JP2000197953A - Manufacture of continuously cast slab - Google Patents

Manufacture of continuously cast slab

Info

Publication number
JP2000197953A
JP2000197953A JP10370389A JP37038998A JP2000197953A JP 2000197953 A JP2000197953 A JP 2000197953A JP 10370389 A JP10370389 A JP 10370389A JP 37038998 A JP37038998 A JP 37038998A JP 2000197953 A JP2000197953 A JP 2000197953A
Authority
JP
Japan
Prior art keywords
slab
oscillation mark
cast slab
rolling
continuous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10370389A
Other languages
Japanese (ja)
Other versions
JP4164925B2 (en
Inventor
Yoichi Ito
陽一 伊藤
Seiji Nabeshima
誠司 鍋島
Koichi Tozawa
宏一 戸澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP37038998A priority Critical patent/JP4164925B2/en
Publication of JP2000197953A publication Critical patent/JP2000197953A/en
Application granted granted Critical
Publication of JP4164925B2 publication Critical patent/JP4164925B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)
  • Metal Rolling (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent the surface crack on corner parts by executing rolling reduction to a protruded part of oscillation mark developed on the corner parts in a cast slab at the upper position of a bending part and flattening. SOLUTION: The position for executing the rolling reduction to the oscillation mark in a continuous casting line, is at the upper part of the bending part in the continuous caster. This reason is because it is effective to beforehand eliminate or reduce a notch causing the concentration of stress, in the early stage of developing, propagation and growth of the crack due to the bending. When the rolling reduction is executed to the oscillation mark, the surface temp. of the cast slab is desirable to be >=500 deg.C. The flattening is desirable to reduce the depth of the oscillation mark to <=0.2 mm. In this way, the notching action caused by the oscillation mark is reduced and the surface crack can be prevented. Thereafter, the cast slab can straightly be conveyed and a straight-conveyed rolling and a hot-charge rolling can ideally be executed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、表面割れの少ない
連続鋳造鋳片の製造方法に関し、連続鋳造鋳片の曲げあ
るいは矯正の際に発生しやすいコーナー部の表面割れを
防止するための連続鋳造鋳片の製造方法に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a continuous cast slab having a small number of surface cracks. The present invention relates to a method for manufacturing a slab.

【0002】[0002]

【従来の技術】図1に示す概略図を基にして一般的な鋼
の連続鋳造方法について説明する。溶鋼2は取鍋1から
ロングノズル3を介してタンディッシュ4内に注入され
る。注入された溶鋼2は、浸漬ノズル5を介して鋳型6
内に連続的に注入される。鋳型内の溶鋼2は、急冷され
て、凝固シェル7が鋳型6の内面に形成され、凝固シェ
ル7はガイドロール8により支持されながら二次冷却水
によりさらに冷却される。そして、完全に凝固を終えた
鋳片9は、ピンチロール10により連続的に引き抜かれ
る。この時、鋳型と凝固シェルが形成した鋳片との摩擦
を軽減し、鋳型への焼き付きを防止して安定な鋳込みを
行うために、鋳型内へはモールドパウダー11の添加が行
われるとともに、鋳型6にはオシレーションと呼ばれる
上下動が作動される。また、図1のa、bの領域は、そ
れぞれ曲げ部、矯正部であり、この領域で、鋳片は歪速
度0.0001〜0.001sec-1の変形を受ける。
2. Description of the Related Art A general continuous casting method for steel will be described with reference to the schematic diagram shown in FIG. Molten steel 2 is injected from ladle 1 into tundish 4 via long nozzle 3. The injected molten steel 2 passes through a submerged nozzle 5 to a mold 6.
Injected continuously into. The molten steel 2 in the mold is rapidly cooled to form a solidified shell 7 on the inner surface of the mold 6. The solidified shell 7 is further cooled by the secondary cooling water while being supported by the guide roll 8. Then, the slab 9 that has been completely solidified is continuously pulled out by the pinch roll 10. At this time, in order to reduce the friction between the mold and the slab formed by the solidified shell, prevent seizure on the mold and perform stable casting, mold powder 11 is added into the mold, and the mold is added. A vertical movement called an oscillation is operated at 6. The regions a and b in FIG. 1 are a bent portion and a straightened portion, respectively. In this region, the slab undergoes deformation at a strain rate of 0.0001 to 0.001 sec -1 .

【0003】ところで、連続鋳造鋳片には、従来から、
各種の表面割れが発生することが知られている。この表
面割れは、とくに、連続鋳造鋳片を用いて、直送圧延な
いしホットチャージ圧延を行う場合には、熱間におい
て、欠陥を検出したり、手入れをしたりすることを必要
とするため、工程上の障害を招き、また生産性を著しく
阻害していた。このように有害な影響をもたらす表面割
れは、低歪速度の変形時に発生しやすく、また700 〜85
0 ℃の脆化温度域において極めて発生しやすくなる。
[0003] By the way, continuous cast slabs have conventionally been
It is known that various surface cracks occur. This surface cracking, especially when performing direct-feed rolling or hot-charge rolling using continuous cast slabs, requires the detection or care of defects during hot working. The above obstacles were caused, and the productivity was significantly impaired. Such surface cracks, which cause harmful effects, are likely to occur during deformation at a low strain rate.
Very easily occurs in the embrittlement temperature range of 0 ° C.

【0004】低歪速度変形時における鋳片の脆化は、主
に、AlNや Nb(C,N)、V(C,N)などの炭窒化物
の析出や(Fe、Mn)Sなどの硫化物の析出に起因してい
る。そこで、従来からとられてきた表面割れを抑制する
ための対策として、これら合金元素を1%以下含有する
低合金鋼を連続鋳造する場合には、上述した有害析出物
を低減するために、Al、Nb、V、B、Nの含有量を減ら
したり、Tiを添加してより無害なTiNを優先的に析出さ
せて高温延性を向上させるなどの方法がとられてきた。
[0004] The embrittlement of the slab during low strain rate deformation is mainly caused by precipitation of carbonitrides such as AlN, Nb (C, N), V (C, N) and (Fe, Mn) S. This is due to sulfide precipitation. Therefore, as a countermeasure for suppressing the surface cracking conventionally taken, when continuously casting a low-alloy steel containing these alloying elements at 1% or less, in order to reduce the above-mentioned harmful precipitates, , Nb, V, B, and N, or adding Ti to preferentially precipitate more harmless TiN to improve the high-temperature ductility.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、鋼の材
質特性上の要求から、NB、Vなどの元素の添加は不可欠
であったり、鋼種によってはTi添加による低温靱性の低
下が生じたりすることがあり、上記対策では抜本的な対
策にはなっていなかった。さらに、表面割れを抑制する
ための別の対策として、連続鋳造時の二次冷却による曲
げ部、矯正部における脆化温度域の回避を図るため、低
比水量化による高温鋳片鋳造ならびに温度低下が大さい
コーナー部の冷却水をカットする幅切りなどの方法も試
みられてきた。これらの対策により表面割れの発生は大
幅に低減したものの、鋳片コーナー部では、特にオシレ
ーションマークのノッチ(切欠)作用が大きく、未だ表
面割れを完全に防止するには至ってないのが現状であ
る。
However, due to the requirements of the material properties of steel, the addition of elements such as NB and V is indispensable, and depending on the type of steel, the low-temperature toughness may decrease due to the addition of Ti. Yes, the above measures were not drastic. In addition, as another measure to suppress surface cracking, in order to avoid the brittle temperature range in the bent and straightened parts due to secondary cooling during continuous casting, casting of high-temperature slabs and temperature reduction by reducing the specific water content Attempts have also been made to cut the cooling water at the corners where the width is large, such as by cutting the width. Although the occurrence of surface cracks has been significantly reduced by these measures, the notch (notch) effect of the oscillation mark is particularly large at the slab corners, and it has not yet been possible to completely prevent surface cracks. is there.

【0006】このような鋳片コーナー部におけるオシレ
ーションマークに起因する表面割れは、図2に示すよう
な機構で発生すると考えられる。すなわち、オシレーシ
ョンマークが形成されると、図2に示すように、一連の
連続鋳造工程で、凝固シェルと鋳型間の摩擦力、不均一
冷却による熱応力、曲げ部や矯正部における変形応力な
どが働いて、オシレーションマークの凹部が応力集中の
ノッチとして作用して、凹部の底から亀裂が発生し、こ
れが次第に伝播して、表面割れに成長する。なお、以上
のようなノッチ作用に起因する表面割れが、とくに鋳片
コーナー部で生じやすいのは、コーナー部ではモールド
パウダーの入り込みの差や冷却時の収縮の影響が大きい
ことのために、オシレーションマークが深くなりやすい
からである。
It is considered that such a surface crack attributable to the oscillation mark at the slab corner is generated by a mechanism as shown in FIG. That is, when the oscillation mark is formed, as shown in FIG. 2, in a series of continuous casting steps, the frictional force between the solidified shell and the mold, the thermal stress due to uneven cooling, the deformation stress in the bent portion and the straightening portion, etc. Works, the concave portion of the oscillation mark acts as a notch for stress concentration, and a crack is generated from the bottom of the concave portion, which gradually propagates and grows into a surface crack. Surface cracks due to the notch effect as described above are particularly likely to occur at the slab corners because the difference in mold powder penetration at the corners and the effect of shrinkage during cooling are large. This is because the ration mark tends to be deep.

【0007】そこで、本発明は、従来技術が抱えてい
た、上記問題を解決し、鋳片コーナー部における表面割
れを完全に防止することを目的とする。そして本発明
は、直送圧延あるいはホットチャージ圧延に耐えうる、
表面割れのない健全な鋳片を得ることを目的とする。
[0007] Therefore, an object of the present invention is to solve the above-mentioned problems of the prior art and to completely prevent surface cracks at the slab corners. And the present invention can withstand direct rolling or hot charge rolling,
The purpose is to obtain a sound slab without surface cracks.

【0008】[0008]

【課題を解決するための手段】発明者らは、亀裂が成長
する前のできるかぎり早い段階で、オシレーションマー
ク、特に鋳片コーナー部におけるオシレーションマーク
の凸部を圧下して、平坦化し、凹部のノッチ作用を緩和
することが表面割れ防止に極めて有効であることを知見
し本発明を完成させた。その要旨構成は、以下のとおり
である。 (1)鋳型に注入した溶鋼から、連続鋳造機の曲げ部と矯
正部を経て、鋳片を得る連続鋳造鋳片の製造方法におい
て、鋳片のコーナー部に生じたオシレーションマークの
凸部を、曲げ部の上方位置で圧下することにより、平坦
化することを特徴とする連続鋳造鋳片の製造方法。
SUMMARY OF THE INVENTION The inventors of the present invention squeezed and flattened an oscillation mark, particularly a projection of an oscillation mark at a corner of a slab, at the earliest possible stage before crack growth. The present inventors have found that relaxing the notch action of the concave portion is extremely effective in preventing surface cracking, and completed the present invention. The summary configuration is as follows. (1) From the molten steel injected into the mold, through the bending section and straightening section of the continuous casting machine, in the method of manufacturing a continuous cast slab to obtain a slab, the convex portion of the oscillation mark generated in the corner of the slab A method of producing a continuous cast slab by flattening by rolling down at a position above a bent portion.

【0009】(2)上記 (1)において、鋳片コーナー部の
オシレーションマークの深さが0.2 mm以下になるよう
に平坦化する連続鋳造鋳片の製造方法。
(2) The method for producing a continuous cast slab according to the above (1), wherein the depth of the oscillation mark at the slab corner is flattened to be 0.2 mm or less.

【0010】[0010]

【発明の実施の形態】以下、本発明について詳細に説明
する。本発明は、連続鋳造機の曲げ部上方で、鋳片コー
ナー部におけるオシレーションマークの凸部を圧下して
平坦化することが重要である。まず、上記オシレーショ
ンマークの平坦化は、オシレーションマークの深さを0.
2 mm以下まで低減できれば表面割れを防止するに十分
な効果が得られる。通常、オシレーションマークの深さ
(凸部の頂点から凹部の底までの距離) は最大でも2m
m程度であるので、2mm以上とするのが望ましい。し
かし、1mm程度の圧下であっても、オシレーションマ
ークの深さを0.2 mm以下まで低減できれば、十分な表
面割れ防止効果が得られる。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail. In the present invention, it is important that the convex portion of the oscillation mark at the corner of the slab is flattened above the bent portion of the continuous casting machine. First, the flattening of the oscillation mark sets the depth of the oscillation mark to 0.
If it can be reduced to 2 mm or less, a sufficient effect for preventing surface cracks can be obtained. Normally, the depth of the oscillation mark (the distance from the top of the projection to the bottom of the recess) is at most 2 m.
m, it is desirable to set it to 2 mm or more. However, even under a pressure of about 1 mm, if the depth of the oscillation mark can be reduced to 0.2 mm or less, a sufficient surface crack preventing effect can be obtained.

【0011】連続鋳造ラインにおけるオシレーションマ
ークを圧下する位置は、図1の点線で例示するように、
連続鋳造機の曲げ部の上方で行うのがよい。というの
は、曲げによる亀裂の発生、伝播、成長が起こるなるべ
く早期に、予め応力集中のもととなるノッチを消滅又は
減殺させておくのが有効であるからである。さらに、オ
シレーションマークを圧下する際の温度は、圧下効率か
ら、鋳片の表面温度が 500℃以上とするのが好ましく、
オーステナイト粒界(γ粒界)への有害析出物の析出を
阻止するということを考慮すると、 700℃以上とするの
が好ましい。
The position where the oscillation mark is reduced in the continuous casting line is, as exemplified by the dotted line in FIG.
It is preferably performed above the bending part of the continuous casting machine. This is because it is effective to eliminate or reduce notches, which cause stress concentration, in advance as early as possible to generate, propagate, and grow cracks due to bending. Further, the temperature at the time of rolling down the oscillation mark, from the rolling efficiency, it is preferable that the surface temperature of the slab is 500 ℃ or more,
The temperature is preferably set to 700 ° C. or higher in consideration of preventing precipitation of harmful precipitates on austenite grain boundaries (γ grain boundaries).

【0012】なお、鋳片に圧下を付与する際には、その
歪速度は、析出物径が粗大化して高温延性の向上が期待
できる、0.01 sec-1以上とすれば、表面割れ防止効果が
増大するので望ましい。圧下の方法については特に限定
しないが、平面図で示せば、例えば、図3(a)のよう
に、両側に内側面が外拡がりのテーパー部を具えた糸車
状のロール1基でコーナー部2か所を同時に圧下する方
法、同図(b) のように、個別ロールにて各コーナー部を
圧下する方法、連続的なプレス(鍛圧)による方法など
が挙げられる。
[0012] At the time of applying the reduction in slab, the strain rate can be expected to improve the hot ductility precipitate size is coarsened, if 0.01 sec -1 or higher, the surface-break preventing effect It is desirable because it increases. Although there is no particular limitation on the method of rolling, as shown in a plan view, for example, as shown in FIG. 3 (a), a corner portion 2 is formed by a spinning wheel-shaped roll having a tapered portion having an inner surface extending outward on both sides. As shown in FIG. 3 (b), there are a method of simultaneously rolling down portions, a method of rolling down each corner portion with an individual roll, and a method of continuous pressing (forging pressure).

【0013】このようにして、連続鋳造鋳片のコーナー
部を曲げ部の上方で圧下して、コーナー部に形成したオ
シレーションマークの凹凸を平坦化することにより、オ
シレーションマークに起因するノッチ作用を軽減し、表
面割れの発生を防止することができる。その結果、表面
割れ発生に伴う熱間における欠陥検出や手入れなどを必
要とすることのない、鋳片の直送化が可能となり、直送
圧延あるいはホットチャージ圧延が理想的に実施できる
ようになる。なお、本発明は、表面割れが問題となる鋼
の連続鋳造のすべてに適用できる。とりわけ、C量0.02
〜0.22wt%でSi及び/又はMnを含有する低中炭素鋼、ま
た、Al、Nb、V、B、Ti等の合金元素を1wt%以下の範
囲で含有する低合金鋼に適用した場合に有効である。ま
た、近年、鋳造技術の開発が盛んな薄スラブの連続鋳造
に適用した場合にも極めて大きな効果があることを確認
している。
[0013] In this manner, the corner portion of the continuous cast slab is pressed down above the bent portion to flatten the unevenness of the oscillation mark formed at the corner portion, so that the notch effect caused by the oscillation mark is obtained. And the occurrence of surface cracks can be prevented. As a result, it is possible to directly feed the slab without the need for hot defect detection or maintenance due to the occurrence of surface cracks, and it is possible to ideally carry out direct rolling or hot charge rolling. The present invention is applicable to all types of continuous casting of steel in which surface cracking is a problem. In particular, C content 0.02
When applied to low-medium carbon steel containing up to 0.22 wt% of Si and / or Mn, and low alloy steel containing alloying elements such as Al, Nb, V, B, Ti in a range of 1 wt% or less It is valid. In recent years, it has been confirmed that the present invention has an extremely large effect when applied to continuous casting of thin slabs, in which the development of casting technology is active.

