JP2007245178A - Method for continuously casting steel - Google Patents

Method for continuously casting steel Download PDF

Info

Publication number
JP2007245178A
JP2007245178A JP2006070165A JP2006070165A JP2007245178A JP 2007245178 A JP2007245178 A JP 2007245178A JP 2006070165 A JP2006070165 A JP 2006070165A JP 2006070165 A JP2006070165 A JP 2006070165A JP 2007245178 A JP2007245178 A JP 2007245178A
Authority
JP
Japan
Prior art keywords
slab
corner
continuous casting
corner portion
cracks
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006070165A
Other languages
Japanese (ja)
Other versions
JP4923643B2 (en
Inventor
Makoto Suzuki
真 鈴木
Hiroshi Awajiya
浩 淡路谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2006070165A priority Critical patent/JP4923643B2/en
Publication of JP2007245178A publication Critical patent/JP2007245178A/en
Application granted granted Critical
Publication of JP4923643B2 publication Critical patent/JP4923643B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a continuous casting method by which in a method for continuously casting a steel, cast while pressing corner parts of a cast slab, the development of transverse crack can further be prevented by limiting the surface temperature of the cast slab at the time point when the corner parts are pressed. <P>SOLUTION: When molten steel is continuously cast while pressing the corner parts of the cast slab 12 with a spinning wheel state roll 18 or rolling-reduction rolls 19 at least an upstream side from a correcting part of a continuous caster, the corner parts are pressed under state of being ≥900°C the surface temperature at the corner parts of the cast slab. Then, oscillation mark is pressed so as to become the flat, and the transverse crack is prevented. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、鋼の連続鋳造方法に関し、詳しくは、鋳片のコーナー部を圧下しながら鋳造する鋼の連続鋳造方法に関するものである。   The present invention relates to a continuous casting method of steel, and more particularly to a continuous casting method of steel in which a corner portion of a slab is cast while being reduced.

鋼の連続鋳造においては、鋳片に各種の表面割れが発生することが知られている。この表面割れは、特に直送圧延やホットチャージ圧延を行う場合には、熱間において欠陥を検出したり、表面手入れをしたりすることが必要なため、工程上の障害を招き、また生産性を著しく阻害する。また、表面割れを鋳片段階で除去できなかった場合には、圧延後に手入れが必要になる。   In continuous casting of steel, various surface cracks are known to occur in the slab. This surface cracking, especially when performing direct feed rolling or hot charge rolling, requires defects to be detected and surface care in the hot state, thereby causing trouble in the process and increasing productivity. Remarkably inhibits. In addition, if the surface cracks cannot be removed at the slab stage, maintenance is required after rolling.

鋳片の表面割れには、凝固点近傍の凝固割れが起点となって鋳型で発生し、二次冷却帯で拡大する、所謂縦割れ(鋳造方向の割れ)と、鋼の脆化温度域で発生する、結晶粒界に沿った所謂横割れとがあるが、後者の横割れは、主に鋳片の曲げ変形及び矯正変形に伴う応力により発生し、連続鋳造工程のような低歪速度での変形時に発生しやすく、また、800℃近傍の脆化温度域において極めて発生しやすくなることが知られている。このような低歪速度での変形時における鋼の高温脆化は、主に、AlN、NbC、Nb[C・N]、VC、V[C・N]などの炭窒化物の析出や、[Fe・Mn]Sなどの硫化物の析出に起因していると考えられている。横割れは、鋳片における発生位置や形状などから、横ヒビ割れ、コーナー割れ、カギ割れなどと呼ばれているが、発生機構は同一である。ここでは、これらをまとめて横割れと称する。   Surface cracks in slabs occur in the mold starting from solidification cracks in the vicinity of the freezing point, and so-called longitudinal cracks (cracks in the casting direction) that expand in the secondary cooling zone, and occur in the embrittlement temperature range of steel There are so-called transverse cracks along the grain boundaries, but the latter transverse cracks are mainly caused by the stress associated with the bending deformation and straightening deformation of the slab, and at a low strain rate as in the continuous casting process. It is known that it is likely to occur at the time of deformation and extremely easily in the embrittlement temperature range near 800 ° C. High temperature embrittlement of steel during deformation at such a low strain rate is mainly caused by precipitation of carbonitrides such as AlN, NbC, Nb [C · N], VC, V [C · N], [ It is thought to be caused by precipitation of sulfides such as Fe · Mn] S. Lateral cracks are called lateral cracks, corner cracks, key cracks, and the like because of their occurrence position and shape in the slab, but the generation mechanism is the same. Here, these are collectively referred to as transverse cracks.

従来から実施されてきた横割れ低減対策は、鋳片表面に最も歪つまり応力が作用する位置である、鋳片の曲げ部及び矯正部における鋳片表面温度を上述の脆化温度域から回避するように冷却パターンを設定したり、上述した有害析出物の低減による高温延性の向上を目的として、Al、Nb、V、B、Nなどの含有量を低減する、或いは、Tiを添加して無害なTiNを優先的に析出させたりする方法である。   The conventional countermeasures for reducing transverse cracks are to avoid the slab surface temperature at the bending part and the straightening part of the slab from the above-mentioned embrittlement temperature range, which is the position where the most strain or stress acts on the slab surface. In order to improve the high temperature ductility by setting the cooling pattern or reducing the above-mentioned harmful precipitates, the content of Al, Nb, V, B, N, etc. is reduced, or the addition of Ti is harmless In this method, TiN is preferentially precipitated.

しかしながら、鋳片の曲げ部や矯正部において脆化温度域を回避するために、二次冷却水を減少したり、温度低下の特に大きい鋳片コーナー部の冷却水をカットする所謂「幅切り」を実施したりして、緩冷却化を強化しすぎると、凝固シェルが薄くなって、ロール間のバルジングが発生し、それによる表面割れ及び内部割れの発生や、湯面変動などの別の欠陥を発生させることになる。このような制約から、特に脆化温度範囲が広い、Nb及びVなどの合金元素を含有する鋼では、鋳片の表面温度の制御のみでは、脆化温度域を完全に回避するということは実際には不可能であった。   However, in order to avoid the embrittlement temperature range in the bent part or straightened part of the slab, the so-called “width cutting” is performed to reduce the secondary cooling water or to cut the cooling water at the corner of the slab where the temperature drop is particularly large. If the slow cooling is strengthened too much, the solidified shell becomes thin and bulging occurs between rolls, resulting in surface cracks and internal cracks, and other defects such as molten metal surface fluctuations. Will be generated. Because of these limitations, in particular, in steels containing alloy elements such as Nb and V, which have a wide embrittlement temperature range, it is actually possible to avoid the embrittlement temperature region only by controlling the surface temperature of the slab. It was impossible.

また、鋼の材質特性上の要求から、Nb、Vなどの元素の添加は不可欠なため、含有量を減少させることは不可能であったり、鋼種によってはTiの添加により低温靱性の低下を生じたりする場合があり、上述のような成分系からの対策も、抜本的な対策にはなっていなかった。特に、鋳片コーナー部では、鋳片の他の部位に比べて温度が下がりやすいことや、オシレーションマークによる切欠き作用の影響により、横割れの発生が顕著であった。   In addition, the addition of elements such as Nb and V is indispensable due to the demands on the material properties of steel, so it is impossible to reduce the content, or depending on the steel type, the addition of Ti causes a decrease in low-temperature toughness. The measures from the component system as described above have not been drastic measures. In particular, at the corner of the slab, the occurrence of transverse cracks was prominent due to the fact that the temperature tends to decrease compared to other parts of the slab and the effect of the notch action by the oscillation mark.

この横割れの低減を目的として、特許文献1には、曲げ部及び矯正部を経て鋳片を連続鋳造する際に、鋳片のコーナー部に生じたオシレーションマークの凸部を、前記曲げ部の上方位置で圧下し、平坦化させる方法が提案されている。特許文献1によれば、オシレーションマークが平坦化されることにより、曲げ部及び矯正部での応力集中が軽減され、横割れが防止できるとしている。
特開2000−197953号公報
For the purpose of reducing this transverse crack, Patent Document 1 discloses that the convex portion of the oscillation mark generated at the corner portion of the slab when the slab is continuously cast through the bending portion and the correction portion is the bending portion. There has been proposed a method of rolling down and flattening at an upper position. According to Patent Document 1, the oscillation mark is flattened, thereby reducing the stress concentration at the bent portion and the correcting portion and preventing lateral cracking.
JP 2000-197953 A

特許文献1は、横割れの防止手段として有効であるが、具体的な実施条件が明確でない。即ち、鋳片のコーナー部を圧下する際の鋳片温度は500℃以上とすることが好ましいとしており、実施例では、鋳片コーナー部の表面温度が750〜800℃の範囲で圧下を行っており、鋼の脆化温度域或いは脆化温度域よりも低温側で実施している。本発明者等の検討結果によれば、鋳片コーナー部の表面温度が750〜800℃の時点で鋳片コーナー部を圧下しても、横割れ防止効果は十分に発揮されないことが確認されている。   Although patent document 1 is effective as a means for preventing lateral cracking, specific implementation conditions are not clear. That is, the slab temperature when rolling down the corner portion of the slab is preferably 500 ° C. or more. In the examples, the slab corner portion is reduced in a range of 750 to 800 ° C. Therefore, the embrittlement temperature range of steel or the temperature lower than the embrittlement temperature range is used. According to the examination results of the present inventors, it has been confirmed that even when the surface temperature of the slab corner portion is 750 to 800 ° C., the effect of preventing transverse cracks is not sufficiently exhibited even if the slab corner portion is crushed. Yes.

本発明は上記事情に鑑みてなされたもので、その目的とするところは、鋳片のコーナー部を圧下しながら鋳造する鋼の連続鋳造方法において、コーナー部を圧下する時点の鋳片表面温度を限定し、より一層横割れの発生を防止することのできる、鋼の連続鋳造方法を提供することである。   The present invention has been made in view of the above circumstances, and the object of the present invention is to provide a slab surface temperature at the time of rolling down the corner portion in a continuous casting method of steel cast while rolling down the corner portion of the slab. The present invention is to provide a continuous casting method of steel which can be limited and can further prevent the occurrence of transverse cracks.

上記課題を解決するための第1の発明に係る鋼の連続鋳造方法は、少なくとも連続鋳造機の矯正部よりも上流側で、スラブ鋳片のコーナー部を圧下しながら溶鋼を連続鋳造するに際し、コーナー部の鋳片表面温度を900℃以上としてコーナー部を圧下することを特徴とするものである。   In the continuous casting method of steel according to the first invention for solving the above-mentioned problem, at the time of continuous casting of molten steel while reducing the corner portion of the slab slab, at least upstream of the straightening portion of the continuous casting machine, The corner slab surface temperature is set to 900 ° C. or more, and the corner is pressed down.

第2の発明に係る鋼の連続鋳造方法は、第1の発明において、連続鋳造機の二次冷却帯で前記コーナー部を冷却せずにコーナー部の鋳片表面温度を900℃以上に制御することを特徴とするものである。   The steel continuous casting method according to the second invention is the method according to the first invention, wherein the slab surface temperature of the corner portion is controlled to 900 ° C. or higher without cooling the corner portion in the secondary cooling zone of the continuous casting machine. It is characterized by this.

第3の発明に係る鋼の連続鋳造方法は、第1の発明において、連続鋳造機内で前記コーナー部を900℃以上に加熱した後に、コーナー部を圧下することを特徴とするものである。   The continuous casting method for steel according to a third invention is characterized in that, in the first invention, after the corner portion is heated to 900 ° C. or higher in a continuous casting machine, the corner portion is reduced.

本発明によれば、コーナー部の鋳片表面温度を900℃以上とした条件でコーナー部を圧下するので、鋳片コーナー部の横割れを効率良く回避することができ、横割れの検出や手入れといった補助的工程を要することなく、連続鋳造工程から熱間圧延工程へと鋳片を直行させることが可能となる。その結果、生産性の向上や省エネルギー化、ひいてはコスト低減に大きく寄与し、工業上有益な効果がもたらされる。   According to the present invention, since the corner portion is squeezed under the condition that the slab surface temperature of the corner portion is 900 ° C. or more, it is possible to efficiently avoid the lateral cracking of the slab corner portion, and to detect and care for the lateral cracking. Thus, the slab can be made to go straight from the continuous casting process to the hot rolling process without requiring such an auxiliary process. As a result, it greatly contributes to productivity improvement, energy saving, and cost reduction, and has an industrially beneficial effect.

以下、本発明を具体的に説明する。   The present invention will be specifically described below.

