JP2903927B2 - Continuous casting method - Google Patents

Continuous casting method

Info

Publication number
JP2903927B2
JP2903927B2 JP5036939A JP3693993A JP2903927B2 JP 2903927 B2 JP2903927 B2 JP 2903927B2 JP 5036939 A JP5036939 A JP 5036939A JP 3693993 A JP3693993 A JP 3693993A JP 2903927 B2 JP2903927 B2 JP 2903927B2
Authority
JP
Japan
Prior art keywords
slab
temperature
continuous
continuous casting
temperature range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP5036939A
Other languages
Japanese (ja)
Other versions
JPH06246411A (en
Inventor
廣 松田
輝 上田
雅保 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=12483728&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2903927(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP5036939A priority Critical patent/JP2903927B2/en
Publication of JPH06246411A publication Critical patent/JPH06246411A/en
Application granted granted Critical
Publication of JP2903927B2 publication Critical patent/JP2903927B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、垂直曲げ型連鋳機を用
いてスラブ連鋳を行なうに際し、連鋳片の表面割れ(粒
界割れ)を生じることなく1.6m/min以上の鋳造
速度で連続鋳造を行なうことができる様に工夫された連
続鋳造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of casting a slab continuously using a vertical bending type continuous casting machine without causing surface cracks (grain boundary cracks) in a continuous cast piece at 1.6 m / min or more. The present invention relates to a continuous casting method devised so that continuous casting can be performed at a high speed.

【0002】[0002]

【従来の技術】垂直曲げ型連鋳機を用いてスラブ連鋳を
行なう際における二次冷却帯での冷却法としては、
(1)溶鋼の鋳込み速度に応じて二次冷却用水量を一義
的に制御しながら冷却する方法と、(2)引抜かれてい
く連鋳片各部の所要水量を求め、目標位置までに連鋳片
が完全凝固し得る様に、引抜かれる連鋳片長手方向の各
冷却ゾーンの冷却水量を調整する方法、等が知られてい
る。
2. Description of the Related Art As a cooling method in a secondary cooling zone when performing slab continuous casting using a vertical bending type continuous casting machine,
(1) A method of cooling while uniquely controlling the amount of secondary cooling water according to the casting speed of molten steel, and (2) Obtaining the required amount of water for each part of the continuous cast piece to be drawn and continuously casting to the target position. There is known a method of adjusting the amount of cooling water in each cooling zone in the longitudinal direction of the continuous cast piece to be drawn so that the piece can be completely solidified.

【0003】ところが上記(1)の方法は、二次冷却帯
を通過する連鋳片重量に対する冷却水量(以下、比水量
ということがある)を、鋳造速度に応じて一義的に設定
する方法であり、安定操業を主目的とする冷却制御法で
あって、垂直曲げ型連鋳の連鋳片曲げ部および矯正部
(曲げ戻し部)でしばしば問題となる表面割れ(粒界割
れ)に対しては考慮されていない。
However, the above method (1) is a method of uniquely setting a cooling water amount (hereinafter, sometimes referred to as a specific water amount) with respect to a continuous cast piece weight passing through a secondary cooling zone in accordance with a casting speed. It is a cooling control method with the main purpose of stable operation, and it is suitable for surface cracks (grain boundary cracks) which often become a problem in the continuous casting slab bending part and straightening part (bend return part) of vertical bending type continuous casting. Is not taken into account.

【0004】これに対し上記(2)の方法は、上記
(1)の方法と同様にして求められる鋳造速度に対する
総冷却水量を、二次冷却帯長手方向の各ゾーン毎に分配
し、それにより連鋳片の表面割れや内部割れ等も改善し
ようとするものであるが、スラブ連鋳の場合鋳片の偏平
比が大きいため、連鋳片の幅方向でコーナー部の表面温
度が中央部の表面温度に比べて低くなるため、連鋳片長
手方向のみの冷却水量調整だけでは表面割れを確実に防
止することはむずかしい。
On the other hand, in the method (2), the total amount of cooling water with respect to the casting speed obtained in the same manner as in the method (1) is distributed to each zone in the longitudinal direction of the secondary cooling zone. It is also intended to improve the surface cracks and internal cracks of the continuous cast slab, but in the case of slab continuous casting, the flatness ratio of the cast slab is large, so the surface temperature of the corner in the width direction of the continuous cast slab is Since the temperature is lower than the surface temperature, it is difficult to reliably prevent surface cracks only by adjusting the cooling water amount in the longitudinal direction of the continuous cast slab.

