TWI451501B - Methods for manufacturing a metal oxide semiconductor transistor - Google Patents

Methods for manufacturing a metal oxide semiconductor transistor Download PDF

Info

Publication number
TWI451501B
TWI451501B TW101103544A TW101103544A TWI451501B TW I451501 B TWI451501 B TW I451501B TW 101103544 A TW101103544 A TW 101103544A TW 101103544 A TW101103544 A TW 101103544A TW I451501 B TWI451501 B TW I451501B
Authority
TW
Taiwan
Prior art keywords
metal oxide
oxide semiconductor
semiconductor layer
layer
forming
Prior art date
Application number
TW101103544A
Other languages
Chinese (zh)
Other versions
TW201310543A (en
Inventor
Hsiaowen Zan
Chuangchuang Tsai
Chuncheng Yeh
Lianghao Chen
Original Assignee
E Ink Holdings Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by E Ink Holdings Inc filed Critical E Ink Holdings Inc
Priority to CN201210113783.5A priority Critical patent/CN102956711B/en
Priority to US13/572,710 priority patent/US8927330B2/en
Publication of TW201310543A publication Critical patent/TW201310543A/en
Application granted granted Critical
Publication of TWI451501B publication Critical patent/TWI451501B/en

Links

Description

金屬氧化物半導體電晶體的製造方法Method for manufacturing metal oxide semiconductor transistor

本發明是有關於一種金屬氧化物半導體電晶體的製造方法。The present invention relates to a method of fabricating a metal oxide semiconductor transistor.

金屬氧化物半導體電晶體(Metal Oxide Semiconductor Transistor)是利用金屬氧化物為半導體層的電晶體。相較於非晶矽薄膜電晶體,金屬氧化物半導體電晶體具有較高的載子遷移率(Mobility),因此金屬氧化物半導體電晶體擁有較佳的電性表現。此外,金屬氧化物半導體電晶體的製造方法也比低溫多晶矽薄膜電晶體簡單,所以金屬氧化物半導體電晶體亦具有較高的生產效能。A metal oxide semiconductor transistor (Metal Oxide Semiconductor Transistor) is a transistor using a metal oxide as a semiconductor layer. Compared with amorphous germanium thin film transistors, metal oxide semiconductor transistors have higher carrier mobility, and thus metal oxide semiconductor transistors have better electrical performance. In addition, the manufacturing method of the metal oxide semiconductor transistor is also simpler than the low temperature polycrystalline silicon film transistor, so the metal oxide semiconductor transistor also has high production efficiency.

在製造金屬氧化物半導體的方法中,未經退火(Unannealed)的金屬氧化物層所製作的電晶體的電性表現並不穩定。第1圖繪示在汲極電壓為20V的條件下,連續測量六次上述電晶體之閘極電壓與汲極電流之關係曲線圖。如第1圖所示,每次量測的閘極電壓與汲極電流之關係曲線都不相同,且明顯有臨界電壓偏移的現象。臨界電壓的差異高達9.36V。為改善上述問題,業界利用溫度高達350℃以上的退火製程來改善電晶體的穩定性。但是,在高溫下進行退火製程,容易造成熱應力效應,導致金屬氧化物半導體電晶體變形。In the method of manufacturing a metal oxide semiconductor, the electrical performance of a transistor made of an unannealed metal oxide layer is not stable. Fig. 1 is a graph showing the relationship between the gate voltage and the drain current of the above-mentioned transistor for six consecutive measurements under the condition that the drain voltage is 20V. As shown in Fig. 1, the relationship between the gate voltage and the drain current of each measurement is different, and there is a clear phenomenon of threshold voltage shift. The difference in threshold voltage is as high as 9.36V. In order to improve the above problems, the industry uses an annealing process with temperatures up to 350 ° C to improve the stability of the transistor. However, the annealing process at a high temperature tends to cause a thermal stress effect, resulting in deformation of the metal oxide semiconductor transistor.

因此,目前極需要一種改良的製造方法,期能降低退火製程的溫度,並且能使金屬氧化物半導體電晶體具有穩 定的電性性能。Therefore, there is a great need for an improved manufacturing method that can reduce the temperature of the annealing process and stabilize the metal oxide semiconductor transistor. The electrical properties are fixed.

因此,本發明提供一種金屬氧化物半導體電晶體的製造方法,俾能在低於350℃的溫度下製造出電性穩定的金屬氧化物半導體電晶體。。Accordingly, the present invention provides a method of fabricating a metal oxide semiconductor transistor capable of producing an electrically stable metal oxide semiconductor transistor at a temperature lower than 350 °C. .

依據本發明一實施方式,上述金屬氧化物半導體電晶體的製造方法包括下列步驟。形成一閘極於一基板上。形成一閘極絕緣層覆蓋閘極。形成一圖案化金屬氧化物半導體層於閘極絕緣層上,此圖案化金屬氧化物半導體層具有一通道區。形成一源極及一汲極於圖案化金屬氧化物半導體層上,源極與汲極間之一間隙露出該通道區。形成一遷移率增強層於通道區上,使遷移率增強層與金屬氧化物半導體層中的氧產生氧化反應,遷移率增強層不接觸源極及汲極。在溫度為約200℃至約350℃的環境中,對金屬氧化物半導體層及遷移率增強層進行一退火製程。According to an embodiment of the present invention, a method of manufacturing the above metal oxide semiconductor transistor includes the following steps. A gate is formed on a substrate. A gate insulating layer is formed to cover the gate. A patterned metal oxide semiconductor layer is formed on the gate insulating layer, and the patterned metal oxide semiconductor layer has a channel region. A source and a drain are formed on the patterned metal oxide semiconductor layer, and a gap between the source and the drain exposes the channel region. Forming a mobility enhancement layer on the channel region causes the mobility enhancement layer to oxidize with oxygen in the metal oxide semiconductor layer, and the mobility enhancement layer does not contact the source and the drain. The metal oxide semiconductor layer and the mobility enhancing layer are subjected to an annealing process in an environment having a temperature of from about 200 ° C to about 350 ° C.

依據本發明另一實施方式,金屬氧化物半導體電晶體的製造方法包括下列步驟。形成一閘極於一基板上。形成一閘極絕緣層覆蓋閘極。形成一圖案化金屬氧化物半導體層於閘極絕緣層上,此圖案化金屬氧化物半導體層具有一通道區。形成一源極及一汲極於圖案化金屬氧化物半導體層上,源極與汲極間之一間隙露出通道區。以一遷移率增強介質對通道區進行表面處理,使遷移率增強介質與金屬氧化物半導體層的氧產生氧化反應。在溫度為約200℃至約350℃的環境中,對已進行表面處理之金屬氧化物半導 體層進行一退火製程。According to another embodiment of the present invention, a method of manufacturing a metal oxide semiconductor transistor includes the following steps. A gate is formed on a substrate. A gate insulating layer is formed to cover the gate. A patterned metal oxide semiconductor layer is formed on the gate insulating layer, and the patterned metal oxide semiconductor layer has a channel region. A source and a drain are formed on the patterned metal oxide semiconductor layer, and a gap between the source and the drain is exposed to the channel region. The channel region is surface treated with a mobility enhancing medium to cause an oxidation reaction between the mobility enhancing medium and the metal oxide semiconductor layer. Surface treated metal oxide semiconducting in an environment having a temperature of from about 200 ° C to about 350 ° C The body layer is subjected to an annealing process.

為了使本揭示內容的敘述更加詳盡與完備,下文針對了本發明的實施態樣與具體實施例提出了說明性的描述;但這並非實施或運用本發明具體實施例的唯一形式。以下所揭露的各實施例,在有益的情形下可相互組合或取代,也可在一實施例中附加其他的實施例,而無須進一步的記載或說明。The description of the embodiments of the present invention is intended to be illustrative and not restrictive. The embodiments disclosed herein may be combined or substituted with each other in an advantageous manner, and other embodiments may be added to an embodiment without further description or description.

在以下描述中,將詳細敘述許多特定細節以使讀者能夠充分理解以下的實施例。然而,可在無此等特定細節之情況下實踐本發明之實施例。在其他情況下,為簡化圖式,熟知的結構與裝置僅示意性地繪示於圖中。In the following description, numerous specific details are set forth However, embodiments of the invention may be practiced without these specific details. In other instances, well-known structures and devices are only schematically shown in the drawings in order to simplify the drawings.

第2圖為本發明一實施方式之金屬氧化物半導體電晶體之製造方法100的流程圖。第3-7圖繪示製造方法100的各製程階段剖面示意圖。Fig. 2 is a flow chart showing a method 100 of manufacturing a metal oxide semiconductor transistor according to an embodiment of the present invention. 3-7 are schematic cross-sectional views of various process stages of the manufacturing method 100.

在步驟102中,在基板210上形成閘極220,如第3圖所示。基板210可例如為玻璃基板或矽基板。在一實施方式中,使用直流濺鍍法來形成閘極220。閘極220的材料可例如為鉻化鉬、鉬合金或鋁合金。在另一實施方式中,可使用重摻雜p-型的矽(heavily doped p-type Si)作為閘極220的材料,其為本技術領所習知。In step 102, a gate 220 is formed on the substrate 210 as shown in FIG. The substrate 210 may be, for example, a glass substrate or a germanium substrate. In one embodiment, the gate 220 is formed using a DC sputtering process. The material of the gate 220 may be, for example, molybdenum molybdenum, a molybdenum alloy or an aluminum alloy. In another embodiment, heavily doped p-type Si can be used as the material for the gate 220, which is well known in the art.

在步驟104中,形成閘極絕緣層230覆蓋閘極220,如第4圖所示。在一實施方式中,使用水平爐管(horizontal furnace)進行化學氣相沉積或使用電漿輔助化學氣相沉積 法(Plasma-enhanced chemical vapor deposition,PECVD)來形成閘極絕緣層230。閘極絕緣層230的材料可例如為氮化矽(SiNx )或氧化矽(SiOx )。In step 104, a gate insulating layer 230 is formed to cover the gate 220 as shown in FIG. In one embodiment, the gate insulating layer 230 is formed using a horizontal furnace for chemical vapor deposition or a plasma-assisted chemical vapor deposition (PECVD). The material of the gate insulating layer 230 may be, for example, tantalum nitride (SiN x ) or tantalum oxide (SiO x ).

在步驟106中,形成圖案化金屬氧化物半導體層240在閘極絕緣層230上,且圖案化金屬氧化物半導體層240具有一通道區242,如第5圖所示。在一實施方式中,形成金屬氧化物半導體層240的方法為射頻磁控濺鍍法或直流濺鍍法。金屬氧化物半導體層240的材料可例如為非晶銦鎵鋅氧化物(a-IGZO)、銦鋅氧化物(IZO)、非晶銦鋅錫氧化物(a-IZTO)或類似的材料。In step 106, a patterned metal oxide semiconductor layer 240 is formed over the gate insulating layer 230, and the patterned metal oxide semiconductor layer 240 has a channel region 242, as shown in FIG. In one embodiment, the method of forming the metal oxide semiconductor layer 240 is a radio frequency magnetron sputtering method or a direct current sputtering method. The material of the metal oxide semiconductor layer 240 may be, for example, amorphous indium gallium zinc oxide (a-IGZO), indium zinc oxide (IZO), amorphous indium zinc tin oxide (a-IZTO), or the like.

在步驟108中,在金屬氧化物半導體層240上形成源極250a和汲極250b,如第6圖所示。在源極250a和汲極250b之間存在一間隙252露出通道區(channel)242。在一實施方式中,形成源極250a和汲極250b的方法為熱蒸鍍製程(thermal evaporation)或直流濺鍍製程。形成源極250a和汲極250b的材料可例如為鉻化鉬、鉬合金或鋁合金。In step 108, a source 250a and a drain 250b are formed on the metal oxide semiconductor layer 240 as shown in FIG. There is a gap 252 between the source 250a and the drain 250b that exposes the channel 242. In one embodiment, the method of forming source 250a and drain 250b is a thermal evaporation or DC sputtering process. The material forming the source 250a and the drain 250b may be, for example, molybdenum molybdenum, a molybdenum alloy, or an aluminum alloy.

在一實施方式中,在完成步驟108後,進行步驟110之前,可對金屬氧化物半導體層240進行一熱處理步驟。舉例而言,可將形成有源極250a、汲極250b及金屬氧化物半導體層240的結構置入溫度為約200℃至約350℃的環境中,對金屬氧化物半導體層240進行熱處理,以得到性質較為穩定的金屬氧化物半導體層240,下文將更詳細敘述。In one embodiment, after the step 108 is completed, a step of heat treatment may be performed on the metal oxide semiconductor layer 240 before the step 110 is performed. For example, the structure in which the source electrode 250a, the drain electrode 250b, and the metal oxide semiconductor layer 240 are formed may be placed in an environment having a temperature of about 200 ° C to about 350 ° C, and the metal oxide semiconductor layer 240 may be heat-treated to A metal oxide semiconductor layer 240 having a relatively stable nature is obtained, which will be described in more detail below.

在步驟110中,在通道區242上形成遷移率增強層260,如第7A圖所示。遷移率增強層260用以移除金屬氧 化物半導體層240中未鍵結或弱鍵結的氧原子,以提高金屬氧化物半導體層240的穩定性。遷移率增強層260包含可與氧產生鍵結之無機物、離子型化合物或共價型化合物等化學物質。遷移率增強層260接觸金屬氧化物半導體層240,使遷移率增強層260與金屬氧化物半導體層240中的氧產生氧化反應,從而移除金屬氧化物半導體層240中未鍵結或弱鍵結的氧原子。在沈積金屬氧化物半導體層240時,金屬氧化物半導體層240中會存在未鍵結或弱鍵結的氧原子。本發明之發明人發現,這些未鍵結或弱鍵結的氧原子是造成金屬氧化物半導體層240的電性性質不穩定的主要原因。因此,經由移除這些未鍵結或弱鍵結的氧原子,得以改善金屬氧化物半導體電晶體的穩定性。In step 110, a mobility enhancement layer 260 is formed over channel region 242, as shown in FIG. 7A. Mobility enhancement layer 260 is used to remove metal oxygen The oxygen atoms in the semiconductor layer 240 are not bonded or weakly bonded to improve the stability of the metal oxide semiconductor layer 240. The mobility enhancement layer 260 contains a chemical substance such as an inorganic substance, an ionic compound or a covalent compound which can be bonded to oxygen. The mobility enhancement layer 260 contacts the metal oxide semiconductor layer 240 to cause the mobility enhancement layer 260 to oxidize with oxygen in the metal oxide semiconductor layer 240, thereby removing unbonded or weak bonds in the metal oxide semiconductor layer 240. Oxygen atom. When the metal oxide semiconductor layer 240 is deposited, there is an unbonded or weakly bonded oxygen atom in the metal oxide semiconductor layer 240. The inventors of the present invention have found that these unbonded or weakly bonded oxygen atoms are the main cause of the instability of the electrical properties of the metal oxide semiconductor layer 240. Therefore, the stability of the metal oxide semiconductor transistor is improved by removing these unbonded or weakly bonded oxygen atoms.

遷移率增強層260之材質可例如為鈣、鋰、鉀、鈉、鎂、銫、鉬、銀、鋇、鈦、鐵、鎵、鋁、鍺、矽或上述未達飽和氧化狀態的氧化物。所謂「未達飽和氧化狀態的氧化物」可例如為AlO,其可進一步氧化為Al2 O3 。此類未達飽和氧化狀態的氧化物的其他示例尚有氧化鈣、氧化鋰、氧化鈉、氧化鎂、氧化銫、氧化鉬及氧化銀。在一實施方式中,可利用熱蒸鍍製程(thermal evaporation)或射頻磁控濺鍍製程形成遷移率增強層260。The material of the mobility enhancement layer 260 may be, for example, calcium, lithium, potassium, sodium, magnesium, barium, molybdenum, silver, strontium, titanium, iron, gallium, aluminum, lanthanum, cerium or the above oxides which are not in a saturated oxidation state. The "oxide which is not in a saturated oxidation state" may be, for example, AlO, which may be further oxidized to Al 2 O 3 . Other examples of such oxides that are not in a saturated oxidation state are calcium oxide, lithium oxide, sodium oxide, magnesium oxide, cerium oxide, molybdenum oxide, and silver oxide. In one embodiment, the mobility enhancing layer 260 can be formed using a thermal evaporation or radio frequency magnetron sputtering process.

遷移率增強層260不接觸源極250a和汲極250b。本發明之發明人發現,縱然使用諸如鈣等之非導電材料來形成遷移率增強層260,如果遷移率增強層260與源極250a和汲極250b接觸,則最終形成的金屬氧化物半導體電晶體會發生漏電的現象,而不利於電晶體的開/關功能。因此, 本發明之一特徵是遷移率增強層260不接觸源極250a和汲極250b,而能使金屬氧化物半導體電晶體具更佳的電性表現。The mobility enhancement layer 260 does not contact the source 250a and the drain 250b. The inventors of the present invention have found that even if a mobility enhancing layer 260 is formed using a non-conductive material such as calcium, if the mobility enhancing layer 260 is in contact with the source 250a and the drain 250b, the finally formed metal oxide semiconductor transistor Leakage can occur, which is not conducive to the on/off function of the transistor. therefore, One feature of the present invention is that the mobility enhancing layer 260 does not contact the source 250a and the drain 250b, but enables the metal oxide semiconductor transistor to have better electrical performance.

在進行步驟110後,可形成一保護層270覆蓋金屬氧化物半導體層240、源極250a、汲極250b和遷移率增強層260,如第7B圖所示。保護層270用以保護其下的結構,避免空氣中的氧或水氣造成這些結構的劣化。After performing step 110, a protective layer 270 may be formed to cover the metal oxide semiconductor layer 240, the source 250a, the drain 250b, and the mobility enhancing layer 260, as shown in FIG. 7B. The protective layer 270 serves to protect the underlying structure from the degradation of these structures by oxygen or moisture in the air.

在步驟112中,對金屬氧化物半導體層240和遷移率增強層260進行退火製程。退火製程實質上是加熱金屬氧化物半導體層240和遷移率增強層260,以加速遷移率增強層260的氧化反應,而使金屬氧化物半導體層240達到穩定狀態。另一方面,因為已先在金屬氧化物半導體層240上形成遷移率增強層260來移除金屬氧化物半導體層240中未鍵結或弱鍵結的氧原子,所以退火製程可在低於350℃的溫度下進行,便能使金屬氧化物半導體電晶體達到穩定狀態。在一實施方式中,將步驟110所形成之結構置入約200℃至約350℃的環境中,例如為約200℃至約300℃,更明確地為約200℃至約250℃。進行退火製程的方式並無特殊限制,例如可使用高溫爐、脈衝雷射或紫外燈來加熱金屬氧化物半導體層240和遷移率增強層260。In step 112, the metal oxide semiconductor layer 240 and the mobility enhancement layer 260 are annealed. The annealing process substantially heats the metal oxide semiconductor layer 240 and the mobility enhancing layer 260 to accelerate the oxidation reaction of the mobility enhancing layer 260 to bring the metal oxide semiconductor layer 240 to a stable state. On the other hand, since the mobility enhancement layer 260 has been formed on the metal oxide semiconductor layer 240 to remove the unbonded or weakly bonded oxygen atoms in the metal oxide semiconductor layer 240, the annealing process can be less than 350. When the temperature is °C, the metal oxide semiconductor transistor can be stabilized. In one embodiment, the structure formed in step 110 is placed in an environment of from about 200 ° C to about 350 ° C, such as from about 200 ° C to about 300 ° C, more specifically from about 200 ° C to about 250 ° C. The manner of performing the annealing process is not particularly limited, and for example, a high temperature furnace, a pulsed laser or an ultraviolet lamp may be used to heat the metal oxide semiconductor layer 240 and the mobility enhancement layer 260.

在另一實施方式中,在步驟108之後,進行步驟110之前,可形成一圖案化保護層360覆蓋源極250a和汲極250b,如第8A圖所示。圖案化保護層360具有一開口362露出通道區242之一部分。接著,進行步驟110,於露出的通道區242上形成遷移率增強層370,如第8B圖所示。 遷移率增強層370不接觸源極250a和汲極250b。本實施方式之圖案化保護層360及遷移率增強層370的具體實施方式及特徵可與上述的實施方式相同。In another embodiment, after step 108, before performing step 110, a patterned protective layer 360 may be formed to cover the source 250a and the drain 250b, as shown in FIG. 8A. The patterned protective layer 360 has an opening 362 that exposes a portion of the channel region 242. Next, in step 110, a mobility enhancement layer 370 is formed on the exposed channel region 242, as shown in FIG. 8B. The mobility enhancement layer 370 does not contact the source 250a and the drain 250b. The specific embodiments and features of the patterned protective layer 360 and the mobility enhancing layer 370 of the present embodiment can be the same as those of the above-described embodiments.

第9圖為本發明另一實施方式之金屬氧化物半導體電晶體之製造方法400的流程圖。方法400中的步驟402、步驟404、步驟406和步驟408的具體實施方式及特徵,可分別與前述方法100中的步驟102、步驟104、步驟106和步驟108相同。Fig. 9 is a flow chart showing a method 400 of manufacturing a metal oxide semiconductor transistor according to another embodiment of the present invention. The specific implementations and features of step 402, step 404, step 406, and step 408 in method 400 may be the same as step 102, step 104, step 106, and step 108 in the foregoing method 100, respectively.

在步驟410中,提供遷移率增強介質510到通道區242,以對金屬氧化物半導體層240的通道區242進行表面處理,如第10A圖所示。遷移率增強介質510會與金屬氧化物半導體層240中的氧產生氧化反應,而移除金屬氧化物半導體層240中的氧原子。利用遷移率增強介質510進行表面處理後,並不會在金屬氧化物半導體層240上形成實體的膜層結構。在一實施方式中,遷移率增強介質510為可與氧產生鍵結之液體或氣體。在一實例中,遷移率增強介質510為可與氧產生鍵結之有機物,例如2-甲基戊烷、2,2-二甲基丁烷、三級丁醇或苯。在另一實例中,遷移率增強層介質510可為諸如一氧化碳或氫氣之氣體。In step 410, mobility enhancing medium 510 is provided to channel region 242 to surface treat channel region 242 of metal oxide semiconductor layer 240, as shown in FIG. 10A. The mobility enhancing medium 510 generates an oxidation reaction with oxygen in the metal oxide semiconductor layer 240, and removes oxygen atoms in the metal oxide semiconductor layer 240. After the surface treatment with the mobility enhancing medium 510, a solid film layer structure is not formed on the metal oxide semiconductor layer 240. In one embodiment, the mobility enhancing medium 510 is a liquid or gas that can bond with oxygen. In one example, the mobility enhancing medium 510 is an organic material that can bond with oxygen, such as 2-methylpentane, 2,2-dimethylbutane, tertiary butanol, or benzene. In another example, the mobility enhancing layer media 510 can be a gas such as carbon monoxide or hydrogen.

在步驟412中,對已進行表面處理之金屬氧化物半導體層240進行退火製程。退火製程實質上是加熱金屬氧化物半導體層240。加熱的具體實施方式可參考上述步驟112。In step 412, the surface-treated metal oxide semiconductor layer 240 is subjected to an annealing process. The annealing process essentially heats the metal oxide semiconductor layer 240. For specific embodiments of heating, reference may be made to step 112 above.

在步驟412之後,可形成保護層520覆蓋源極250a、汲極250b和金屬氧化物半導體層240,如第10B圖所示。 保護層520的具體實施方式可與上述實施方式相同。在一實施例中,保護層520可在步驟410之後,步驟412之前形成。After step 412, a protective layer 520 may be formed to cover the source 250a, the drain 250b, and the metal oxide semiconductor layer 240, as shown in FIG. 10B. The specific embodiment of the protective layer 520 can be the same as the above embodiment. In an embodiment, the protective layer 520 may be formed after step 410 and before step 412.

第11圖繪示根據本發明一實施方式之金屬氧化物半導體電晶體之閘極電壓與汲極電流的關係圖。第11圖繪示連續量測六次的結果,量測時的汲極電壓為20V。如圖所示,連續量測六次的結果非常接近,臨界電壓的差異僅為0.9V。表示金屬氧化物半導體電晶體的穩定度明顯提升。11 is a graph showing a relationship between a gate voltage and a drain current of a metal oxide semiconductor transistor according to an embodiment of the present invention. Figure 11 shows the results of six consecutive measurements, with a drain voltage of 20V. As shown in the figure, the results of six consecutive measurements are very close, and the difference in threshold voltage is only 0.9V. It indicates that the stability of the metal oxide semiconductor transistor is significantly improved.

第12圖繪示根據本發明一實施方式之金屬氧化物半導體電晶體在不同閘極電壓下(0V、5V、10V及15V)之汲極電流與汲極電壓的關係曲線圖。第12圖中亦繪示汲極電壓與汲極電流的順向路徑和逆向路徑曲線。如第12圖所示,在不同閘極電壓下,汲極電流與汲極電壓之順向路徑與逆向路徑幾乎重疊,表示金屬氧化物半導體電晶體呈現穩定狀態。FIG. 12 is a graph showing the relationship between the drain current and the drain voltage of the metal oxide semiconductor transistor at different gate voltages (0 V, 5 V, 10 V, and 15 V) according to an embodiment of the present invention. The forward path and reverse path curves of the drain voltage and the drain current are also shown in Fig. 12. As shown in Fig. 12, at different gate voltages, the forward and reverse paths of the drain current and the drain voltage almost overlap, indicating that the metal oxide semiconductor transistor exhibits a stable state.

在習知技術中,通常必須在高於350℃的溫度才能製造電性穩定的金屬氧化物半導體電晶體。但是,在高溫下進行退火製程,容易造成熱應力效應,導致金屬氧化物半導體電晶體變形。根據本發明之實施方式,可在低於350℃的溫度下製造出電性穩定的金屬氧化物半導體電晶體。因此,可以有效改善習知技術中金屬氧化物半導體電晶體變形的問題。另一方面,本發明之實施方式可在較低的製程溫度下進行,具有節省能源之優點。In the prior art, it is generally necessary to manufacture an electrically stable metal oxide semiconductor transistor at a temperature higher than 350 °C. However, the annealing process at a high temperature tends to cause a thermal stress effect, resulting in deformation of the metal oxide semiconductor transistor. According to an embodiment of the present invention, an electrically stable metal oxide semiconductor transistor can be fabricated at a temperature lower than 350 °C. Therefore, the problem of deformation of the metal oxide semiconductor transistor in the prior art can be effectively improved. On the other hand, embodiments of the present invention can be carried out at lower process temperatures, which has the advantage of saving energy.

雖然本發明已以實施方式揭露如上,然其並非用以限定本發明,任何熟習此技藝者,在不脫離本發明之精神和 範圍內,當可作各種之更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。Although the present invention has been disclosed in the above embodiments, it is not intended to limit the invention, and those skilled in the art, without departing from the spirit of the invention, In the scope of the invention, the scope of the invention is defined by the scope of the appended claims.

100、400‧‧‧方法100, 400‧‧‧ method

102、104、106、108、110、112、402、404、406、408、410、412‧‧‧步驟102, 104, 106, 108, 110, 112, 402, 404, 406, 408, 410, 412 ‧ ‧ steps

210‧‧‧基板210‧‧‧Substrate

220‧‧‧閘極220‧‧‧ gate

230‧‧‧閘極絕緣層230‧‧‧ gate insulation

240‧‧‧金屬氧化物半導體層240‧‧‧Metal oxide semiconductor layer

242‧‧‧通道區242‧‧‧Channel area

250a‧‧‧源極250a‧‧‧ source

250b‧‧‧汲極250b‧‧‧汲polar

252‧‧‧間隙252‧‧‧ gap

262‧‧‧開口262‧‧‧ openings

270、310‧‧‧遷移率增強層270, 310‧‧‧ mobility enhancement layer

260、320、520‧‧‧保護層260, 320, 520‧‧ ‧ protective layer

510‧‧‧遷移率增強介質510‧‧‧ mobility enhancement media

為讓本發明之上述和其他目的、特徵、優點與實施方式能更明顯易懂,所附圖式之說明如下:第1圖繪示習知技術之未退火的同一金屬氧化物半導體電晶體連續六次測量之閘極電壓與汲極電流之關係曲線圖。The above and other objects, features, advantages and embodiments of the present invention will become more <RTIgt; <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; A graph showing the relationship between gate voltage and drain current for six measurements.

第2圖繪示本發明一實施方式之金屬氧化物半導體電晶體之製造方法的流程圖。Fig. 2 is a flow chart showing a method of manufacturing a metal oxide semiconductor transistor according to an embodiment of the present invention.

第3-8B圖繪示本發明一實施方式之製造方法的各製程階段剖面示意圖。3-8B are schematic cross-sectional views showing respective process stages of the manufacturing method according to an embodiment of the present invention.

第9圖係繪示本發明另一實施方式之金屬氧化物半導體電晶體之製造方法的流程圖。Figure 9 is a flow chart showing a method of manufacturing a metal oxide semiconductor transistor according to another embodiment of the present invention.

第10A、10B圖繪示本發明另一實施方式之製造方法的製程階段剖面示意圖。10A and 10B are schematic cross-sectional views showing a manufacturing process of a manufacturing method according to another embodiment of the present invention.

第11圖繪示根據本發明一實施方式之金屬氧化物半導體電晶體之閘極電壓與汲極電流的關係圖。11 is a graph showing a relationship between a gate voltage and a drain current of a metal oxide semiconductor transistor according to an embodiment of the present invention.

第12圖繪示根據本發明一實施方式之金屬氧化物半導體電晶體在不同閘極電壓下之汲極電流與汲極電壓的關係曲線圖。FIG. 12 is a graph showing a relationship between a gate current and a drain voltage of a metal oxide semiconductor transistor at different gate voltages according to an embodiment of the present invention.

