CAR (the ratio of the area in which the cracks occurred) was all 0%.
なお、この実施例での結果は、スラブ鋳片の幅方向両端部側を切断、除去した後に熱間圧延する例で述べたが、これは、スラブ鋳片をまず先に熱間圧延し、このようにして得られた熱間圧延鋼板から、偏析が大きい部分を含む、スラブ幅方向両端部側に該当する部位をその後に切断、除去する例でも同様の効果が得られる。 In addition, the result in this embodiment was described in the example of hot rolling after cutting and removing both ends in the width direction of the slab slab, but this was performed by first hot rolling the slab slab, A similar effect can be obtained in an example in which a portion corresponding to both ends in the slab width direction, including a portion where segregation is large, is subsequently cut and removed from the hot-rolled steel sheet thus obtained.
次に、比較例では、上記と同じ垂直曲げ型連続鋳造機で、低炭素鋼ラインパイプ材用スラブを連続鋳造した。鋳型サイズは2100mm×250mmであり、鋳造速度は1.4m/minである。予め伝熱・凝固計算を実施し、長辺面のシェル厚が30mmになると予測された鋳造方向位置までは、長辺面全幅に2次冷却水を付与した。そして、その鋳造方向位置からは1/4幅での水量密度が最も多くなるような2次冷却水を付与した。また、短辺の冷却水量も実施例に対して増加させた。軽圧下帯は実施例と同じく、23〜30mの範囲で、圧下勾配は0.7mm/mである。鋳造中に測定したスラブ厚み方向での最終凝固位置のメニスカスからの距離Z(X)のスラブ幅方向での分布を図6に示す。 Next, in a comparative example, a slab for a low carbon steel line pipe material was continuously cast using the same vertical bending type continuous casting machine as described above. The mold size is 2100 mm x 250 mm and the casting speed is 1.4 m / min. Heat transfer and solidification calculations were performed in advance, and secondary cooling water was applied to the entire width of the long side surface up to the casting direction position where the shell thickness on the long side surface was predicted to be 30 mm. Then, from the position in the casting direction, secondary cooling water was applied so that the water density in a 1/4 width became the largest. Further, the cooling water amount on the short side was also increased as compared with the embodiment. The light reduction zone is in the range of 23 to 30 m as in the example, and the reduction gradient is 0.7 mm / m. FIG. 6 shows the distribution in the slab width direction of the distance Z (X) from the meniscus of the final solidification position in the slab thickness direction measured during casting.
図6に示すとおり、スラブの幅方向位置Xは、幅中心を原点として、半幅分のみの分布を示しているが、反対側の半幅分もほぼ対称な分布である。前記最終凝固位置のメニスカスからの距離Z(m)は、1/4幅付近で極小値となり、幅中央部で極大値となる分布になっており、本発明の条件を満たしていない。さらに、最終凝固位置のメニスカスからの距離Zが鋳造方向で最下流になっている幅位置は幅方向端面から約250mmの位置であり、スラブ厚みの約1.0倍の位置であることから、これも本発明の条件を満たしていない。 As shown in FIG. 6, the position X in the width direction of the slab shows a distribution of only a half width from the center of the width as the origin, but the half width on the opposite side is also a substantially symmetric distribution. The distance Z (m) from the meniscus at the final solidification position has a minimum value near the quarter width and a maximum value at the center of the width, which does not satisfy the condition of the present invention. Furthermore, since the width position where the distance Z from the meniscus of the final solidification position is the most downstream in the casting direction is a position about 250 mm from the end face in the width direction, and is a position about 1.0 times the slab thickness, This also does not satisfy the conditions of the present invention.
