JP2001244408A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JP2001244408A
JP2001244408A JP2000049217A JP2000049217A JP2001244408A JP 2001244408 A JP2001244408 A JP 2001244408A JP 2000049217 A JP2000049217 A JP 2000049217A JP 2000049217 A JP2000049217 A JP 2000049217A JP 2001244408 A JP2001244408 A JP 2001244408A
Authority
JP
Japan
Prior art keywords
semiconductor device
unit semiconductor
connection terminal
thermal expansion
semiconductor devices
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000049217A
Other languages
Japanese (ja)
Inventor
Shingo Sato
慎吾 佐藤
Seigo Matsuzono
清吾 松園
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2000049217A priority Critical patent/JP2001244408A/en
Publication of JP2001244408A publication Critical patent/JP2001244408A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/095Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00 with a principal constituent of the material being a combination of two or more materials provided in the groups H01L2924/013 - H01L2924/0715
    • H01L2924/097Glass-ceramics, e.g. devitrified glass
    • H01L2924/09701Low temperature co-fired ceramic [LTCC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To solve the problem that the reliability in the electrical connection between each unit semiconductor device and an external electrical circuit is low due to the difference in the thermal coefficient of expansion between laminated unit semiconductor devices and between the external electrical circuit and the unit semiconductor device. SOLUTION: The semiconductor device is formed by laminating a plurality of unit semiconductor devices 1a, 1b, and 1c up and down, the thermal coefficient of expansion of an insulation substrate 1 of the unit semiconductor device 1a that is located, at least, at the lowest position is equal to 11×10-6/ deg.C-13×10-6/ deg.C, and the difference in the thermal coefficient of expansion of the insulation substrate 1 of the unit semiconductor devices that are adjacent up and down is equal to or less than 5×10-6/ deg.C.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はコンピュータ等の情
報処理装置に実装される半導体装置に関し、より詳細に
は半導体素子を高密度に実装する半導体装置に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device mounted on an information processing device such as a computer, and more particularly, to a semiconductor device in which semiconductor elements are mounted at a high density.

【0002】[0002]

【従来の技術】従来、コンピュータ等の情報処理装置に
実装される半導体装置において、情報処理装置内の占有
面積を小さくするための高密度実装タイプのものは、一
般に、酸化アルミニウム質焼結体、ガラスセラミック焼
結体等の電気絶縁材料から成り、半導体素子の電極と接
続される電極端子を有する絶縁基体に半導体素子を実装
して単位半導体装置となし、この単位半導体装置を上下
に積層した構造を有している。
2. Description of the Related Art Conventionally, in a semiconductor device mounted on an information processing device such as a computer, a semiconductor device of a high-density mounting type for reducing an occupied area in the information processing device generally includes an aluminum oxide sintered body, A structure in which a semiconductor element is mounted on an insulating base having an electrode terminal connected to an electrode of a semiconductor element and made of an electrically insulating material such as a glass ceramic sintered body to form a unit semiconductor device, and the unit semiconductor device is vertically stacked. have.

【0003】また前記各単位半導体装置の絶縁基体に
は、上面及び下面に上面接続端子及び下面接続端子がそ
れぞれ形成されているとともに、前記電極端子、上面接
続端子及び下面接続端子の間を接続する配線層が形成さ
れており、隣接する単位半導体装置間で下部に位置する
単位半導体装置の上面接続端子を上部に位置する単位半
導体装置の下面接続端子に低融点ロウ材を介して接続す
ることにより隣接する単位半導体装置の配線層同士が電
気的に接続され、さらに最下部に位置する単位半導体装
置の下面接続端子を外部電気回路の回路配線に低融点ロ
ウ材を介して電気的、機械的に接続することにより、各
単位半導体装置の半導体素子が外部電気回路の回路配線
と電気的に接続され、半導体装置が外部電気回路に実装
(2次実装)される。
Further, an upper surface connection terminal and a lower surface connection terminal are formed on an upper surface and a lower surface of the insulating substrate of each of the unit semiconductor devices, respectively, and a connection is made between the electrode terminal, the upper surface connection terminal and the lower surface connection terminal. A wiring layer is formed, and by connecting the upper connection terminal of the lower unit semiconductor device between the adjacent unit semiconductor devices to the lower connection terminal of the upper unit semiconductor device via a low melting point brazing material. The wiring layers of adjacent unit semiconductor devices are electrically connected to each other, and the lower connection terminals of the lowermost unit semiconductor device are electrically and mechanically connected to the circuit wiring of the external electric circuit via a low melting point brazing material. By the connection, the semiconductor element of each unit semiconductor device is electrically connected to the circuit wiring of the external electric circuit, and the semiconductor device is mounted (secondarily mounted) on the external electric circuit.

【0004】この高密度実装タイプの半導体装置によれ
ば、複数個の半導体素子が上下に実装されることとなる
ため、複数の半導体装置を情報処理装置に実装する際の
占有面積を小さくすることができ、情報処理装置を小型
化することができるという利点がある。
According to this high-density mounting type semiconductor device, a plurality of semiconductor elements are mounted on top of each other, so that the area occupied by mounting a plurality of semiconductor devices on an information processing device can be reduced. Therefore, there is an advantage that the information processing apparatus can be downsized.

【0005】なお、前記各単位半導体装置の絶縁基体
は、実装される半導体素子の機能、特性等に応じてそれ
ぞれ異なる絶縁材料が使用される場合があり、例えば、
実装される半導体素子の作動時の発熱量が大きい場合に
は熱伝導性に優れる窒化アルミニウム質焼結体が使用さ
れ、絶縁基体の誘電率を低くして電気信号の遅延を防ぐ
場合には低誘電率のガラスセラミックス焼結体が使用さ
れる。
In some cases, different insulating materials are used for the insulating base of each unit semiconductor device depending on the function, characteristics, etc. of the semiconductor element to be mounted.
When the semiconductor element to be mounted generates a large amount of heat during operation, a sintered body of aluminum nitride having excellent thermal conductivity is used, and when the dielectric constant of the insulating base is lowered to prevent a delay of an electric signal, a low level is used. A glass ceramic sintered body having a dielectric constant is used.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上記従
来の半導体装置は、一般に絶縁基体が酸化アルミニウム
質焼結体やガラスセラミックス等のセラミックス材料で
形成されており、その熱膨張係数が約2〜7×10-6
℃であるのに対し、半導体装置が実装される外部電気回
路として最も多用されているガラス−エポキシなどから
成るプリント基板の熱膨張係数は約12〜18×10-6
/℃と非常に大きい。そのため、半導体装置の最下部に
位置する単位半導体装置の下面接続端子をプリント基板
等の外部電気回路の回路配線に低融点ロウ材を介して接
続した場合、半導体素子の作動時に発する熱が半導体装
置と外部電気回路の両方に繰り返し印加されると、最下
部の単位半導体装置の絶縁基体と外部電気回路との間に
両者の熱膨張係数の相異に起因する大きな熱応力が発生
し、この大きな熱応力が繰り返し印加されることによ
り、最下部の単位半導体装置の下面接続端子と外部電気
回路の回路配線とを接続する低融点ロウ材が短期間で破
断してしまい、各単位半導体装置に実装されている各半
導体素子と外部電気回路との電気的接続を長期にわたり
安定に維持させることができないという欠点があった。
However, in the above-mentioned conventional semiconductor device, the insulating substrate is generally formed of a ceramic material such as an aluminum oxide sintered body or a glass ceramic, and has a coefficient of thermal expansion of about 2-7. × 10 -6 /
C., whereas the thermal expansion coefficient of a printed circuit board made of glass-epoxy or the like, which is most frequently used as an external electric circuit on which a semiconductor device is mounted, is about 12 to 18 × 10 −6.
/ ° C is very large. Therefore, when the lower surface connection terminal of the unit semiconductor device located at the bottom of the semiconductor device is connected to the circuit wiring of an external electric circuit such as a printed circuit board via a low melting point brazing material, heat generated when the semiconductor element operates is generated by the semiconductor device. And the external electric circuit are repeatedly applied, a large thermal stress is generated between the insulating base of the lowermost unit semiconductor device and the external electric circuit due to a difference in the coefficient of thermal expansion between the two. Due to repeated application of thermal stress, the low melting point brazing material connecting the lower connection terminal of the lowermost unit semiconductor device and the circuit wiring of the external electric circuit is broken in a short period of time and mounted on each unit semiconductor device. There is a disadvantage that the electrical connection between each semiconductor element and an external electric circuit cannot be stably maintained for a long period of time.