【0014】[0014]

【実施例】以下実施例により、具体的に説明する。湾曲
半径10mの垂直曲げ型連鋳機により、表1に示す成分組
成の中炭素鋼で、断面形状が 220mm×1500mmの鋳片
を、鋳造速度1.2 〜1.6 m/min で鋳造した。このと
き、メニスカス下3mの位置(曲げ部の0.2 m上方)に
おいて、スラブの短辺側に、図3(a) に示す糸車状の圧
下ロールを設置し、鋳片のコーナー部分を圧下した。こ
こで、鋳片圧下装置は圧下ロールと油圧シリンダーから
構成され、これらは油圧ユニットを経て圧下量を制御可
能なものとした。鋳片コーナー部の圧下量は5mm、鋳
片コーナー表層部5mmの平均歪量は20%で歪速度は0.
25 sec-1であった。なお、この値は、図4において、V
R =27mm/sec, r=45mm, a=5mm, b=21mm, d0
25mmとしたので、歪量ε=( a/d0 ) ×100 =20、歪
速度ε (ドット) = (ε/100)/ (b/VR )=0.25で
求められる。表2に、これら鋳造の条件とその結果を示
す。表2から、連続鋳造時に曲げ部の上方でコーナー部
を圧下していない通常の鋳造を行った場合には、鋳片コ
ーナー部に多数の表面割れが発生したが、上記圧下を加
えた発明法の場合には、鋳片コーナー部における表面割
れは皆無であった。
The present invention will be described more specifically with reference to the following examples. Using a vertical bending type continuous caster having a curvature radius of 10 m, a slab having a composition of medium carbon steel having a composition shown in Table 1 and a cross section of 220 mm x 1500 mm was cast at a casting speed of 1.2 to 1.6 m / min. At this time, at a position 3 m below the meniscus (0.2 m above the bent portion), a spinning wheel-shaped reduction roll as shown in FIG. 3A was installed on the short side of the slab, and the corner portion of the slab was reduced. Here, the slab pressure reduction device was composed of a pressure reduction roll and a hydraulic cylinder, and these were capable of controlling the reduction amount via a hydraulic unit. The amount of reduction in the slab corner was 5 mm, the average strain in the slab corner surface layer 5 mm was 20%, and the strain rate was 0.
It was 25 sec -1 . Note that this value is V
R = 27 mm / sec, r = 45 mm, a = 5 mm, b = 21 mm, d 0 =
Since was 25 mm, obtained by the strain amount ε = (a / d 0) × 100 = 20, strain rate epsilon (dot) = (ε / 100) / (b / V R) = 0.25. Table 2 shows the casting conditions and the results. As shown in Table 2, when normal casting was performed without rolling down the corner portion above the bent portion during continuous casting, many surface cracks occurred at the slab corner portion. In the case of No., there was no surface crack at the corner of the slab.

【0015】[0015]

【表1】 [Table 1]

【0016】[0016]

【表2】 [Table 2]

【0017】[0017]

【発明の効果】以上説明したように、本発明によれば、
連続鋳造鋳片のコーナー部における表面割れが回避でき
るので、表面割れの検出や手入れといった補助的工程を
要することなく、連続鋳造から圧延プロセスへ直行させ
ることが可能となる。このため本発明は、生産性の向上
や省エネルギー化、ひいてはコスト低減に大きく寄与す
るものである。
As described above, according to the present invention,
Since surface cracks at the corners of the continuous cast slab can be avoided, it is possible to go directly from continuous casting to the rolling process without the need for auxiliary steps such as detection and maintenance of surface cracks. Therefore, the present invention greatly contributes to improvement of productivity, energy saving, and cost reduction.

【図面の簡単な説明】[Brief description of the drawings]

【図1】連続鋳造の工程をを示す摸式図である。FIG. 1 is a schematic view showing a continuous casting process.

【図2】表面割れの発生機構を示す模式図である。FIG. 2 is a schematic view showing a mechanism of occurrence of a surface crack.

【図3】鋳片コーナー部の圧下方法を示す平面図であ
る。
FIG. 3 is a plan view showing a method for rolling down a slab corner.

【図4】歪量および歪速度を説明するための図である。FIG. 4 is a diagram for explaining a distortion amount and a distortion speed.