また、図7は、この比較例でのスラブ鋳片のMn偏析度と幅方向位置との関係を示す。この図に示すとおり、幅中央部と幅方向端部付近の2か所でMn偏析度が悪化していた。そして、スラブの両端部300mmの範囲をガス切断して除去した後に圧延して鋼板とし、その後、得られた鋼板からサンプルを切り出して、HIC試験を実施した。その結果、幅中央部でHICが発生し、CARは5.4%であった。 FIG. 7 shows the relationship between the Mn segregation degree of the slab slab and the width direction position in this comparative example. As shown in this figure, the Mn segregation degree was deteriorated at two places near the width center and the width direction end. Then, a range of 300 mm at both ends of the slab was removed by gas cutting, and then rolled to obtain a steel plate. Thereafter, a sample was cut out from the obtained steel plate, and an HIC test was performed. As a result, HIC occurred at the center of the width, and the CAR was 5.4%.
なお、上述した例では、低炭素鋼のラインパイプ材への利用について説明したが、本発明はラインパイプ材以外の偏析厳格鋼種(例えば、耐摩耗鋼等)で実施しても構わない。 In the above-described example, the use of low-carbon steel for line pipe materials has been described. However, the present invention may be practiced with segregation strict steel grades other than line pipe materials (for example, wear-resistant steel).
Claims (5)
スラブ厚み方向の凝固が完了する最終凝固位置のメニスカスからの距離をZとし、該スラブ幅方向位置をXとするとき、該最終凝固位置のメニスカスからの距離Z(X)は、スラブ幅方向両端部側で極大値を有するとともにスラブ幅方向中央部で極小値を有し、前記極大値と前記極小値との間は、幅方向位置Xにおける前記距離Z(X)の絶対値|dZ/dX|で0.5m/m以上の勾配を有するものとなり、かつ、スラブ幅方向両端部側の前記極大値のスラブ幅方向位置が、それぞれスラブ幅方向端面からスラブ厚みの0.2倍以上、0.7倍以下の距離となるように連続鋳造し、引続き所望の引抜き方向長さとなるように幅方向に切断してスラブ鋳片とし、
その後、予め前記スラブ鋳片から、前記極大値のスラブ幅方向位置を含むスラブ幅方向両端部側を切断して除去した後、切断部除去後の残部中央部側のスラブ鋳片本体部分を加熱し熱間圧延して鋼板とするか、または、
幅方向に切断して得られた前記スラブ鋳片をまず加熱してから熱間圧延することにより鋼板とし、その後、このようにして得られた鋼板から、前記極大値のスラブ幅方向位置を含むスラブ幅方向両端部に対応する部分を切断して除去することにより、切り取り残部となる中央部側を製品鋼板とすることを特徴とする、鋼板の製造方法。 In the method of manufacturing a steel sheet by hot rolling a continuously cast slab slab, when continuously casting a slab slab by a continuous casting machine,
When the distance from the meniscus at the final solidification position at which solidification in the slab thickness direction is completed is Z, and the position at the slab width direction is X, the distance Z (X) from the meniscus at the final solidification position is both ends in the slab width direction. part side has a minimum value in the slab width direction central portion and having a maximum at, between the front Symbol maximum value the minimum value, the absolute value of the distance Z in the width direction position X (X) | dZ / dX | has a gradient of 0.5 m / m or more, and the slab width direction position of the maximum value at both ends in the slab width direction is at least 0.2 times the slab thickness from the slab width direction end face, Continuous casting so as to have a distance of 0.7 times or less, and subsequently cut in the width direction so as to have a desired drawing direction length to form a slab cast,
Then, after previously cutting and removing both ends of the slab slab in the slab width direction including the position of the maximum value in the slab width direction, heating the slab slab slab body portion on the remaining central portion side after the cut portion is removed. Hot-rolled to a steel sheet, or
The slab slab obtained by cutting in the width direction is first heated and then hot-rolled into a steel sheet, and thereafter, from the steel sheet thus obtained, including the position of the maximum value in the slab width direction. A method for manufacturing a steel sheet, comprising cutting and removing portions corresponding to both end portions in the slab width direction to obtain a product steel sheet on a central portion side as a remaining uncut portion.
熱間圧延された前記鋼板から前記極大値のスラブ幅方向位置を含むスラブ幅方向両端部に対応する部分を切断除去する場合に、切断して除去するスラブ幅方向両端部に対応する部分が、前記極大値のスラブ幅方向位置から50mm中央部側の幅方向位置に対応する部分を含むことを特徴とする、請求項1または2に記載の鋼板の製造方法。 When cutting and removing both ends of the slab width direction including the slab width direction position of the maximum value from the slab slab, the slab width direction both end portions to be cut and removed are the slab width directions of the maximum value. Including the width direction position 50 mm center side from the position, or
When cutting and removing portions corresponding to both ends of the slab width direction including the position of the maximum value in the slab width direction from the hot-rolled steel sheet, portions corresponding to both ends of the slab width direction to be cut and removed, The method for manufacturing a steel sheet according to claim 1, further comprising a portion corresponding to a width direction position 50 mm central side from the slab width direction position of the maximum value.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017071939 | 2017-03-31 | ||
JP2017071939 | 2017-03-31 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2018171650A JP2018171650A (en) | 2018-11-08 |
JP6624396B2 true JP6624396B2 (en) | 2019-12-25 |
Family
ID=64106473
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018057981A Active JP6624396B2 (en) | 2017-03-31 | 2018-03-26 | Steel sheet manufacturing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6624396B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7371821B1 (en) * | 2022-06-29 | 2023-10-31 | Jfeスチール株式会社 | Continuous steel casting method |
WO2024004447A1 (en) * | 2022-06-29 | 2024-01-04 | Jfeスチール株式会社 | Steel continuous casting method |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63238963A (en) * | 1987-03-27 | 1988-10-05 | Hitachi Ltd | Method and apparatus for producing metal strip |
US5509460A (en) * | 1994-08-25 | 1996-04-23 | Massachusetts Institute Of Technology | Solid/liquid interface detection in continuous casting processes by γ- |
JPH09192806A (en) * | 1996-01-11 | 1997-07-29 | Sumitomo Metal Ind Ltd | Method for continuously casting slab |
JP4241137B2 (en) * | 2003-03-31 | 2009-03-18 | Jfeスチール株式会社 | Quality judgment method for continuous cast slabs |
JP2009195937A (en) * | 2008-02-21 | 2009-09-03 | Jfe Steel Corp | Method for producing continuously cast slab, and continuous casting machine |
-
2018
- 2018-03-26 JP JP2018057981A patent/JP6624396B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2018171650A (en) | 2018-11-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6115735B2 (en) | Steel continuous casting method | |
JP5600929B2 (en) | Manufacturing method of continuous cast slab | |
JP6384679B2 (en) | Manufacturing method of hot-rolled steel sheet | |
CN113677455B (en) | Continuous casting method of steel | |
JP5962625B2 (en) | Steel continuous casting method | |
JP6624396B2 (en) | Steel sheet manufacturing method | |
CN103447493B (en) | Control method of soft-reduction depressed region of wide and thick plate continuous casting blank | |
JP5380968B2 (en) | Manufacturing method of continuous cast slab | |
JP5092642B2 (en) | Steel continuous casting method and continuous casting machine | |
JP2010082638A (en) | Method for producing continuously cast slab | |
JP3427794B2 (en) | Continuous casting method | |
JP5870966B2 (en) | Manufacturing method of continuous cast slab | |
JP3511973B2 (en) | Continuous casting method | |
CN111989175B (en) | Method for continuously casting steel | |
JP2011005525A (en) | Method for continuously casting steel cast slab | |
JP4998734B2 (en) | Manufacturing method of continuous cast slab | |
JP5907334B2 (en) | Continuous casting method for cast slabs | |
JP6788232B2 (en) | Continuous steel casting method | |
JP5476959B2 (en) | Continuous casting method under light pressure | |
WO2023228796A1 (en) | Continuous casting method and continuous casting machine for steel | |
JP3402291B2 (en) | Continuously cast slab, method for continuously casting the same, and method for producing a thick steel plate | |
JP7355285B1 (en) | Continuous steel casting method | |
JP5920083B2 (en) | Continuous casting method for steel slabs | |
JP5195636B2 (en) | Manufacturing method of continuous cast slab | |
WO2023190018A1 (en) | Method for continuous casting of steel |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20181024 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20190808 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20190814 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20191007 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20191030 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20191112 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6624396 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |