JPH06246411A - Continuous casting method - Google Patents
Continuous casting methodInfo
- Publication number
- JPH06246411A JPH06246411A JP3693993A JP3693993A JPH06246411A JP H06246411 A JPH06246411 A JP H06246411A JP 3693993 A JP3693993 A JP 3693993A JP 3693993 A JP3693993 A JP 3693993A JP H06246411 A JPH06246411 A JP H06246411A
- Authority
- JP
- Japan
- Prior art keywords
- slab
- continuous casting
- temperature
- continuous
- casting
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Continuous Casting (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、垂直曲げ型連鋳機を用
いてスラブ連鋳を行なうに際し、連鋳片の表面割れ(粒
界割れ)を生じることなく1.6m/min以上の鋳造
速度で連続鋳造を行なうことができる様に工夫された連
続鋳造方法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention, when performing continuous slab casting using a vertical bending type continuous casting machine, casts 1.6 m / min or more without causing surface cracks (grain boundary cracks) of the continuous cast pieces. The present invention relates to a continuous casting method devised so that continuous casting can be performed at high speed.
【0002】[0002]
【従来の技術】垂直曲げ型連鋳機を用いてスラブ連鋳を
行なう際における二次冷却帯での冷却法としては、
(1)溶鋼の鋳込み速度に応じて二次冷却用水量を一義
的に制御しながら冷却する方法と、(2)引抜かれてい
く連鋳片各部の所要水量を求め、目標位置までに連鋳片
が完全凝固し得る様に、引抜かれる連鋳片長手方向の各
冷却ゾーンの冷却水量を調整する方法、等が知られてい
る。2. Description of the Related Art As a cooling method in a secondary cooling zone when performing continuous slab casting using a vertical bending type continuous casting machine,
(1) A method of cooling while uniquely controlling the amount of secondary cooling water according to the casting speed of molten steel, and (2) obtaining the required amount of water for each part of the continuously cast piece being drawn, and continuously casting to the target position. A method is known in which the amount of cooling water in each cooling zone in the longitudinal direction of the continuous cast piece to be drawn is adjusted so that the piece can be completely solidified.
【0003】ところが上記(1)の方法は、二次冷却帯
を通過する連鋳片重量に対する冷却水量(以下、比水量
ということがある)を、鋳造速度に応じて一義的に設定
する方法であり、安定操業を主目的とする冷却制御法で
あって、垂直曲げ型連鋳の連鋳片曲げ部および矯正部
(曲げ戻し部)でしばしば問題となる表面割れ(粒界割
れ)に対しては考慮されていない。However, the above method (1) is a method of uniquely setting the amount of cooling water (hereinafter, sometimes referred to as a specific water amount) with respect to the weight of the continuous cast piece passing through the secondary cooling zone in accordance with the casting speed. Yes, it is a cooling control method mainly for stable operation, and for surface cracks (intergranular cracks) that are often a problem in the bending part and straightening part (bending-back part) of vertical bending type continuous casting. Is not considered.
【0004】これに対し上記(2)の方法は、上記
(1)の方法と同様にして求められる鋳造速度に対する
総冷却水量を、二次冷却帯長手方向の各ゾーン毎に分配
し、それにより連鋳片の表面割れや内部割れ等も改善し
ようとするものであるが、スラブ連鋳の場合鋳片の偏平
比が大きいため、連鋳片の幅方向でコーナー部の表面温
度が中央部の表面温度に比べて低くなるため、連鋳片長
手方向のみの冷却水量調整だけでは表面割れを確実に防
止することはむずかしい。On the other hand, in the above method (2), the total amount of cooling water with respect to the casting speed obtained in the same manner as in the above method (1) is distributed to each zone in the longitudinal direction of the secondary cooling zone. Although it is intended to improve the surface cracks and internal cracks of the continuous cast slab, in the case of slab continuous casting, the flatness ratio of the slab is large, so the surface temperature of the corner part in the width direction of the continuous cast slab is Since the temperature is lower than the surface temperature, it is difficult to reliably prevent surface cracking only by adjusting the amount of cooling water only in the longitudinal direction of the continuous cast piece.