【0007】また、上下に隣接する単位半導体装置の絶
縁基体を異なる絶縁材料で形成し、両者の熱膨張係数が
大きく相異するような場合も、両者の熱膨張係数の差に
起因する熱応力によって、下部に位置する単位半導体装
置の上面接続端子と上部に位置する単位半導体装置の下
面接続端子とを接続する低融点ロウ材が短期間で破断し
てしまい、半導体素子と外部電気回路との電気的接続を
長期にわたり安定に維持させることができないという欠
点もあった。
Also, when the insulating bases of the unit semiconductor devices vertically adjacent to each other are formed of different insulating materials, and the thermal expansion coefficients of the two are greatly different from each other, the thermal stress caused by the difference between the thermal expansion coefficients of the two units may also occur. As a result, the low melting point brazing material that connects the upper surface connection terminal of the lower unit semiconductor device and the lower surface connection terminal of the upper unit semiconductor device is broken in a short period of time. There is also a disadvantage that the electrical connection cannot be stably maintained for a long time.

【0008】本発明は、上記欠点に鑑み案出されたもの
で、その目的は半導体素子を実装した複数の単位半導体
装置を上下に積層して成り、半導体素子を高密度で実装
することができ、かつ各単位半導体装置の各半導体素子
と外部電気回路の電気的接続を長期にわたり安定して維
持させることができる半導体装置を提供することにあ
る。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned drawbacks, and has as its object to stack a plurality of unit semiconductor devices on which semiconductor elements are mounted one on top of the other so that semiconductor elements can be mounted at a high density. Another object of the present invention is to provide a semiconductor device capable of stably maintaining the electrical connection between each semiconductor element of each unit semiconductor device and an external electric circuit for a long period of time.

【0009】[0009]

【課題を解決するための手段】本発明の半導体装置は、
電極端子と、上面及び下面に形成されている上面接続端
子及び下面接続端子と、前記上面接続端子、下面接続端
子及び電極端子の間を接続する配線層とを有する絶縁基
体に半導体素子を実装し、半導体素子の各電極を電極端
子に接続させた単位半導体装置を上下に積層して成り、
隣接する単位半導体装置間で下部に位置する単位半導体
装置の上面接続端子を上部に位置する単位半導体装置の
下面接続端子に低融点ロウ材を介して接続するととも
に、最下部に位置する単位半導体装置の下面接続端子が
外部電気回路の回路配線に低融点ロウ材を介して接続さ
れる半導体装置であって、前記少なくとも最下部に位置
する単位半導体装置の絶縁基体の熱膨張係数が11×1
-6/℃〜13×10-6/℃であり、かつ前記上下に隣
接する単位半導体装置の絶縁基体の熱膨張係数差が5×
10-6/℃以下であることを特徴とするものである。
According to the present invention, there is provided a semiconductor device comprising:
A semiconductor element is mounted on an insulating base having an electrode terminal, an upper connection terminal and a lower connection terminal formed on the upper and lower surfaces, and a wiring layer connecting the upper connection terminal, the lower connection terminal and the electrode terminal. A unit semiconductor device in which each electrode of a semiconductor element is connected to an electrode terminal, and is formed by vertically stacking,
An upper surface connection terminal of a lower unit semiconductor device between adjacent unit semiconductor devices is connected to a lower surface connection terminal of an upper unit semiconductor device via a low melting point brazing material, and a lowermost unit semiconductor device. Wherein the lower surface connection terminal of the semiconductor device is connected to the circuit wiring of the external electric circuit via a low melting point brazing material, wherein the thermal expansion coefficient of the insulating base of at least the lowermost unit semiconductor device is 11 × 1.
0 −6 / ° C. to 13 × 10 −6 / ° C., and the thermal expansion coefficient difference between the insulating bases of the unit semiconductor devices vertically adjacent to each other is 5 ×.
It is characterized in that it is 10 -6 / ° C or less.

【0010】本発明の半導体装置によれば、少なくとも
外部電気回路に直接接続される最下部の単位半導体装置
の絶縁基体の熱膨張係数を11×10-6/℃〜13×1
-6/℃としたことから、前記最下部の単位半導体装置
の絶縁基体と外部電気回路の熱膨張係数の差を5×10
-6/℃以下と小さくすることができ、両者の間に大きな
熱応力が生じることはなく、最下部の単位半導体装置の
下面接続端子と外部電気回路の回路配線とを接続する低
融点ロウ材が破断することを有効に防いで、各単位半導
体装置に実装されている各半導体素子と外部電気回路と
の電気的接続を長期にわたり安定に維持させることがで
きる。
According to the semiconductor device of the present invention, at least the thermal expansion coefficient of the insulating base of the lowermost unit semiconductor device directly connected to the external electric circuit is from 11 × 10 −6 / ° C. to 13 × 1.
0 −6 / ° C., the difference in thermal expansion coefficient between the insulating base of the lowermost unit semiconductor device and the external electric circuit was 5 × 10
-6 / ° C. or less, no large thermal stress is generated between them, and a low melting point brazing material for connecting the lower surface connection terminal of the lowermost unit semiconductor device and the circuit wiring of the external electric circuit. Can be effectively prevented from breaking, and the electrical connection between each semiconductor element mounted on each unit semiconductor device and the external electric circuit can be stably maintained for a long period of time.

【0011】また本発明の半導体装置によれば、上下に
隣接する単位半導体装置の絶縁基体間の熱膨張係数差を
5×10-6/℃以下と小さくしたことから、上下に隣接
する単位半導体装置間に大きな熱応力が生じることはな
く、上下に隣接する単位半導体装置の上面接続端子と下
面接続端子を接続する低融点ロウ材が短期間で破断する
ことを有効に防止し、半導体素子と外部電気回路との電
気的接続を長期にわたり安定に維持させることができ
る。
Further, according to the semiconductor device of the present invention, since the difference in thermal expansion coefficient between the insulating bases of the vertically adjacent unit semiconductor devices is reduced to 5 × 10 −6 / ° C. or less, the vertically adjacent unit semiconductor devices are reduced. A large thermal stress does not occur between the devices, effectively preventing the low melting point brazing material connecting the upper surface connection terminals and the lower surface connection terminals of the vertically adjacent unit semiconductor devices from being broken in a short period of time. The electric connection with the external electric circuit can be stably maintained for a long time.

【0012】[0012]

【発明の実施の形態】次に本発明を添付図面に基づき詳
細に説明する。図1は本発明の半導体装置の一実施例を
示し、1a、1b、1cは単位半導体装置であり、各単
位半導体装置1a、1b、1cの各々は絶縁基体1と半
導体素子2と上面接続端子3と下面接続端子4と電極端
子5と配線層6とにより構成され、隣接する単位半導体
装置間で下部に位置する単位半導体装置の上面接続端子
3を上部に位置する単位半導体装置の下面接続端子4に
低融点ロウ材7を介して接続するとともに、最下部に位
置する単位半導体装置1aの下面接続端子4が外部電気
回路の回路配線に低融点ロウ材8を介して接続されるよ
うになっている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, the present invention will be described in detail with reference to the accompanying drawings. FIG. 1 shows an embodiment of a semiconductor device according to the present invention, wherein 1a, 1b and 1c are unit semiconductor devices. Each of the unit semiconductor devices 1a, 1b and 1c has an insulating base 1, a semiconductor element 2 and a top connection terminal. 3, lower surface connection terminals 4, electrode terminals 5, and wiring layers 6, and upper surface connection terminals 3 of the unit semiconductor device located below between adjacent unit semiconductor devices, and lower surface connection terminals of the unit semiconductor device located above. 4 via a low melting point brazing material 8, and the lower surface connection terminal 4 of the lowermost unit semiconductor device 1a is connected to a circuit wiring of an external electric circuit via a low melting point brazing material 8. ing.

【0013】前記各単位半導体装置1a、1b、1cの
絶縁基体1はその上面に凹部Aが形成されており、該凹
部A内には半導体素子2がロウ材やガラス、樹脂等の接
着材を介し接着固定されて収容されているとともに半導
体素子2の電極がボンディングワイヤ9を介して電極端
子5に電気的に接続されている。
The insulating substrate 1 of each of the unit semiconductor devices 1a, 1b, and 1c has a concave portion A formed on the upper surface thereof. In the concave portion A, the semiconductor element 2 is made of an adhesive such as a brazing material, glass, or resin. The electrode of the semiconductor element 2 is electrically connected to the electrode terminal 5 through the bonding wire 9 while being housed by being adhered and fixed.

【0014】また前記各絶縁基体1の半導体素子2が収
容されている凹部A内には封止樹脂10が充填されてお
り、該封止樹脂10によって半導体素子2が気密に封止
されている。
A sealing resin 10 is filled in the recess A of each insulating base 1 in which the semiconductor element 2 is accommodated, and the semiconductor element 2 is hermetically sealed by the sealing resin 10. .

【0015】前記単位半導体装置1a、1b、1cはそ
のうちの少なくとも最下部に位置する単位半導体装置1
aの絶縁基体1が11×10-6/℃〜13×10-6/℃
の熱膨張係数を有する絶縁材料により形成されており、
最下部に位置する単位半導体装置1aの絶縁基体1の熱
膨張係数が11×10-6/℃〜13×10-6/℃である
ことから熱膨張係数が約12×10-6/℃〜18×10
-6/℃のガラス−エポキシなどから成る外部電気回路に
実装した場合、最下部の単位半導体装置1aの絶縁基体
1と外部電気回路の熱膨張係数の差を5×10-6/℃以
下と小さくすることができ、その結果、半導体素子2の
作動時に発する熱が単位半導体装置1aと外部電気回路
の両方に繰り返し印加されたとしても両者の間には大き
な熱応力が発生することはなく、最下部の単位半導体装
置1aの下面接続端子4と外部電気回路の回路配線とを
接続する低融点ロウ材8に破断が生じるのを有効に防い
で、各単位半導体装置1a、1b、1cに実装されてい
る各半導体素子2と外部電気回路との電気的接続を長期
にわたり安定に維持させることができる。
The unit semiconductor devices 1a, 1b and 1c are at least the lowermost unit semiconductor devices 1a, 1b and 1c.
The insulating substrate 1 of a is 11 × 10 −6 / ° C. to 13 × 10 −6 / ° C.
Is formed of an insulating material having a thermal expansion coefficient of
Since the thermal expansion coefficient of the insulating substrate 1 of the lowermost unit semiconductor device 1a is 11 × 10 −6 / ° C. to 13 × 10 −6 / ° C., the thermal expansion coefficient is about 12 × 10 −6 / ° C. 18 × 10
When mounted on an external electric circuit made of glass-epoxy or the like at a temperature of −6 / ° C., the difference in thermal expansion coefficient between the insulating base 1 of the lowermost unit semiconductor device 1a and the external electric circuit is 5 × 10 −6 / ° C. or less. As a result, even if the heat generated during the operation of the semiconductor element 2 is repeatedly applied to both the unit semiconductor device 1a and the external electric circuit, no large thermal stress is generated between them. The low melting point brazing material 8 connecting the lower surface connection terminal 4 of the lowermost unit semiconductor device 1a and the circuit wiring of the external electric circuit is effectively prevented from being broken, and mounted on each unit semiconductor device 1a, 1b, 1c. Electrical connection between each semiconductor element 2 and an external electric circuit can be stably maintained for a long period of time.

【0016】前記熱膨張係数が11×10-6/℃〜13
×10-6/℃の最下部に位置する単位半導体装置1aの
絶縁基体1は、例えば、40℃〜400℃における熱膨
張係数が6×10-6/℃〜18×10-6/℃、屈伏点が
400℃〜800℃の結晶性または非結晶性のガラス成
分を20〜80体積%と、40℃〜400℃における熱
膨張係数が6×10-6/℃以上のフィラーを80〜20
体積%の割合で含む成形体を焼成して成る焼結体により
形成することができ、具体的には、ガラス成分として
は、リチウム珪酸系ガラス、PbO系ガラス、BaO系
ガラス、ZnO系ガラスが好適に使用される。
The coefficient of thermal expansion is 11 × 10 −6 / ° C. to 13
For example, the insulating base 1 of the unit semiconductor device 1a located at the lowermost part of × 10 −6 / ° C. has a coefficient of thermal expansion at 40 ° C. to 400 ° C. of 6 × 10 −6 / ° C. to 18 × 10 −6 / ° C. A crystalline or non-crystalline glass component having a deformation point of 400 ° C. to 800 ° C. is 20 to 80% by volume, and a filler having a thermal expansion coefficient of 6 × 10 −6 / ° C. or more at 40 ° C. to 400 ° C. is 80 to 20%.
It can be formed by a sintered body formed by firing a molded body containing a volume%, and specifically, as a glass component, lithium silicate glass, PbO glass, BaO glass, ZnO glass. It is preferably used.

【0017】なお、上記ガラス成分の熱膨張係数は、結
晶化ガラスの場合には、焼成温度で熱処理した後の熱膨
張係数を指すものであり、線熱膨張係数を意味する。
In the case of crystallized glass, the coefficient of thermal expansion of the glass component refers to the coefficient of thermal expansion after heat treatment at the firing temperature, and means the coefficient of linear thermal expansion.

【0018】また前記ガラス成分としてリチウム珪酸系
ガラスを使用する場合、Li2Oを5〜30重量%、特
に5〜20重量%の割合で含有するものがよく、これに
よって焼成後に高熱膨張係数を有するリチウム珪酸を析
出させることができる。また、上記のリチウム珪酸ガラ
スとしては、Li2O以外にSiO2を必須の成分として
含むが、SiO2はガラス全量中、60〜85重量%の
割合で存在し、SiO2とLi2Oとの合量がガラス全量
中、65〜95重量%であることがリチウム珪酸結晶を
析出させる上で望ましい。更に、これらの成分以外に、
Al23、MgO、TiO2、B23、Na2O、K
2O、P25、ZnO、F等が配合されていてもよい。
ただし、このリチウム珪酸ガラス中には、B23は1重
量%以下であることが望ましい。
When a lithium silicate glass is used as the glass component, it is preferable that Li 2 O is contained in a proportion of 5 to 30% by weight, particularly 5 to 20% by weight, so that a high thermal expansion coefficient is obtained after firing. Can be precipitated. As the above lithium silicate glass, including SiO 2 as an essential component in addition to Li 2 O, SiO 2 is in the glass the total amount, present in a proportion of 60 to 85 wt%, SiO 2 and Li 2 O Is preferably 65 to 95% by weight based on the total amount of glass in order to precipitate lithium silicate crystals. Furthermore, in addition to these components,
Al 2 O 3 , MgO, TiO 2 , B 2 O 3 , Na 2 O, K
2 O, P 2 O 5 , ZnO, F and the like may be blended.
However, in this lithium silicate glass, B 2 O 3 is desirably 1% by weight or less.

【0019】またガラス成分としてPbO系ガラスを使
用する場合、PbOを主成分とし、さらにB23、Si
2のうちの少なくとも1種を含有するガラス粉末で形
成され、焼成後にPbSiO3、PbZnSiO4等の高
熱膨張の結晶相が析出するものが好適に使用される。と
りわけ、PbO(65〜85重量%)−B23(5〜1
5重量%)−ZnO(6〜20重量%)−SiO
2(0.5〜5重量%)−BaO(0〜5重量%)から
成る結晶性ガラスや、PbO(50〜60重量%)−S
iO2(35〜50重量%)−Al23(1〜9重量
%)から成る結晶性ガラスが望ましい。
When a PbO-based glass is used as a glass component, PbO is used as a main component, and further, B 2 O 3 , Si
A material formed of a glass powder containing at least one of O 2 and having a high thermal expansion crystal phase such as PbSiO 3 or PbZnSiO 4 after firing is preferably used. Especially, PbO (65 to 85 wt%) - B 2 O 3 ( 5~1
5% by weight) -ZnO (6 to 20% by weight) -SiO
2 (0.5 to 5% by weight) -crystalline glass composed of BaO (0 to 5% by weight) or PbO (50 to 60% by weight) -S
iO 2 (35 to 50 wt%) - Al 2 O 3 crystalline glass consisting of (1-9 wt%) is desirable.

【0020】更にガラス成分としてZnO系ガラスを使
用する場合、ZnOを10重量%以上含有するガラス
は、焼成後にZnO・Ai23、ZnO・nB23等の
高熱膨張係数の結晶相が析出して好適であり、ZnO以
外の他成分としては、SiO2(60重量%以下)、A
23(60重量%以下)、B23(30重量%以
下)、P25(50重量%以下)、アルカリ土類酸化物
(20重量%以下)、Bi23(30重量%以下)等の
少なくとも1種を含み得る。かかる点から特に、ZnO
10〜50重量%−Al2310〜30重量%−SiO
230〜60重量%から成る結晶性ガラスや、ZnO1
0〜50重量%−SiO25〜40重量%−Al23
〜15重量%−BaO0〜60重量%−MgO0〜35
重量%から成る結晶性ガラスは好適に使用される。
Furthermore when using the ZnO-based glass as a glass component, glass containing ZnO 10 wt% or more, the crystal phase of the thermal expansion coefficient of the ZnO · Ai 2 O 3, ZnO · nB 2 O 3 or the like after firing It is preferable to be precipitated, and as components other than ZnO, SiO2 (60% by weight or less), A
l 2 O 3 (60% by weight or less), B 2 O 3 (30% by weight or less), P 2 O 5 (50% by weight or less), alkaline earth oxide (20% by weight or less), Bi 2 O 3 ( 30% by weight or less). From this point, particularly, ZnO
10 to 50 wt% -Al 2 O 3 10~30 wt% -SiO
2 30-60% by weight of crystalline glass, ZnO1
0-50 wt% -SiO 2 5 to 40 wt% -Al 2 O 3 0
~ 15% by weight-BaO0 ~ 60% by weight-MgO0 ~ 35
Crystalline glasses consisting of% by weight are preferably used.

【0021】また更にガラス成分としてBaO系ガラス
を使用する場合、BaOを10重量%以上含有し、焼成
後にBaAl2SiO28、BaSi25、BaB2Si
28などの結晶相が析出するものが採用される。BaO
以外の成分としては、Al23、SiO2、B23、P2
5、アルカリ土類酸化物、アルカリ金属酸化物等を含
む場合もある。
Further, when a BaO-based glass is used as a glass component, it contains BaO in an amount of 10% by weight or more, and after firing, BaAl 2 SiO 2 O 8 , BaSi 2 O 5 , BaB 2 Si.
What precipitates a crystal phase such as 2 O 8 is employed. BaO
Components other than Al 2 O 3 , SiO 2 , B 2 O 3 , P 2
O 5 , an alkaline earth oxide, an alkali metal oxide, or the like may be included.

【0022】さらにまた、上記ガラス成分の屈伏点は4
00〜800℃、特に400〜650℃であることが望
ましい。これは、ガラス成分とフィラー成分とからなる
混合物を成形する時に添加される有機樹脂等の成型用バ
インダーを効率的に除去するとともに、後述する銅、銀
等から成る上面接続端子3、下面接続端子4、電極端子
5および配線層6となる導電ペーストとの同時焼成条件
のマッチングを図るためであり、屈伏点が400℃より
低いと結晶性ガラスが低い温度で焼結が開始されるため
に、例えば銅、銀等の焼結開始温度が600〜800℃
の導電ペーストとの同時焼成が難しく、また成形体の緻
密化が低温で開始するためにバインダーは分解揮散でき
なくなりバインダー成分が残留し特性に影響を及ぼす結
果になるためである。
The deformation point of the above glass component is 4
The temperature is desirably from 00 to 800 ° C, particularly preferably from 400 to 650 ° C. This effectively removes a molding binder such as an organic resin added when molding a mixture composed of a glass component and a filler component, and also includes an upper connection terminal 3 and a lower connection terminal made of copper, silver, and the like described later. 4. The purpose is to match the simultaneous firing conditions with the conductive paste to be the electrode terminals 5 and the wiring layer 6. If the yield point is lower than 400 ° C., the crystalline glass starts sintering at a low temperature. For example, the sintering start temperature of copper, silver, etc. is 600 to 800 ° C.
Is difficult to bake simultaneously with the conductive paste, and the densification of the molded body starts at a low temperature, so that the binder cannot be decomposed and volatilized, and the binder component remains to affect the properties.

【0023】また、屈伏点が800℃より高いとガラス
量を多くしないと焼結しにくくなるため、高価なガラス
を大量に必要とし、焼結体のコストを高めることにな
る。
If the yield point is higher than 800 ° C., sintering becomes difficult unless the amount of glass is increased, so that a large amount of expensive glass is required and the cost of the sintered body is increased.

【0024】一方、熱膨張係数が6×10-6/℃以上の
フィラー成分としては、クリストバライト(Si
2)、クォーツ(SiO2)、トリジマイト(Si
2)、フォルステライト(2MgO・SiO2)、スピ
ネル(MgO・Al23)、ウォラストナイト(CaO
・SiO2)、モンティセラナイト(CaO・MgO・
SiO2)、ネフェリン(Na2O・Al23・Si
2)、リチウムシリケート(LiO 2・SiO2)、ジ
オプサイド(CaO・MgO・2SiO2)、メルビナ
イト(3CaO・MgO・2SiO2)、アケルマイト
(2CaO・MgO・2SiO2)、マグネシア(Mg
O)、アルミナ(Al23)、カーネギアイト(Na2
O・Al23.2SiO2)、エンスタタイト(MgO
・SiO2)、ホウ酸マグネシウム(2MgO・B
23)、セルシアン(BaO・Al23・2Si
2)、B23・2MgO・2SiO2、ガーナイト(Z
nO・Al23)、ペタライト(LiAlSi410
の群から選ばれる少なくとも1種以上が好適に用いられ
る。
On the other hand, the thermal expansion coefficient is 6 × 10-6/ ℃ or more
Cristobalite (Si)
OTwo), Quartz (SiOTwo), Tridymite (Si
OTwo), Forsterite (2MgO.SiO)Two), Spy
Flannel (MgO · AlTwoOThree), Wollastonite (CaO
・ SiOTwo), Monticellanite (CaO.MgO.)
SiOTwo), Nepheline (NaTwoO ・ AlTwoOThree・ Si
OTwo), Lithium silicate (LiO Two・ SiOTwo),
Opside (CaO ・ MgO ・ 2SiOTwo), Melvina
(3CaO.MgO.2SiO)Two), Akermite
(2CaO.MgO.2SiOTwo), Magnesia (Mg
O), alumina (AlTwoOThree), Carnegieite (NaTwo
O ・ AlTwoOThree. 2SiOTwo), Enstatite (MgO)
・ SiOTwo), Magnesium borate (2MgOB
TwoOThree), Celsian (BaO.Al)TwoOThree・ 2Si
OTwo), BTwoOThree・ 2MgO ・ 2SiOTwo, Garnite (Z
nO · AlTwoOThree), Petalite (LiAlSiFourOTen)
At least one selected from the group of
You.

【0025】そして、上記のガラス成分とフィラー成分
との混合物に適当な有機バインダーを添加した後、ドク
ターブレード法やカレンダーロール法等によりシート状
に成形してセラミックグリーンシ−ト(セラミック生シ
ート)となし、しかる後、前記セラミックグリーンシー
トに適当な打ち抜き加工を施して所定の形状になすとと
もにこれを複数枚積層し焼成することにより、熱膨張係
数が11×10-6/℃〜13×10-6/℃の絶縁基体1
が作製される。
After adding an appropriate organic binder to the mixture of the above-mentioned glass component and filler component, the mixture is formed into a sheet by a doctor blade method, a calender roll method, or the like, and a ceramic green sheet (ceramic green sheet) is formed. Thereafter, the ceramic green sheet is appropriately punched to form a predetermined shape, and a plurality of the green sheets are laminated and fired, so that the coefficient of thermal expansion is 11 × 10 −6 / ° C. to 13 × 10 6 -6 / ℃ insulating substrate 1
Is produced.

【0026】上記の焼成にあたり、まず、成形のために
配合したバインダー成分を除去する。バインダーの除去
は、700℃前後の大気雰囲気中で行われるが、導体ペ
ーストの材料として、例えば、銅を用いる場合には、1
00〜700℃の水蒸気を含有する窒素雰囲気中で行わ
れる。この時、セラミックグリーンシートの収縮開始温
度は700〜850℃程度であることが望ましく、かか
る収縮開始温度がこれより低いとバインダーの除去が困
難となるため、セラミックグリーンシート中の結晶性ガ
ラスの特性、特に屈伏点を前述したように制御すること
が必要となる。
In the above-mentioned firing, first, the binder component blended for molding is removed. The binder is removed in an air atmosphere at about 700 ° C. However, when copper is used as a material for the conductor paste, for example, 1 is used.
This is performed in a nitrogen atmosphere containing steam at 00 to 700 ° C. At this time, the shrinkage start temperature of the ceramic green sheet is desirably about 700 to 850 ° C. If the shrinkage start temperature is lower than this, it is difficult to remove the binder. In particular, it is necessary to control the yield point as described above.

【0027】前記焼成は、850℃〜1050℃の酸化
性雰囲気または非酸化性雰囲気中で行われ、これにより
相対密度90%以上まで緻密化される。但し、後述する
ように銅等の導電ペーストを被着させ同時焼成する場合
には、銅等が酸化しない、窒素、窒素/水素混合雰囲気
などの非酸化性雰囲気中で焼成される。
The calcination is performed in an oxidizing atmosphere or a non-oxidizing atmosphere at 850 ° C. to 1050 ° C., whereby the relative density is increased to 90% or more. However, in the case where a conductive paste such as copper is applied and fired simultaneously, as described later, firing is performed in a non-oxidizing atmosphere such as a nitrogen or nitrogen / hydrogen mixed atmosphere in which copper or the like is not oxidized.

【0028】なお、上記のようにして作製される熱膨張
係数が11×10-6/℃〜13×10-6/℃の絶縁基体
1中には、ガラス成分から生成した結晶相、ガラス成分
とフィラー成分との反応により生成した結晶相、あるい
はフィラー成分、あるいはフィラー成分が分解して生成
した結晶相等が存在し、これらの結晶相の粒界にはガラ
ス相が存在する。
The insulating substrate 1 having a thermal expansion coefficient of 11 × 10 −6 / ° C. to 13 × 10 −6 / ° C. produced as described above contains a crystal phase formed from a glass component and a glass component. There is a crystal phase generated by the reaction between the filler component and the filler component, a filler component, or a crystal phase generated by decomposition of the filler component, and a glass phase exists at the grain boundaries of these crystal phases.

【0029】また、前記単位半導体装置1a、1b、1
cのうち最下部以外に位置する単位半導体装置1b、1
cの絶縁基体1は、前記最下部に位置する単位半導体装
置1aの絶縁基体1と同じ絶縁材料、或は上下に隣接す
る単位半導体装置1a、1b、1c間で熱膨張係数の差
が5×10-6/℃以下なるような種々の材料、具体的に
は酸化アルミニウム質焼結体、ムライト質焼結体、炭化
珪素質焼結体、窒化アルミニウム質焼結体、ガラスセラ
ミックス焼結体等の絶縁材料により形成することができ
る。
The unit semiconductor devices 1a, 1b, 1
c, the unit semiconductor devices 1b, 1
The insulating substrate 1 of c is made of the same insulating material as the insulating substrate 1 of the lowermost unit semiconductor device 1a, or the difference in thermal expansion coefficient between the vertically adjacent unit semiconductor devices 1a, 1b, and 1c is 5 ×. Various materials having a temperature of 10 −6 / ° C. or less, specifically, aluminum oxide sintered body, mullite sintered body, silicon carbide sintered body, aluminum nitride sintered body, glass ceramic sintered body, etc. Can be formed of the above insulating material.

【0030】前記単位半導体装置1a、1b、1cは上
下に積層した際、上下に隣接する単位半導体装置の絶縁
基体1の熱膨張係数差が5×10-6/℃以下と小さいこ
とから上下に隣接する単位半導体装置間には大きな熱応
力が生じることはなく、これによって上下に隣接する単
位半導体装置の上面接続端子3と下面接続端子4とを接
続する低融点ロウ材7が短期間で破断することはなく、
各単位半導体装置1a、1b、1cの各半導体素子2と
外部電気回路との電気的接続を長期にわたり安定に維持
させることができる。
When the unit semiconductor devices 1a, 1b, and 1c are vertically stacked, the difference in thermal expansion coefficient between the insulating substrates 1 of the vertically adjacent unit semiconductor devices is as small as 5 × 10 −6 / ° C. or less. A large thermal stress does not occur between the adjacent unit semiconductor devices, so that the low melting point brazing material 7 connecting the upper surface connection terminals 3 and the lower surface connection terminals 4 of the vertically adjacent unit semiconductor devices is broken in a short period of time. Will not
Electrical connection between each semiconductor element 2 of each unit semiconductor device 1a, 1b, 1c and an external electric circuit can be stably maintained for a long time.

【0031】前記最下部以外の単位半導体装置1b、1
cの絶縁基体1を、例えば、酸化アルミニウム質焼結体
で形成する場合、酸化アルミニウム、酸化珪素、酸化マ
グネシウム、酸化カルシウム等の原料粉末に適当な有機
バインダー、溶剤等を添加混合して泥漿状物を作るとと
もに該泥漿状物をドクターブレード法やカレンダーロー
ル法等を採用することによってセラミックグリーンシー
トと成し、しかる後、前記セラミックグリーンシートに
適当な打ち抜き加工を施し、所定形状となすとともにこ
れを複数枚積層し高温(約1600℃)で焼成すること
によって製作される。
The unit semiconductor devices 1b, 1
For example, when the insulating substrate 1 of c is formed of an aluminum oxide-based sintered body, an appropriate organic binder, a solvent, and the like are added to and mixed with raw material powders of aluminum oxide, silicon oxide, magnesium oxide, calcium oxide, etc. The ceramic green sheet is formed by employing a doctor blade method, a calendar roll method, or the like, and then the ceramic green sheet is appropriately punched to form a predetermined shape. Are laminated and fired at a high temperature (about 1600 ° C.).

【0032】また前記単位半導体装置1a、1b、1c
の各々の絶縁基体1には、その上面及び下面に上面接続
端子3及び下面接続端子4が、凹部A底面周辺部には電
極端子5がそれぞれ形成されており、更に前記電極端子
5、上面接続端子3および下面接続端子4間は配線層6
によって接続されている。
The unit semiconductor devices 1a, 1b, 1c
Each of the insulating bases 1 has an upper surface connecting terminal 3 and a lower surface connecting terminal 4 formed on the upper and lower surfaces thereof, and an electrode terminal 5 formed on the periphery of the bottom surface of the concave portion A, respectively. Wiring layer 6 between terminal 3 and lower surface connection terminal 4
Connected by

【0033】前記上面接続端子3および下面接続端子4
は、上下に隣接する単位半導体装置を電気的、機械的に
接続する端子として作用し、電極端子5には半導体素子
2の電極がボンディングワイヤ9等を介して接続され、
半導体素子2の電極を上面接続端子3や下面接続端子4
に接続されている配線層6に接続する作用をなす。
The upper connection terminal 3 and the lower connection terminal 4
Functions as a terminal for electrically and mechanically connecting the vertically adjacent unit semiconductor devices, the electrode of the semiconductor element 2 is connected to the electrode terminal 5 via a bonding wire 9 or the like,
The electrodes of the semiconductor element 2 are connected to the upper connection terminal 3 or the lower connection terminal 4.
And has a function of connecting to the wiring layer 6 that is connected to the wiring layer 6.

【0034】前記上面接続端子3、下面接続端子4、電
極端子5および配線層6は、例えば、タングステンやモ
リブデン、マンガン、銅、銀、ニッケル、パラジウム、
金等の金属材料で形成されており、絶縁基体1を形成す
る絶縁材料によっていずれの金属材料を使用するかは適
宜選択され、例えば、最下部に位置する単位半導体装置
1aの絶縁基体1には該絶縁基体1がガラス成分とフィ
ラーとで形成され、その軟化溶融温度が低いため銅や
銀、ニッケル、パラジウム、金の少なくとも1種が好適
に使用され、また上部側に位置する単位半導体装置1
b、1cが酸化アルミニウム質焼結体、ムライト質焼結
体、炭化珪素質焼結体、窒化アルミニウム質焼結体等で
形成されている場合にはタングステンやモリブデン、マ
ンガン等の高融点金属が好適に使用される。
The upper connection terminal 3, the lower connection terminal 4, the electrode terminal 5, and the wiring layer 6 are made of, for example, tungsten, molybdenum, manganese, copper, silver, nickel, palladium,
It is formed of a metal material such as gold, and the metal material to be used is appropriately selected depending on the insulating material forming the insulating base 1. For example, the insulating base 1 of the unit semiconductor device 1a located at the bottom is Since the insulating base 1 is formed of a glass component and a filler and has a low softening and melting temperature, at least one of copper, silver, nickel, palladium, and gold is preferably used, and the unit semiconductor device 1 located on the upper side is used.
When b and 1c are formed of an aluminum oxide-based sintered body, a mullite-based sintered body, a silicon carbide-based sintered body, an aluminum nitride-based sintered body, etc., a high melting point metal such as tungsten, molybdenum, or manganese is used. It is preferably used.