【符号の説明】 1 取鍋 2 溶鋼 3 ロングノズル 4 タンディッシュ 5 浸漬ノズル 6 鋳型 7 凝固シェル 8 ガイドロール 9 鋳片 10 ピンチロール 11 モールドパウダー 12 圧下ロール a 曲げ部 b 矯正部[Description of Signs] 1 Ladle 2 Molten steel 3 Long nozzle 4 Tundish 5 Dipping nozzle 6 Mold 7 Solidification shell 8 Guide roll 9 Cast piece 10 Pinch roll 11 Mold powder 12 Roll-down roll a Bending part b Straightening part

───────────────────────────────────────────────────── フロントページの続き (72)発明者 戸澤 宏一 岡山県倉敷市水島川崎通1丁目(番地な し) 川崎製鉄株式会社水島製鉄所内 ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Koichi Tozawa 1-chome, Kawasaki-dori, Mizushima, Kurashiki-shi, Okayama Pref. Kawasaki Steel Corporation Mizushima Works

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 鋳型に注入した溶鋼から、連続鋳造機の
曲げ部と矯正部を経て、鋳片を得る連続鋳造鋳片の製造
方法において、鋳片のコーナー部に生じたオシレーショ
ンマークの凸部を、曲げ部の上方位置で圧下することに
より、平坦化することを特徴とする連続鋳造鋳片の製造
方法。
1. A method of manufacturing a continuous cast slab which obtains a cast slab from a molten steel poured into a mold through a bending section and a straightening section of a continuous caster, wherein a projection of an oscillation mark generated at a corner of the cast slab. A method for producing a continuous cast slab, wherein a portion is flattened by rolling down a portion above a bent portion.
【請求項2】 請求項1において、鋳片コーナー部のオ
シレーションマークの深さが0.2 mm以下になるように
平坦化する連続鋳造鋳片の製造方法。
2. The method for producing a continuous cast slab according to claim 1, wherein the depth of the oscillation mark at the slab corner is flattened to 0.2 mm or less.
JP37038998A 1998-12-25 1998-12-25 Manufacturing method of continuous cast slab Expired - Fee Related JP4164925B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP37038998A JP4164925B2 (en) 1998-12-25 1998-12-25 Manufacturing method of continuous cast slab

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP37038998A JP4164925B2 (en) 1998-12-25 1998-12-25 Manufacturing method of continuous cast slab

Publications (2)

Publication Number Publication Date
JP2000197953A true JP2000197953A (en) 2000-07-18
JP4164925B2 JP4164925B2 (en) 2008-10-15

Family

ID=18496788

Family Applications (1)

Application Number Title Priority Date Filing Date
JP37038998A Expired - Fee Related JP4164925B2 (en) 1998-12-25 1998-12-25 Manufacturing method of continuous cast slab

Country Status (1)

Country Link
JP (1) JP4164925B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7137437B2 (en) * 2003-01-22 2006-11-21 Sms Demag Ag Method and device for producing continuously cast steel slabs
JP2007245178A (en) * 2006-03-15 2007-09-27 Jfe Steel Kk Method for continuously casting steel

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7137437B2 (en) * 2003-01-22 2006-11-21 Sms Demag Ag Method and device for producing continuously cast steel slabs
JP2007245178A (en) * 2006-03-15 2007-09-27 Jfe Steel Kk Method for continuously casting steel

Also Published As

Publication number Publication date
JP4164925B2 (en) 2008-10-15

Similar Documents

Publication Publication Date Title
JP3058079B2 (en) Steel continuous casting method
CN1072533C (en) Direct transmission rolling method and apparatus of continuous casting
JP4966547B2 (en) Continuous casting method
JP4337565B2 (en) Steel slab continuous casting method
JP2000197953A (en) Manufacture of continuously cast slab
JP3463550B2 (en) Method of preventing surface cracks in continuous cast slab
JP4407481B2 (en) Continuous casting method for medium carbon steel
JPH07204811A (en) Continuous casting method
KR101286213B1 (en) Twin roll strip casting process of martensitic stainless strip and twin roll strip casting apparatus of martensitic stainless strip
JPH0245534B2 (en)
JP3390606B2 (en) Steel continuous casting method
JP2843665B2 (en) Hot work crack prevention method for continuous cast slab.
JP3215573B2 (en) Continuous casting method of nickel-containing steel
JP4923643B2 (en) Steel continuous casting method
TWI585216B (en) Method of producing high nickel-based alloy billet and application thereof
JP3093533B2 (en) Continuous casting of thin cast slab
JP3484605B2 (en) Stainless steel continuous casting method
JP2888071B2 (en) Thin slab continuous casting method
JPS6228056A (en) Continuous casting method
JP7028088B2 (en) How to pull out the slab
JP3030596B2 (en) Continuous casting method
JPS635857A (en) Continuous casting method for steel containing high silicon
JP2001018040A (en) Manufacture of continuously cast slab
JP3108263B2 (en) Continuous forging method of slab strand in continuous casting.
JP3056582B2 (en) Slab rolling method in continuous casting

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050928

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060404

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080401

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080529

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080708

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080721

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120808

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120808

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130808

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees