JP2001244464A - Method of manufacturing metal oxide transistor - Google Patents

Method of manufacturing metal oxide transistor

Info

Publication number
JP2001244464A
JP2001244464A JP2000057440A JP2000057440A JP2001244464A JP 2001244464 A JP2001244464 A JP 2001244464A JP 2000057440 A JP2000057440 A JP 2000057440A JP 2000057440 A JP2000057440 A JP 2000057440A JP 2001244464 A JP2001244464 A JP 2001244464A
Authority
JP
Japan
Prior art keywords
metal oxide
insulating film
gate insulating
channel layer
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000057440A
Other languages
Japanese (ja)
Inventor
Yoshitaka Ogawa
芳孝 小川
Yasutaka Takahashi
康隆 高橋
Yutaka Oya
豊 大矢
Takayuki Ban
隆幸 伴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2000057440A priority Critical patent/JP2001244464A/en
Publication of JP2001244464A publication Critical patent/JP2001244464A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Thin Film Transistor (AREA)

Abstract

PROBLEM TO BE SOLVED: To manufacture an FET by using a metal oxide semiconductor. SOLUTION: A gate insulating film 32 of SiO2 is formed on an Si substrate 31. Zn(OAc)2.4H2O is suspended in isopropanol and the gate insulating film 32 is coated with this suspension. A channel layer 33 of ZnO is formed by thermal treatment and a source electrode 34 and a drain electrode 35 are formed thereon.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は金属酸化物半導体
を用いて金属−絶縁膜−半導体構造の電界効果形トラン
ジスタを製造する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a field effect transistor having a metal-insulating film-semiconductor structure using a metal oxide semiconductor.

【0002】[0002]

【従来の技術】従来のトランジスタは単結晶シリコンに
不純物を拡散させ気相成長させたり、あるいは化合物半
導体を気相成長させてp−n接合を形成して製造するも
のが主流である。これらの場合は排ガスの処理に大きな
設備と、処理費用を要した。一方、ゾル−ゲル(Sol
−Gel)法に代表される溶液法により金属酸化物半導
体を作製すれば排ガス処理の問題がなく、比較的簡単な
設備で安価に作ることが可能である。しかし酸化物半導
体は、一般に移動度が低いため、Si、Ge、化合物半
導体と比較して扱いにくい欠点があった。またゾル−ゲ
ル法によって作製された薄膜はポーラスであることが多
く、ガスセンサのように膜表面での吸着反応を利用する
ことは試みられているが、厚さ方向の電導現象はほとん
ど利用されていない。
2. Description of the Related Art Conventionally, a transistor is mainly manufactured by diffusing impurities into single crystal silicon and performing vapor phase growth or by growing a compound semiconductor by vapor phase to form a pn junction. In these cases, large facilities and processing costs were required for treating the exhaust gas. On the other hand, sol-gel (Sol
-If the metal oxide semiconductor is manufactured by a solution method typified by the (Gel) method, there is no problem of the exhaust gas treatment, and the metal oxide semiconductor can be manufactured at a low cost with relatively simple equipment. However, oxide semiconductors generally have low mobility, and thus have a drawback that they are difficult to handle as compared with Si, Ge, and compound semiconductors. In addition, thin films prepared by the sol-gel method are often porous, and attempts have been made to utilize the adsorption reaction on the film surface as in the case of gas sensors, but most of the conduction phenomena in the thickness direction have been used. Absent.

【0003】例えば図5に示すように基板11上に、N
iOなどのn形金属酸化物層12を形成し、その上にT
iOなどのp形金属酸化物層13を溶液法により形成
し、更にその上にNiOなどのn形金属酸化物層14を
溶液法により形成して接合形トランジスタを構成するこ
とが考えられる。しかし各金属酸化物層の形成ごとに、
600〜800℃程度の高温加熱を必要とするため、p
形金属酸化物層13を形成する際に、その下のn形金属
酸化物層12とp形金属酸化物層13との境界に両層の
複合酸化物膜15が生成され、またn形金属酸化物層1
4を形成する際にそのn形金属酸化物層14とp形金属
酸化物層13との境界に両層の複合酸化物膜16が生成
され、しかも先に形成された複合酸化物膜15が成長し
て、その膜厚が厚くなる。この複合酸化物膜、特に15
が完全な絶縁物となり、電子や正孔が移動することがで
きず、トランジスタとして作用させることが困難であ
る。
[0003] For example, as shown in FIG.
An n-type metal oxide layer 12 such as iO is formed, and T
It is considered that a p-type metal oxide layer 13 such as iO is formed by a solution method, and an n-type metal oxide layer 14 such as NiO is further formed thereon by a solution method to form a junction transistor. However, with each metal oxide layer formation,
Since high-temperature heating of about 600 to 800 ° C. is required, p
When the n-type metal oxide layer 13 is formed, a composite oxide film 15 of both layers is generated at a boundary between the n-type metal oxide layer 12 and the p-type metal oxide layer 13 thereunder. Oxide layer 1
At the time of forming 4, a composite oxide film 16 of both layers is formed at the boundary between the n-type metal oxide layer 14 and the p-type metal oxide layer 13, and the previously formed composite oxide film 15 It grows and its film thickness increases. This composite oxide film, especially 15
Becomes a perfect insulator, electrons and holes cannot move, and it is difficult to function as a transistor.

【0004】あるいは図6に示すように、シリコン基板
11上にNiOのようなn形金属酸化層よりなるチャネ
ル層17を溶液法により形成し、そのチャネル層17上
の一部にSiO2 などのゲート絶縁膜18を溶液法によ
り形成し、ゲート絶縁膜18上にゲート電極19を、ゲ
ート絶縁膜18の両側においてチャネル層17上にソー
ス電極21、ドレイン電極22を形成して、M−I−S
構造の電界効果形トランジスタを構成することも考えら
れる。この場合は、ゲート絶縁膜18の形成後に、高温
に加熱することがないため、チャネル層17とゲート絶
縁膜18の境界に生じる複合酸化物膜はそれ程厚いもの
にはならない。しかし、チャネル層17上に、ゲート絶
縁膜18を溶液法で作る場合、絶縁性の良好なものを作
ることが困難であった。
Alternatively, as shown in FIG. 6, a channel layer 17 made of an n-type metal oxide layer such as NiO is formed on a silicon substrate 11 by a solution method, and a portion of the channel layer 17 such as SiO 2 is formed on the channel layer 17. A gate insulating film 18 is formed by a solution method, a gate electrode 19 is formed on the gate insulating film 18, and a source electrode 21 and a drain electrode 22 are formed on the channel layer 17 on both sides of the gate insulating film 18. S
It is also conceivable to construct a field-effect transistor having a structure. In this case, since the gate insulating film 18 is not heated to a high temperature after the formation, the composite oxide film formed at the boundary between the channel layer 17 and the gate insulating film 18 is not so thick. However, when the gate insulating film 18 is formed on the channel layer 17 by a solution method, it is difficult to form a gate insulating film 18 having good insulating properties.

【0005】[0005]

【発明が解決しようとする課題】以上述べたように、溶
液法により金属酸化物半導体を作製すれば製造設備が比
較的簡単な半導体素子を作ることができるが、従来にお
いてはトランジスタを作ることが困難であった。
As described above, if a metal oxide semiconductor is manufactured by a solution method, a semiconductor device whose manufacturing equipment is relatively simple can be manufactured, but conventionally, a transistor cannot be manufactured. It was difficult.

【0006】[0006]

【課題を解決するための手段】この発明によれば基板上
にゲート絶縁膜を形成し、そのゲート絶縁膜上にn形又
はp形金属酸化物半導体薄膜を溶液法で作ってチャネル
層を形成し、そのチャネル層上にソース電極及びドレイ
ン電極を形成する。上記溶液法によるチャネル層の形成
は、比較的低い温度で金属酸化物を析出させた後、その
温度より高い温度で析出した金属酸化物を酸化させて金
属酸化物半導体薄膜を得ることが好ましい。
According to the present invention, a gate insulating film is formed on a substrate, and an n-type or p-type metal oxide semiconductor thin film is formed on the gate insulating film by a solution method to form a channel layer. Then, a source electrode and a drain electrode are formed on the channel layer. In the formation of the channel layer by the above solution method, it is preferable to deposit a metal oxide at a relatively low temperature and then oxidize the deposited metal oxide at a temperature higher than that temperature to obtain a metal oxide semiconductor thin film.

【0007】[0007]

【発明の実施の形態】図1にこの発明の実施例を示す。
先ず例えば(100)単結晶シリコン(n形、1.4×
10-2Ωcm)の基板31を用意し、その基板31上に
ゲート絶縁膜32を形成する。このゲート絶縁膜32は
基板31を熱酸化してSiO2 膜を形成して作ることが
できる。あるいはスパッタリングによりSiO2 膜を形
成してもよい。ゲート絶縁膜32の厚さは例えば130
nmとする。
FIG. 1 shows an embodiment of the present invention.
First, for example, (100) single crystal silicon (n-type, 1.4 ×
A substrate 31 of 10 −2 Ωcm) is prepared, and a gate insulating film 32 is formed on the substrate 31. The gate insulating film 32 can be formed by thermally oxidizing the substrate 31 to form an SiO 2 film. Alternatively, an SiO 2 film may be formed by sputtering. The thickness of the gate insulating film 32 is, for example, 130
nm.

【0008】このゲート絶縁膜32上にn形又はp形の
金属酸化物半導体薄膜を溶液法により形成してチャネル
層33とする(図1B)。例えば有機金属液体としてZ
n(OAc)2 ・4H2 Oを用い、これをイソプロパノ
ール(アルコールの一種)に懸濁させ、Znに対し等モ
ルのジエタノールアミンを加水分解抑止剤として添加し
て溶解し、更に2倍モルの水を添加して0.4mol/
lの溶液を調整する。この溶液をディップコーティング
法、又はスプレイ法、スピンコーティング法によりゲー
ト絶縁膜32上にコーティングする。ディップコーティ
ングの場合、溶液中から6cm/分の引き上げ速度で基
板31を引き上げると1回のコーティングで20nmの
ZnO膜が形成されるが、例えばZnOの膜厚、つまり
チャネル層33の膜厚が40nmになるようにコーティ
ングを行い、その後、600℃〜900℃の温度で空気
中又は酸素雰囲気中で加熱処理を行い、ZnOの膜、つ
まりチャネル層33を形成する。
An n-type or p-type metal oxide semiconductor thin film is formed on the gate insulating film 32 by a solution method to form a channel layer 33 (FIG. 1B). For example, Z as an organic metal liquid
Using n (OAc) 2 .4H 2 O, this was suspended in isopropanol (a type of alcohol), and dissolved by adding an equimolar amount of diethanolamine to Zn as a hydrolysis inhibitor, and further dissolved in 2 times water. 0.4 mol /
Prepare 1 solution. This solution is coated on the gate insulating film 32 by a dip coating method, a spray method, or a spin coating method. In the case of dip coating, when the substrate 31 is pulled up from the solution at a pulling rate of 6 cm / min, a ZnO film of 20 nm is formed by one coating. For example, the thickness of the ZnO film, that is, the thickness of the channel layer 33 is 40 nm. Then, heat treatment is performed in air or an oxygen atmosphere at a temperature of 600 ° C. to 900 ° C. to form a ZnO film, that is, a channel layer 33.

【0009】次に図1Cに示すように、チャネル層33
上に金属膜により、ソース電極34とドレイン電極35
を形成して電界効果形トランジスタ(FET)を得る。
必要に応じて基板31のゲート絶縁膜32と反対側にゲ
ート電極36を形成する。基板31自体をゲート電極と
してもよい。電極34,35,36は例えばAuの蒸着
により、或いはITO(インジウム、スズ酸化膜)など
の透明電極材の溶液法により形成する。
[0009] Next, as shown in FIG.
A source electrode 34 and a drain electrode 35 are formed on the
Is formed to obtain a field effect transistor (FET).
A gate electrode 36 is formed on the side of the substrate 31 opposite to the gate insulating film 32 as necessary. The substrate 31 itself may be used as a gate electrode. The electrodes 34, 35, and 36 are formed by, for example, vapor deposition of Au or a solution method of a transparent electrode material such as ITO (indium, tin oxide film).

【0010】ゲート絶縁膜32の厚さは、ゲート絶縁膜
32とチャネル層33との境界に複合酸化膜が生成され
る点から、100nm程度以上が好ましいが、チャネル
制御が確実に行われる点から500nm以下がよい。チ
ャネルはチャネル層33のゲート絶縁膜32と接して形
成され、ソース電極34とドレイン電極35の間にこの
チャネルを通って電流が流れるには、電流はチャネル層
33の厚さ方向に流れて、電極からチャネルへまたチャ
ネルから電極へ電流が流れることになる。この点からチ
ャネル層33の厚さを100nm程度以上にすると、電
子空乏層ができて電流が流れ難くなる。また10nm程
度以下にするとチャネルとしての動作が良好に行わなく
なるおそれがある。これらの点からチャネル層33の厚
さは10〜100nm程度がよい。
The thickness of the gate insulating film 32 is preferably about 100 nm or more from the viewpoint that a composite oxide film is formed at the boundary between the gate insulating film 32 and the channel layer 33, but from the viewpoint that channel control is reliably performed. The thickness is preferably 500 nm or less. The channel is formed in contact with the gate insulating film 32 of the channel layer 33, and in order for a current to flow through the channel between the source electrode 34 and the drain electrode 35, the current flows in the thickness direction of the channel layer 33, Current will flow from the electrode to the channel and from the channel to the electrode. From this point, if the thickness of the channel layer 33 is set to about 100 nm or more, an electron depletion layer is formed and it becomes difficult for current to flow. On the other hand, if the thickness is less than about 10 nm, the operation as a channel may not be performed well. From these points, the thickness of the channel layer 33 is preferably about 10 to 100 nm.

【0011】チャネル層33の形成時における加熱処理
の温度を600℃以下にすると、ゲート絶縁膜32とチ
ャネル層33との境界にZnOとSiO2 の複合酸化物
膜Zn2 SiO4 が十分生成されないため、ゲート絶縁
膜32とチャネル層33との密着性が悪くまたゲート絶
縁膜32を通るゲート電流が増加し、つまり絶縁性が悪
く、良好なトランジスタ特性は得難くなる。従って、加
熱処理温度は600℃以上とする。一方加熱処理温度を
900℃以上にすると、複合酸化物膜Zn2 SiO4
厚さが厚くなり、ZnO(チャネル層33)の厚さが薄
くなり過ぎ、ソース電極34とドレイン電極35間に電
流が流れ難くなり、トランジスタ特性が得られなくな
る。この点より酸化処理温度は900℃以下とする。
If the temperature of the heat treatment at the time of forming the channel layer 33 is set to 600 ° C. or less, the composite oxide film of ZnO and SiO 2 Zn 2 SiO 4 is not sufficiently generated at the boundary between the gate insulating film 32 and the channel layer 33. Therefore, the adhesion between the gate insulating film 32 and the channel layer 33 is poor, and the gate current passing through the gate insulating film 32 is increased, that is, the insulating property is poor, and it is difficult to obtain good transistor characteristics. Therefore, the heat treatment temperature is set to 600 ° C. or higher. On the other hand, when the heat treatment temperature is set to 900 ° C. or higher, the thickness of the composite oxide film Zn 2 SiO 4 becomes too large, the thickness of the ZnO (channel layer 33) becomes too thin, and the current between the source electrode 34 and the drain electrode 35 becomes large. Flows hardly, and transistor characteristics cannot be obtained. From this point, the oxidation temperature is set to 900 ° C. or less.

【0012】前記Zn(OAc)2 ・4H2 Oを用いて
作った、0.4mol/lのディップ溶液に、2回ディ
ップコーティングし、600℃、700℃、800℃及
び900℃でそれぞれ加熱処理を各60分行ってFET
を作製した。ここで600℃で加熱処理とは、1回ディ
ップコーティングを行い乾燥後600℃で30分間加熱
処理を行い、再び1回ディップコーティングを行い乾燥
後600℃で30分間加熱処理を行うことである。70
0℃、800℃及び900℃での各加熱処理も同様にし
て各30分間の加熱処理を2回行った。このようにして
作製したFETのX線回折パターンを図2に示す。加熱
処理の温度が低い600℃ではZn2 SiO4 に基づく
ピークが確認できないが、ZnOに基づくピークは確認
される。加熱処理温度が高くなるに従ってZn2 SiO
4 に基づくピークが確認できるようになり、逆にZnO
に基づくピークが小さくなり、900℃ではZn2 Si
4 に基づくピークが可成り大きく現われ、逆にZnO
に基づくピークが可成り小さくなり、(100)ZnO
に基づくピークはほぼなくなっている。
The Zn (OAc)Two・ 4HTwoWith O
Dip the prepared 0.4mol / l dip solution twice.
600 ° C, 700 ° C, 800 ° C
And heat treatment at 900 ° C for 60 minutes each for FET
Was prepared. Here, the heat treatment at 600 ° C.
After coating and drying, heat at 600 ° C for 30 minutes
Processing, dip coating once again and drying
Thereafter, heat treatment is performed at 600 ° C. for 30 minutes. 70
The same applies to each heat treatment at 0 ° C, 800 ° C and 900 ° C.
The heat treatment was performed twice for 30 minutes each. Like this
FIG. 2 shows an X-ray diffraction pattern of the manufactured FET. heating
At a low processing temperature of 600 ° C., ZnTwoSiOFourbased on
No peak can be confirmed, but a peak based on ZnO is confirmed
Is done. As the heat treatment temperature increases, ZnTwoSiO
FourBased on ZnO, and conversely, ZnO
At 900 ° C., the peak based onTwoSi
O FourPeaks based on ZnO appear considerably large, and conversely ZnO
Is significantly reduced, and the (100) ZnO
Is almost eliminated.

【0013】これら実験結果より、加熱処理を、ZnO
を析出させるが、Zn2 SiO4 の生成を生じない低い
温度、つまり600℃による加熱を行ってZnOを析出
させ、結晶化させた後、900℃で加熱処理して、結晶
化したZnOをSiO2 (ゲート絶縁膜)と反応させて
Zn2 SiO4 を薄く生成した。両加熱処理の合計時間
を60分とした。この場合のサンプルのX線回折パター
ンは、Zn2 SiO4に基づくピークの温度が、900
℃のみで加熱処理した場合のそれよりも小さくなった。
更に透過形電子顕微鏡により断面を観察した所、ZnO
とZn2 SiO 4 との明白な界面が観察でき、Si
2 ,Zn2 SiO4 及びZnOの各膜厚はそれぞれ1
15.40及び45nmであった。Zn2 SiO4 とS
iO2 との界面は非常に密着性が良いものとなっている
ことも確認された。
From these experimental results, the heat treatment was performed using ZnO
Is precipitated, but ZnTwoSiOFourLow does not produce
Precipitation of ZnO by heating at a temperature of 600 ° C
After crystallization, heat treatment at 900 ° C.
Converted ZnO into SiOTwo(Gate insulating film)
ZnTwoSiOFourWas produced thinly. Total time of both heat treatments
For 60 minutes. X-ray diffraction pattern of the sample in this case
Is ZnTwoSiOFourThe peak temperature based on
It became smaller than that when heat treatment was performed only at ° C.
Further, when the cross section was observed with a transmission electron microscope, it was found that ZnO
And ZnTwoSiO FourAnd a clear interface with
OTwo, ZnTwoSiOFourAnd each film thickness of ZnO is 1
15.40 and 45 nm. ZnTwoSiOFourAnd S
iOTwoInterface has very good adhesion
It was also confirmed.

【0014】以上のことから加熱処理は酸化物半導体結
晶が析出するが、その酸化物半導体結晶とゲート絶縁膜
と反応しない温度で加熱し、酸化物半導体を析出結晶化
させた後、これよりも高い温度で加熱して析出結晶化し
た半導体とゲート絶縁膜とを反応させる手法が好ましい
ことが理解される。2回ディップコーティングで各60
0℃10分の加熱処理と、900℃15分の加熱処理と
の合計35分の加熱処理を行って作製したZnO−FE
Tのドレイン電流とゲート電流のゲート電圧に対する特
性を測定した。その結果を図3に実線と破線でそれぞれ
示す。この図から、ゲート電極への漏れ(ゲート電流)
は少なく、トランジスタ特性が得られていることが理解
される。
From the above, the oxide semiconductor crystal is deposited by the heat treatment, but the oxide semiconductor crystal is heated at a temperature at which the oxide semiconductor crystal does not react with the gate insulating film to precipitate and crystallize the oxide semiconductor. It is understood that a method of reacting the semiconductor deposited and crystallized by heating at a high temperature with the gate insulating film is preferable. Dip coating twice for 60 each
ZnO-FE manufactured by performing a total of 35 minutes of heat treatment of 0 ° C. for 10 minutes and 900 ° C. for 15 minutes
The characteristics of the drain current and the gate current of T with respect to the gate voltage were measured. The result is shown by a solid line and a broken line in FIG. From this figure, leakage to the gate electrode (gate current)
, It is understood that transistor characteristics are obtained.

【0015】上述において基板31としては石英ガラ
ス、Al2 3 など他の材料でもよい。またゲート絶縁
膜32としてはSiN4 、SiONなどを用いてもよ
い。更にチャネル層33としては、ZnOに限らず、T
iO2 、BaO、TiBaOなどを用いてもよく、また
n形金属酸化物半導体のみならず、NiO、CuO2
Co2 3 などのp形金属酸化物半導体を用いてもよ
い。なお図1Dに示すように基板31を切削又は化学的
エッチングにより、ゲート絶縁膜32と反対側を削り、
基板31の厚さを例えば0.05mm以下、つまり可視
光が透過する程度以下にし、場合によっては全て除去
し、ゲート絶縁膜32にITOなどの透明電極(ゲート
電極)を付けて液晶駆動トランジスタとして使用できる
ようにすることもできる。つまり透明なFETとするこ
ともできる。また図4に示すように、図1Cに対し、ソ
ース電極34,ドレイン電極35の形成面上に、これら
の周縁部と一部重なるように酸化シリコンや強誘電体チ
タン酸バリウムなどの絶縁膜37を形成してチャネル層
表面を流れる洩れ電流を減らすように少なくともチャネ
ル層膜上に絶縁膜を溶液法で形成することが好ましい。
In the above description, the substrate 31 may be made of another material such as quartz glass or Al 2 O 3 . Further, as the gate insulating film 32, SiN 4 , SiON, or the like may be used. Further, the channel layer 33 is not limited to ZnO,
iO 2 , BaO, TiBaO, etc. may be used. Not only n-type metal oxide semiconductors, but also NiO, CuO 2 ,
A p-type metal oxide semiconductor such as Co 2 O 3 may be used. In addition, as shown in FIG. 1D, the opposite side to the gate insulating film 32 is cut by cutting or chemically etching the substrate 31,
The thickness of the substrate 31 is set to, for example, 0.05 mm or less, that is, to the extent that visible light is transmitted therethrough, and in some cases, all of the thickness is removed. It can also be used. That is, a transparent FET can be used. Further, as shown in FIG. 4, the insulating film 37 such as silicon oxide or ferroelectric barium titanate is formed on the surface where the source electrode 34 and the drain electrode 35 are formed so as to partially overlap with the peripheral portions thereof. It is preferable to form an insulating film on at least the channel layer film by a solution method so as to reduce leakage current flowing on the channel layer surface.

【0016】[0016]

【発明の効果】以上述べたようにこの発明によれば、チ
ャネル層を溶液法により形成することにより、金属酸化
物半導体をチャネル層としたFETを作製することがで
き、排ガス処理など大きな設備を必要とせず、比較的簡
単な設備で製造することができる。
As described above, according to the present invention, an FET using a metal oxide semiconductor as a channel layer can be manufactured by forming a channel layer by a solution method. It can be manufactured with relatively simple equipment without the need.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の実施例の製造工程を説明するための
断面図。
FIG. 1 is a cross-sectional view for explaining a manufacturing process according to an embodiment of the present invention.

【図2】各種加熱処理温度で作製したZnO−FETの
X線回折パターンを示す図。
FIG. 2 shows X-ray diffraction patterns of ZnO-FETs manufactured at various heat treatment temperatures.

【図3】この発明方法で作ったZnO−FETのトラン
ジスタ特性を示す図。
FIG. 3 is a diagram showing transistor characteristics of a ZnO-FET manufactured by the method of the present invention.

【図4】この発明方法で作られたトランジスタの例を示
す断面図。
FIG. 4 is a cross-sectional view showing an example of a transistor manufactured by the method of the present invention.

【図5】従来技術で考えられる接合形金属酸化物半導体
トランジスタを示す断面図。
FIG. 5 is a cross-sectional view showing a junction type metal oxide semiconductor transistor considered in the prior art.

【図6】従来技術で考えられる金属酸化物半導体FET
を示す断面図。
FIG. 6 shows a metal oxide semiconductor FET considered in the prior art.
FIG.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5F110 DD01 DD03 DD05 DD13 FF03 FF04 GG01 GG04 GG25  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 5F110 DD01 DD03 DD05 DD13 FF03 FF04 GG01 GG04 GG25

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 基板上にゲート絶縁膜を形成し、 そのゲート絶縁膜上にn形又はp形金属酸化物半導体薄
膜を溶液法で作ってチャネル層を形成し、 そのチャネル層上にソース電極及びドレイン電極を形成
することを特徴とする金属酸化物トランジスタの製造方
法。
1. A gate insulating film is formed on a substrate, an n-type or p-type metal oxide semiconductor thin film is formed on the gate insulating film by a solution method to form a channel layer, and a source electrode is formed on the channel layer. And forming a drain electrode.
【請求項2】 上記溶液法によるチャネル層の形成は、 上記金属酸化物が析出できる範囲で比較的低い温度で上
記金属酸化物層を形成し、その後、上記温度より高い温
度で上記金属酸化物を酸化させて上記金属酸化物半導体
薄膜を得ることを特徴とする請求項1記載の金属酸化物
トランジスタの製造方法。
2. The formation of a channel layer by the solution method includes forming the metal oxide layer at a relatively low temperature within a range where the metal oxide can be deposited, and then forming the metal oxide layer at a temperature higher than the temperature. 2. The method for manufacturing a metal oxide transistor according to claim 1, wherein the metal oxide semiconductor thin film is obtained by oxidizing the thin film.
JP2000057440A 2000-03-02 2000-03-02 Method of manufacturing metal oxide transistor Pending JP2001244464A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000057440A JP2001244464A (en) 2000-03-02 2000-03-02 Method of manufacturing metal oxide transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000057440A JP2001244464A (en) 2000-03-02 2000-03-02 Method of manufacturing metal oxide transistor

Publications (1)

Publication Number Publication Date
JP2001244464A true JP2001244464A (en) 2001-09-07

Family

ID=18578229

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000057440A Pending JP2001244464A (en) 2000-03-02 2000-03-02 Method of manufacturing metal oxide transistor

Country Status (1)

Country Link
JP (1) JP2001244464A (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003228320A (en) * 2002-02-05 2003-08-15 Matsushita Electric Ind Co Ltd Plasma display device
WO2003107428A1 (en) * 2002-06-13 2003-12-24 株式会社 村田製作所 Semiconductor device and method for fabricating the same
WO2004038757A2 (en) * 2002-05-21 2004-05-06 The State Of Oregon Acting By And Through The State Board Of Higher Education On Behalf Of Oregon State University Transistor structures and methods for making the same
KR100490924B1 (en) * 2001-09-10 2005-05-24 샤프 가부시키가이샤 Thin film transistor and matrix display device
KR100626822B1 (en) 2004-06-24 2006-09-20 김용성 Manufacturing method of zinc oxide thin film
JP2006286681A (en) * 2005-03-31 2006-10-19 Kyushu Institute Of Technology Field effect transistor and its manufacturing method
US7189992B2 (en) * 2002-05-21 2007-03-13 State Of Oregon Acting By And Through The Oregon State Board Of Higher Education On Behalf Of Oregon State University Transistor structures having a transparent channel
KR100729043B1 (en) 2005-09-14 2007-06-14 삼성에스디아이 주식회사 Transparent Thin Film Transistor and Fabrication Method for the same
WO2009011224A1 (en) * 2007-07-18 2009-01-22 Konica Minolta Holdings, Inc. Method for producing metal oxide semiconductor, and thin film transistor obtained from the metal oxide semiconductor
WO2009028452A1 (en) * 2007-08-27 2009-03-05 Konica Minolta Holdings, Inc. Method for producing metal oxide semiconductor and thin film transistor using oxide semiconductor thin film produced by the method
WO2009031381A1 (en) * 2007-09-07 2009-03-12 Konica Minolta Holdings, Inc. Metal oxide semiconductor manufacturing method and thin film transistor obtained by the method
US7507618B2 (en) 2005-06-27 2009-03-24 3M Innovative Properties Company Method for making electronic devices using metal oxide nanoparticles
WO2009081862A1 (en) * 2007-12-26 2009-07-02 Konica Minolta Holdings, Inc. Metal oxide semiconductor, process for producing the metal oxide semiconductor, semiconductor element, and thin-film transistor
JP2010525602A (en) * 2007-04-25 2010-07-22 エルジー・ケム・リミテッド Thin film transistor and manufacturing method thereof
KR101023491B1 (en) 2002-05-21 2011-03-21 더 스테이트 오브 오레곤 액팅 바이 앤드 쓰루 더 스테이트 보드 오브 하이어 에쥬케이션 온 비해프 오브 오레곤 스테이트 유니버시티 Transistor structures and methods for making the same
KR101084017B1 (en) 2009-09-29 2011-11-16 연세대학교 산학협력단 Method of fabricating oxide semiconductor device using sol-gel process and nano-structure, and oxide semiconductor device manufactured by the method
JP2013197539A (en) * 2012-03-22 2013-09-30 National Institute Of Advanced Industrial & Technology Method of manufacturing oxide semiconductor film, and oxide semiconductor film
JP2014007398A (en) * 2012-06-01 2014-01-16 Semiconductor Energy Lab Co Ltd Semiconductor device and manufacturing method thereof
US8753920B2 (en) 2011-03-22 2014-06-17 Samsung Display Co., Ltd. Precursor composition for oxide semiconductor and method of manufacturing thin film transistor array panel using the same
US8963146B2 (en) 2009-11-05 2015-02-24 Sumitomo Metal Mining Co., Ltd. Method of manufacturing transparent conductive film, the transparent conductive substrate using the film, as well as device using the substrate
KR101495348B1 (en) * 2008-06-09 2015-02-25 엘지디스플레이 주식회사 Fabricating method of transparent thin film transistor
US9123818B2 (en) 2009-05-26 2015-09-01 Industry-Academic Cooperation Foundation, Yonsei University Compositions for solution process, electronic devices fabricated using the same, and fabrication methods thereof
JP2020043347A (en) * 2009-10-05 2020-03-19 株式会社半導体エネルギー研究所 Semiconductor device and method for manufacturing semiconductor device

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100490924B1 (en) * 2001-09-10 2005-05-24 샤프 가부시키가이샤 Thin film transistor and matrix display device
JP2003228320A (en) * 2002-02-05 2003-08-15 Matsushita Electric Ind Co Ltd Plasma display device
KR101023491B1 (en) 2002-05-21 2011-03-21 더 스테이트 오브 오레곤 액팅 바이 앤드 쓰루 더 스테이트 보드 오브 하이어 에쥬케이션 온 비해프 오브 오레곤 스테이트 유니버시티 Transistor structures and methods for making the same
US7888207B2 (en) 2002-05-21 2011-02-15 State of Oregon Acting by and through the Oregon State Board of Higher Eduacation on behalf of Oregon State University Transistor structures and methods for making the same
WO2004038757A2 (en) * 2002-05-21 2004-05-06 The State Of Oregon Acting By And Through The State Board Of Higher Education On Behalf Of Oregon State University Transistor structures and methods for making the same
WO2004038757A3 (en) * 2002-05-21 2004-08-05 Oregon State Transistor structures and methods for making the same
US7189992B2 (en) * 2002-05-21 2007-03-13 State Of Oregon Acting By And Through The Oregon State Board Of Higher Education On Behalf Of Oregon State University Transistor structures having a transparent channel
US7339187B2 (en) 2002-05-21 2008-03-04 State Of Oregon Acting By And Through The Oregon State Board Of Higher Education On Behalf Of Oregon State University Transistor structures
CN100440540C (en) * 2002-05-21 2008-12-03 俄勒冈州,由高等教育州委员会代表俄勒冈州立大学 Transistor structures and methods for making the same
WO2003107428A1 (en) * 2002-06-13 2003-12-24 株式会社 村田製作所 Semiconductor device and method for fabricating the same
CN100376035C (en) * 2002-06-13 2008-03-19 株式会社村田制作所 Semiconductor device and method for fabricating the same
US7501293B2 (en) 2002-06-13 2009-03-10 Murata Manufacturing Co., Ltd. Semiconductor device in which zinc oxide is used as a semiconductor material and method for manufacturing the semiconductor device
KR100626822B1 (en) 2004-06-24 2006-09-20 김용성 Manufacturing method of zinc oxide thin film
JP2006286681A (en) * 2005-03-31 2006-10-19 Kyushu Institute Of Technology Field effect transistor and its manufacturing method
US7507618B2 (en) 2005-06-27 2009-03-24 3M Innovative Properties Company Method for making electronic devices using metal oxide nanoparticles
KR100729043B1 (en) 2005-09-14 2007-06-14 삼성에스디아이 주식회사 Transparent Thin Film Transistor and Fabrication Method for the same
JP2010525602A (en) * 2007-04-25 2010-07-22 エルジー・ケム・リミテッド Thin film transistor and manufacturing method thereof
WO2009011224A1 (en) * 2007-07-18 2009-01-22 Konica Minolta Holdings, Inc. Method for producing metal oxide semiconductor, and thin film transistor obtained from the metal oxide semiconductor
WO2009028452A1 (en) * 2007-08-27 2009-03-05 Konica Minolta Holdings, Inc. Method for producing metal oxide semiconductor and thin film transistor using oxide semiconductor thin film produced by the method
WO2009031381A1 (en) * 2007-09-07 2009-03-12 Konica Minolta Holdings, Inc. Metal oxide semiconductor manufacturing method and thin film transistor obtained by the method
JP5644111B2 (en) * 2007-12-26 2014-12-24 コニカミノルタ株式会社 METAL OXIDE SEMICONDUCTOR AND ITS MANUFACTURING METHOD, SEMICONDUCTOR ELEMENT, THIN FILM TRANSISTOR
JPWO2009081862A1 (en) * 2007-12-26 2011-05-06 コニカミノルタホールディングス株式会社 METAL OXIDE SEMICONDUCTOR AND ITS MANUFACTURING METHOD, SEMICONDUCTOR ELEMENT, THIN FILM TRANSISTOR
US7947537B2 (en) * 2007-12-26 2011-05-24 Konica Minolta Holdings, Inc. Metal oxide semiconductor, semiconductor element, thin film transistor and method of manufacturing thereof
WO2009081862A1 (en) * 2007-12-26 2009-07-02 Konica Minolta Holdings, Inc. Metal oxide semiconductor, process for producing the metal oxide semiconductor, semiconductor element, and thin-film transistor
KR101495348B1 (en) * 2008-06-09 2015-02-25 엘지디스플레이 주식회사 Fabricating method of transparent thin film transistor
US9123818B2 (en) 2009-05-26 2015-09-01 Industry-Academic Cooperation Foundation, Yonsei University Compositions for solution process, electronic devices fabricated using the same, and fabrication methods thereof
US9391211B2 (en) 2009-05-26 2016-07-12 Industry-Academic Cooperation Foundation, Yonsei University Compositions for solution process, electronic devices fabricated using the same, and fabrication methods thereof
KR101084017B1 (en) 2009-09-29 2011-11-16 연세대학교 산학협력단 Method of fabricating oxide semiconductor device using sol-gel process and nano-structure, and oxide semiconductor device manufactured by the method
JP2020043347A (en) * 2009-10-05 2020-03-19 株式会社半導体エネルギー研究所 Semiconductor device and method for manufacturing semiconductor device
JP7002513B2 (en) 2009-10-05 2022-01-20 株式会社半導体エネルギー研究所 Semiconductor device and method for manufacturing semiconductor device
JP2022044610A (en) * 2009-10-05 2022-03-17 株式会社半導体エネルギー研究所 Display device
JP7199501B2 (en) 2009-10-05 2023-01-05 株式会社半導体エネルギー研究所 Display device
US8963146B2 (en) 2009-11-05 2015-02-24 Sumitomo Metal Mining Co., Ltd. Method of manufacturing transparent conductive film, the transparent conductive substrate using the film, as well as device using the substrate
US8753920B2 (en) 2011-03-22 2014-06-17 Samsung Display Co., Ltd. Precursor composition for oxide semiconductor and method of manufacturing thin film transistor array panel using the same
JP2013197539A (en) * 2012-03-22 2013-09-30 National Institute Of Advanced Industrial & Technology Method of manufacturing oxide semiconductor film, and oxide semiconductor film
JP2014007398A (en) * 2012-06-01 2014-01-16 Semiconductor Energy Lab Co Ltd Semiconductor device and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP2001244464A (en) Method of manufacturing metal oxide transistor
KR101206033B1 (en) Fabrication method of ZnO Thin Film and ZnO Transistor, and Thin Film Transistor adopting the same
KR101482944B1 (en) method for manufacturing thin film transistors based on titanium oxides as active layer and thin film transistors thereof
TWI577029B (en) Method for forming a semiconductive oxynitride compound and a method of fabricating a thin film transistor using the same
JP2009194351A (en) Thin film transistor and its manufacturing method
US20080210934A1 (en) Semiconductor Device Using Titanium Dioxide as Active Layer and Method for Producing Semiconductor Device
JP2006349673A (en) Nanowire sensor device and method of fabricating nanowire sensor device structure
JPS63304670A (en) Manufacture of thin film semiconductor device
KR100961182B1 (en) The transparent electronic devices and manufacturing method thereof
KR101884561B1 (en) Metal oxide semiconductor thin film transistor having N-doped metal oxide semiconductor layer and manufacturing method thereof
KR101992480B1 (en) Method of manufacturing oxide semiconductor by a solution-based deposition method and oxide semiconductor
KR101570443B1 (en) Method of crystallization of oxide semiconductor
KR101934165B1 (en) Oxide thin film, method of manufacturing the same and oxide thin film transistor the same
JP2939819B2 (en) Method for manufacturing thin film transistor
JPH02184076A (en) Manufacture of thin film transistor
JPH05291220A (en) Manufacture of semiconductor device
JPH06181178A (en) Fabrication of thin film transistor
KR102660923B1 (en) DOPED TIN OXIDE THIN FILE TRANSISTOR and manufacturing method thereof
KR102214812B1 (en) Amorphous thin film transistor and manufacturing method thereof
JPH0348670B2 (en)
TWI636507B (en) Method of manufacturing thin film transistor
CN116404035A (en) Thin film transistor and preparation method thereof
TWI451501B (en) Methods for manufacturing a metal oxide semiconductor transistor
JP2889924B2 (en) Manufacturing method of thin film field effect transistor
JPS61232675A (en) Polycrystalline thin film transistor and manufacture thereof

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20060124