JPH09192806A - Method for continuously casting slab - Google Patents

Method for continuously casting slab

Info

Publication number
JPH09192806A
JPH09192806A JP295696A JP295696A JPH09192806A JP H09192806 A JPH09192806 A JP H09192806A JP 295696 A JP295696 A JP 295696A JP 295696 A JP295696 A JP 295696A JP H09192806 A JPH09192806 A JP H09192806A
Authority
JP
Japan
Prior art keywords
slab
solidification
width direction
cooling
cast slab
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP295696A
Other languages
Japanese (ja)
Inventor
Kozo Ota
晃三 太田
Yoshio Watanabe
吉夫 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP295696A priority Critical patent/JPH09192806A/en
Publication of JPH09192806A publication Critical patent/JPH09192806A/en
Pending legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PROBLEM TO BE SOLVED: To surely execute the elimination of a W type crater end at better reproducibility than the conventional cooling control in the width direction of a cast slab and to stably produce the cast slab without center segregation, at the time of eliminating the center segregation in the continuously cast slab with secondary cooling control. SOLUTION: In a zone having <=60mm solidified shell thickness of the cast slab 4 in the secondary cooling zone below a mold, a secondary cooling water quantity density in the range from 100-150mm position to 250-350mm position from both edges in the width direction of the cast slab 4 is made to >=2 times of the secondary cooling water quantity density at the center side in the width direction of the cast slab. This partial cooling strengthening part A in the width direction of the cast slab is executed, and then, the solidifying progress in the width direction of the cast slab is made to the almost same degree (U type profile) or the solidifying progress near the edge parts of the cast slab is made to quicker than the solidifying progress at the center side in the width direction of the cast slab (V type profile) so as to uniformly execute the light rolling reduction in the width direction at the end stage of the solidification.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、連続鋳造鋳片、
特に断面が長方形のスラブの幅方向不均一凝固を解消
し、中心偏析を防止するための連続鋳造方法に関するも
のである。
TECHNICAL FIELD The present invention relates to a continuously cast slab,
In particular, it relates to a continuous casting method for eliminating uneven solidification in the width direction of a slab having a rectangular cross section and preventing center segregation.

【0002】[0002]

【従来の技術と発明が解決しようとする課題】連続鋳造
は、鋳型内に浸漬ノズルを介して鋳込まれた溶鋼を鋳型
内の冷却水により1次冷却して外皮に凝固シェルを形成
し、続くガイドロール群内で2次冷却して凝固を促進
し、完全凝固した鋳片を引き抜いて連続的に鋳片を製造
する方法であり、このような連続鋳造においては、しば
しば、中心偏析と呼ばれる内部欠陥が問題となる。この
中心偏析は、鋳片の厚み方向中心部(最終凝固部)で
C,S,P,Si,Mnなどの溶鋼成分が正偏析する現
象である。中心偏析は厚板用素材において特に深刻な問
題であり、偏析部分における靱性の低下や、水素誘起割
れの原因となることが知られている。
2. Description of the Related Art In continuous casting, molten steel cast in a mold through a dipping nozzle is primarily cooled by cooling water in the mold to form a solidified shell on the outer shell. This is a method of secondary cooling in a group of guide rolls to accelerate solidification and pull out a completely solidified slab to continuously produce a slab. In such continuous casting, it is often called center segregation. Internal defects are a problem. This center segregation is a phenomenon in which molten steel components such as C, S, P, Si, and Mn are positively segregated in the central portion (final solidified portion) in the thickness direction of the cast slab. Center segregation is a particularly serious problem in thick plate materials, and is known to cause deterioration of toughness in the segregated portion and hydrogen-induced cracking.

【0003】このような中心偏析は、凝固末期における
デンドライト(樹枝状晶)樹間の残溶鋼が、鋳片の凝固
収縮あるいは凝固シェルのバルジング等の原因により、
最終凝固部のクレーターエンドに向かってマクロ的に移
動することと、濃化溶鋼が局部的に集積するために起こ
ることが分かっている。従って、中心偏析防止対策の一
つとして、凝固先端部付近を何らかの方法で圧下するこ
とにより、末期凝固部の凝固収縮分を補償して濃化溶鋼
の移動や濃化溶鋼の集積を抑制する方法が提案されてい
る。
Such center segregation is caused by residual molten steel between dendrite (dendritic) trees at the end of solidification due to solidification shrinkage of the slab or bulging of the solidification shell.
It has been known that macroscopic movement toward the crater end of the final solidification part and local accumulation of concentrated molten steel occur. Therefore, as one of the measures to prevent center segregation, a method of suppressing the movement of concentrated molten steel and the accumulation of concentrated molten steel by compensating for the solidification shrinkage at the final solidification portion by reducing the vicinity of the solidification tip by some method Is proposed.

【0004】しかし、圧下のみによる中心偏析改善方法
は、ロール圧下,金型圧下のいずれの手段を採用して
も、図7(b)に示すように、スラブ形状の鋳片4にお
いて幅方向の凝固不均一に伴う縦断面(平面視)でW型
の最終凝固位置(以下、W型クレーターエンドと称す
る)CEが不可避の場合には、鋳片幅方向全体にわたっ
て中心偏析の改善を図れないという欠点を有している。
これは、図7(a)に示すように、スラブ形状の鋳片4
では、鋳片両エッジeからL1 〜L2 位置の領域A’の
凝固進行がこれより幅方向中央側の凝固進行に比較して
遅く、鋳片幅方向で最終凝固位置CEが異なるために鋳
片幅方向で均一な圧下ができず、凝固が遅れた鋳片幅方
向両端部分で中心偏析aが悪化するというものである
(図7(c)参照)。従って、スラブ形状の鋳片におい
て中心偏析を全幅にわたって解消するためには、前述の
鋳片幅方向凝固不均一に伴うW型クレーターエンドを解
消することが必須である。
However, the center segregation improving method by only the rolling reduction is performed in the width direction of the slab-shaped slab 4 as shown in FIG. If the final solidification position CE of W type (hereinafter referred to as W type crater end) CE is unavoidable in the longitudinal section (plan view) due to uneven solidification, it is said that the center segregation cannot be improved over the entire width direction of the slab. It has drawbacks.
As shown in FIG. 7A, this is a slab-shaped slab 4
Since the progress of solidification in the region A ′ at the positions L 1 to L 2 from both edges e of the slab is slower than the progress of solidification on the center side in the width direction, the final solidification position CE is different in the width direction of the slab. This means that the uniform segregation in the width direction of the slab cannot be achieved, and the center segregation a is deteriorated at both ends in the width direction of the slab where solidification is delayed (see FIG. 7 (c)). Therefore, in order to eliminate the center segregation over the entire width in the slab-shaped slab, it is essential to eliminate the W-shaped crater end that accompanies the uneven solidification in the slab width direction.