先ず、図1を用いて本発明を実施する際に用いるスラブ連続鋳造機を説明する。図1は、本発明を実施する際に用いる垂直曲げ型スラブ連続鋳造機の側面概要図である。図1は垂直曲げ型スラブ連続鋳造機であるが、湾曲型スラブ連続鋳造であっても本発明を適用することができる。   First, the slab continuous casting machine used when implementing this invention using FIG. 1 is demonstrated. FIG. 1 is a schematic side view of a vertical bending slab continuous casting machine used in carrying out the present invention. Although FIG. 1 shows a vertical bending slab continuous casting machine, the present invention can be applied even to a curved slab continuous casting.

垂直曲げ型スラブ連続鋳造機1には、溶鋼11を冷却して凝固させ、スラブ鋳片12の外殻形状を形成するための鋳型5が設置され、この鋳型5の上方所定位置には、取鍋(図示せず)から供給される溶鋼11を鋳型5に中継供給するためのタンディッシュ2が設置されている。一方、鋳型5の下方には、サポートロール6、ガイドロール7及びピンチロール8からなる複数対の鋳片支持ロールが配置されており、鋳型5から引き抜かれるスラブ鋳片12は、これらの鋳片支持ロールに支持されながら鋳造方向下方に引き抜かれる。このうち、ピンチロール8は、スラブ鋳片12を支持すると同時にスラブ鋳片12を引き抜くための駆動ロールである。   The vertical bending slab continuous casting machine 1 is provided with a mold 5 for cooling and solidifying the molten steel 11 to form the outer shell shape of the slab cast piece 12. A tundish 2 for relaying and supplying molten steel 11 supplied from a pan (not shown) to the mold 5 is installed. On the other hand, a plurality of pairs of slab support rolls comprising a support roll 6, a guide roll 7 and a pinch roll 8 are arranged below the mold 5, and the slab slab 12 pulled out from the mold 5 is made of these slabs. While being supported by the support roll, it is pulled out downward in the casting direction. Among these, the pinch roll 8 is a drive roll for pulling out the slab cast 12 while supporting the slab cast 12.

鋳型5の出口から1mないし5m程度離れた位置に配置される複数対のガイドロール7は、スラブ鋳片12の支持・案内方向が鉛直方向から湾曲方向へと方向を変える曲げ部16を構成している。つまり、鋳型5から鉛直方向に引き抜かれた平板上のスラブ鋳片12は曲げ部16で次第に円弧状に曲げられ、半径が一定の湾曲部へと矯正されるようになっている。同様に湾曲部が水平線に接触する位置の近傍に配置される複数対のガイドロール7は、スラブ鋳片12の支持・案内方向が湾曲方向から水平方向へと方向を変える矯正部17を構成している。つまり、円弧状のスラブ鋳片12は矯正部17で次第に平板上に曲げ戻され、水平部へと矯正されるようになっている。尚、図1では、曲げ部16及び矯正部17ともに複数対のガイドロール7で構成されているが、一対のガイドロールのみで構成してもよい。本発明の曲げ部16及び矯正部17は、一対のガイドロールで矯正する場合も含むものとする。   A plurality of pairs of guide rolls 7 disposed at a position about 1 to 5 m away from the exit of the mold 5 constitutes a bending portion 16 in which the support / guide direction of the slab cast piece 12 changes the direction from the vertical direction to the bending direction. ing. That is, the slab slab 12 on the flat plate drawn out from the mold 5 in the vertical direction is gradually bent into an arc shape by the bending portion 16 and is corrected to a curved portion having a constant radius. Similarly, the plurality of pairs of guide rolls 7 arranged in the vicinity of the position where the curved portion comes into contact with the horizontal line constitutes a correcting portion 17 in which the support / guide direction of the slab slab 12 changes from the curved direction to the horizontal direction. ing. In other words, the arc-shaped slab slab 12 is gradually bent back on the flat plate by the correcting portion 17 and is corrected to the horizontal portion. In FIG. 1, both the bending portion 16 and the correction portion 17 are configured by a plurality of pairs of guide rolls 7, but may be configured by only a pair of guide rolls. The bending part 16 and the correction | amendment part 17 of this invention shall include the case where it corrects with a pair of guide roll.

鋳造方向に隣り合う鋳片支持ロールの間隙には、水スプレーノズル或いはエアーミストスプレーノズルなどのスプレーノズル(図示せず)が配置された二次冷却帯が構成され、二次冷却帯のスプレーノズルから噴霧される冷却水(「二次冷却水」ともいう)によってスラブ鋳片12は引き抜かれながら冷却されるようになっている。   A secondary cooling zone in which a spray nozzle (not shown) such as a water spray nozzle or an air mist spray nozzle is arranged in the gap between the slab support rolls adjacent in the casting direction is configured. The slab cast slab 12 is cooled while being drawn out by cooling water sprayed from (also referred to as “secondary cooling water”).

タンディッシュ2の底部には、タンディッシュ2から鋳型5に注入される溶鋼11の流量を調整するためのスライディングノズル3が設置され、このスライディングノズル3の下面には、溶鋼11を鋳型5に注入するための耐火物製の浸漬ノズル4が設置されている。また、鋳片支持ロールの下流側には、鋳造されたスラブ鋳片12を搬送するための複数の搬送ロール9が設置されており、この搬送ロール9の上方には、鋳造されるスラブ鋳片12から所定の長さのスラブ鋳片12aを切断するための鋳片切断機10が配置されている。   A sliding nozzle 3 for adjusting the flow rate of the molten steel 11 injected from the tundish 2 into the mold 5 is installed at the bottom of the tundish 2, and the molten steel 11 is injected into the mold 5 at the lower surface of the sliding nozzle 3. An immersion nozzle 4 made of a refractory material is installed. A plurality of transport rolls 9 for transporting the cast slab cast slab 12 are installed on the downstream side of the slab support roll. Above the transport roll 9, a slab cast slab to be cast is provided. A slab cutting machine 10 for cutting a slab slab 12a having a predetermined length from 12 is disposed.