100‧‧‧方法100‧‧‧ method

102、104、106、108、110、112‧‧‧步驟102, 104, 106, 108, 110, 112‧‧‧ steps

Claims (12)

一種金屬氧化物半導體電晶體之製造方法,包含:形成一閘極於一基板上;形成一閘極絕緣層覆蓋該閘極;形成一圖案化金屬氧化物半導體層於該閘極絕緣層上,該圖案化金屬氧化物半導體層具有一通道區;形成一源極及一汲極於該圖案化金屬氧化物半導體層上,其中該源極與該汲極間之一間隙露出該通道區;形成一遷移率增強層於該通道區上,其中該遷移率增強層不接觸該源極及該汲極,該遷移率增強層包含一金屬或一未達飽和氧化狀態的氧化物,其中該金屬係選自鈣(Ca)、鋰(Li)、鉀(K)、鈉(Na)、鎂(Mg)、銫(Ce)、鉬(Mo)、銀(Ag)、鋇(Ba)、鈦(Ti)、鐵(Fe)、鎵(Ga)以及鍺(Ge)所組成的群組,該未達飽和氧化狀態的氧化物係選自未飽和氧化鈣、未飽和氧化鋰、未飽和氧化鉀、未飽和氧化鈉、未飽和氧化鎂、未飽和氧化銫、未飽和氧化鉬、未飽和氧化銀、未飽和氧化鋇、未飽和氧化鈦、未飽和氧化鐵、未飽和氧化鎵以及未飽和氧化鍺所組成的群組;以及在溫度為約200℃至約350℃的環境中,對該金屬氧化物半導體層及該遷移率增強層進行一退火製程。 A method for fabricating a metal oxide semiconductor transistor, comprising: forming a gate on a substrate; forming a gate insulating layer covering the gate; forming a patterned metal oxide semiconductor layer on the gate insulating layer, The patterned metal oxide semiconductor layer has a channel region; a source and a drain are formed on the patterned metal oxide semiconductor layer, wherein a gap between the source and the drain exposes the channel region; a mobility enhancement layer on the channel region, wherein the mobility enhancement layer does not contact the source and the drain, and the mobility enhancement layer comprises a metal or an oxide that does not reach a saturated oxidation state, wherein the metal system Selected from calcium (Ca), lithium (Li), potassium (K), sodium (Na), magnesium (Mg), cerium (Ce), molybdenum (Mo), silver (Ag), barium (Ba), titanium (Ti a group consisting of iron (Fe), gallium (Ga), and germanium (Ge), the oxide that is not saturated with oxidation is selected from the group consisting of unsaturated calcium oxide, unsaturated lithium oxide, unsaturated potassium oxide, and Saturated sodium oxide, unsaturated magnesium oxide, unsaturated cerium oxide, unsaturated molybdenum oxide, unsaturated silver oxide, unsaturated a group consisting of ruthenium oxide, unsaturated titanium oxide, unsaturated iron oxide, unsaturated gallium oxide, and unsaturated ruthenium oxide; and the metal oxide semiconductor layer in an environment having a temperature of about 200 ° C to about 350 ° C And the mobility enhancement layer performs an annealing process. 如請求項1所述之製造方法,其中形成該金屬氧化物半導體層之步驟包含使用一射頻磁控濺鍍或一直流濺鍍。 The manufacturing method according to claim 1, wherein the step of forming the metal oxide semiconductor layer comprises using a radio frequency magnetron sputtering or a direct current sputtering. 如請求項1所述之製造方法,其中該金屬氧化物半導體層的材料為非晶銦鎵鋅氧化物(a-IGZO)、銦鋅氧化物(IZO)或非晶銦鋅錫氧化物(a-IZTO)。 The manufacturing method according to claim 1, wherein the material of the metal oxide semiconductor layer is amorphous indium gallium zinc oxide (a-IGZO), indium zinc oxide (IZO) or amorphous indium zinc tin oxide (a). -IZTO). 如請求項1所述之製造方法,其中形成該遷移率增強層之步驟包含使用一熱蒸鍍製程或一濺鍍製程。 The manufacturing method of claim 1, wherein the step of forming the mobility enhancing layer comprises using a thermal evaporation process or a sputtering process. 如請求項1所述之製造方法,其中該遷移率增強層的材料為可與氧產生鍵結之無機物、離子型化合物或共價型化合物。 The manufacturing method according to claim 1, wherein the material of the mobility enhancing layer is an inorganic substance, an ionic compound or a covalent compound which can be bonded to oxygen. 如請求項1所述之製造方法,於形成該源極及該汲極之步驟後,更包含形成一圖案化保護層覆蓋該源極及該汲極,其中該圖案化保護層具有一開口露出該通道區之一部分。 The manufacturing method of claim 1, after the step of forming the source and the drain, further comprising forming a patterned protective layer covering the source and the drain, wherein the patterned protective layer has an opening exposed One part of the channel area. 如請求項1所述之製造方法,在形成該遷移率增強層步驟後,更包含形成一保護層覆蓋該源極、該汲極、該金屬氧化物半導體層以及該遷移率增強層。 The manufacturing method according to claim 1, after forming the mobility enhancement layer step, further comprising forming a protective layer covering the source, the drain, the metal oxide semiconductor layer, and the mobility enhancement layer. 如請求項1所述之製造方法,於形成該遷移率增強層之前,更包含對該金屬氧化物半導體層進行一熱處理製程,且該熱處理的溫度在約200℃至約350℃。 The manufacturing method according to claim 1, further comprising performing a heat treatment process on the metal oxide semiconductor layer before the formation of the mobility enhancement layer, and the temperature of the heat treatment is from about 200 ° C to about 350 ° C. 如請求項1所述之製造方法,其中該退火製程之溫度範圍係在約200℃至約250℃。 The method of claim 1, wherein the annealing process has a temperature in the range of from about 200 ° C to about 250 ° C. 一種金屬氧化物半導體電晶體之製造方法,包含以下步驟:形成一閘極於一基板上;形成一閘極絕緣層覆蓋該閘極;形成一圖案化金屬氧化物半導體層於該閘極絕緣層上,該圖案化金屬氧化物半導體層具有一通道區;形成一源極及一汲極於該圖案化金屬氧化物半導體層上,其中該源極與該汲極間之一間隙露出該通道區;以一遷移率增強介質接觸該通道區以進行表面處理,其中該遷移率增強介質包含至少一物質,係選自2-甲基戊烷、2,2-二甲基丁烷、三級丁醇、苯、一氧化碳以及氫氣所組成之群組;以及在溫度為約200℃至約350℃的環境中,對已進行該表面處理之該金屬氧化物半導體層進行一退火製程。 A method for fabricating a metal oxide semiconductor transistor, comprising the steps of: forming a gate on a substrate; forming a gate insulating layer covering the gate; forming a patterned metal oxide semiconductor layer on the gate insulating layer The patterned metal oxide semiconductor layer has a channel region; a source and a drain are formed on the patterned metal oxide semiconductor layer, wherein a gap between the source and the drain exposes the channel region Relating the channel region with a mobility enhancing medium for surface treatment, wherein the mobility enhancing medium comprises at least one substance selected from the group consisting of 2-methylpentane, 2,2-dimethylbutane, and tertiary butyl a group consisting of alcohol, benzene, carbon monoxide, and hydrogen; and an annealing process of the metal oxide semiconductor layer subjected to the surface treatment in an environment having a temperature of about 200 ° C to about 350 ° C. 如請求項10所所述之製造方法,在該表面處理步驟後,更包含形成一保護層覆蓋該源極、該汲極以及該金屬氧化物半導體層。 The manufacturing method according to claim 10, after the surface treating step, further comprises forming a protective layer covering the source, the drain, and the metal oxide semiconductor layer. 如請求項10述之製造方法,其中該退火製程之溫 度範圍係在約200℃至約250℃。 The manufacturing method of claim 10, wherein the temperature of the annealing process is The range is from about 200 ° C to about 250 ° C.
TW101103544A 2011-08-18 2012-02-03 Methods for manufacturing a metal oxide semiconductor transistor TWI451501B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201210113783.5A CN102956711B (en) 2011-08-18 2012-04-16 method for manufacturing metal oxide semiconductor transistor
US13/572,710 US8927330B2 (en) 2011-08-18 2012-08-13 Methods for manufacturing a metal-oxide thin film transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US201161525166P 2011-08-18 2011-08-18