【0005】ここで、前記鋳片幅方向凝固不均一の起源
は、鋳型内で生じている可能性が強く、タンディッシュ
から鋳型内への給湯方法に起因していると考えられる。
即ち、連続鋳造における給湯方法は、品質および操業性
といった総合的見地より、図8に示すように、2つの吐
出口10を鋳片幅方向の外側に向けて形成した所謂2孔
ノズル1本によるものが主流となっており、このような
場合、浸漬ノズル2からの溶鋼3の吐出流の当たる部分
で、凝固が遅れていると考えられている。さらに、鋳型
1内では、バルジングにより幅方向中央部と鋳型1の接
触が良好であるために、幅方向中央近傍の方が幅端部よ
りも凝固の進行が早い。また、この凝固不均一は鋳型を
出てからの2次冷却の幅方向不均一により助長されるも
のと考えられる。なお、符号5は凝固シェル、11は連
続鋳造パウダーを示す。
The origin of the uneven solidification in the width direction of the slab is highly likely to occur in the mold, and is considered to be due to the method of supplying hot water from the tundish into the mold.
That is, the hot water supply method in continuous casting is based on a so-called two-hole nozzle in which two discharge ports 10 are formed outward in the width direction of the slab, as shown in FIG. 8, from a comprehensive viewpoint such as quality and operability. It is thought that the solidification is delayed in such a case where the discharge flow of the molten steel 3 from the dipping nozzle 2 hits. Further, in the mold 1, since contact between the center portion in the width direction and the mold 1 is good due to bulging, solidification progresses faster in the vicinity of the center of the width direction than in the width end portion. Further, it is considered that this non-uniform solidification is promoted by non-uniformity in the width direction of the secondary cooling after leaving the mold. In addition, the code | symbol 5 shows a solidification shell and 11 shows a continuous casting powder.

【0006】上述のような鋳型内における幅方向不均一
凝固発生機構に基づけば、幅方向不均一凝固の原因とな
る2孔ノズルを改善する方法、例えば底部に一つの吐出
口を有する所謂ストレートノズルによる給湯方法がある
が、この場合は、介在物侵入深さが大きくなり、内質を
悪化させるため、適用は難しい状況になっている。ま
た、鋳型を出てからのW型クレーターエンド解消による
中心偏析の改善方法としては、2次冷却による改善方法
を始めとして多くの発明が提案されている。
On the basis of the widthwise non-uniform solidification generating mechanism in the mold as described above, a method for improving the two-hole nozzle which causes the non-uniform solidification in the width direction, for example, a so-called straight nozzle having one discharge port at the bottom. However, in this case, the depth of inclusions increases and the internal quality deteriorates, making it difficult to apply. Many inventions have been proposed as a method for improving center segregation by eliminating W-shaped crater ends after leaving the mold, including an improvement method by secondary cooling.

【0007】2次冷却による改善方法としては、例え
ば、特公昭54−39216号公報には、鋳片幅方向中
央における鋳片の凝固厚みが鋳片厚みの5〜90%に生
成する区間で、鋳片幅方向の冷却に強弱差を与え(鋳片
幅Wの鋳片の両端位置より1/8Wの位置から3/8W
の位置までの間における冷却を強化し、この部分の冷却
水量を他の部分の1.5〜3.0倍として二次冷却す
る)た上で、鋳片のクレーターエンド付近で少なくとも
2対以上の圧下ロールで圧下を加える(未凝固圧下率1
%,3%)方法が開示されている。
As an improvement method by secondary cooling, for example, in Japanese Patent Publication No. 54-39216, a section in which the solidified thickness of the slab in the widthwise center of the slab is 5 to 90% of the thickness of the slab, A difference in strength is given to the cooling in the width direction of the slab (3/8 W from the position 1/8 W from both ends of the slab with the width W of the slab)
The secondary cooling is performed by strengthening the cooling up to the position of (1) to (2) by cooling the amount of cooling water of this part to 1.5 to 3.0 times that of other parts, and at least two pairs or more near the crater end of the cast Add the reduction with the reduction roll of (the uncoagulated reduction rate 1
%, 3%) method is disclosed.

【0008】また、特開昭51−47527号公報にお
いても、モールド中央に設けた単一の浸漬ノズルを使用
して溶鋼をタンディッシュからモールドに鋳込む連続鋳
造において、鋳片幅方向中央における凝固厚みが鋳片厚
みの5〜90%に生成する区間で、鋳片の両端位置より
1/8Wの位置から3/8Wの位置までの間の全部また
は一部を、それ以外の部分よりも1.5〜7.0倍の冷
却水量で冷却することが開示されている。
Also, in Japanese Patent Laid-Open No. 51475/1975, in continuous casting in which molten steel is cast into a mold from a tundish using a single immersion nozzle provided in the center of the mold, solidification in the center of the slab width direction In the section where the thickness is generated to be 5 to 90% of the thickness of the slab, all or part between the position of ⅛W and the position of ⅜W from both end positions of the slab is 1 or more than the other part. It is disclosed that cooling is performed with a cooling water amount of 0.5 to 7.0 times.

【0009】しかし、これらの発明では、W型クレータ
ーエンド形状を解消することは可能であるが、冷却強化
部の鋳込方向の範囲,冷却強化部の鋳片幅方向の範囲お
よび冷却水量の範囲が極めて広く、幅方向の凝固プロフ
ィールに応じたより精緻な水量分布等を与えてやらない
と、図9に示すような新たな凝固不均一が発生しやす
く、この凝固不均一部の近傍で鋳片の中心偏析を著しく
悪化させる場合がある(図9のB’部)。
However, in these inventions, although it is possible to eliminate the W-shaped crater end shape, the range of the cooling strengthening portion in the casting direction, the range of the cooling strengthening portion in the width direction of the cast piece, and the range of the amount of cooling water. Is extremely wide, and unless a more precise water amount distribution according to the solidification profile in the width direction is given, new solidification unevenness as shown in FIG. In some cases, the center segregation of No. 1 may be significantly deteriorated (B 'part in FIG. 9).

【0010】また、2次冷却以外による方法以外にも、
特開平1−178355号公報、および材料とプロセス
Vol. 2 (1989),P1159 には、ガイドロール群のガイド
ロールの鋳片厚さ方向の間隔を段階的に増加させること
により鋳片に強制的にバルジングを起こし、スラブ厚さ
を鋳型短辺の2〜3倍としたクレーターエンド付近で圧
下ロール群の小径ロールにより軽圧下を行い、バルジン
グによりW型クレーターエンドを解消した後に、軽圧下
により濃化溶鋼の移動・集積を阻止し、中心偏析を防止
する方法が提案されている。しかし、この方法では、バ
ルジングという現象が鋳片まかせであるので、未凝固厚
みが安定的には一定とならない。また、太鼓型スラブを
圧下するため、幅中央部の圧下量が大きくなり、幅方向
で均一圧下を行うことは困難である。
Besides the method other than the secondary cooling,
Japanese Unexamined Patent Publication (Kokai) No. 1-178355 and Material and Process Vol. 2 (1989), P1159 force a slab by gradually increasing the interval in the slab thickness direction of the guide rolls of the guide roll group. Bulging was caused, and the slab thickness was made to be 2 to 3 times the short side of the mold, and light reduction was performed with a small diameter roll of the reduction roll group near the crater end, and after eliminating the W-type crater end by bulging, it was concentrated by light reduction. A method has been proposed in which the movement / accumulation of the chemical liquid steel is prevented and the center segregation is prevented. However, in this method, since the phenomenon of bulging is left to the slab, the unsolidified thickness is not stably constant. Further, since the drum-shaped slab is rolled down, the rolling down amount in the width center portion becomes large, and it is difficult to perform uniform rolling down in the width direction.

【0011】なお、その他の中心偏析改善方法として、
特開昭63−157749号公報に記載されているよう
に、電磁攪拌を特定範囲内でかける方法や、特開平1−
113157号公報に記載されているように、超音波振
動を鋳片に印加する方法があるが、いずれも幅方向に不
均一凝固が有る場合には、根本的な解決には至らなかっ
た。
As another method for improving center segregation,
As described in JP-A-63-157749, a method of applying electromagnetic stirring within a specific range, and JP-A-1-
As described in Japanese Patent No. 113157, there is a method of applying ultrasonic vibration to a slab, but in all cases, when there is uneven solidification in the width direction, a fundamental solution has not been reached.

【0012】この発明は、前述のような問題点を解消す
べくなされたもので、その目的は、2次冷却の幅方向冷
却制御による方法がW型クレーターエンドの解消に対し
て最も効果的であるとの認識のもとに、W型クレーター
エンドの解消を従来の2次冷却の幅方向冷却制御よりも
再現性良く確実に行うことができ、中心偏析のない鋳片
を安定して製造できるようにすることにある。
The present invention has been made to solve the above-mentioned problems, and the purpose thereof is that the method by the widthwise cooling control of the secondary cooling is the most effective in eliminating the W-type crater end. Recognizing that this is the case, the elimination of the W-type crater end can be performed more reliably and reliably than the conventional widthwise cooling control of secondary cooling, and a slab without center segregation can be manufactured stably. To do so.

【0013】[0013]

【課題を解決するための手段】連続鋳造鋳片における中
心偏析を改善するためには、凝固末期における圧下鋳造
が有効であることが知られている。しかし、単に圧下を
行うのみではスラブ幅方向の不均一凝固が生じた場合
に、スラブ幅方向全域にわたっての中心偏析改善効果が
期待できないという問題点を有する。本発明は、中心偏
析改善に対する圧下を有効に機能させるために、2次冷
却の幅方向冷却制御によりスラブ幅方向の不均一凝固を
解消せんとするものである。
In order to improve center segregation in a continuously cast slab, it is known that reduction casting at the final stage of solidification is effective. However, there is a problem in that, if non-uniform solidification occurs in the slab width direction by simply performing the reduction, the effect of improving center segregation over the entire slab width direction cannot be expected. The present invention eliminates the uneven solidification in the slab width direction by the width direction cooling control of the secondary cooling in order to effectively function the reduction for improving the center segregation.

【0014】一般に、スラブの幅方向凝固形態は、図7
に示すように、鋳片両エッジより所定距離だけ離れた領
域A’で凝固進行が遅れ、この部分で著しく中心偏析が
悪化するという特徴を有している。この鋳片両エッジ近
傍で凝固進行が遅れる現象は、 所謂2孔浸漬ノズル
から吐出流が短辺に当たり、その近傍である幅端部近傍
で凝固の進行が遅れる作用と、 バルジングにより幅
方向中央部の凝固シェルは鋳型との接触が良好であり、
一方、幅端部での凝固シェルは鋳型との接触が悪いこと
により、幅端部近傍は幅中央部よりも相対的に凝固が遅
れる作用の相乗効果による。このような鋳型内における
幅方向の凝固不均一は、凝固末期まで残存し、軽圧下等
により凝固収縮分の補償を行っても凝固の遅れた部分で
偏析が悪化する。そこで、この長辺面の幅方向の凝固挙
動の不均一を補正するために、凝固遅れ部分で冷却を強
化することにより、幅方向全体にわたって均一な凝固進
行を維持できることとなり、均一な圧下が可能となる。
In general, the slab width solidification morphology is shown in FIG.
As shown in, the solidification progress is delayed in a region A ′ apart from both edges of the slab by a predetermined distance, and the central segregation is remarkably deteriorated in this region. The phenomenon in which the progress of solidification is delayed in the vicinity of both edges of the slab is that the discharge flow hits the short side from the so-called two-hole immersion nozzle, and the progress of solidification is delayed in the vicinity of the width end, which is the vicinity, and the bulging causes the central portion in the width direction The solidified shell of has good contact with the mold,
On the other hand, the solidified shell at the width end portion has a poor contact with the mold, which is due to the synergistic effect of relatively delaying the solidification in the vicinity of the width end portion than in the width center portion. Such uneven solidification in the width direction in the mold remains until the final stage of solidification, and even if compensation for the solidification shrinkage is performed by light reduction or the like, segregation deteriorates at the portion where solidification is delayed. Therefore, in order to correct this unevenness of solidification behavior in the width direction of the long side surface, by strengthening the cooling in the solidification delay portion, it is possible to maintain uniform solidification progress over the entire width direction, and it is possible to achieve uniform reduction. Becomes

【0015】本発明者らが、種々、鋳造条件とスラブ幅
方向凝固プロフィールとの相関を調査したところ、スラ
ブ幅・鋳造速度等には関わらず、図1に示すように、鋳
片両エッジより100〜300mmの領域で凝固進行が
遅れており、この部分で著しく中心偏析が悪化している
ことが判明した。なお、この凝固遅れ部は浸漬ノズルの
吐出口の角度により50mm程度はずれることも判明し
た。特開昭51−47527号公報には、鋳片の両側よ
り鋳片幅Wの1/8Wの位置から3/8Wの位置までの
間で冷却を強化するとの記述があるが(鋳片幅2000
mmに対して250〜750mmの領域)、本発明者ら
はこの明細書に基づき再現試験を行ったところ、当該部
がスラブ幅次第では凝固遅れ部より著しく外れ、むしろ
図9に示すような新たな凝固不均一を発生させることと
なってしまった。以上のことから、本発明者らは鋳片両
エッジより100〜150mmの位置より250〜35
0mmの位置までの領域Aにおいて、凝固遅れを補正す
るための手段が必要であるとの結論に達した。なお、1
00mm以下の領域はスラブ短辺より凝固が進行するた
め、凝固遅れは発生しない。
The inventors of the present invention investigated various correlations between the casting conditions and the solidification profile in the slab width direction, and as shown in FIG. 1, regardless of the slab width, the casting speed, and the like, as shown in FIG. It was found that the progress of solidification was delayed in the region of 100 to 300 mm, and the central segregation was significantly deteriorated in this region. It was also found that this delayed solidification portion was displaced by about 50 mm depending on the angle of the discharge port of the immersion nozzle. Japanese Unexamined Patent Publication No. 51-47527 describes that cooling is strengthened from both sides of the slab to a position of 1/8 W to 3/8 W of the slab width W (slab width 2000
The range of 250 to 750 mm with respect to mm), the inventors conducted a reproduction test based on this specification, and found that the part was significantly deviated from the solidification delay part depending on the slab width, and rather a new one as shown in FIG. It has resulted in uneven solidification. From the above, the present inventors have found that 250 to 35 mm from the position of 100 to 150 mm from both edges of the slab.
It was concluded that in the area A up to the 0 mm position, a means for correcting the coagulation lag is needed. In addition, 1
In the area of 00 mm or less, coagulation progresses from the short side of the slab, so no coagulation delay occurs.