【0005】垂直曲げ型連鋳で特に問題となる表面割れ
は、一般に鋳造速度を高めるにつれて顕著になる傾向が
あり、こうした傾向は上記(2)の冷却制御を行なう場
合も同様である。従って上記(2)の方法を採用する場
合でも、スラブ鋳片の表面割れを生じさせない様、鋳造
速度は1.5m/min程度以下に抑えているのが実状
である。
Surface cracks, which are particularly problematic in vertical bending continuous casting, generally tend to become more pronounced as the casting speed is increased. This tendency is the same when the above-mentioned cooling control (2) is performed. Therefore, even when the method (2) is adopted, the casting speed is actually suppressed to about 1.5 m / min or less so as not to cause the surface crack of the slab cast.

【0006】[0006]

【発明が解決しようとする課題】本発明は上記の様な事
情に着目してなされたものであって、その目的は、垂直
曲げ型連鋳機を用いてスラブ連鋳を行なうに際し、1.
6m/min以上の鋳造速度を採用した場合でも、スラ
ブ連鋳片に表面割れを生じることなく円滑に生産性良く
連続鋳造を行なうことのできる技術を確立しようとする
ものである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and has as its object the purpose of performing slab continuous casting using a vertical bending type continuous casting machine.
Even if a casting speed of 6 m / min or more is adopted, it is an object of the present invention to establish a technology capable of performing continuous casting smoothly and with good productivity without causing surface cracks in the continuous slab cast.

【0007】[0007]

【課題を解決するための手段】上記課題を解決すること
のできた本発明に係る連続鋳造法の構成は、垂直曲げ型
連続鋳造装置を使用し、1.6m/min以上の鋳造速
度で鋼のスラブ連鋳を行なうに当たり、連鋳片が最初の
曲げ部を通過する際における連鋳片の表面温度を、当該
鋼材の脆化温度域を超える温度に設定すると共に、該連
鋳片がその下流側の矯正部を通過する際における該連鋳
片の表面温度を前記脆化温度域未満の温度に設定すると
ころに要旨を有するものである。但し上記において脆化
温度域とは、後述する様な鋼材の高温引張試験における
絞り値が、同引張試験における絞り値の50%以下とな
る温度域を意味する。
The structure of the continuous casting method according to the present invention, which can solve the above-mentioned problems, uses a vertical bending type continuous casting apparatus and has a steel casting speed of 1.6 m / min or more. In performing the slab continuous casting, the surface temperature of the continuous cast slab when the continuous cast slab passes through the first bending portion is set to a temperature exceeding the embrittlement temperature range of the steel material, and the continuous cast slab is placed downstream thereof. The point is that the surface temperature of the continuous cast piece when passing through the straightening portion on the side is set to a temperature lower than the embrittlement temperature range. However, in the above description, the embrittlement temperature range means a temperature range in which the reduction value in a high-temperature tensile test of a steel material as described later is 50% or less of the reduction value in the tensile test.

【0008】[0008]

【作用】本発明者らは、垂直曲げ型連鋳を行なうに際
し、従来例に比べて高い鋳造速度を採用した場合でも表
面割れを防止することのできる方法を確立すべく、まず
表面割れのメカニズムについて研究を行なった。その結
果、次に示す事実が確認された。
In order to establish a method that can prevent surface cracking even when a higher casting speed is employed in the vertical bending type continuous casting than in the conventional example, the present inventors firstly developed the mechanism of surface cracking. Was studied. As a result, the following facts were confirmed.

【0009】連鋳片の凝固時の状況を考えると、鋳片
凝固殻のデンドライト間にPやSが偏析し、デンドライ
ト樹間が溶融状態となって内部割れを起こし易くなり、
また凝固後の結晶粒界に窒化物が偏析して粒界破壊を起
こす現象(本明細書では以下、高温脆化という)を生じ
るが、こうした現象を生じる温度領域(脆化温度領域と
いう)は鋼の成分組成によって固有の範囲を示す。
Considering the situation during solidification of the continuous cast slab, P and S are segregated between dendrites in the solidified shell of the cast slab, and the dendrite trees are in a molten state to easily cause internal cracks.
In addition, a phenomenon in which nitride segregates at a crystal grain boundary after solidification and causes grain boundary fracture (hereinafter, referred to as high-temperature embrittlement) occurs. A temperature region in which such a phenomenon occurs (referred to as an embrittlement temperature region) is as follows. A specific range is shown depending on the composition of the steel.