Publications (2)

Publication Number Publication Date
TW201310543A TW201310543A (en) 2013-03-01
TWI451501B true TWI451501B (en) 2014-09-01

Family

ID=48482054

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101103544A TWI451501B (en) 2011-08-18 2012-02-03 Methods for manufacturing a metal oxide semiconductor transistor

Country Status (1)

Country Link
TW (1) TWI451501B (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110031491A1 (en) * 2009-07-31 2011-02-10 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US20110180794A1 (en) * 2010-01-24 2011-07-28 Semiconductor Energy Laboratory Co., Ltd. Display device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110031491A1 (en) * 2009-07-31 2011-02-10 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US20110180794A1 (en) * 2010-01-24 2011-07-28 Semiconductor Energy Laboratory Co., Ltd. Display device

Also Published As

Publication number Publication date
TW201310543A (en) 2013-03-01

Similar Documents

Publication Publication Date Title
US8927330B2 (en) Methods for manufacturing a metal-oxide thin film transistor
KR101334182B1 (en) Fabrication method of ZnO family Thin film transistor
TWI514586B (en) A thin film transistor structure, and a thin film transistor and a display device having the same
JP5584960B2 (en) Thin film transistor and display device
TW201234593A (en) Semiconductor device
JP2009194351A (en) Thin film transistor and its manufacturing method
TW200822372A (en) Production method of thin film transistor using amorphous oxide semiconductor film
KR101927579B1 (en) Transition metal dichalcogenide thin film transistor and method of manufacturing the same
JP2009099847A (en) Thin-film transistor, its manufacturing method, and display device
JP5723584B2 (en) Semiconductor device
JP2015519745A (en) Method for increasing the electrical conductivity of a metal oxide semiconductor layer
JP2001244464A (en) Method of manufacturing metal oxide transistor
CN105575803A (en) Method for making field effect transistor
TWI451501B (en) Methods for manufacturing a metal oxide semiconductor transistor
JP5612299B2 (en) Method for manufacturing transistor
WO2022004838A1 (en) Thin-film transistor
KR101934165B1 (en) Oxide thin film, method of manufacturing the same and oxide thin film transistor the same
WO2022130912A1 (en) Production method for thin film transistor
KR101570443B1 (en) Method of crystallization of oxide semiconductor
TWI636507B (en) Method of manufacturing thin film transistor
WO2022202100A1 (en) Method for forming silicon oxynitride film and method for manufacturing thin film transistor
JP2018014472A (en) Manufacturing method for semiconductor element
JP5940124B2 (en) Method for manufacturing transistor
KR101262325B1 (en) A method of making oxide thin film and a method of making thin film transistor
JP2013172031A (en) Semiconductor device and manufacturing method thereof