【0016】次に、凝固挙動の幅方向不均一を補正する
冷却方法は、鋳型による1次冷却と鋳型を出た後の水ま
たは空気による2次冷却があるが、本発明者らは、凝固
遅れ部の領域のシェル厚が60mm以下の2次冷却帯に
おいて幅方向不均一凝固を補正するのが、最も効果的で
あるとの知見を得た。これは、次の理由による。本発明
者らは鋳型内FeS添加試験より、凝固遅れ部(エッジ
より100〜300mmの領域)と非凝固遅れ部(幅中
央部)の凝固シェル厚の差(=d2 −d1 )が最大10
mm程度あるとの知見を得ている。従って、この最大1
0mmを2次冷却の補正によりどれくらい挽回できるか
の見積りが重要である。
Next, as a cooling method for correcting the unevenness of the solidification behavior in the width direction, there are primary cooling by the mold and secondary cooling by water or air after leaving the mold. It was found that it is most effective to correct the lateral non-uniform solidification in the secondary cooling zone where the shell thickness in the lag area is 60 mm or less. This is for the following reason. According to the FeS addition test in the mold, the inventors found that the difference (= d 2 −d 1 ) in the solidification shell thickness between the solidification delay part (the region of 100 to 300 mm from the edge) and the non-solidification delay part (the center part of the width) was the maximum. 10
It has been found that it is about mm. Therefore, this maximum 1
It is important to estimate how much 0 mm can be recovered by correcting the secondary cooling.

【0017】図2に凝固シェル厚と凝固速度の関係を示
す。図中には通常冷却時と冷却強化時(通常冷却時の2
倍の水量密度)の凝固速度を示す。これにより、仮に凝
固シェル厚が40mmの時に10mmのシェル厚の差を
冷却強化により挽回しようとすれば、3.9mm/mi
nの凝固遅れ挽回速度が得られることになる。従って、
10mmのシェル厚差を挽回するためには、2.56m
in(=10/3.9)に鋳造速度を乗じた距離の分だ
け冷却強化ゾーンが必要である。図2で求めた凝固遅れ
挽回速度を凝固遅れ部の凝固シェル厚をパラメーターと
して再整理したものを図3に示す。凝固シェル厚が増加
するにつれて凝固遅れ挽回速度は減少し、換言すればそ
れだけ冷却強化ゾーンは長く必要になる。図3により凝
固シェル厚60mmより大きい領域では凝固遅れ挽回速
度は飽和してしまう。これにより凝固遅れを解消するた
めの冷却強化は凝固シェル厚が60mm以下のゾーンで
行うことが必要であるとの結論に達した。
FIG. 2 shows the relationship between the solidification shell thickness and the solidification rate. In the figure, normal cooling and cooling enhancement (2 during normal cooling)
2 times the water content density). As a result, if the solidified shell thickness is 40 mm and the difference in shell thickness of 10 mm is to be recovered by strengthening by cooling, it is 3.9 mm / mi.
A coagulation delayed recovery rate of n will be obtained. Therefore,
2.56m to make up for 10mm difference in shell thickness
The cooling strengthening zone is required for the distance obtained by multiplying in (= 10 / 3.9) by the casting speed. FIG. 3 shows a re-arrangement of the solidification delay recovery speed obtained in FIG. 2 using the solidification shell thickness of the solidification delay portion as a parameter. The solidification delayed recovery rate decreases as the solidification shell thickness increases, in other words, the longer the cooling strengthening zone is required. As shown in FIG. 3, the solidified delayed recovery speed is saturated in the region where the solidified shell thickness is larger than 60 mm. Therefore, it was concluded that the cooling strengthening for eliminating the solidification delay should be performed in the zone where the solidification shell thickness is 60 mm or less.

【0018】次に、冷却強化の量について述べる。図4
に示すように、鋳型直下で発生する凝固遅れを2次冷却
で挽回し、最終凝固位置形状を幅方向に均一(U型)も
しくはエッジ近傍の凝固進行を幅方向中央部よりも早め
る(V型)には、凝固遅れ部の水量密度を幅方向中央部
の水量密度の2.0倍以上にすることが必要である。
Next, the amount of cooling enhancement will be described. FIG.
As shown in, the solidification delay occurring immediately below the mold is recovered by secondary cooling, and the final solidification position shape is uniform in the width direction (U type) or the solidification progress near the edge is made faster than in the width direction central part (V type). ), It is necessary that the water amount density of the solidification delay portion is 2.0 times or more the water amount density of the center portion in the width direction.

【0019】また、冷却強化の最大量は、冷却強化開始
シェル厚に左右され、ある程度の自由度をもつが、あま
り強化すると過冷による表面疵の発生を招くため、幅方
向中央部の水量密度の10倍以下にするのが望ましい。
The maximum amount of cooling strengthening depends on the thickness of the cooling strengthening starting shell and has a certain degree of freedom, but if it is strengthened too much, surface defects will occur due to overcooling, so the water content density in the central portion in the width direction will occur. 10 times or less is desirable.

【0020】図5に幅方向凝固プロフィールの種類を示
す。幅方向凝固プロフィールは、理想的には、図5
(a)に示すように、シェル厚が全く均一なU型プロフ
ィール(理想的プロフィール)は勿論のこと、図5
(b)に示すように、幅方向の凝固進行の方が幅中央よ
りも早いV型プロフィールの場合でも、幅中央部は圧下
が効き易いので、中心偏析改善効果を享受することがで
きる。但し、V型プロフィールといっても限度があり、
冷却強化部と幅中央部の最終凝固位置の差は1m以内と
した方が望ましい。これは、最終凝固位置で圧下を加え
る場合、最終凝固位置の差が小さいほどスラブ幅方向の
凝固収縮の補償量分布が均一になるため、中心偏析のレ
ベルはより良好なレベルになるためである。
FIG. 5 shows the types of width direction solidification profiles. The transverse solidification profile should ideally be as shown in FIG.
As shown in FIG. 5A, not only the U-shaped profile (ideal profile) having a completely uniform shell thickness but also FIG.
As shown in (b), even in the case of the V-shaped profile in which the coagulation progresses in the width direction is faster than in the width center, the central portion of the width is likely to be rolled down, so that the center segregation improving effect can be enjoyed. However, there are limits to what can be called a V-shaped profile,
It is desirable that the difference between the final solidification position between the cooling strengthened portion and the width center portion be within 1 m. This is because, when the reduction is applied at the final solidification position, the smaller the difference between the final solidification positions, the more uniform the distribution of the solidification shrinkage compensation amount in the slab width direction, and the better the level of center segregation. .

【0021】以上のことから、請求項1に係る本発明に
おいては、鋳型内に浸漬ノズルを介して供給した溶鋼を
冷却しつつ引き抜くスラブ形状の鋳片の連続鋳造方法に
おいて、2次冷却帯における鋳片の凝固シェル厚が60
mm以下のゾーンにおいて、鋳片の幅方向両エッジから
100〜150mmの位置から250〜350mmの位
置までの領域の2次冷却水量密度を、鋳片幅方向中央側
の2次冷却水量密度の2倍以上とし、この鋳片幅方向に
部分的な冷却強化部により、鋳片幅方向の凝固進行をほ
ぼ同等にするか(U型プロフィール)、または鋳片エッ
ジ近傍の凝固進行を鋳片幅方向中央側の凝固進行よりも
早める(V型プロフィール)。このV型プロフィールの
場合には、冷却強化部と幅中央部の最終凝固位置の差は
1m以内とするのが好ましい。なお、冷却強化部におけ
る冷却強化方法は、当該部を別系統として水量調節する
方法や、当該部のスプレーノズルの数を増やすなどの方
法がある。
From the above, in the present invention according to claim 1, in the continuous casting method of the slab-shaped slab for drawing molten steel supplied through the immersion nozzle into the mold while cooling, in the secondary cooling zone The solidified shell thickness of the slab is 60
In a zone of mm or less, the secondary cooling water amount density of the region from the position of 100 to 150 mm to the position of 250 to 350 mm from both edges in the width direction of the cast slab is set to Double or more, and the cooling enhancement partly in the width direction of the cast piece makes the solidification progress in the width direction of the cast piece almost the same (U-shaped profile), or the progress of solidification near the edge of the cast piece in the width direction of the cast piece. Faster than the progress of central coagulation (V-shaped profile). In the case of this V-shaped profile, it is preferable that the difference between the final solidification positions of the cooling strengthened portion and the width center portion is within 1 m. In addition, as the cooling strengthening method in the cooling strengthening section, there are a method of adjusting the water amount by using the section as a separate system, and a method of increasing the number of spray nozzles of the section.

【0022】次に、図1(b)の凝固プロフィールに着
目すると、凝固遅れ部のシェル厚dは、エッジより15
0〜200mmの位置を最小とし、ここから幅方向中央
部に向かって徐々に大きくなっていく。そこで、本発明
者らは前記冷却強化部を2つ以上に分割し、凝固シェル
厚分布に応じた水量分布とすることによりさらに良好な
中心偏析のレベルが得られることを知見した。
Next, paying attention to the solidification profile of FIG. 1B, the shell thickness d of the delayed solidification portion is 15 from the edge.
The position at 0 to 200 mm is the minimum, and the position gradually increases from here toward the center in the width direction. Therefore, the present inventors have found that a better level of center segregation can be obtained by dividing the cooling-strengthened portion into two or more parts and making the water amount distribution according to the solidified shell thickness distribution.

【0023】以上より、請求項2に係る本発明では、請
求項1に係る発明において、鋳片幅方向に部分的な冷却
強化部を鋳片の凝固進行に応じて鋳片幅方向に複数に分
割し、これら各分割部分の冷却水量密度分布が鋳片の凝
固進行に応じた分布とする。
As described above, in the present invention according to claim 2, in the invention according to claim 1, a plurality of cooling-strengthening portions partially in the width direction of the slab are formed in the width direction of the slab according to the solidification progress of the slab. The cooling water amount density distribution of each of the divided parts is set according to the progress of solidification of the slab.

【0024】なお、冷却強化部を2つ以上に分割する方
法としては、水量特性の異なるスプレーチップを使用す
る方法、あるいは冷却系統自体を2分割し、それぞれの
系統について水量調節可能とする方法などがある。
As a method of dividing the cooling strengthening portion into two or more, a method of using a spray tip having different water amount characteristics, or a method of dividing the cooling system itself into two and making it possible to adjust the water amount of each system, etc. There is.

【0025】以上のような本発明により、スラブ最終凝
固位置の形状は、図6(a)に示すように、エッジ近傍
の凝固進行が幅中央よりも遅れたW型プロフィールから
スラブ幅方向の凝固進行が均一なU型、あるいはスラブ
エッジ近傍の凝固進行の方が幅中央よりも早いV型プロ
フィールとなる。このような最終凝固位置の形状が改善
された状態で圧下を行うと、エッジ近傍まで圧下が効率
的にされることとなり、図6(b)に示すように、エッ
ジ近傍の中心偏析のレベルが良好となる。これにより、
耐HIC性能・機械的性質等の製品特性は格段に向上す
る。
According to the present invention as described above, the shape of the final solidification position of the slab is, as shown in FIG. 6 (a), the solidification in the width direction of the slab from the W-shaped profile in which the progress of solidification near the edge is delayed from the width center. A U-shaped profile with uniform progress, or a V-shaped profile with faster progress of solidification near the slab edge than in the width center. If the reduction is performed in the state where the shape of the final solidification position is improved, the reduction is efficiently performed to the vicinity of the edge, and as shown in FIG. 6B, the level of center segregation near the edge is reduced. It will be good. This allows
Product characteristics such as HIC resistance and mechanical properties are significantly improved.

【0026】さらに、本発明では、幅方向不均一の実態
を把握し、この凝固不均一の補正を効果的な場所で補正
の必要な部分のみ集中的に行うことができ、従来の2次
冷却の幅方向冷却制御において見られたような図9の新
たな凝固不均一を発生することが無く、W型クレーター
エンドの解消を再現性良く確実に行うことができ、中心
偏析のない鋳片を安定して製造することができる。
Further, according to the present invention, the actual condition of the non-uniformity in the width direction can be grasped, and the non-uniformity of the solidification can be corrected in an effective place by concentrating only the portion requiring the correction. The new solidification nonuniformity of Fig. 9 as seen in the widthwise cooling control of No. 1 does not occur, the elimination of the W-type crater end can be reliably performed with good reproducibility, and a slab without center segregation can be obtained. It can be manufactured stably.

【0027】[0027]

【発明の実施の形態】以下、この発明を図示する一実施
例に基づいて詳細に説明する。これは偏平スラブの連続
鋳造に適用した例であり、図1に本発明で使用する連続
鋳造設備と本発明に係るスラブの部分的な強冷却を示
す。図1において、レードル,タンディッシュからの溶
鋼3が浸漬ノズル2により水冷銅鋳型1内に鋳込まれ、
鋳型1内の1次冷却により鋳片4表面に凝固シェル5が
形成され、続くサポートロール群6でのスプレー水等に
よる2次冷却により凝固が促進され、圧下ロール群7で
完全凝固し、ピンチロール8を経て引き出される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail below with reference to an embodiment shown in the drawings. This is an example applied to continuous casting of flat slabs, and FIG. 1 shows the continuous casting equipment used in the present invention and partial strong cooling of the slab according to the present invention. In FIG. 1, molten steel 3 from a ladle and a tundish is cast into a water-cooled copper mold 1 by a dipping nozzle 2.
The solidification shell 5 is formed on the surface of the slab 4 by the primary cooling in the mold 1, and the solidification is promoted by the secondary cooling in the support roll group 6 by the spray water or the like. It is pulled out through the roll 8.

【0028】鋳型1内の中央に一本だけ配設される浸漬
ノズル2は所謂2孔ノズルであり、その2つの側部吐出
口はその吐出方向がスラブ幅方向両側すなわちスラブ短
辺に向かうように、かつ吐出角度が水平に対して下向き
に数°の角度となるように形成されている。また、サポ
ートロール群6および/または圧下ロール群7の各ロー
ル間にはスプレーノズル9が配設され、2次冷却帯が形
成されている。
The dipping nozzle 2 arranged only one in the center of the mold 1 is a so-called two-hole nozzle, and its two side discharge ports have their discharge directions directed to both sides in the slab width direction, that is, to the short side of the slab. In addition, the discharge angle is formed to be an angle of several degrees downward with respect to the horizontal. A spray nozzle 9 is provided between each roll of the support roll group 6 and / or the reduction roll group 7 to form a secondary cooling zone.

【0029】このような連続鋳造設備において、本発明
では、 (1) 凝固シェル厚が60mm以下を満足する鋳型直下か
ら鋳型内メニスカス下10.0mまでの2次冷却帯に、
鋳片幅方向に部分的な冷却強化部Aを設ける。鋳型直下
から鋳型内メニスカス下5.0mまで冷却強化部Aを設
ければ、凝固遅れ部と非凝固遅れ部の凝固シェル厚最大
差10mmを挽回することができるが、必要に応じてメ
ニスカス下5.0m〜10.0mまでの2次冷却帯にも
冷却強化部Aを配設し、スラブエッジ近傍の凝固進行の
方がスラブ幅中央よりも早くなるようにしてもよい。
In such continuous casting equipment, according to the present invention, (1) in the secondary cooling zone from immediately below the mold satisfying the solidified shell thickness of 60 mm or less to 10.0 m below the meniscus in the mold,
A partial cooling strengthening portion A is provided in the width direction of the slab. If the cooling strengthening portion A is provided from immediately below the mold to 5.0 m below the meniscus in the mold, the maximum difference in solidification shell thickness between the solidification delay portion and the non-solidification delay portion of 10 mm can be recovered. The cooling strengthening portion A may be provided in the secondary cooling zone from 0.0 m to 10.0 m so that the progress of solidification in the vicinity of the slab edge is faster than in the center of the slab width.

【0030】(2) 冷却強化部Aのスラブ幅方向に関して
は、スラブ幅・鋳造速度等に関わらず、少なくともスラ
ブ両エッジから100mmの位置から300mmの位置
までの領域とする。また、凝固遅れ部は浸漬ノズル2の
吐出口の角度により50mm程度はずれることもあるの
で、冷却強化範囲は幅方向に50mm程度ずらすことも
ある(後述の数値例では冷却強化範囲は100〜300
mmとしている)。なお、100mm以下の領域では、
スラブ短辺より凝固が進行するため、凝固遅れは発生し
ない。
(2) Regarding the slab width direction of the cooling strengthened portion A, regardless of the slab width, the casting speed, etc., the region is at least 100 mm to 300 mm from both edges of the slab. Further, since the solidification delay portion may be displaced by about 50 mm depending on the angle of the discharge port of the immersion nozzle 2, the cooling strengthening range may be shifted in the width direction by about 50 mm (in the numerical example described later, the cooling strengthening range is 100 to 300).
mm). In the area of 100 mm or less,
Since coagulation proceeds from the short side of the slab, coagulation delay does not occur.

【0031】(3) 冷却強化部Aのスプレーノズル9の数
を増やすなどして、冷却強化部Aにおける2次冷却水量
密度を、スラブ幅方向中央側の2次冷却水量密度の2.
0倍以上10.0倍以下とし、U型あるいはV型プロフ
ィールが得られるようにする(図4参照)。
(3) By increasing the number of spray nozzles 9 in the cooling strengthening section A, the secondary cooling water quantity density in the cooling strengthening section A is set to the secondary cooling water quantity density of 2.
It is set to 0 times or more and 10.0 times or less so that a U-shaped or V-shaped profile can be obtained (see FIG. 4).

【0032】(4) 冷却強化部Aを2つ以上に分割し、各
分割部分の2次冷却水量密度を鋳片凝固進行に応じて変
える。例えば、鋳片エッジ側から鋳片中央側へ向かって
2次冷却水密度を、スラブ幅方向中央側の2次冷却水量
密度の3倍,2倍,1倍とする。
(4) The cooling strengthened portion A is divided into two or more parts, and the secondary cooling water amount density of each divided portion is changed according to the progress of solidification of the cast slab. For example, the secondary cooling water density from the slab edge side toward the slab center side is set to 3, 2, or 1 times the secondary cooling water amount density on the slab width direction central side.

【0033】(5) 凝固末期のクレーターエンド部分を前
後の所定範囲にわたって圧下ロール群7により軽圧下を
行う。なお、必要に応じて凝固完了点の上流側に電磁攪
拌装置を設置して鋳片内の溶鋼の電磁攪拌を行う。
(5) The crater end portion at the final stage of coagulation is lightly reduced by the reduction roll group 7 over a predetermined range in the front and rear. If necessary, an electromagnetic stirrer is installed upstream of the solidification completion point to electromagnetically stir the molten steel in the slab.

【0034】以上のような構成において、次のような条
件で連続鋳造を行った。
With the above structure, continuous casting was performed under the following conditions.

【0035】 装置仕様・鋳造条件 (1) 連続鋳造機: 湾曲型連鋳機(湾曲半径:12.5m) (2) 鋳片サイズ: 250mm(厚み)×2000mm(幅) (3) 鋼種 : C 0.15〜0.20%厚板用40K鋼 (4) 溶鋼過熱度: ΔT=20°C (5) 鋳込速度 : 0.8m/min (6) 鋳型長 : 700mm (7) 凝固末期圧下: 圧下ゾーン長 5m,圧下勾配 1mm/m (8) ストランド電磁攪拌: メニスカス下 9.0mで印加 表1に本発明実施例と比較例の2次冷却条件を示す。表
2−1にストランド電磁攪拌により発生したホワイトバ
ンドより換算した最終凝固位置の幅方向分布を、表2−
2に中心偏析部のC偏析度の幅方向分布を示す。
Equipment Specifications / Casting Conditions (1) Continuous casting machine: Curved continuous casting machine (curving radius: 12.5 m) (2) Slab size: 250 mm (thickness) x 2000 mm (width) (3) Steel type: C 0.15 to 0.20% 40K steel for thick plate (4) Superheated molten steel: ΔT = 20 ° C (5) Casting speed: 0.8m / min (6) Mold length: 700mm (7) Final solidification reduction : Reduction zone length 5 m, reduction gradient 1 mm / m (8) Strand electromagnetic stirring: Application under meniscus 9.0 m Table 1 shows the secondary cooling conditions of Examples of the present invention and Comparative Examples. Table 2-1 shows the widthwise distribution of final solidification positions converted from the white band generated by the electromagnetic stirring of the strands.
2 shows the widthwise distribution of the C segregation degree in the central segregation portion.