タンディッシュ2に注入された溶鋼11は、タンディッシュ2から浸漬ノズル4を介して鋳型5に注入され、鋳型5に鋳造された溶鋼11は鋳型5で冷却されて凝固シェル13を形成し、内部に未凝固層14を有するスラブ鋳片12として、サポートロール6、ガイドロール7及びピンチロール8からなる複数対の鋳片支持ロールに支持されつつ下方に連続的に引き抜かれる。鋳型5の溶鋼湯面上には、モールドパウダー(図示せず)を添加する。スラブ鋳片12を引き抜きながら、二次冷却帯によって冷却する。冷却されたスラブ鋳片12は、凝固シェル13の厚みを増大して、やがて凝固完了位置15で中心部までの凝固を完了する。このようにして鋳造したスラブ鋳片12を鋳片切断機10により切断してスラブ鋳片12aを得る。スラブ鋳片12aは、次工程の熱間圧延工程に搬送される。尚、湾曲型スラブ連続鋳造機は、曲げ部16が設置されていない以外は、垂直曲げ型スラブ連続鋳造機1と同様の構造である。   The molten steel 11 injected into the tundish 2 is injected into the mold 5 from the tundish 2 through the immersion nozzle 4, and the molten steel 11 cast into the mold 5 is cooled by the mold 5 to form a solidified shell 13. The slab slab 12 having the unsolidified layer 14 is continuously drawn downward while being supported by a plurality of pairs of slab support rolls including a support roll 6, a guide roll 7 and a pinch roll 8. Mold powder (not shown) is added on the molten steel surface of the mold 5. While the slab slab 12 is pulled out, it is cooled by the secondary cooling zone. The cooled slab slab 12 increases the thickness of the solidified shell 13 and eventually completes the solidification to the center at the solidification completion position 15. The slab slab 12 thus cast is cut by the slab cutting machine 10 to obtain a slab slab 12a. The slab cast slab 12a is conveyed to the next hot rolling step. The curved slab continuous casting machine has the same structure as the vertical bending slab continuous casting machine 1 except that the bending portion 16 is not installed.

本発明は、このようなスラブ連続鋳造機を用い、鋳造中のスラブ鋳片12のコーナー部を圧下しながら、溶鋼11の連続鋳造を行うものである。   The present invention performs continuous casting of the molten steel 11 using such a slab continuous casting machine while reducing the corner portion of the slab slab 12 being cast.

スラブ鋳片12のコーナー部は、オシレーションマークが深く残存しており、スラブ鋳片の曲げや矯正時にオシレーションマークの部位に応力が集中しやすく、且つ、スラブ鋳片の他の部分に比べて表面温度が低下しやすく、湾曲型連続鋳造機及び垂直曲げ型連続鋳造機における鋳片の矯正時に脆化温度域になりやすいことから、横ヒビ割れ、コーナー割れ、カギ割れなどと呼ばれる横割れが発生しやすい。   Oscillation marks remain deep in the corners of the slab slab 12, stresses tend to concentrate on the portions of the slab slabs during bending and correction, and compared to other parts of the slab slabs. Lateral cracks, corner cracks, key cracks, etc. are often caused because the surface temperature tends to decrease and the slabs tend to become brittle when correcting slabs in curved continuous casters and vertical bend continuous casters. Is likely to occur.

尚、本発明において鋳片の曲げとは、垂直曲げ型連続鋳造機において垂直部の平板状の鋳片を円弧状に曲げることであり、鋳片の矯正とは、湾曲型連続鋳造機及び垂直曲げ型連続鋳造機において円弧状の鋳片を水平面に沿って平板状に曲げることである。鋳片の曲げは垂直型連続鋳造機の曲げ部で行われ、鋳片の矯正は湾曲型連続鋳造機及び垂直曲げ型連続鋳造機の矯正部で行われる。   In the present invention, slab bending refers to bending a flat slab in a vertical portion into an arc shape in a vertical bending type continuous casting machine, and slab correction refers to a curved continuous casting machine and a vertical slab. In a bending type continuous casting machine, an arc-shaped slab is bent into a flat plate shape along a horizontal plane. The bending of the slab is performed at the bending portion of the vertical continuous casting machine, and the correction of the slab is performed at the correcting portion of the curved continuous casting machine and the vertical bending continuous casting machine.

鋳片のコーナーを圧下する手段としては、例えば図2(A)に示すように、両端部に外広がりのテーパー部を備えた糸車状ロール18でスラブ鋳片12のコーナー部の2箇所を同時に圧下する方法、或いは、図2(B)に示すように個別の圧下ロール19で各コーナー部をそれぞれ圧下する方法などを採用することができる。図2は、鋳片コーナー部の圧下方法を示す平面概略図である。尚、図1では、糸車状ロール18及び圧下ロール19を図示していない。   As a means for rolling down the corner of the slab, for example, as shown in FIG. 2 (A), two places of the corner portion of the slab slab 12 can be simultaneously applied by a spinning wheel 18 having tapered portions that are outwardly spread at both ends. A method of rolling down, or a method of rolling down each corner portion with an individual rolling roll 19 as shown in FIG. FIG. 2 is a schematic plan view showing a rolling method of the slab corner. In FIG. 1, the spinning wheel roll 18 and the reduction roll 19 are not shown.

本発明においては、コーナー部の鋳片表面温度が900℃以上の条件で、コーナー部を圧下することを必須条件としている。一般的に、コーナー部は、鋳片の長辺側と短辺側の両方向から冷却されるので、鋳片のほかの部分に比べて温度が降下しやすい。このため、900℃以上という温度を確保するために、二次冷却によるコーナー部の冷却を停止したり、或いは減少したり、更には、連続鋳造機内で高周波加熱などによって積極的にコーナー部を加熱したりすることも効果的である。尚、900℃以上という温度条件は、前述した特許文献1の実施例で行われている温度域よりも100℃ないし150℃以上高い温度である。   In the present invention, it is an indispensable condition to reduce the corner portion under the condition that the surface temperature of the slab at the corner portion is 900 ° C. or higher. In general, the corner portion is cooled from both the long side and the short side of the slab, so that the temperature is likely to drop compared to the other parts of the slab. For this reason, in order to ensure a temperature of 900 ° C. or higher, the corner portion cooling by secondary cooling is stopped or reduced, and the corner portion is actively heated by high-frequency heating or the like in the continuous casting machine. It is also effective to do. Note that the temperature condition of 900 ° C. or higher is a temperature that is 100 ° C. to 150 ° C. higher than the temperature range performed in the embodiment of Patent Document 1 described above.

本発明者等の実験や検討により、900℃以上の温度域で鋳片に加工歪を与えることにより、800℃近傍の鋼の高温脆化が大幅に軽減されることが確認されている。図3に、本発明者等による試験結果を示す。図3は、試験片を800〜1000℃の温度に加熱して試験片に加工を加えた後、800℃の温度に保持して引張試験を実施したときの絞り値(=RA)である。絞り値が高いほど、延性に優れる。図3に示すように、900℃未満の試験片に加工歪を与えても、延性の十分な改善はみられず、脆化を回避できないことが確認されている。このように、900℃以上の高温の鋼に加工歪を与えることで延性の回復がみられることは、組織の微細化や、炭窒化物の析出の制御による効果と考えられる。   Through experiments and examinations by the inventors, it has been confirmed that high-temperature embrittlement of steel near 800 ° C. is significantly reduced by imparting work strain to the slab at a temperature range of 900 ° C. or higher. FIG. 3 shows the test results by the present inventors. FIG. 3 shows a drawing value (= RA) when a test piece is heated to a temperature of 800 to 1000 ° C. and processed, and then held at a temperature of 800 ° C. to conduct a tensile test. The higher the aperture value, the better the ductility. As shown in FIG. 3, it has been confirmed that even if processing strain is applied to a test piece of less than 900 ° C., sufficient improvement in ductility is not observed and embrittlement cannot be avoided. Thus, it is considered that the recovery of ductility by applying work strain to steel having a high temperature of 900 ° C. or higher is an effect due to refinement of the structure and control of precipitation of carbonitride.

尚、900℃以上の高温域で鋳片に圧下を加えることについては、基本的に脆化温度域よりも高温側での加工であり、しかも、脆化による延性低下が著しい低歪速度ではなく、比較的延性低下が起きにくい高歪速度での加工であることから、コーナー部の圧下加工によって鋳片に割れなどの発生を起こすことの危険性はほとんどないといえる。   Note that the reduction of the slab at a high temperature range of 900 ° C. or higher is basically processing at a higher temperature side than the embrittlement temperature range, and not a low strain rate at which ductility deterioration due to embrittlement is significant. Since the processing is performed at a high strain rate that is relatively difficult to cause a reduction in ductility, it can be said that there is almost no risk of causing cracks or the like in the slab due to the reduction processing of the corner portion.

また、一般的に、コーナー割れ(鋳片コーナー部の横割れ)は、湾曲型連続鋳造機及び垂直曲げ型連続鋳造で鋳造された鋳片の上面側のコーナー部に発生しやすい。これは、連続鋳造機内における鋳片の矯正時に、鋳片上面側に鋳造方向の引張応力が作用するからであり、また、この鋳片矯正時の表面温度は、特にコーナー部で800℃付近となることが多く、鋼の脆化温度域にほぼ相当していることから、割れ感受性が高くなっているからである。   In general, corner cracks (lateral cracks at the slab corner portion) are likely to occur at the corner portion on the upper surface side of the slab cast by the curved continuous casting machine and the vertical bending die continuous casting. This is because the tensile stress in the casting direction acts on the upper surface side of the slab when the slab is corrected in the continuous casting machine, and the surface temperature during the slab correction is around 800 ° C. especially at the corner. This is because the susceptibility to cracking is high because it almost corresponds to the embrittlement temperature region of steel.

このため、横ヒビ割れ及びコーナー割れなどの横割れは、矯正部で発生することが多い。従って、鋳片が矯正部にさしかかるよりも以前に、脆化軽減のための圧下を加えることが必要である。ところが、矯正部付近では、コーナー部の表面温度は、上述のように、800℃近傍まで下がっていることが多く、この状態で圧下を加えても、前述した図3のデータのように、延性の回復は期待できない。従って、特に、コーナー部について、コーナー部の冷却を抑制したり、積極的に加熱したりすることによって、900℃以上という温度を確保することが効果的である。   For this reason, lateral cracks such as lateral cracks and corner cracks often occur in the correction part. Therefore, it is necessary to apply a reduction for mitigating embrittlement before the slab reaches the correction part. However, in the vicinity of the correction portion, the surface temperature of the corner portion is often lowered to about 800 ° C. as described above, and even if the reduction is applied in this state, the ductility is observed as in the data of FIG. 3 described above. Recovery is not expected. Therefore, in particular, it is effective to secure a temperature of 900 ° C. or higher by suppressing the cooling of the corner portion or actively heating the corner portion.

このような、圧下による歪付加の効果は、コーナー部に限定されるわけではないが、内部が未凝固の状態の鋳片に圧下加工を行うことは、内部割れの発生などのリスクを伴い、場合によっては、鋳片に予期せぬ形状変化を与えて、操業トラブルにつながる可能性もある。この点、鋳片のコーナー部は、その形状から圧下に対して比較的強靭であり、本発明者等は、実験結果から、圧下を実施しても、操業・品質上の問題は発生しないことを確認している。   Such an effect of adding strain by rolling is not limited to the corner portion, but performing the rolling process on a slab whose state is not solidified involves risks such as occurrence of internal cracks, In some cases, an unexpected shape change may be given to the slab, which may lead to operational troubles. In this respect, the corner portion of the slab is relatively tough against reduction due to its shape, and the present inventors, from the experimental results, will not cause any problems in operation or quality even if reduction is performed. Have confirmed.

また、連続鋳造機の鋳型直下では、本発明の条件である900℃以上という表面温度を比較的容易に確保できるが、反面、鋳型直下の二次冷却帯の鋳片に圧下加工を行うことは、未だ凝固シェルが薄く、脆弱であるため、ブレークアウトなどのリスクを伴うことになる。その点、或る程度十分な厚さの凝固シェルが形成された、鋳型から離れた二次冷却帯での圧下加工は、コーナー部の温度が低下していること以外は、理想的な条件といえる。このため、コーナー部の温度低下を抑える、或いは、積極的な加熱を加えたのちに、鋳型から離れた二次冷却帯で圧下加工を行ってコーナー部に歪を付与することは、本発明の効果的な実施方法である。   In addition, the surface temperature of 900 ° C. or higher, which is the condition of the present invention, can be relatively easily secured directly under the mold of the continuous casting machine, but on the other hand, it is not possible to perform a reduction process on the slab of the secondary cooling zone directly under the mold. However, since the solidified shell is still thin and fragile, there is a risk of breakout. In that respect, the reduction in the secondary cooling zone away from the mold, where a solid shell having a certain thickness is formed, is ideal conditions except that the temperature of the corner is lowered. I can say that. For this reason, it is possible to reduce the temperature of the corner portion or to apply distortion to the corner portion by performing rolling reduction in the secondary cooling zone away from the mold after applying positive heating. It is an effective implementation method.

以上説明したように、本発明によれば、コーナー部の鋳片表面温度を900℃以上とした条件でスラブ鋳片のコーナー部を圧下するので、鋳片コーナー部の横割れを回避することができ、横割れの検出や手入れといった補助的工程を要することなく、連続鋳造工程から熱間圧延工程へと鋳片を直行させることが可能となる。   As described above, according to the present invention, since the corner portion of the slab slab is squeezed under the condition that the surface temperature of the slab of the corner portion is 900 ° C. or more, it is possible to avoid lateral cracking of the slab corner portion. In addition, the slab can be made to go straight from the continuous casting process to the hot rolling process without requiring auxiliary processes such as detection and care of transverse cracks.

図1に示す垂直曲げ型連続鋳造機を用いて、厚み250mm、幅1600mmの断面形状の中炭素鋼のスラブ鋳片を、鋳造速度1.4m/minで鋳造した。垂直曲げ型連続鋳造機の垂直部長さは3m、湾曲半径は10mである。このとき、鋳型内溶鋼湯面位置から鋳造方向下流側に2.8m離れた位置(曲げ部の0.2m上方)の鋳片短辺側に、図2に示す糸車状ロールを設置して、鋳片のコーナー部分を圧下した。糸車状ロールは油圧シリンダーにより作動させ、油圧シリンダーの作動は油圧ユニットを用いて制御した。   Using a vertical bending type continuous casting machine shown in FIG. 1, a slab slab of medium carbon steel having a thickness of 250 mm and a width of 1600 mm was cast at a casting speed of 1.4 m / min. The vertical bending type continuous casting machine has a vertical portion length of 3 m and a bending radius of 10 m. At this time, on the short side of the slab at a position 2.8 m away from the molten steel surface position in the mold on the downstream side in the casting direction (above 0.2 m of the bent portion), the spinning wheel roll shown in FIG. The corner portion of the slab was reduced. The spinning wheel roll was operated by a hydraulic cylinder, and the operation of the hydraulic cylinder was controlled using a hydraulic unit.

鋳片コーナー部の圧下量は5mmとし、鋳片コーナー表層部5mmの平均歪量は20%、歪速度は0.25sec-1であった。鋳片圧下時の鋳片コーナー部の表面温度は900〜940℃であった(本発明例1)。鋳造後、浸透探傷法により、鋳片のコーナー割れを調査した。また、比較として、コーナーを圧下しないで、その他の鋳造条件を本発明例1と同一として鋳造した鋳片(比較例1)のコーナー割れ発生状況も調査した。表1に、これらの鋳造条件と鋳片のコーナー割れ発生状況の調査結果を示す。 The rolling amount of the slab corner was 5 mm, the average strain of the slab corner surface layer 5 mm was 20%, and the strain rate was 0.25 sec −1 . The surface temperature of the slab corner at the time of slab pressure reduction was 900 to 940 ° C. (Invention Example 1). After casting, corner cracks of the slab were investigated by the penetrant flaw detection method. For comparison, the occurrence of corner cracks in a slab (Comparative Example 1) cast with the other casting conditions the same as in Example 1 of the present invention without reducing the corners was also investigated. Table 1 shows the results of the investigation of these casting conditions and the occurrence of corner cracks in the slab.

Figure 2007245178
Figure 2007245178

連続鋳造時に曲げ部の上方でコーナー部を圧下していない比較例1では、鋳片コーナー部に多数のコーナー割れが発生したが、圧下を加えた本発明例1では、鋳片コーナー部における表面割れは皆無であった。   In Comparative Example 1 in which the corner portion was not crushed above the bent portion during continuous casting, a number of corner cracks occurred in the slab corner portion. There were no cracks.

図1に示す、垂直部長さ3m、湾曲半径10mの垂直曲げ型連続鋳造機を用いて、断面形状が厚み250mm、幅1600mmの中炭素鋼の鋳片を、鋳造速度1.5m/minで鋳造した。このとき、鋳型内溶鋼湯面位置から鋳造方向下流側に12m離れた位置(湾曲部の途中)の鋳片短辺側に、図2に示す糸車状ロールを設置して、鋳片のコーナー部分を圧下した。糸車状ロールは油圧シリンダーにより作動させ、油圧シリンダーの作動は油圧ユニットを用いて制御した。   Using a vertical bending type continuous casting machine having a vertical portion length of 3 m and a bending radius of 10 m shown in FIG. 1, a medium carbon steel slab having a cross-sectional thickness of 250 mm and a width of 1600 mm is cast at a casting speed of 1.5 m / min. did. At this time, the spur roll shown in FIG. 2 is installed on the short side of the slab at a position 12 m away from the molten steel surface position in the mold downstream in the casting direction (in the middle of the curved portion), and the corner portion of the slab Was reduced. The spinning wheel roll was operated by a hydraulic cylinder, and the operation of the hydraulic cylinder was controlled using a hydraulic unit.

鋳片コーナー部の圧下量は5mmとし、鋳片コーナー表層部5mmの平均歪量は20%、歪速度は0.25sec-1であった。このときに、鋳片の短辺側及びコーナー部の二次冷却水を停止し、鋳片コーナー部の表面温度を上昇させた。その結果、圧下位置における鋳片コーナー部の表面温度は900℃であった(本発明例2)。鋳造後、浸透探傷法により、鋳片のコーナー割れを調査した。 The rolling amount of the slab corner was 5 mm, the average strain of the slab corner surface layer 5 mm was 20%, and the strain rate was 0.25 sec −1 . At this time, the secondary cooling water on the short side and corner of the slab was stopped, and the surface temperature of the slab corner was increased. As a result, the surface temperature of the slab corner at the reduced position was 900 ° C. (Invention Example 2). After casting, corner cracks of the slab were investigated by the penetrant flaw detection method.

また、比較のために、鋳片の短辺側及びコーナー部の二次冷却水を停止しないまま、鋳片コーナー部を圧下する鋳造も行った(比較例2)。比較例2では、鋳片の短辺側及びコーナー部の二次冷却水を停止しない以外は、本発明例2と同一の鋳造条件で行った。比較例2ではコーナー部を圧下する時点の鋳片コーナー部の表面温度は800℃であった。   For comparison, casting was also performed to reduce the corner of the slab without stopping the secondary cooling water on the short side and corner of the slab (Comparative Example 2). In the comparative example 2, it carried out on the casting conditions same as the example 2 of this invention except not stopping the secondary cooling water of the short side and corner part of a slab. In Comparative Example 2, the surface temperature of the slab corner at the time of rolling down the corner was 800 ° C.

前述した表1に、これらの鋳造条件と鋳片のコーナー割れ発生状況の調査結果を合わせて示す。表1に示すように、鋳片コーナー部の温度が800℃のときに圧下した比較例2では、鋳片コーナー部に多数の表面割れが発生したが、鋳片コーナー部の温度が900℃のときに圧下した本発明例2では、鋳片コーナー部における表面割れは皆無であった。   Table 1 described above shows the results of the investigation of these casting conditions and the occurrence of corner cracks in the slab. As shown in Table 1, in Comparative Example 2, which was reduced when the temperature of the slab corner was 800 ° C., many surface cracks occurred in the slab corner, but the temperature of the slab corner was 900 ° C. In Example 2 of the present invention that was sometimes crushed, there was no surface crack at the slab corner.

図1に示す、垂直部長さ3m、湾曲半径10mの垂直曲げ型連続鋳造機を用いて、断面形状が厚み250mm、幅1600mmの中炭素鋼の鋳片を、鋳造速度1.3m/minで鋳造した。このとき、鋳型内溶鋼湯面位置から鋳造方向下流側に12m離れた位置(湾曲部の途中)の鋳片短辺側に、図2に示す糸車状ロールを設置して、鋳片のコーナー部分を圧下した。糸車状ロールは油圧シリンダーにより作動させ、油圧シリンダーの作動は油圧ユニットを用いて制御した。   Using a vertical bending type continuous casting machine having a vertical portion length of 3 m and a bending radius of 10 m shown in FIG. 1, a slab of medium carbon steel having a cross-sectional thickness of 250 mm and a width of 1600 mm is cast at a casting speed of 1.3 m / min. did. At this time, the spur roll shown in FIG. 2 is installed on the short side of the slab at a position 12 m away from the molten steel surface position in the mold downstream in the casting direction (in the middle of the curved portion), and the corner portion of the slab Was reduced. The spinning wheel roll was operated by a hydraulic cylinder, and the operation of the hydraulic cylinder was controlled using a hydraulic unit.

鋳片コーナー部の圧下量は5mmとし、鋳片コーナー表層部5mmの平均歪量は20%、歪速度は0.25sec-1であった。このときに、鋳片のコーナー近傍に誘導加熱装置を設置し、コーナー部を加熱して鋳片コーナー部の表面温度を上昇させた。その結果、圧下位置における鋳片コーナー部の表面温度は930℃であった(本発明例3)。鋳造後、浸透探傷法により、鋳片のコーナー割れを調査した。 The rolling amount of the slab corner was 5 mm, the average strain of the slab corner surface layer 5 mm was 20%, and the strain rate was 0.25 sec −1 . At this time, an induction heating device was installed near the corner of the slab, and the corner portion was heated to increase the surface temperature of the slab corner. As a result, the surface temperature of the slab corner at the reduced position was 930 ° C. (Example 3 of the present invention). After casting, corner cracks of the slab were investigated by the penetrant flaw detection method.

また、比較のために、鋳片を加熱することなく、しかも、鋳片の短辺側及びコーナー部の二次冷却水を停止しないまま、鋳片コーナー部を圧下する鋳造も行った(比較例3)。比較例3では、鋳片を加熱しない以外は、本発明例3と同一の鋳造条件で行った。比較例3ではコーナー部を圧下する時点の鋳片コーナー部の表面温度は780℃であった。   For comparison, casting was also performed without heating the slab, and without stopping the secondary cooling water on the short side and corner part of the slab (Comparative Example). 3). In Comparative Example 3, the casting conditions were the same as in Invention Example 3 except that the slab was not heated. In Comparative Example 3, the surface temperature of the slab corner at the time of rolling down the corner was 780 ° C.

前述した表1に、これらの鋳造条件と鋳片のコーナー割れ発生状況の調査結果を合わせて示す。表1に示すように、鋳片コーナー部の温度が780℃のときに圧下した比較例3では、鋳片コーナー部に多数の表面割れが発生したが、鋳片コーナー部の温度が930℃のときに圧下した本発明例3では、鋳片コーナー部における表面割れは皆無であった。   Table 1 described above shows the results of the investigation of these casting conditions and the occurrence of corner cracks in the slab. As shown in Table 1, in Comparative Example 3, which was reduced when the temperature of the slab corner portion was 780 ° C., many surface cracks occurred in the slab corner portion, but the temperature of the slab corner portion was 930 ° C. In Example 3 of the present invention, which was sometimes crushed, there was no surface crack at the slab corner.

本発明で使用する垂直曲げ型連続鋳造機の概略図である。It is the schematic of the vertical bending type continuous casting machine used by this invention. 鋳片コーナー部の圧下方法を示す平面概略図である。It is a plane schematic diagram which shows the rolling-down method of a slab corner part. 鋳片に加工歪を加えた後、800℃で引張試験を実施したときの絞り値と加工温度との関係を示す図である。It is a figure which shows the relationship between a drawing value and processing temperature when a tensile test is implemented at 800 degreeC after adding process distortion to a slab.