【0035】前記上面接続端子3、下面接続端子4、電
極端子5および配線層6はタングステンやモリブデン、
マンガン、銅、銀、ニッケル、パラジウム、金等の金属
材料粉末に適当な有機バインダー、溶剤を混合して導電
ペーストを作成し、これを焼成によって絶縁基体1とな
るシート状の成形体に予めスクリーン印刷法等により所
定パターンに印刷塗布しておくことによって絶縁基体1
の所定位置に所定形状に形成される。
The upper connection terminal 3, the lower connection terminal 4, the electrode terminal 5, and the wiring layer 6 are made of tungsten, molybdenum,
A conductive paste is prepared by mixing a suitable organic binder and a solvent with a powder of a metal material such as manganese, copper, silver, nickel, palladium, and gold, and is then screened in advance on a sheet-like molded body that becomes the insulating substrate 1 by firing. The insulating substrate 1 is printed and applied in a predetermined pattern by a printing method or the like.
Is formed in a predetermined shape at a predetermined position.

【0036】なお、前記上面接続端子3、下面接続端子
4および電極端子5は、半導体素子2を実装する前に、
予め、その露出する表面にニッケル、金等の耐蝕性に優
れ、かつ低融点ロウ材の濡れ性や、ボンディングワイヤ
のボンディング性の良い良導電性の金属(不図示)をめ
っき法等により1μm乃至20μmの厚みに被着させて
おくと、上面接続端子3、下面接続端子4および電極端
子5の酸化腐蝕を有効に防止することができるととも
に、上面接続端子3、下面接続端子4に対する低融点ロ
ウ材7、8の濡れ性や、電極端子5に対するボンディン
グワイヤ9のボンディング性を良好とすることができ
る。従って、前記上面接続端子3、下面接続端子4およ
び電極端子5は、半導体素子2を実装する前に、その露
出する表面にニッケル、金等の金属をめっき法等により
1μm乃至20μmの厚みに被着させておくことが好ま
しい。
The upper connection terminal 3, the lower connection terminal 4, and the electrode terminal 5 are connected to each other before the semiconductor element 2 is mounted.
In advance, the exposed surface is coated with a highly conductive metal (not shown) having excellent corrosion resistance such as nickel and gold, good wettability of a low melting point brazing material, and good bonding property of a bonding wire by plating or the like. When it is adhered to a thickness of 20 μm, oxidation corrosion of the upper connection terminal 3, the lower connection terminal 4, and the electrode terminal 5 can be effectively prevented, and a low melting point solder for the upper connection terminal 3 and the lower connection terminal 4. The wettability of the members 7 and 8 and the bonding property of the bonding wire 9 to the electrode terminal 5 can be improved. Therefore, before mounting the semiconductor element 2, the upper connection terminal 3, the lower connection terminal 4, and the electrode terminal 5 are coated with a metal such as nickel or gold to a thickness of 1 μm to 20 μm by plating or the like. It is preferable to keep it on.

【0037】かくして上述の半導体装置によれば、各単
位半導体装置1a、1b、1cを上下に積層し、隣接す
る単位半導体装置間で下部に位置する単位半導体装置の
上面接続端子3を上部に位置する単位半導体装置の下面
接続端子4に低融点ロウ材7を介して接続するととも
に、最下部に位置する単位半導体装置1aの下面接続端
子4を外部電気回路の回路配線に低融点ロウ材8を介し
て接続すれば外部電気回路に高密度に実装され、同時に
各単位半導体装置1a、1b、1cの半導体素子2が外
部電気回路に電気的に接続されることとなる。
Thus, according to the above-described semiconductor device, the unit semiconductor devices 1a, 1b, and 1c are vertically stacked, and the upper connection terminals 3 of the lower unit semiconductor device are positioned between the adjacent unit semiconductor devices. To the lower surface connection terminal 4 of the unit semiconductor device to be connected via the low melting point brazing material 7, and the lower surface connection terminal 4 of the unit semiconductor device 1 a located at the lowest position is connected to the circuit wiring of the external electric circuit by the low melting point brazing material 8. If they are connected via an external electric circuit, the semiconductor elements 2 of the unit semiconductor devices 1a, 1b, and 1c are electrically connected to the external electric circuit at the same time.

【0038】なお、本発明は上述の実施例に限定される
ものではなく、本発明の要旨を逸脱しない範囲であれば
種々の変更は可能であり、例えば、上述の実施例では3
つの単位半導体装置1a、1b、1cを積層した例で説
明したが2つの単位半導体装置を積層したものであって
も4つ以上の単位半導体装置を積層したものであっても
よい。
It should be noted that the present invention is not limited to the above-described embodiment, and various changes can be made without departing from the scope of the present invention.
Although an example in which the two unit semiconductor devices 1a, 1b, and 1c are stacked has been described, a stack of two unit semiconductor devices or a stack of four or more unit semiconductor devices may be used.

【0039】[0039]

【発明の効果】本発明の半導体装置によれば、複数の単
位半導体装置を上下に積層して成り、少なくとも外部電
気回路に直接接続される最下部の単位半導体装置の絶縁
基体の熱膨張係数を11×10-6/℃〜13×10-6
℃としたことから、前記最下部の単位半導体装置の絶縁
基体と外部電気回路の熱膨張係数の差を5×10-6/℃
以下と小さくすることができ、両者の間に大きな熱応力
が生じることはなく、最下部の単位半導体装置の下面接
続端子と外部電気回路の回路配線とを接続する低融点ロ
ウ材が破断することを有効に防いで、各単位半導体装置
に実装されている各半導体素子と外部電気回路との電気
的接続を長期にわたり安定に維持させることができる。
According to the semiconductor device of the present invention, a plurality of unit semiconductor devices are vertically stacked, and at least the thermal expansion coefficient of the insulating base of the lowermost unit semiconductor device directly connected to an external electric circuit is reduced. 11 × 10 -6 / ° C to 13 × 10 -6 /
° C, the difference between the thermal expansion coefficient of the insulating substrate of the lowermost unit semiconductor device and the coefficient of thermal expansion of the external electric circuit is 5 × 10 -6 / ° C.
The low melting point brazing material connecting the lower surface connection terminal of the lowermost unit semiconductor device and the circuit wiring of the external electric circuit can be broken without generating a large thermal stress between the two. Is effectively prevented, and the electrical connection between each semiconductor element mounted on each unit semiconductor device and the external electric circuit can be stably maintained for a long period of time.

【0040】また本発明の半導体装置によれば、上下に
隣接する単位半導体装置の絶縁基体間の熱膨張係数差を
5×10-6/℃以下と小さくしたことから、上下に隣接
する単位半導体装置間に大きな熱応力が生じることはな
く、上下に隣接する単位半導体装置の上面接続端子と下
面接続端子を接続する低融点ロウ材が短期間で破断する
ことを有効に防止し、半導体素子と外部電気回路との電
気的接続を長期にわたり安定に維持させることができ
る。
According to the semiconductor device of the present invention, the difference in thermal expansion coefficient between insulating substrates of vertically adjacent unit semiconductor devices is reduced to 5 × 10 −6 / ° C. or less. A large thermal stress does not occur between the devices, effectively preventing the low melting point brazing material connecting the upper surface connection terminals and the lower surface connection terminals of the vertically adjacent unit semiconductor devices from being broken in a short period of time. The electric connection with the external electric circuit can be stably maintained for a long time.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の半導体装置の断面図である。FIG. 1 is a cross-sectional view of a semiconductor device of the present invention.