【0036】[0036]

【表1】 [Table 1]

【0037】[0037]

【表2】 [Table 2]

【0038】これら表2−1および表2−2から以下の
ことが明らかになった。比較例1では幅方向で2次冷却
の強弱を付けていないために、明らかにエッジより15
0〜300mm位置で最終凝固位置が下流側になり、凝
固遅れ部の中心偏析が大きく悪化した。比較例2は特開
昭51−47527号公報に開示される明細書に基づ
き、本発明者らが再現試験を行ったものであるが、幅方
向で2次冷却の強弱を付けたものの、最も凝固の遅れた
部分(本例ではエッジより100〜300mm位置)を
強冷却しなかったため、より幅方向不均一凝固を助長さ
せる結果となり、強冷却部の中心偏析が大きく悪化し
た。
From these Tables 2-1 and 2-2, the following facts have become clear. In Comparative Example 1, since the strength of the secondary cooling is not applied in the width direction, it is clearly 15 from the edge.
At the position of 0 to 300 mm, the final solidification position was on the downstream side, and the central segregation of the solidification delay portion was greatly deteriorated. Comparative Example 2 is a reproduction test conducted by the present inventors based on the specification disclosed in Japanese Patent Application Laid-Open No. 51-47527. However, although the strength of secondary cooling is added in the width direction, Since the portion where the solidification was delayed (in this example, the position of 100 to 300 mm from the edge) was not strongly cooled, it resulted in further promoting the uneven solidification in the width direction, and the center segregation of the strongly cooled portion was significantly deteriorated.

【0039】これに対して、本発明では実施例1〜3の
いずれにおいても、凝固遅れ部を的確に冷却したため、
中心偏析が幅方向全体で大幅に改善された。この中で
も、実施例2では、エッジ近傍の冷却強化部と幅中央部
の最終凝固位置の差を1.0m以内としたため、実施例
1よりもさらに中心偏析が改善され、実施例3では、冷
却強化部を2分割し、その部分で凝固プロフィールに応
じた水量分布を選択したため、実施例1,2よりもさら
に中心偏析が改善された。
On the other hand, according to the present invention, in any of the first to third embodiments, the solidification delay portion is accurately cooled,
The center segregation is significantly improved in the entire width direction. Among these, in Example 2, since the difference between the final solidification positions of the cooling strengthened portion near the edge and the width center portion was set to 1.0 m or less, the center segregation was further improved as compared with Example 1, and in Example 3, the cooling was performed. Since the reinforced portion was divided into two and the water amount distribution was selected in accordance with the solidification profile in that portion, the central segregation was further improved as compared with Examples 1 and 2.

【0040】なお、以上は1つの鋳片サイズのスラブに
関する実施例について説明したが、スラブサイズや鋳造
速度等が異なるスラブにも本発明を適用できることはい
うまでもない。
Although the above description has been given of the embodiment relating to one slab having a single slab size, it goes without saying that the present invention can be applied to slabs having different slab sizes, casting speeds and the like.

【0041】[0041]

【発明の効果】前述の通り、この発明は、鋳片の凝固シ
ェル厚が60mm以下の2次冷却帯で、鋳片の幅方向両
エッジから100〜150mmの位置から250〜35
0mmの位置までの領域の2次冷却水量密度を、鋳片幅
方向中央側の2次冷却水量密度の2倍以上とすることに
より、U型あるいはV型のクレーターエンドが得られる
ようにしたため、凝固末期の軽圧下が鋳片幅方向に均一
に行われ、幅端部の中心偏析が大幅に改善される。さら
に、W型クレーターエンドを従来の2次冷却の幅方向冷
却制御よりも再現性良く確実に解消することができ、鋳
片エッジ近傍の中心偏析を完全に無くすことができる。
この結果、鋳片幅方向全域で均一組成で、かつ中心偏析
の無い鋳片を安定して製造することが可能になった。
As described above, the present invention is a secondary cooling zone in which the thickness of the solidified shell of the slab is 60 mm or less, and 250 to 35 mm from the position 100 to 150 mm from both edges in the width direction of the slab.
Since the secondary cooling water amount density in the area up to the position of 0 mm is set to be twice or more the secondary cooling water amount density on the center side in the width direction of the slab, a U-shaped or V-shaped crater end is obtained. Light reduction at the end of solidification is performed uniformly in the width direction of the slab, and the center segregation at the width end is significantly improved. Furthermore, the W-type crater end can be eliminated more reliably with better reproducibility than the widthwise cooling control of the conventional secondary cooling, and the center segregation near the slab edge can be completely eliminated.
As a result, it became possible to stably produce a cast product having a uniform composition in the entire width direction of the cast product and having no center segregation.

【図面の簡単な説明】[Brief description of the drawings]

【図1】(a)は本発明に係る連続鋳造法を実施するた
めの連続鋳造機の一例を示す縦断面図、(b)は本発明
に係る部分的な強冷却を示す横断面図である。
FIG. 1A is a vertical sectional view showing an example of a continuous casting machine for carrying out a continuous casting method according to the present invention, and FIG. 1B is a transverse sectional view showing partial strong cooling according to the present invention. is there.

【図2】通常冷却時と冷却強化時における凝固シェル厚
と凝固速度の関係を示すグラフである。
FIG. 2 is a graph showing the relationship between the solidification shell thickness and the solidification rate during normal cooling and during cooling strengthening.

【図3】凝固遅れ部の凝固シェル厚と凝固遅れ挽回速度
の関係を示すグラフである。
FIG. 3 is a graph showing a relationship between a solidification shell thickness of a solidification delay portion and a solidification delay recovery speed.

【図4】本発明において、冷却強化部と幅中央部の水量
比と、スラブエッジ近傍と幅中央部の凝固シェル厚の差
との関係を示すグラフである。
FIG. 4 is a graph showing the relationship between the water content ratio between the cooling-strengthened portion and the width center portion and the difference in the solidified shell thickness near the slab edge and the width center portion in the present invention.

【図5】スラブ幅方向の凝固プロフィールを示す横断面
図および縦断面図であり、(a)はU型プロフィール、
(b)はV型プロフィール、(c)はW型プロフィール
を示す。
5A and 5B are a horizontal cross-sectional view and a vertical cross-sectional view showing a solidification profile in a slab width direction, FIG.
(B) shows a V-shaped profile, and (c) shows a W-shaped profile.

【図6】(a)は本発明と従来とで最終凝固位置を比較
したグラフ、(b)は本発明と従来とで幅方向の中心偏
析を比較したグラフである。
6A is a graph comparing final solidification positions of the present invention and the related art, and FIG. 6B is a graph comparing center segregation in the width direction between the present invention and the related art.

【図7】従来の連続鋳造方法によるスラブであり、
(a)は鋳造中のスラブの横断面図、(b)は鋳造中ス
ラブの縦断面図、(c)はスラブの中心偏析発生状況を
示す横断面図である。
FIG. 7 is a slab produced by a conventional continuous casting method,
(A) is a cross-sectional view of the slab during casting, (b) is a vertical cross-sectional view of the slab during casting, and (c) is a cross-sectional view showing the center segregation occurrence state of the slab.

【図8】(a)は浸漬ノズルから吐出される鋳型内溶鋼
の流動状況を示す縦断面図、(b)はその2次冷却帯に
おけるスラブの不均一凝固を示す横断面図である。
8A is a vertical cross-sectional view showing a flow state of molten steel in a mold discharged from a dipping nozzle, and FIG. 8B is a cross-sectional view showing uneven solidification of a slab in a secondary cooling zone thereof.

【図9】従来の冷却強化部が適正位置でない場合に発生
する新たな不均一凝固を示す横断面図である。
FIG. 9 is a cross-sectional view showing a new non-uniform solidification that occurs when the conventional cooling strengthening portion is not in the proper position.

【符号の説明】[Explanation of symbols]

A…冷却強化部 a…中心偏析 CE…クレーターエンド(最終凝固位置) 1…鋳型 2…浸漬ノズル 3…溶鋼 4…鋳片 5…凝固シェル 6…サポートロール群 7…圧下ロール群 8…ピンチロール 9…スプレーノズル 10…吐出口 11…連続鋳造パウダー A ... Cooling strengthening part a ... Center segregation CE ... Crater end (final solidification position) 1 ... Mold 2 ... Immersion nozzle 3 ... Molten steel 4 ... Cast piece 5 ... Solidification shell 6 ... Support roll group 7 ... Rolling roll group 8 ... Pinch roll 9 ... Spray nozzle 10 ... Discharge port 11 ... Continuous casting powder

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 鋳型内に浸漬ノズルを介して供給した溶
鋼を冷却しつつ引き抜くスラブ形状の鋳片の連続鋳造方
法において、 2次冷却帯における鋳片の凝固シェル厚が60mm以下
のゾーンにおいて、鋳片の幅方向両エッジから100〜
150mmの位置から250〜350mmの位置までの
領域の2次冷却水量密度を、鋳片幅方向中央側の2次冷
却水量密度の2倍以上とし、この鋳片幅方向に部分的な
冷却強化部により、鋳片幅方向の凝固進行をほぼ同等に
するか、または鋳片エッジ近傍の凝固進行を鋳片幅方向
中央側の凝固進行よりも早めることを特徴とするスラブ
の連続鋳造方法。
1. A continuous casting method of a slab-shaped slab, in which molten steel supplied through a dipping nozzle into a mold is drawn while cooling, in a zone where the solidified shell thickness of the slab in the secondary cooling zone is 60 mm or less, 100 ~ from both widthwise edges of the slab
The secondary cooling water amount density in the region from the position of 150 mm to the position of 250 to 350 mm is set to twice or more the secondary cooling water amount density of the central side in the width direction of the slab, and the cooling strengthening portion is partially in the width direction of the slab. According to the method, the solidification progress in the slab width direction is made substantially equal, or the solidification progress in the vicinity of the slab edge is made faster than the solidification progress in the slab width direction center side.
【請求項2】 請求項1に記載のスラブの連続鋳造方法
において、鋳片幅方向に部分的な冷却強化部を鋳片の凝
固進行に応じて鋳片幅方向に複数に分割し、これら各分
割部分の冷却水量密度分布が鋳片の凝固進行に応じた分
布とすることを特徴とするスラブの連続鋳造方法。
2. The continuous casting method for a slab according to claim 1, wherein a partial cooling-strengthened portion in the width direction of the cast piece is divided into a plurality of pieces in the width direction of the cast piece according to the progress of solidification of the cast piece. A continuous casting method for a slab, characterized in that the distribution of the cooling water amount density in the divided portions is a distribution according to the progress of solidification of the slab.
JP295696A 1996-01-11 1996-01-11 Method for continuously casting slab Pending JPH09192806A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP295696A JPH09192806A (en) 1996-01-11 1996-01-11 Method for continuously casting slab

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP295696A JPH09192806A (en) 1996-01-11 1996-01-11 Method for continuously casting slab

Publications (1)

Publication Number Publication Date
JPH09192806A true JPH09192806A (en) 1997-07-29

Family

ID=11543825

Family Applications (1)

Application Number Title Priority Date Filing Date
JP295696A Pending JPH09192806A (en) 1996-01-11 1996-01-11 Method for continuously casting slab

Country Status (1)

Country Link
JP (1) JPH09192806A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000237856A (en) * 1999-02-19 2000-09-05 Sanbo Copper Alloy Co Ltd Cooling device for continuous caster
JP2011218403A (en) * 2010-04-09 2011-11-04 Nippon Steel Corp Continuous casting method of steel
KR101252645B1 (en) * 2010-12-02 2013-04-09 주식회사 포스코 Continuous Casting Method and Continuous Casting Apparatus
JP2018145525A (en) * 2017-03-07 2018-09-20 Jfeスチール株式会社 Hot rolled steel sheet and production method thereof, cold rolled steel sheet and production method thereof, production method of cold rolled annealed steel sheet, and production method of hot-dip galvanized steel sheet
JP2018171650A (en) * 2017-03-31 2018-11-08 Jfeスチール株式会社 Method for producing steel sheet
JP2019155419A (en) * 2018-03-13 2019-09-19 日本製鉄株式会社 Continuous casting method for slab

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000237856A (en) * 1999-02-19 2000-09-05 Sanbo Copper Alloy Co Ltd Cooling device for continuous caster
JP2011218403A (en) * 2010-04-09 2011-11-04 Nippon Steel Corp Continuous casting method of steel
KR101252645B1 (en) * 2010-12-02 2013-04-09 주식회사 포스코 Continuous Casting Method and Continuous Casting Apparatus
JP2018145525A (en) * 2017-03-07 2018-09-20 Jfeスチール株式会社 Hot rolled steel sheet and production method thereof, cold rolled steel sheet and production method thereof, production method of cold rolled annealed steel sheet, and production method of hot-dip galvanized steel sheet
JP2018171650A (en) * 2017-03-31 2018-11-08 Jfeスチール株式会社 Method for producing steel sheet
JP2019155419A (en) * 2018-03-13 2019-09-19 日本製鉄株式会社 Continuous casting method for slab

Similar Documents

Publication Publication Date Title
JPH09192806A (en) Method for continuously casting slab
JP4626384B2 (en) Secondary cooling method for slab in continuous slab casting
KR101252645B1 (en) Continuous Casting Method and Continuous Casting Apparatus
JP2002273554A (en) Method for continuously casting steel
JP7047495B2 (en) Continuous casting method of slabs
JP3427794B2 (en) Continuous casting method
JP5094154B2 (en) Slab cooling method in continuous casting machine
JP3671872B2 (en) Continuous casting method of steel
JP2903927B2 (en) Continuous casting method
CN109794589A (en) A kind of process control method preventing CSP continuous casting billet lobe defect
JP3994848B2 (en) Continuous casting method of steel
JP3275835B2 (en) Continuous casting method and continuous casting machine
JPH10137911A (en) Method for continuously casting steel
JPH07178526A (en) Continuous casting method anf apparatus therefor
JP3374761B2 (en) Continuous cast slab, continuous casting method thereof, and method of manufacturing thick steel plate
JPH11156511A (en) Steel slab continuous casting method
JP3114679B2 (en) Continuous casting method
JP2964888B2 (en) Continuous casting method
JP2867894B2 (en) Continuous casting method
JP2004283850A (en) Continuous casting method
JP3994852B2 (en) Continuous casting method using vertical bending die continuous casting machine and cast slab produced thereby
JPH038863B2 (en)
JPH0947852A (en) Continuous casting method and immersion nozzle
JPH11156509A (en) Continuous casting method
JP3283746B2 (en) Continuous casting mold