【0010】たとえば下記表1に示す成分組成の鋼Aの
高温引張試験によって求められる絞り値(R.A.)
は、図1に示す如く700〜900℃の温度域で低い値
を示し、この温度域で引張強度も低くなり延性も低下す
る脆化現象を起こす。また図2は、同様に鋼Bの高温引
張試験結果を示したものであり、700〜1000℃の
範囲が脆化温度領域となる。
For example, the drawing value (RA) determined by a high-temperature tensile test of steel A having the composition shown in Table 1 below.
Shows a low value in the temperature range of 700 to 900 ° C. as shown in FIG. 1, and in this temperature range, the tensile strength decreases and the embrittlement phenomenon in which the ductility decreases also occurs. FIG. 2 similarly shows the results of a high-temperature tensile test of steel B, and the range of 700 to 1000 ° C. is the embrittlement temperature range.

【0011】[0011]

【表1】 [Table 1]

【0012】また図3は、鋼中の窒素含有量と脆化温度
領域の関係を調べた結果を示したものであり、窒素含有
量が多くなるにつれて脆化温度領域は拡大する傾向があ
ることを確認できる。またこの実験に用いた試験片の破
断面観察によると、粒界への窒化物の析出が確認され、
粒界に析出した微細窒化物を起点として応力集中が生じ
ることによって脆化現象を起こしたものと判断される。
FIG. 3 shows the result of examining the relationship between the nitrogen content in steel and the embrittlement temperature range. As the nitrogen content increases, the embrittlement temperature range tends to expand. Can be confirmed. Also, according to the observation of the fracture surface of the test piece used in this experiment, precipitation of nitride at the grain boundary was confirmed,
It is judged that embrittlement was caused by the occurrence of stress concentration starting from the fine nitride precipitated at the grain boundary.

【0013】垂直曲げ型連鋳機において、鋳片が曲げ
部および矯正部(曲げ戻し部)を通過する際にその表面
温度が脆化温度領域内の温度になっていると、鋳片表層
部で窒化物の偏析により結晶粒界が曲げ応力によって粒
界破壊を起こし、容易に表面割れに至るものと考えられ
る。
In a vertical bending type continuous casting machine, if the surface temperature of the slab is within the embrittlement temperature range when the slab passes through the bent portion and the straightening portion (bent back portion), the slab surface layer portion It is considered that the segregation of the nitride causes grain boundaries to be broken by the bending stress due to the segregation of the nitride, which easily leads to surface cracking.

【0014】本発明は、上記知見を元に更に研究を進め
た結果完成されたものであって、後記実施例(図5,
6)に詳述する様に、垂直曲げ連鋳機の曲げ部を通過す
るときの鋳片の表面温度は、当該鋳片に固有の脆化温度
領域を超える温度に制御し、それより下流側に位置する
矯正部を通過するときの鋳片表面温度は、前記脆化温度
領域を下回る温度となる様に冷却条件を制御し、それに
より鋳片表面温度が脆化温度領域にある間は鋳片に曲げ
応力が作用しない様にすることによって連鋳片引抜き時
の高温脆化に起因する表面割れを防止するものである。
The present invention has been completed as a result of further research based on the above-mentioned findings, and has been described in the following embodiment (FIG. 5).
As described in detail in 6), the surface temperature of the slab when passing through the bending portion of the vertical bending continuous caster is controlled to a temperature exceeding the embrittlement temperature range inherent in the slab, and the downstream side thereof is controlled. The cooling conditions are controlled so that the slab surface temperature when passing through the straightening section located at a temperature lower than the embrittlement temperature region, whereby the slab surface temperature is in the embrittlement temperature region. By preventing bending stress from acting on the slab, surface cracks caused by high-temperature embrittlement at the time of continuous casting slab drawing are prevented.

【0015】ところで、連続的に引抜かれていく連鋳片
の幅方向に冷却水を均一に吹付ける従来の鋳片冷却法で
は、殊に偏平比の大きいスラブ連鋳片の場合その幅方向
で冷却速度が不均一になる(鋳片のコーナー部近傍は中
央部よりも冷え易くなる:図4(A)参照)。従って垂
直曲げ型連鋳機の曲げ部および矯正部を通過する際の鋳
片の表面温度が幅方向全域で前記脆化温度域を外れる様
に制御することは困難であるので、鋳片の中央部の温度
が脆化温度域より高くても、鋳片のコーナー部近傍に表
面割れが生じる可能性があり、またコーナー部の表面温
度が脆化温度域より低くても、中央部の表面温度が脆化
温度域に入って中央部に表面割れが発生する可能性がで
てくる。
By the way, in the conventional slab cooling method in which cooling water is sprayed uniformly in the width direction of the continuously cast slab which is continuously drawn, particularly in the case of a slab continuous slab having a large aspect ratio, the slab continuous slab is not slid in the width direction. The cooling rate becomes uneven (the vicinity of the corner of the slab becomes easier to cool than the center: see FIG. 4A). Therefore, it is difficult to control the surface temperature of the slab when passing through the bending portion and the straightening portion of the vertical bending type continuous casting machine so as to be outside the embrittlement temperature region in the entire width direction, and therefore, the center of the slab is Even if the temperature of the part is higher than the embrittlement temperature range, surface cracks may occur near the corner of the slab, and even if the surface temperature of the corner is lower than the embrittlement temperature range, May enter the embrittlement temperature range and cause surface cracks at the center.

【0016】従ってこうした問題を回避するには、図4
(B)に示す如くスラブ連鋳片の冷却能を鋳片の幅方向
で変更可能とし、スラブ連鋳片の幅方向中央部に対して
両側辺側の冷却能を低めに設定すればよく、それにより
スラブ連鋳片の幅方向温度は略均等になり、スラブ連鋳
片の幅方向全域で表面割れを阻止することができる。
Therefore, in order to avoid such a problem, FIG.
As shown in (B), the cooling capacity of the continuous slab slab can be changed in the width direction of the slab, and the cooling capacity on both sides of the slab continuous slab can be set lower than the center in the width direction of the slab. Thereby, the temperature in the width direction of the continuous slab slab becomes substantially uniform, and surface cracks can be prevented in the entire area of the slab continuous slab in the width direction.

【0017】尚鋳片幅方向で冷却能を調節する方法は特
に限定されないが、最も一般的なのは、たとえば図5に
略示する如くスラブ連鋳片1の中央部と両側辺部へ供給
される冷却水供給管2a,2bを別個に設けて夫々から
の供給水量(もしくは水温)を別々に制御可能とし、両
側辺部よりも中央部の冷却能が高くなる様に供給水量
(もしくは水温)をコントロールする方法が挙げられ
る。この場合、冷却水供給管を鋳片幅方向で更に細分化
し、両側辺部に行くほど冷却能が段階的小さくなる様な
勾配を与えてやれば、幅方向の表面温度を一層均一にす
ることができるので好ましい。
The method of adjusting the cooling capacity in the width direction of the slab is not particularly limited, but the most common method is to supply the slab continuous slab 1 to the central portion and both side portions thereof as schematically shown in FIG. The cooling water supply pipes 2a and 2b are provided separately so that the supply water amount (or water temperature) from each can be controlled separately, and the supply water amount (or water temperature) is set so that the cooling capacity at the center is higher than at both sides. There is a control method. In this case, if the cooling water supply pipe is further subdivided in the slab width direction and a gradient is provided so that the cooling capacity gradually decreases toward both sides, the surface temperature in the width direction is made more uniform. Is preferred.

【0018】[0018]

【実施例】以下、実施例を挙げて本発明の構成および作
用効果をより具体的に説明するが、本発明はもとより下
記実施例によって制限を受けるものではなく、前後記の
趣旨に適合し得る範囲で変更して実施することも勿論可
能であり、それらはいずれも本発明の技術的範囲に含ま
れる。
EXAMPLES Hereinafter, the structure and operation and effect of the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the following examples, and can conform to the spirit of the preceding and following examples. Of course, the present invention can be carried out while being changed within the scope, and all of them are included in the technical scope of the present invention.