【符号の説明】[Explanation of symbols]

1a、1b、1c・・・・単位半導体装置 1・・・・・・・・・・・絶縁基体 2・・・・・・・・・・・半導体素子 3・・・・・・・・・・・上面接続端子 4・・・・・・・・・・・下面接続端子 5・・・・・・・・・・・電極端子 6・・・・・・・・・・・配線層 7、8・・・・・・・・・低融点ロウ材 9・・・・・・・・・・・ボンディングワイヤ A・・・・・・・・・・・凹部 1a, 1b, 1c ... unit semiconductor device 1 ... insulating base 2 ... semiconductor element 3 ... ..Top connection terminal 4 ... Bottom connection terminal 5 ... Electrode terminal 6 ... Wiring layer 7, 8 Low-melting brazing material 9 Bonding wire A recess

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】電極端子と、上面及び下面に形成されてい
る上面接続端子及び下面接続端子と、前記上面接続端
子、下面接続端子及び電極端子の間を接続する配線層と
を有する絶縁基体に半導体素子を実装し、半導体素子の
各電極を電極端子に接続させた単位半導体装置を上下に
積層して成り、隣接する単位半導体装置間で下部に位置
する単位半導体装置の上面接続端子を上部に位置する単
位半導体装置の下面接続端子に低融点ロウ材を介して接
続するとともに、最下部に位置する単位半導体装置の下
面接続端子が外部電気回路の回路配線に低融点ロウ材を
介して接続される半導体装置であって、前記少なくとも
最下部に位置する単位半導体装置の絶縁基体の熱膨張係
数が11×10-6/℃〜13×10-6/℃であり、かつ
前記上下に隣接する単位半導体装置の絶縁基体の熱膨張
係数差が5×10-6/℃以下であることを特徴とする半
導体装置。
An insulating substrate having an electrode terminal, an upper connection terminal and a lower connection terminal formed on the upper and lower surfaces, and a wiring layer connecting the upper connection terminal, the lower connection terminal and the electrode terminal. A semiconductor element is mounted and unit semiconductor devices in which each electrode of the semiconductor element is connected to an electrode terminal are vertically stacked, and the upper connection terminals of the unit semiconductor device located at a lower position between adjacent unit semiconductor devices are disposed at an upper position. The lower surface connection terminal of the lowermost unit semiconductor device is connected to the lower surface connection terminal of the unit semiconductor device located therethrough via a low melting point brazing material, and the lower surface connection terminal of the unit semiconductor device located at the bottom is connected to the circuit wiring of the external electric circuit via the low melting point brazing material. a semiconductor device that, said a thermal expansion coefficient of the insulating base of the unit semiconductor device positioned on at least the bottom is 11 × 10 -6 / ℃ ~13 × 10 -6 / ℃, and adjacent to the vertical Position wherein a difference in thermal expansion coefficient between the insulating substrate of the semiconductor device is 5 × 10 -6 / ℃ or less.
JP2000049217A 2000-02-25 2000-02-25 Semiconductor device Pending JP2001244408A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000049217A JP2001244408A (en) 2000-02-25 2000-02-25 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000049217A JP2001244408A (en) 2000-02-25 2000-02-25 Semiconductor device

Publications (1)

Publication Number Publication Date
JP2001244408A true JP2001244408A (en) 2001-09-07

Family

ID=18571190

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000049217A Pending JP2001244408A (en) 2000-02-25 2000-02-25 Semiconductor device

Country Status (1)

Country Link
JP (1) JP2001244408A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007096192A (en) * 2005-09-30 2007-04-12 Ibiden Co Ltd Multilayer circuit board with built-in semiconductor element
JP2007096193A (en) * 2005-09-30 2007-04-12 Ibiden Co Ltd Multilayer circuit board with built-in semiconductor element
US8389867B2 (en) 2005-09-30 2013-03-05 Ibiden Co., Ltd. Multilayered circuit substrate with semiconductor device incorporated therein

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007096192A (en) * 2005-09-30 2007-04-12 Ibiden Co Ltd Multilayer circuit board with built-in semiconductor element
JP2007096193A (en) * 2005-09-30 2007-04-12 Ibiden Co Ltd Multilayer circuit board with built-in semiconductor element
JP4663470B2 (en) * 2005-09-30 2011-04-06 イビデン株式会社 Multi-layer circuit board with built-in semiconductor elements
JP4663471B2 (en) * 2005-09-30 2011-04-06 イビデン株式会社 Multi-layer circuit board with built-in semiconductor elements
US8389867B2 (en) 2005-09-30 2013-03-05 Ibiden Co., Ltd. Multilayered circuit substrate with semiconductor device incorporated therein

Similar Documents

Publication Publication Date Title
JP3426926B2 (en) Wiring board and its mounting structure
JPH0343786B2 (en)
JP4673086B2 (en) Conductor paste for via conductor metallization and method of manufacturing ceramic wiring board using the same
JP4748904B2 (en) Glass ceramic sintered body and wiring board using the same
JP4703207B2 (en) Wiring board
JP2001244408A (en) Semiconductor device
JP4671836B2 (en) Method for producing glass ceramic sintered body
JP4535576B2 (en) Manufacturing method of multilayer wiring board
JP4549029B2 (en) Glass ceramic composition, glass ceramic sintered body, method for producing glass ceramic sintered body, and wiring board
JP3716088B2 (en) Wiring board
JP3559407B2 (en) Glass ceramic sintered body and multilayer wiring board using the same
JPH0226798B2 (en)
JP2004256346A (en) Glass-ceramic composition, glass-ceramic sintered compact, its producing method, wiring board using the sintered compact body, and its mounting structure
JP3719834B2 (en) Low temperature fired ceramics
JP3426920B2 (en) Wiring board
JP2001015895A (en) Wiring board and its manufacture
JP2004235347A (en) Insulating ceramics and multilayer ceramic substrate using the same
JP2002137960A (en) Low-temperature firing ceramics composition, low- temperature fired ceramics and wiring board using it
JP3323074B2 (en) Wiring board, package for housing semiconductor element and its mounting structure
JP3339999B2 (en) Wiring board, semiconductor device storage package using the same, and mounting structure thereof
JP3323043B2 (en) Wiring board, semiconductor device storage package using the same, and mounting structure thereof
JP3314131B2 (en) Wiring board
JPH11135899A (en) Ceramic circuit board
JPH10154767A (en) Wiring substrate and its manufacturing method
JP2004231453A (en) Glass-ceramic composition, glass-ceramic sintered compact, wiring substrate using the compact, and packaging structure of the wiring substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090818

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091215