【0005】垂直曲げ型連鋳で特に問題となる表面割れ
は、一般に鋳造速度を高めるにつれて顕著になる傾向が
あり、こうした傾向は上記(2)の冷却制御を行なう場
合も同様である。従って上記(2)の方法を採用する場
合でも、スラブ鋳片の表面割れを生じさせない様、鋳造
速度は1.5m/min程度以下に抑えているのが実状
である。Surface cracks, which are particularly problematic in vertical bending continuous casting, generally tend to become more prominent as the casting speed is increased, and this tendency also applies to the cooling control of the above (2). Therefore, even when the method (2) is adopted, it is the actual situation that the casting speed is suppressed to about 1.5 m / min or less so as not to cause surface cracking of the slab cast piece.
【0006】[0006]
【発明が解決しようとする課題】本発明は上記の様な事
情に着目してなされたものであって、その目的は、垂直
曲げ型連鋳機を用いてスラブ連鋳を行なうに際し、1.
6m/min以上の鋳造速度を採用した場合でも、スラ
ブ連鋳片に表面割れを生じることなく円滑に生産性良く
連続鋳造を行なうことのできる技術を確立しようとする
ものである。SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and its objects are: 1. When performing continuous slab casting using a vertical bending type continuous casting machine.
Even if a casting speed of 6 m / min or more is adopted, it is intended to establish a technique capable of smoothly performing continuous casting with good productivity without causing surface cracks in a slab continuous cast piece.
【0007】[0007]
【課題を解決するための手段】上記課題を解決すること
のできた本発明に係る連続鋳造法の構成は、垂直曲げ型
連続鋳造装置を使用し、1.6m/min以上の鋳造速
度で鋼のスラブ連鋳を行なうに当たり、連鋳片が最初の
曲げ部を通過する際における連鋳片の表面温度を、当該
鋼材の脆化温度域を超える温度に設定すると共に、該連
鋳片がその下流側の矯正部を通過する際における該連鋳
片の表面温度を前記脆化温度域未満の温度に設定すると
ころに要旨を有するものである。但し上記において脆化
温度域とは、後述する様な鋼材の高温引張試験における
絞り値が、同引張試験における絞り値の50%以下とな
る温度域を意味する。The structure of the continuous casting method according to the present invention, which has been able to solve the above-mentioned problems, uses a vertical bending type continuous casting apparatus and is capable of casting steel at a casting speed of 1.6 m / min or more. In performing slab continuous casting, the surface temperature of the continuous cast piece when the continuous cast piece passes through the first bending portion is set to a temperature exceeding the embrittlement temperature range of the steel material, and the continuous cast piece is downstream thereof. The gist is that the surface temperature of the continuous cast piece when passing through the straightening portion on the side is set to a temperature lower than the embrittlement temperature range. However, in the above, the embrittlement temperature range means a temperature range in which the drawing value in the high temperature tensile test of the steel material as described later is 50% or less of the drawing value in the tensile test.
【0008】[0008]
【作用】本発明者らは、垂直曲げ型連鋳を行なうに際
し、従来例に比べて高い鋳造速度を採用した場合でも表
面割れを防止することのできる方法を確立すべく、まず
表面割れのメカニズムについて研究を行なった。その結
果、次に示す事実が確認された。In order to establish a method capable of preventing surface cracks even when a casting speed higher than that of the conventional example is adopted when performing vertical bending type continuous casting, the inventors of the present invention firstly study the mechanism of surface cracking. Researched. As a result, the following facts were confirmed.
【0009】連鋳片の凝固時の状況を考えると、鋳片
凝固殻のデンドライト間にPやSが偏析し、デンドライ
ト樹間が溶融状態となって内部割れを起こし易くなり、
また凝固後の結晶粒界に窒化物が偏析して粒界破壊を起
こす現象(本明細書では以下、高温脆化という)を生じ
るが、こうした現象を生じる温度領域(脆化温度領域と
いう)は鋼の成分組成によって固有の範囲を示す。Considering the situation during solidification of continuous cast slabs, P and S are segregated between the dendrites of the solidified shell of the cast slabs, and the dendrite trees are in a molten state, so that internal cracking easily occurs.
In addition, a phenomenon (hereinafter referred to as high temperature embrittlement in the present specification) in which nitride segregates at the crystal grain boundaries after solidification to cause grain boundary fracture occurs, but the temperature range in which such a phenomenon occurs (referred to as embrittlement temperature range) is A specific range is shown depending on the composition of the steel.
【0010】たとえば下記表1に示す成分組成の鋼Aの
高温引張試験によって求められる絞り値(R.A.)
は、図1に示す如く700〜900℃の温度域で低い値
を示し、この温度域で引張強度も低くなり延性も低下す
る脆化現象を起こす。また図2は、同様に鋼Bの高温引
張試験結果を示したものであり、700〜1000℃の
範囲が脆化温度領域となる。For example, the reduction value (RA) obtained by a high temperature tensile test of steel A having the composition shown in Table 1 below.
Shows a low value in a temperature range of 700 to 900 ° C. as shown in FIG. 1, and in this temperature range, an embrittlement phenomenon occurs in which tensile strength is lowered and ductility is also lowered. Similarly, FIG. 2 shows the high-temperature tensile test result of Steel B, and the range of 700 to 1000 ° C. is the embrittlement temperature region.
【0011】[0011]
【表1】 [Table 1]
【0012】また図3は、鋼中の窒素含有量と脆化温度
領域の関係を調べた結果を示したものであり、窒素含有
量が多くなるにつれて脆化温度領域は拡大する傾向があ
ることを確認できる。またこの実験に用いた試験片の破
断面観察によると、粒界への窒化物の析出が確認され、
粒界に析出した微細窒化物を起点として応力集中が生じ
ることによって脆化現象を起こしたものと判断される。FIG. 3 shows the results of examining the relationship between the nitrogen content in steel and the embrittlement temperature range. The embrittlement temperature range tends to expand as the nitrogen content increases. Can be confirmed. Further, observation of the fracture surface of the test piece used in this experiment confirmed the precipitation of nitrides at the grain boundaries,
It is considered that the embrittlement phenomenon occurred due to stress concentration starting from the fine nitrides precipitated at the grain boundaries.
【0013】垂直曲げ型連鋳機において、鋳片が曲げ
部および矯正部(曲げ戻し部)を通過する際にその表面
温度が脆化温度領域内の温度になっていると、鋳片表層
部で窒化物の偏析により結晶粒界が曲げ応力によって粒
界破壊を起こし、容易に表面割れに至るものと考えられ
る。In the vertical bending type continuous casting machine, when the surface temperature of the slab is within the embrittlement temperature range when the slab passes through the bending part and the straightening part (bending back part), the surface layer of the slab is Therefore, it is considered that segregation of nitride causes grain boundary fracture due to bending stress in the crystal grain boundary, which easily leads to surface cracking.
【0014】本発明は、上記知見を元に更に研究を進め
た結果完成されたものであって、後記実施例(図5,
6)に詳述する様に、垂直曲げ連鋳機の曲げ部を通過す
るときの鋳片の表面温度は、当該鋳片に固有の脆化温度
領域を超える温度に制御し、それより下流側に位置する
矯正部を通過するときの鋳片表面温度は、前記脆化温度
領域を下回る温度となる様に冷却条件を制御し、それに
より鋳片表面温度が脆化温度領域にある間は鋳片に曲げ
応力が作用しない様にすることによって連鋳片引抜き時
の高温脆化に起因する表面割れを防止するものである。The present invention has been completed as a result of further research based on the above findings, and is completed in Examples described later (FIG. 5, FIG.
As described in detail in 6), the surface temperature of the slab when passing through the bending part of the vertical bending continuous casting machine is controlled to a temperature exceeding the embrittlement temperature region specific to the slab, and the downstream side thereof. The slab surface temperature when passing through the straightening section located at is controlled by controlling the cooling conditions so that the slab surface temperature falls below the embrittlement temperature region, whereby the slab surface temperature is kept in the embrittlement temperature region during casting. By preventing bending stress from acting on the piece, surface cracking due to high temperature embrittlement during drawing of the continuous cast piece is prevented.
【0015】ところで、連続的に引抜かれていく連鋳片
の幅方向に冷却水を均一に吹付ける従来の鋳片冷却法で
は、殊に偏平比の大きいスラブ連鋳片の場合その幅方向
で冷却速度が不均一になる(鋳片のコーナー部近傍は中
央部よりも冷え易くなる:図4(A)参照)。従って垂
直曲げ型連鋳機の曲げ部および矯正部を通過する際の鋳
片の表面温度が幅方向全域で前記脆化温度域を外れる様
に制御することは困難であるので、鋳片の中央部の温度
が脆化温度域より高くても、鋳片のコーナー部近傍に表
面割れが生じる可能性があり、またコーナー部の表面温
度が脆化温度域より低くても、中央部の表面温度が脆化
温度域に入って中央部に表面割れが発生する可能性がで
てくる。By the way, in the conventional slab cooling method in which the cooling water is uniformly sprayed in the width direction of the continuously cast slab that is continuously drawn, particularly in the case of a slab continuous slab having a large aspect ratio, the The cooling rate becomes non-uniform (it becomes easier to cool near the corners of the slab than at the center: see FIG. 4 (A)). Therefore, it is difficult to control the surface temperature of the slab when passing through the bending part and the straightening part of the vertical bending type continuous casting machine so as to be out of the embrittlement temperature range in the entire width direction. Even if the temperature of the part is higher than the embrittlement temperature range, surface cracks may occur near the corner of the slab, and even if the surface temperature of the corner is lower than the embrittlement temperature range, the surface temperature of the center part However, there is a possibility that surface cracks will occur in the central part when entering the embrittlement temperature range.
【0016】従ってこうした問題を回避するには、図4
(B)に示す如くスラブ連鋳片の冷却能を鋳片の幅方向
で変更可能とし、スラブ連鋳片の幅方向中央部に対して
両側辺側の冷却能を低めに設定すればよく、それにより
スラブ連鋳片の幅方向温度は略均等になり、スラブ連鋳
片の幅方向全域で表面割れを阻止することができる。Therefore, in order to avoid such a problem, FIG.
As shown in (B), the cooling ability of the slab continuous cast piece can be changed in the width direction of the cast piece, and the cooling ability on both sides of the continuous piece of the slab continuous piece can be set to be low, As a result, the temperature in the width direction of the continuous slab slab becomes substantially uniform, and surface cracks can be prevented in the entire width direction of the continuous slab slab.
【0017】尚鋳片幅方向で冷却能を調節する方法は特
に限定されないが、最も一般的なのは、たとえば図5に
略示する如くスラブ連鋳片1の中央部と両側辺部へ供給
される冷却水供給管2a,2bを別個に設けて夫々から
の供給水量(もしくは水温)を別々に制御可能とし、両
側辺部よりも中央部の冷却能が高くなる様に供給水量
(もしくは水温)をコントロールする方法が挙げられ
る。この場合、冷却水供給管を鋳片幅方向で更に細分化
し、両側辺部に行くほど冷却能が段階的小さくなる様な
勾配を与えてやれば、幅方向の表面温度を一層均一にす
ることができるので好ましい。The method for adjusting the cooling capacity in the width direction of the cast slab is not particularly limited, but the most common method is to supply the slab continuous cast slab 1 to the central portion and both side portions thereof as schematically shown in FIG. The cooling water supply pipes 2a and 2b are separately provided so that the amount of supplied water (or water temperature) from each can be controlled separately, and the amount of supplied water (or water temperature) is adjusted so that the cooling capacity of the central part is higher than that of both side parts. The method of controlling is mentioned. In this case, if the cooling water supply pipe is further subdivided in the width direction of the slab and a gradient is given such that the cooling capacity gradually decreases toward both sides, the surface temperature in the width direction becomes more uniform. It is possible to do so, which is preferable.
【0018】[0018]
【実施例】以下、実施例を挙げて本発明の構成および作
用効果をより具体的に説明するが、本発明はもとより下
記実施例によって制限を受けるものではなく、前後記の
趣旨に適合し得る範囲で変更して実施することも勿論可
能であり、それらはいずれも本発明の技術的範囲に含ま
れる。EXAMPLES The constitutions and effects of the present invention will be described in more detail with reference to the following examples, but the present invention is not limited by the following examples and may be adapted to the gist of the preceding and following examples. It is needless to say that the range is changed and carried out, and all of them are included in the technical scope of the present invention.
【0019】実施例1 前記表1に示した成分組成を目標値として転炉で溶製
し、真空脱ガス装置で成分調整した鋼Bを垂直曲げ型連
鋳機に供給し、速度2.0m/分で断面サイズ230m
m厚×1800mm幅のスラブを連続鋳造した。このと
き、スラブ鋳片の両側縁から300mmの範囲に吹付け
る冷却水量は中央部へ吹付ける冷却水量よりも少なめに
抑えることにより、幅方向全体の表面温度が略均一にな
る様にコントロールすると共に、鋳片の引抜き方向位置
と表面温度の関係が図6に示す通りとなる様に鋳片送り
方向の冷却水量を調整しつつ連続鋳造を行なった。即ち
図中1はスラブ鋳片、3は鋳型、Aは垂直部、Bは曲げ
部、Cは円弧部、Dは矯正部(曲げ戻し部)、Eは水平
部を夫々示し、表2に示す如く曲げ部Bの表面温度は鋼
Aの脆化温度領域(700〜900℃)を上回る様に、
また矯正部Dの表面温度は鋼Aの脆化温度領域を下回る
様に調整した。その結果、得られるスラブ鋳片には表面
割れが全く生じなかった。Example 1 Steel B having the composition shown in Table 1 as a target value was melted in a converter and the composition of the steel B was adjusted by a vacuum degassing apparatus, and the steel B was supplied to a vertical bending type continuous casting machine at a speed of 2.0 m. Section size 230 m / min
A slab of m thickness x 1800 mm width was continuously cast. At this time, by controlling the amount of cooling water sprayed within a range of 300 mm from both side edges of the slab slab to be smaller than the amount of cooling water sprayed to the central portion, it is possible to control the surface temperature in the entire width direction to be substantially uniform. Continuous casting was performed while adjusting the cooling water amount in the slab feed direction so that the relationship between the position of the slab in the drawing direction and the surface temperature was as shown in FIG. That is, in the figure, 1 is a slab slab, 3 is a mold, A is a vertical portion, B is a bent portion, C is an arc portion, D is a straightening portion (bending back portion), and E is a horizontal portion, and shown in Table 2. As described above, the surface temperature of the bent portion B exceeds the embrittlement temperature region (700 to 900 ° C.) of the steel A,
The surface temperature of the straightening portion D was adjusted so as to be lower than the embrittlement temperature region of the steel A. As a result, no surface cracking occurred in the obtained slab cast piece.
【0020】一方、比較のため、曲げ部および矯正部の
各鋳片表面温度が表2の比較例に示す通りとなる様に冷
却水量を調整しつつ連続鋳造を行なったところ、引取ら
れたスラブ鋳片には、全体の30%に表面割れが認めら
れた。On the other hand, for comparison, continuous casting was performed while adjusting the amount of cooling water so that the surface temperature of each slab of the bent portion and the straightened portion was as shown in the comparative example of Table 2, and the slab that was taken Surface cracks were found in 30% of the cast pieces.
【0021】[0021]
【表2】 [Table 2]
【0022】実施例2 鋼材として前記表1の鋼B(脆化温度領域:650〜1
000℃)を使用し、鋳造速度を2.0m/分に設定す
ると共に冷却条件を表3に示す通りとした以外は前記実
施例1と同様にしてスラブ連鋳を行なったところ、得ら
れるスラブ連鋳片には全く表面割れが認められなかっ
た。また比較のため表面温度が表3の比較例に示す通り
となる様に冷却水量を調整しつつ連続鋳造を行なったと
ころ、引取られるスラブ鋳片には全体の50%の比率で
表面割れが生じていた。Example 2 As a steel material, Steel B in the above Table 1 (brittle temperature range: 650 to 1)
000 ° C.), the casting speed was set to 2.0 m / min, and the cooling conditions were as shown in Table 3, and slab continuous casting was performed in the same manner as in Example 1 above. No surface cracks were observed on the continuous cast piece. For comparison, when continuous casting was performed while adjusting the amount of cooling water so that the surface temperature was as shown in the comparative example of Table 3, the slab slabs to be taken off had surface cracks at a ratio of 50% of the whole. Was there.
【0023】[0023]
【表3】 [Table 3]
【0024】[0024]
【発明の効果】本発明は以上の様に構成されており、垂
直曲げ型連鋳機を使用し1.6m/分以上の速度でスラ
ブ連鋳を行なう場合でも、曲げ部および矯正部の表面温
度が、用いる鋼種に応じて決まってくる脆化温度領域を
外れる様に連鋳片引抜方向温度を制御することによっ
て、スラブ鋳片の表面割れを皆無にすることができる。EFFECTS OF THE INVENTION The present invention is constructed as described above, and even when performing continuous slab casting at a speed of 1.6 m / min or more using a vertical bending type continuous casting machine, the surface of the bending portion and the straightening portion Surface cracking of the slab cast piece can be eliminated by controlling the temperature of the continuous cast piece drawing direction so that the temperature is out of the embrittlement temperature range determined depending on the steel type used.
【図1】実験で用いた鋼Aの高温引張試験結果を示すグ
ラフである。FIG. 1 is a graph showing the results of a high temperature tensile test of steel A used in an experiment.
【図2】実験で用いた鋼Bの高温引張試験結果を示すグ
ラフである。FIG. 2 is a graph showing the results of high temperature tensile test of Steel B used in the experiment.
【図3】鋼中のN含有量を変えたときの温度と絞り値の
関係を示すグラフである。FIG. 3 is a graph showing the relationship between temperature and drawing value when the N content in steel is changed.
【図4】スラブ鋳片幅方向の冷却能と鋳片表面温度の関
係を示す図である。FIG. 4 is a diagram showing the relationship between the cooling capacity in the width direction of the slab slab and the surface temperature of the slab.
【図5】本発明で採用される好ましい冷却法を示す説明
図である。FIG. 5 is an explanatory view showing a preferable cooling method adopted in the present invention.
【図6】実施例で採用したスラブ連鋳時における鋳片の
引抜方向位置と表面温度の関係を示すグラフである。FIG. 6 is a graph showing the relationship between the position in the drawing direction of the slab and the surface temperature during continuous slab casting adopted in the example.
【図7】実施例で採用したスラブ連鋳時における鋳片の
引抜方向位置と表面温度の関係を示すグラフである。FIG. 7 is a graph showing the relationship between the position in the drawing direction of the slab and the surface temperature during continuous slab casting adopted in the example.
1 スラブ鋳片 2a,2b 冷却水供給管 3 鋳型 A 垂直部 B 曲げ部 C 円弧部 D 矯正部 E 水平部 1 Slab slab 2a, 2b Cooling water supply pipe 3 Mold A Vertical part B Bending part C Arc part D Straightening part E Horizontal part
Claims (2)
6m/min以上の鋳造速度で鋼のスラブ連鋳を行なう
に当たり、連鋳片が最初の曲げ部を通過する際における
連鋳片の表面温度を、当該鋼材の脆化温度域を超える温
度に設定すると共に、該連鋳片がその下流側の矯正部を
通過する際における該連鋳片の表面温度を前記脆化温度
域未満の温度に設定することを特徴とする連続鋳造方
法。但し、脆化温度域とは、鋼材の高温引張試験におけ
る絞り値が、同引張試験における絞り値の50%以下と
なる温度域を意味する。1. A vertical bending type continuous casting apparatus is used.
When performing continuous slab casting of steel at a casting speed of 6 m / min or more, the surface temperature of the continuous casting piece when the continuous casting piece passes through the first bending portion is set to a temperature exceeding the embrittlement temperature range of the steel material. In addition, the continuous casting method is characterized in that the surface temperature of the continuous cast piece when the continuous cast piece passes through the straightening portion on the downstream side is set to a temperature lower than the embrittlement temperature range. However, the embrittlement temperature range means a temperature range in which the drawing value of the steel material in the high temperature tensile test is 50% or less of the drawing value in the tensile test.
の冷却能を中央部よりも小さくし、幅方向の表面温度を
均一化する請求項1記載の連続鋳造方法。2. The continuous casting method according to claim 1, wherein the cooling ability of both side edges in the width direction of the drawn slab slab is made smaller than that in the central portion, and the surface temperature in the width direction is made uniform.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5036939A JP2903927B2 (en) | 1993-02-25 | 1993-02-25 | Continuous casting method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5036939A JP2903927B2 (en) | 1993-02-25 | 1993-02-25 | Continuous casting method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH06246411A true JPH06246411A (en) | 1994-09-06 |
JP2903927B2 JP2903927B2 (en) | 1999-06-14 |
Family
ID=12483728
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5036939A Expired - Lifetime JP2903927B2 (en) | 1993-02-25 | 1993-02-25 | Continuous casting method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2903927B2 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008194746A (en) * | 2007-02-15 | 2008-08-28 | Sumitomo Metal Ind Ltd | Continuous casting method for steel containing b and n |
JP2010005634A (en) * | 2008-06-24 | 2010-01-14 | Kobe Steel Ltd | Method for producing cast metal |
JP2012011427A (en) * | 2010-07-01 | 2012-01-19 | Nippon Steel Corp | Secondary cooling method in continuous casting machine |
JP2012187611A (en) * | 2011-03-11 | 2012-10-04 | Sumitomo Metal Ind Ltd | Continuous casting method of steel |
JP2014061527A (en) * | 2012-09-20 | 2014-04-10 | Jfe Steel Corp | Secondary cooling method of continuous casting slab |
JP2020179404A (en) * | 2019-04-24 | 2020-11-05 | 日本製鉄株式会社 | Method of continuous casting for cast slab |
CN114505461A (en) * | 2022-01-07 | 2022-05-17 | 吉林建龙钢铁有限责任公司 | Method for improving corner cracks and intermediate cracks of plate blank |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS53106335A (en) * | 1977-02-28 | 1978-09-16 | Sumitomo Metal Ind | Cooling method in continuous casting of steel |
JPS56109149A (en) * | 1980-01-30 | 1981-08-29 | Nippon Steel Corp | Continuous casting method of less surface cracking |
JPS63154250A (en) * | 1986-12-18 | 1988-06-27 | Sumitomo Metal Ind Ltd | Continuous casting method for steel |
-
1993
- 1993-02-25 JP JP5036939A patent/JP2903927B2/en not_active Expired - Lifetime
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS53106335A (en) * | 1977-02-28 | 1978-09-16 | Sumitomo Metal Ind | Cooling method in continuous casting of steel |
JPS56109149A (en) * | 1980-01-30 | 1981-08-29 | Nippon Steel Corp | Continuous casting method of less surface cracking |
JPS63154250A (en) * | 1986-12-18 | 1988-06-27 | Sumitomo Metal Ind Ltd | Continuous casting method for steel |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008194746A (en) * | 2007-02-15 | 2008-08-28 | Sumitomo Metal Ind Ltd | Continuous casting method for steel containing b and n |
JP4561755B2 (en) * | 2007-02-15 | 2010-10-13 | 住友金属工業株式会社 | Method for continuous casting of steel containing B and N |
JP2010005634A (en) * | 2008-06-24 | 2010-01-14 | Kobe Steel Ltd | Method for producing cast metal |
JP2012011427A (en) * | 2010-07-01 | 2012-01-19 | Nippon Steel Corp | Secondary cooling method in continuous casting machine |
JP2012187611A (en) * | 2011-03-11 | 2012-10-04 | Sumitomo Metal Ind Ltd | Continuous casting method of steel |
JP2014061527A (en) * | 2012-09-20 | 2014-04-10 | Jfe Steel Corp | Secondary cooling method of continuous casting slab |
JP2020179404A (en) * | 2019-04-24 | 2020-11-05 | 日本製鉄株式会社 | Method of continuous casting for cast slab |
CN114505461A (en) * | 2022-01-07 | 2022-05-17 | 吉林建龙钢铁有限责任公司 | Method for improving corner cracks and intermediate cracks of plate blank |
Also Published As
Publication number | Publication date |
---|---|
JP2903927B2 (en) | 1999-06-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2012026469A1 (en) | Aluminum alloy sheet for forming | |
JP2018503741A (en) | Lean duplex stainless steel and manufacturing method thereof | |
JP2903927B2 (en) | Continuous casting method | |
JP2010247202A (en) | Device for smelting metal ingot and method for smelting the metal ingot using the same | |
JPS62275556A (en) | Continuous casting method | |
KR100963021B1 (en) | Method for manufacturing continuous casting of martensite stainless steel having with excellent surface quality | |
JP2006326639A (en) | Method for producing maraging steel | |
JP2013252558A (en) | Method of manufacturing martensitic stainless steel thin sheet with suppressed generation of coarse carbide | |
JPS5970444A (en) | Production of continuous casting billet having no semi-macro segregation | |
JP3374761B2 (en) | Continuous cast slab, continuous casting method thereof, and method of manufacturing thick steel plate | |
JP3283746B2 (en) | Continuous casting mold | |
JP4717357B2 (en) | High-speed continuous casting method for carbon steel | |
Kondratyuk et al. | Structure formation and properties of overheated steel depending on thermokinetic parameters of crystallization | |
JP2002371314A (en) | METHOD FOR MANUFACTURING SLAB OF Ni-CONTAINING STEEL | |
JP4592974B2 (en) | Continuous casting method of molten steel for non-oriented electrical steel sheet and slab for non-oriented electrical steel sheet | |
JP4466335B2 (en) | Steel continuous casting method | |
JP3643460B2 (en) | Continuous casting mold and continuous casting method | |
JP3389451B2 (en) | Continuous casting method of unidirectional electromagnetic steel slab | |
JP2017024057A (en) | Continuous casting method | |
JPH09168844A (en) | Twin roll continuous casting method | |
JPH11179489A (en) | Production of steel wire rod | |
WO2024053276A1 (en) | Steel cast slab, continuous casting method, and method for producing steel cast slab | |
JPH06246414A (en) | Continuous casting of high carbon steel | |
JP2001347349A (en) | Cast slab provided with fine solidification structure and steel material processed from the cast slab | |
JPH03243244A (en) | Method for continuously casting grain oriented electrical steel sheet |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 19990223 |