【0019】実施例1 前記表1に示した成分組成を目標値として転炉で溶製
し、真空脱ガス装置で成分調整した鋼Bを垂直曲げ型連
鋳機に供給し、速度2.0m/分で断面サイズ230m
m厚×1800mm幅のスラブを連続鋳造した。このと
き、スラブ鋳片の両側縁から300mmの範囲に吹付け
る冷却水量は中央部へ吹付ける冷却水量よりも少なめに
抑えることにより、幅方向全体の表面温度が略均一にな
る様にコントロールすると共に、鋳片の引抜き方向位置
と表面温度の関係が図6に示す通りとなる様に鋳片送り
方向の冷却水量を調整しつつ連続鋳造を行なった。即ち
図中1はスラブ鋳片、3は鋳型、Aは垂直部、Bは曲げ
部、Cは円弧部、Dは矯正部(曲げ戻し部)、Eは水平
部を夫々示し、表2に示す如く曲げ部Bの表面温度は鋼
Aの脆化温度領域(700〜900℃)を上回る様に、
また矯正部Dの表面温度は鋼Aの脆化温度領域を下回る
様に調整した。その結果、得られるスラブ鋳片には表面
割れが全く生じなかった。
Example 1 Steel B was melted in a converter using the composition shown in Table 1 as a target value, and the steel B, the composition of which was adjusted by a vacuum degassing apparatus, was supplied to a vertical bending type continuous casting machine. 230m section size per minute
A slab having a thickness of m and a width of 1800 mm was continuously cast. At this time, the amount of cooling water sprayed in a range of 300 mm from both side edges of the slab slab is controlled to be smaller than the amount of cooling water sprayed to the center, so that the surface temperature in the entire width direction is controlled to be substantially uniform. Continuous casting was performed while adjusting the amount of cooling water in the slab feed direction such that the relationship between the position of the slab in the drawing direction and the surface temperature was as shown in FIG. That is, in the figure, 1 is a slab slab, 3 is a mold, A is a vertical portion, B is a bent portion, C is an arc portion, D is a straightening portion (bent-back portion), and E is a horizontal portion. As described above, the surface temperature of the bent portion B exceeds the embrittlement temperature range (700 to 900 ° C.) of the steel A,
The surface temperature of the straightening portion D was adjusted to be lower than the brittle temperature range of the steel A. As a result, no surface cracks occurred in the obtained slab slab.

【0020】一方、比較のため、曲げ部および矯正部の
各鋳片表面温度が表2の比較例に示す通りとなる様に冷
却水量を調整しつつ連続鋳造を行なったところ、引取ら
れたスラブ鋳片には、全体の30%に表面割れが認めら
れた。
On the other hand, for comparison, continuous casting was performed while adjusting the amount of cooling water so that the surface temperature of each slab of the bent portion and the straightening portion was as shown in the comparative example of Table 2, and the slab taken off was obtained. Surface cracks were observed in 30% of the slabs.

【0021】[0021]

【表2】 [Table 2]

【0022】実施例2 鋼材として前記表1の鋼B(脆化温度領域:650〜1
000℃)を使用し、鋳造速度を2.0m/分に設定す
ると共に冷却条件を表3に示す通りとした以外は前記実
施例1と同様にしてスラブ連鋳を行なったところ、得ら
れるスラブ連鋳片には全く表面割れが認められなかっ
た。また比較のため表面温度が表3の比較例に示す通り
となる様に冷却水量を調整しつつ連続鋳造を行なったと
ころ、引取られるスラブ鋳片には全体の50%の比率で
表面割れが生じていた。
Example 2 As a steel material, steel B shown in Table 1 (brittle temperature range: 650 to 1)
Slab continuous casting was performed in the same manner as in Example 1 except that the casting speed was set at 2.0 m / min and the cooling conditions were as shown in Table 3. No surface cracks were observed in the continuous cast slab. For comparison, continuous casting was performed while adjusting the amount of cooling water so that the surface temperature was as shown in the comparative example in Table 3. As a result, 50% of the surface cracks occurred in the slab slab to be taken. I was

【0023】[0023]

【表3】 [Table 3]

【0024】[0024]

【発明の効果】本発明は以上の様に構成されており、垂
直曲げ型連鋳機を使用し1.6m/分以上の速度でスラ
ブ連鋳を行なう場合でも、曲げ部および矯正部の表面温
度が、用いる鋼種に応じて決まってくる脆化温度領域を
外れる様に連鋳片引抜方向温度を制御することによっ
て、スラブ鋳片の表面割れを皆無にすることができる。
The present invention is constituted as described above, and even when slab continuous casting is performed at a speed of 1.6 m / min or more using a vertical bending type continuous casting machine, the surface of the bent portion and the straightening portion can be obtained. By controlling the temperature in the continuous slab slab drawing direction such that the temperature is out of the embrittlement temperature range determined according to the type of steel used, it is possible to eliminate the surface cracks of the slab slab.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実験で用いた鋼Aの高温引張試験結果を示すグ
ラフである。
FIG. 1 is a graph showing the results of a high-temperature tensile test of steel A used in an experiment.

【図2】実験で用いた鋼Bの高温引張試験結果を示すグ
ラフである。
FIG. 2 is a graph showing the results of a high-temperature tensile test of steel B used in the experiment.

【図3】鋼中のN含有量を変えたときの温度と絞り値の
関係を示すグラフである。
FIG. 3 is a graph showing the relationship between the temperature and the aperture value when the N content in steel is changed.

【図4】スラブ鋳片幅方向の冷却能と鋳片表面温度の関
係を示す図である。
FIG. 4 is a diagram showing the relationship between the cooling capacity in the slab slab slab width direction and the slab surface temperature.

【図5】本発明で採用される好ましい冷却法を示す説明
図である。
FIG. 5 is an explanatory view showing a preferred cooling method employed in the present invention.

【図6】実施例で採用したスラブ連鋳時における鋳片の
引抜方向位置と表面温度の関係を示すグラフである。
FIG. 6 is a graph showing the relationship between the position of the slab in the drawing direction and the surface temperature during continuous slab casting employed in the example.

【図7】実施例で採用したスラブ連鋳時における鋳片の
引抜方向位置と表面温度の関係を示すグラフである。
FIG. 7 is a graph showing the relationship between the position in the drawing direction of the slab and the surface temperature during continuous slab casting employed in the example.

【符号の説明】[Explanation of symbols]

1 スラブ鋳片 2a,2b 冷却水供給管 3 鋳型 A 垂直部 B 曲げ部 C 円弧部 D 矯正部 E 水平部 DESCRIPTION OF SYMBOLS 1 Slab slab 2a, 2b Cooling water supply pipe 3 Mold A Vertical part B Bending part C Circular part D Straightening part E Horizontal part

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭53−106335(JP,A) 特開 昭56−109149(JP,A) 特開 昭63−154250(JP,A) (58)調査した分野(Int.Cl.6,DB名) B22D 11/124 B22D 11/16 B22D 11/22 ────────────────────────────────────────────────── (5) References JP-A-53-106335 (JP, A) JP-A-56-109149 (JP, A) JP-A-63-154250 (JP, A) (58) Field (Int.Cl. 6 , DB name) B22D 11/124 B22D 11/16 B22D 11/22

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 垂直曲げ型連続鋳造装置を使用し、1.
6m/min以上の鋳造速度で鋼のスラブ連鋳を行なう
に当たり、連鋳片が最初の曲げ部を通過する際における
連鋳片の表面温度を、当該鋼材の脆化温度域を超える温
度に設定すると共に、該連鋳片がその下流側の矯正部を
通過する際における該連鋳片の表面温度を前記脆化温度
域未満の温度に設定することを特徴とする連続鋳造方
法。但し、脆化温度域とは、鋼材の高温引張試験におけ
る絞り値が、同引張試験における絞り値の50%以下と
なる温度域を意味する。
1. Using a vertical bending type continuous casting apparatus,
In performing slab continuous casting of steel at a casting speed of 6 m / min or more, the surface temperature of the continuous cast piece when the continuous cast piece passes through the first bent portion is set to a temperature exceeding the brittle temperature range of the steel material. And a surface temperature of the continuous cast piece when the continuous cast piece passes through a straightening portion on the downstream side thereof is set to a temperature lower than the embrittlement temperature range. However, the embrittlement temperature range means a temperature range in which the drawn value in a high-temperature tensile test of a steel material is 50% or less of the drawn value in the tensile test.
【請求項2】 引抜かれるスラブ鋳片の幅方向両側縁側
の冷却能を中央部よりも小さくし、幅方向の表面温度を
均一化する請求項1記載の連続鋳造方法。
2. The continuous casting method according to claim 1, wherein the cooling capacity on both side edges in the width direction of the slab slab to be drawn is made smaller than that in the center portion, and the surface temperature in the width direction is made uniform.
JP5036939A 1993-02-25 1993-02-25 Continuous casting method Expired - Lifetime JP2903927B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5036939A JP2903927B2 (en) 1993-02-25 1993-02-25 Continuous casting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5036939A JP2903927B2 (en) 1993-02-25 1993-02-25 Continuous casting method

Publications (2)

Publication Number Publication Date
JPH06246411A JPH06246411A (en) 1994-09-06
JP2903927B2 true JP2903927B2 (en) 1999-06-14

Family

ID=12483728

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5036939A Expired - Lifetime JP2903927B2 (en) 1993-02-25 1993-02-25 Continuous casting method

Country Status (1)

Country Link
JP (1) JP2903927B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4561755B2 (en) * 2007-02-15 2010-10-13 住友金属工業株式会社 Method for continuous casting of steel containing B and N
JP5419394B2 (en) * 2008-06-24 2014-02-19 株式会社神戸製鋼所 Slab manufacturing method
JP5477202B2 (en) * 2010-07-01 2014-04-23 新日鐵住金株式会社 Secondary cooling method in continuous casting machine
JP5617704B2 (en) * 2011-03-11 2014-11-05 新日鐵住金株式会社 Steel continuous casting method
JP6019989B2 (en) * 2012-09-20 2016-11-02 Jfeスチール株式会社 Secondary cooling method for continuous cast slabs
JP2020179404A (en) * 2019-04-24 2020-11-05 日本製鉄株式会社 Method of continuous casting for cast slab
CN114505461A (en) * 2022-01-07 2022-05-17 吉林建龙钢铁有限责任公司 Method for improving corner cracks and intermediate cracks of plate blank

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS583790B2 (en) * 1977-02-28 1983-01-22 住友金属工業株式会社 Cooling method in continuous steel casting
JPS56109149A (en) * 1980-01-30 1981-08-29 Nippon Steel Corp Continuous casting method of less surface cracking
JPS63154250A (en) * 1986-12-18 1988-06-27 Sumitomo Metal Ind Ltd Continuous casting method for steel

Also Published As

Publication number Publication date
JPH06246411A (en) 1994-09-06

Similar Documents

Publication Publication Date Title
JP2018503741A (en) Lean duplex stainless steel and manufacturing method thereof
JP2903927B2 (en) Continuous casting method
JP5444807B2 (en) Method for preventing surface cracks in continuous cast slabs
JPH038864B2 (en)
JPS62275556A (en) Continuous casting method
JP4684204B2 (en) How to end continuous casting
JP3526705B2 (en) Continuous casting method for high carbon steel
JP2019155419A (en) Continuous casting method for slab
JP3671872B2 (en) Continuous casting method of steel
JP2004237291A (en) Method of manufacturing continuous casting slab and steel material obtained by working the cast slab
JP3149763B2 (en) Prevention method of placing cracks in continuous cast slabs of bearing steel
JPH0550201A (en) Light rolling reduction method in continuous casting
JP3374761B2 (en) Continuous cast slab, continuous casting method thereof, and method of manufacturing thick steel plate
JPH11156511A (en) Steel slab continuous casting method
KR20050003140A (en) Method for manufacturing continuous casting of martensite stainless steel having with excellent surface quality
JP2005305517A (en) Continuous casting method and continuously cast slab
JP3283746B2 (en) Continuous casting mold
JPH0568525B2 (en)
JPH0890182A (en) Method for continuously casting wide and thin cast slab
JP2863013B2 (en) Casting and rolling method for thin slab
JP2894131B2 (en) Large slab production method
JPH0620593B2 (en) Manufacturing method of cast slab for non-oriented electrical steel sheet
JP2007245178A (en) Method for continuously casting steel
JPH078421B2 (en) Continuous casting method
JPH11192539A (en) Method for continuous casting of chromium-containing molten steel having excellent internal defect resistance

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990223