符号の説明Explanation of symbols

1 垂直曲げ型スラブ連続鋳造機
2 タンディッシュ
3 スライディングノズル
4 浸漬ノズル
5 鋳型
6 サポートロール
7 ガイドロール
8 ピンチロール
9 搬送ロール
10 鋳片切断機
11 溶鋼
12 スラブ鋳片
13 凝固シェル
14 未凝固層
15 凝固完了位置
16 曲げ部
17 矯正部
18 糸車状ロール
19 圧下ロール
DESCRIPTION OF SYMBOLS 1 Vertical bending type slab continuous casting machine 2 Tundish 3 Sliding nozzle 4 Immersion nozzle 5 Mold 6 Support roll 7 Guide roll 8 Pinch roll 9 Conveyance roll 10 Cast slab cutting machine 11 Molten steel 12 Slab slab 13 Solidified shell 14 Unsolidified layer 15 Solidification completion position 16 Bending part 17 Correction part 18 Spindle-shaped roll 19 Rolling-down roll

Claims (3)

少なくとも連続鋳造機の矯正部よりも上流側で、スラブ鋳片のコーナー部を圧下しながら溶鋼を連続鋳造するに際し、コーナー部の鋳片表面温度を900℃以上としてコーナー部を圧下することを特徴とする、鋼の連続鋳造方法。   When continuously casting molten steel while rolling down the corner portion of the slab slab, at least upstream from the straightening portion of the continuous casting machine, the corner portion is crushed by setting the slab surface temperature of the corner portion to 900 ° C or higher. A continuous casting method of steel. 連続鋳造機の二次冷却帯で前記コーナー部を冷却せずにコーナー部の鋳片表面温度を900℃以上に制御することを特徴とする、請求項1に記載の鋼の連続鋳造方法。   2. The continuous casting method for steel according to claim 1, wherein the surface temperature of the slab of the corner portion is controlled to 900 ° C. or higher without cooling the corner portion in a secondary cooling zone of a continuous casting machine. 連続鋳造機内で前記コーナー部を900℃以上に加熱した後に、コーナー部を圧下することを特徴とする、請求項1に記載の鋼の連続鋳造方法。   The steel continuous casting method according to claim 1, wherein the corner portion is crushed after the corner portion is heated to 900 ° C or higher in a continuous casting machine.
JP2006070165A 2006-03-15 2006-03-15 Steel continuous casting method Active JP4923643B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006070165A JP4923643B2 (en) 2006-03-15 2006-03-15 Steel continuous casting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006070165A JP4923643B2 (en) 2006-03-15 2006-03-15 Steel continuous casting method

Publications (2)

Publication Number Publication Date
JP2007245178A true JP2007245178A (en) 2007-09-27
JP4923643B2 JP4923643B2 (en) 2012-04-25

Family

ID=38590010

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006070165A Active JP4923643B2 (en) 2006-03-15 2006-03-15 Steel continuous casting method

Country Status (1)

Country Link
JP (1) JP4923643B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009082978A (en) * 2007-10-03 2009-04-23 Jfe Steel Kk Evaluation method for high temperature embrittlement of continuously cast slab and continuous casting method for steel
JP2012218062A (en) * 2011-04-13 2012-11-12 Nippon Steel Engineering Co Ltd Cast slab heating device and cast slab heating method of continuous casting apparatus

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5542109A (en) * 1978-09-19 1980-03-25 Nippon Steel Corp Surface defect preventing method of continuously cast slab
JPS63215352A (en) * 1987-03-05 1988-09-07 Nkk Corp Continuous casting apparatus
JPH0890182A (en) * 1994-09-22 1996-04-09 Sumitomo Metal Ind Ltd Method for continuously casting wide and thin cast slab
JPH08267205A (en) * 1995-03-31 1996-10-15 Kawasaki Steel Corp Continuous casting machine
JP2000197953A (en) * 1998-12-25 2000-07-18 Kawasaki Steel Corp Manufacture of continuously cast slab
JP2001018040A (en) * 1999-06-30 2001-01-23 Kawasaki Steel Corp Manufacture of continuously cast slab

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5542109A (en) * 1978-09-19 1980-03-25 Nippon Steel Corp Surface defect preventing method of continuously cast slab
JPS63215352A (en) * 1987-03-05 1988-09-07 Nkk Corp Continuous casting apparatus
JPH0890182A (en) * 1994-09-22 1996-04-09 Sumitomo Metal Ind Ltd Method for continuously casting wide and thin cast slab
JPH08267205A (en) * 1995-03-31 1996-10-15 Kawasaki Steel Corp Continuous casting machine
JP2000197953A (en) * 1998-12-25 2000-07-18 Kawasaki Steel Corp Manufacture of continuously cast slab
JP2001018040A (en) * 1999-06-30 2001-01-23 Kawasaki Steel Corp Manufacture of continuously cast slab

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009082978A (en) * 2007-10-03 2009-04-23 Jfe Steel Kk Evaluation method for high temperature embrittlement of continuously cast slab and continuous casting method for steel
JP2012218062A (en) * 2011-04-13 2012-11-12 Nippon Steel Engineering Co Ltd Cast slab heating device and cast slab heating method of continuous casting apparatus

Also Published As

Publication number Publication date
JP4923643B2 (en) 2012-04-25

Similar Documents

Publication Publication Date Title
WO2020030040A1 (en) Production of twin-roll cast and hot rolled steel strip
JP5380968B2 (en) Manufacturing method of continuous cast slab
JP5444807B2 (en) Method for preventing surface cracks in continuous cast slabs
KR20060130745A (en) High copper low alloy steel sheet
JP4923643B2 (en) Steel continuous casting method
JP4923650B2 (en) Method for preventing surface cracks in continuous cast slabs
JP4684204B2 (en) How to end continuous casting
JP4407481B2 (en) Continuous casting method for medium carbon steel
KR101286213B1 (en) Twin roll strip casting process of martensitic stainless strip and twin roll strip casting apparatus of martensitic stainless strip
JP4561755B2 (en) Method for continuous casting of steel containing B and N
JP2903927B2 (en) Continuous casting method
JP2001191158A (en) Continuous casting method of steel
JP3575400B2 (en) Direct-feed rolling method of continuous cast slab
JP5045258B2 (en) Continuous casting method and continuous casting machine
JP2013107130A (en) Method of producing titanium slab for hot rolling
JP4692164B2 (en) Continuous casting method of high carbon steel
JP3215573B2 (en) Continuous casting method of nickel-containing steel
JP2009119486A (en) Method for producing continuously cast slab
JP2001137901A (en) Rolling method in hot-charge of continuously cast slab
JP3661691B2 (en) Continuous casting method of high carbon special steel
JP4164925B2 (en) Manufacturing method of continuous cast slab
JPH0890182A (en) Method for continuously casting wide and thin cast slab
JP5234511B2 (en) Continuous casting method and continuous casting machine
JP4364852B2 (en) Continuous casting equipment and continuous casting method for slab slabs
JP2007253214A (en) Method of evaluating high temperature embrittlement of continuous cast slab and method of continuously casting steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110811

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110823

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111020

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120123

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150217

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4923643

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250