JP3559407B2 - Glass ceramic sintered body and multilayer wiring board using the same - Google Patents

Glass ceramic sintered body and multilayer wiring board using the same Download PDF

Info

Publication number
JP3559407B2
JP3559407B2 JP31495796A JP31495796A JP3559407B2 JP 3559407 B2 JP3559407 B2 JP 3559407B2 JP 31495796 A JP31495796 A JP 31495796A JP 31495796 A JP31495796 A JP 31495796A JP 3559407 B2 JP3559407 B2 JP 3559407B2
Authority
JP
Japan
Prior art keywords
thermal expansion
ppm
glass
dielectric constant
coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP31495796A
Other languages
Japanese (ja)
Other versions
JPH10158032A (en
Inventor
秀人 米倉
紀彰 浜田
浩一 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP31495796A priority Critical patent/JP3559407B2/en
Publication of JPH10158032A publication Critical patent/JPH10158032A/en
Application granted granted Critical
Publication of JP3559407B2 publication Critical patent/JP3559407B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/097Glass compositions containing silica with 40% to 90% silica, by weight containing phosphorus, niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • C03C3/07Glass compositions containing silica with less than 40% silica by weight containing lead
    • C03C3/072Glass compositions containing silica with less than 40% silica by weight containing lead containing boron
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • C03C3/07Glass compositions containing silica with less than 40% silica by weight containing lead
    • C03C3/072Glass compositions containing silica with less than 40% silica by weight containing lead containing boron
    • C03C3/074Glass compositions containing silica with less than 40% silica by weight containing lead containing boron containing zinc
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • C03C3/07Glass compositions containing silica with less than 40% silica by weight containing lead
    • C03C3/072Glass compositions containing silica with less than 40% silica by weight containing lead containing boron
    • C03C3/074Glass compositions containing silica with less than 40% silica by weight containing lead containing boron containing zinc
    • C03C3/0745Glass compositions containing silica with less than 40% silica by weight containing lead containing boron containing zinc containing more than 50% lead oxide, by weight
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • C03C3/093Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium containing zinc or zirconium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/16Compositions for glass with special properties for dielectric glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/14Glass frit mixtures having non-frit additions, e.g. opacifiers, colorants, mill-additions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/14Glass frit mixtures having non-frit additions, e.g. opacifiers, colorants, mill-additions
    • C03C8/20Glass frit mixtures having non-frit additions, e.g. opacifiers, colorants, mill-additions containing titanium compounds; containing zirconium compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Glass Compositions (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、高誘電率および高熱膨張係数を有するガラスセラミック焼結体と、かかるガラスセラミック焼結体を具備した多層配線基板に関するものである。
【0002】
【従来技術】
従来、多層配線基板は、絶縁層が多層に積層された絶縁基板の表面または内部にメタライズ配線層が配設された構造からなる。また、この多層配線基板を用いた代表的な例として、LSIなどの半導体集積回路素子を収納するための半導体素子収納用パッケージが挙げられる。このパッケージとしては、高集積化が可能なパッケージとしてセラミックパッケージ、とりわけ絶縁基板がアルミナやムライトなどのセラミックスからなるものが多用され、さらに最近では、銅メタライズ配線層と同時焼成を可能にしたガラスセラミックスを絶縁基板とするものも実用化されている。
【0003】
このようなセラミックパッケージにおいては、半導体素子の集積度が高まるに従い、半導体素子収納用パッケージにおけるプリント基板などの外部電気回路基板との接続するための接続端子数も増大する傾向にあり、より小型化を図るために、パッケージ接続端子として種々の形態が提案されており、接続端子がコバールなどの金属ピンからなるピングリッドアレイ(PGA)、パッケージの側面にL字状の金属ピンが導出されたクワッドフラットパッケージ(QFP)、絶縁基板の下面に半田から成る球状の接続端子を取り付けたボールグリッドアレイ(BGA)等が知られ、これらの中でもBGAが最も高密度化が可能であると言われている。このボールグリッドアレイ(BGA)では、パッケージの絶縁基板に形成された半田からなる球状の接続端子を外部電気回路基板の配線導体上に載置当接させた後、加熱処理して前記球状端子を溶融させて接続するか、または球状端子を低融点の半田によって接続し、実装される。
【0004】
一方、高度情報化時代を迎え、情報伝送はより高速化・高周波化の傾向にある。自動車電話やパーソナル無線等の移動無線、衛星放送、衛星通信やCATV等のニューメディアでは、機器のコンパクト化が推し進められており、これに伴い誘電体共振器等のマイクロ波用回路素子に対しても小型化が強く望まれているが、マイクロ波用回路素子の大きさは、使用電磁波の波長が基準となる。誘電率(εr)の誘電体中を伝播する電磁波の波長(λ)は、真空中の伝播波長をλとするとλ=λ/(εr)1/2 となる。したがって、素子は、使用される基板の誘電率が大きいほど、小型になる。
【0005】
そこで、高誘電率系セラミック材料としては、従来より主としてコンデンサ材料とし使用されているBaO−TiO系、PbO−TiO系などを主とする複合ペロブスカイト系誘電体材料が知られているが、アルミナ系材料としては、特開平3−87091号や特開昭59−108397号により、アルミナにタングステン等の金属を分散させて高誘電率化すること、ガラスセラミック材料系では、特開平8−55516号公報や特開平7−118060号等において、SiO、BaO、TiO等を主成分とするガラス粉末と、高誘電率、低誘電損失のセラミックスフィラー粉末を組み合わせたガラスセラミック材料が提案されている。
【0006】
【発明が解決しようとする課題】
これらのパッケージにおける絶縁基板として使用されているアルミナ、ムライトなどのセラミックスは、200MPa以上の高強度を有し、しかもメタライズ配線層などとの多層化技術として信頼性の高いことで有用ではあるが、その熱膨張係数は約4〜7ppm/℃程度であるのに対して、パッケージが実装される外部電気回路基板として最も多用されているガラス−エポキシ等から成るプリント基板の熱膨張係数は12〜18ppm/℃と非常に大きい。
【0007】
そのため、絶縁基板がアルミナやムライトからなるパッケージ等をプリント基板などの外部電気回路基板に半田実装した場合、半導体素子の作動時に発する熱にパッケージと外部電気回路基板との間に熱膨張差に起因する大きな熱応力が発生する。この熱応力は、パッケージにおける端子数が増加するほど、またはパッケージそのものが大型化するに従い、その影響が増大する傾向にある。そして、半導体素子の作動および停止の繰り返しにより熱応力が繰り返し印加されると、熱応力がパッケージと回路基板の実装部に作用し、接続端子が絶縁基板より剥離したり、端子が配線導体より剥離して、実装不良を来すという問題があった。
【0008】
また、上記の高誘電率系セラミック材料によれば、アルミナやムライト系材料の場合、上記の実装不良を生じることは免れず、また、複合ペロブスカイト系セラミックスでは、1200℃以上の温度で焼成する必要があるため、電極や導体材料として銀や銅を使用することができないものであった。
【0009】
銅等の導体材料を使用できる点において、前記ガラスセラミック材料は有利であるが、特開平8−55516号公報や特開平7−118060号等に記載されたガラスセラミックスでは、熱膨張係数が小さく、外部電気回路基板との熱膨張係数差が大きく、前述した理由により実装時の信頼性に欠けるという問題があった。
【0010】
従って、本発明は、高誘電率を有するとともに、銅配線が可能であり、しかもプリント基板等の外部電気回路基板との実装においても長期信頼性に優れたガラスセラミック焼結体と、それを具備する配線基板を提供することを目的とするものである
【0011】
【課題を解決するための手段】
本発明によれば、ガラス成分として、40〜400℃における熱膨張係数が6〜18ppm/℃のガラス成分を用い、さらに、フィラー成分として、高誘電率および高熱膨張特性を有するセラミックフィラーを選択し、これらを混合、焼成することにより、上記目的を達成し得ることを見いだした。
【0012】
即ち、本発明のガラスセラミック焼結体は、40〜400℃における熱膨張係数が6〜18ppm/℃のガラス成分20〜60体積%と、40〜400℃における熱膨張係数が6ppm/℃以上かつ誘電率が10以上の誘電体を含むフィラー成分40〜80体積%とからなる組成物を成形、焼成して、リチウム珪酸、PbSiO、PbZnSiO、ZnO・Al、ZnO・nB、BaAlSi、BaSi、BaBSiから選ばれる少なくとも1種の結晶相が析出してなり、40〜400℃における熱膨張係数が10〜15ppm/℃、誘電率が8以上であることを特徴とするものである。
【0013】
さらに、絶縁層が多層に積層された絶縁基板の表面あるいは内部にメタライズ配線層が配設されてなる多層配線基板において、前記絶縁層の少なくとも1層が、40〜400℃における熱膨張係数が6〜18ppm/℃のガラス成分20〜60体積%と、40〜400℃における熱膨張係数が6ppm/℃以上かつ誘電率が10以上の誘電体を含むフィラーを40〜80体積%からなる組成物を成形、焼成して、リチウム珪酸、PbSiO、PbZnSiO、ZnO・Al、ZnO・nB、BaAlSi、BaSi、BaBSiから選ばれる少なくとも1種の結晶相を析出してなり、40〜400℃における熱膨張係数が10〜15ppm/℃、誘電率が8以上のガラスセラミック焼結体からなることを特徴とするものである。
【0014】
本発明のガラスセラミック焼結体は、高い熱膨張係数を有するために、配線基板の絶縁基板として用いた場合、パッケージ等の配線基板をプリント基板などの有機樹脂を含む絶縁基体からなる外部電気回路基板に実装した状態で、熱サイクルが印加されても、熱膨張差に起因する熱応力の発生を抑制することができる結果、長期にわたり安定した実装が可能となる。しかも、かかるガラスセラミック焼結体は、高誘電率であることから、パッケージ等の配線基板を小型化することができる。
【0015】
【発明の実施の形態】
本発明のガラスセラミック焼結体は、ガラス成分とフィラー成分によって構成される。まず、ガラス成分としては、40〜400℃における熱膨張係数が6〜18ppm/℃であることが重要である。このようなガラス成分としては、リチウム珪酸系ガラス、PbO系ガラス、BaO系ガラス、ZnO系ガラス等が好適に使用される。なお、上記ガラス成分の熱膨張係数は、結晶化ガラスの場合には、焼成温度で熱処理した後の熱膨張係数を指すものであり、線熱膨張係数を意味する。
【0016】
リチウム珪酸系ガラスとしては、LiOを5〜30重量%、特に5〜20重量%の割合で含有するものであり、焼成後に高熱膨張係数を有するリチウム珪酸を析出させることができる。また、上記のリチウム珪酸ガラスとしては、LiO以外にSiOを必須の成分として含むが、SiOはガラス全量中、60〜85重量%の割合で存在し、SiOとLiOとの合量がガラス全量中、65〜95重量%であることがリチウム珪酸結晶を析出させる上で望ましい。また、これらの成分以外に、Al、MgO、TiO、B、NaO、KO、P、ZnO、F等が配合されていてもよい。なお、このリチウム珪酸ガラス中には、Bは1重量%以下であることが望ましい。
【0017】
PbO系ガラスとしては、PbOを主成分とし、さらにB、SiOのうちの少なくとも1種を含有するガラス粉末であり、焼成後にPbSiO、PbZnSiO等の高熱膨張の結晶相が析出するものが好適に使用される。とりわけ、PbO(65〜85重量%)−B(5〜15重量%)−ZnO(6〜20重量%)−SiO(0.5〜5重量%)−BaO(0〜5重量%)からなる結晶性ガラスや、PbO(50〜60重量%)−SiO(35〜50重量%)−Al(1〜9重量%)からなる結晶性ガラスが望ましい。
【0018】
ZnO系ガラスとしては、ZnOを10重量%以上含有するガラスであり、焼成後にZnO・Al、ZnO・nB等の高熱膨張係数の結晶相が析出し得るものであり、ZnO以外の他成分として、SiO(60重量%以下)、Al(60重量%以下)、B(30重量%以下)、P(50重量%以下)、アルカリ土類酸化物(20重量%以下)、Bi(30重量%以下)等の少なくとも1種を含み得る。特に、ZnO10〜50重量%−Al10〜30重量%−SiO30〜60重量%からなる結晶性ガラスや、ZnO10〜50重量%−SiO5〜40重量%−Al0〜15重量%−BaO0〜60重量%−MgO0〜35重量%からなる結晶性ガラスが好適に使用される。
【0019】
さらに、BaO系ガラスとしては、BaOを10重量%以上含有し、焼成後にBaAlSi、BaSi、BaBSiなどの結晶相が析出するものが採用される。BaO以外の成分としては、Al、SiO、B、P、アルカリ土類酸化物、アルカリ金属酸化物等を含む場合もある。
【0020】
さらに、上記ガラス成分の屈伏点は400℃〜800℃、特に400〜650℃であることが望ましい。これは、ガラス成分とフィラー成分からなる混合物を成形する時に添加される有機樹脂等の成形用バインダーを効率的に除去するとともに、銅等のメタライズとの同時焼成条件のマッチングを図るためであり、屈伏点が400℃より低いと結晶性ガラスが低い温度で焼結が開始されるために、例えばAg、Cu等の焼結開始温度が600〜800℃のメタライズとの同時焼成が難しく、また成形体の緻密化が低温で開始するためにバインダーは分解揮散できなくなりバインダー成分が残留し特性に影響を及ぼす結果になるためである。一方、屈伏点が800℃より高いとガラス量を多くしないと焼結しにくくなるため、高価なガラスを大量に必要とし、焼結体のコストを高めることになる。
【0021】
一方、フィラー成分としては、40〜400℃における熱膨張係数(α)が6ppm/℃以上かつ誘電率が10以上、特に15以上、さらには20以上であることが重要である。この熱膨張係数が6ppm/℃よりも低いと焼結体としての熱膨張係数を8ppm/℃以上に制御することが難しくなる。用いるフィラーとしては、これに限定するものではないが、例えば、
CaTiO(α=13ppm/℃、ε=180)、
BaTiO(α=14ppm/℃、ε=3000〜8000)
SrTiOα=9ppm/℃、ε=300
TiO (α=9ppm/℃、ε=80)、
ZrO (α=10ppm/℃、ε=30)、
等が挙げられ、上記の高誘電率および高熱膨張係数を有する上で、これらをベースとする他の金属酸化物との複合物であってもよい。なお、上記誘電率とは、正確には、比誘電率、熱膨張係数とは線熱膨張係数のことである。
【0022】
上記のガラス成分およびフィラー成分は、ガラス成分20〜60体積%と、フィラー成分40〜80体積%の割合で配合する。ガラス量が20体積%よりも少なく、フィラー量が80重量%よりも多いと、銅との同時焼成ができず、ガラス量が60重量%よりも多く、フィラー量が40重量%よりも少ないと、焼結体としての誘電率を高めることが難しくなるためである。
【0023】
なお、フィラー成分としては、前記高誘電率フィラー量を上記の範囲から逸脱しない範囲で、熱膨張係数制御のために、他のフィラー成分を配合することができる。特に、それらのフィラーとしては、40〜400℃における熱膨張係数が6ppm/℃以上の化合物、具体的には、クリストバライト(SiO)、クォーツ(SiO)、トリジマイト(SiO)、フォルステライト(2MgO・SiOん)、スピネル(MgO・Al)、ウォラストナイト(CaO・SiO)、モンティセラナイト(CaO・MgO・SiO)、ネフェリン(NaO・Al・SiO)、リチウムシリケート(LiO・SiO)、ジオプサイド(CaO・MgO・2SiO)、メルビナイト(3CaO・MgO・2SiO)、アケルマイト(2CaO・MgO・2SiO)、マグネシア(MgO)、アルミナ(Al)、カーネギアイト(NaO・Al・2SiO)、エンスタタイト(MgO・SiO)、ホウ酸マグネシウム(2MgO・B)、セルシアン(BaO・Al・2SiO)、B・2MgO・2SiO、ガーナイト(ZnO・Al)、ペタライト(LiAlSi10)の群から選ばれる少なくとも1種以上が好適に用いられる。
【0024】
このガラス成分とフィラー成分との混合物は、適当な成形の有機樹脂バインダーを添加した後、所望の成形手段、例えば、金型プレス、冷間静水圧プレス、射出成形、押出し成形、ドクターブレード法、カレンダーロール法、圧延法等により任意の形状に成形する。
【0025】
次に、上記の成形体の焼成にあたっては、まず、成形のために配合したバインダー成分を除去する。バインダーの除去は、700℃前後の大気雰囲気中で行われるが、配線導体として例えばCuを用いる場合には、100〜700℃の水蒸気を含有する窒素雰囲気中で行われる。この時、成形体の収縮開始温度は700〜850℃程度であることが望ましく、かかる収縮開始温度がこれより低いとバインダーの除去が困難となるため、成形体中の結晶化ガラスの特性、特に屈伏点を前述したように制御することが必要となる。
【0026】
焼成は、850℃〜1050℃の酸化性雰囲気または非酸化性雰囲気中で行われ、これにより相対密度90%以上まで緻密化される。この時の焼成温度が850℃より低いと緻密化することができず、1050℃を越えるとメタライズ配線層との同時焼成でメタライズ層が溶融してしまう。但し、Cu等の配線導体と同時焼成する場合には、非酸化性雰囲気中で焼成される。
【0027】
このようにして作製されたガラスセラミック焼結体中には、ガラス成分から生成した結晶相、ガラス成分とフィラー成分との反応により生成した結晶相、あるいはフィラー成分、あるいはフィラー成分が分解して生成した結晶相等が存在し、これらの結晶相の粒界にはガラス相が存在する。
【0028】
このようにして作製された本発明のガラスセラミック焼結体は、40〜400℃における熱膨張係数が8〜18ppm/℃、誘電率が8以上の高熱膨張、高誘電率のガラスセラミック焼結体である。しかも、850℃〜1050℃の焼成温度で焼成可能であるために、銅等の低抵抗金属によるメタライズとの同時焼成が可能である。
【0029】
また、上記焼結体を絶縁基板として、Cu、Ag、Auのうちの1種以上からなるメタライズ配線層を配設した配線基板やパッケージを製造するには、絶縁基板を構成するための前述したような結晶化ガラスとフィラーからなる原料粉末に適当な有機バインダー、可塑剤、溶剤を添加混合して泥漿物を作るとともに該泥漿物をドクターブレード法やカレンダーロール法を採用することによってグリーンシート(生シート)と作製する。そして、メタライズ配線層3及び接続パッドとして、適当な金属粉末に有機バインダー、可塑剤、溶剤を添加混合して得た金属ペーストを前記グリーンシートに周知のスクリーン印刷法により所定パターンに印刷塗布する。また、場合によっては、前記グリーンシートに適当な打ち抜き加工してスルーホールを形成し、このホール内にもメタライズペーストを充填する。そしてこれらのグリーンシートを複数枚積層し、グリーンシートとメタライズとを同時焼成することにより多層構造のパッケージを得ることができる。
【0030】
次に、本発明のガラスセラミックスを多層配線基板に応用した例として、ボールグリッドアレイ型の半導体素子収納用パッケージへの応用例について説明する。図1は、その半導体素子収納用パッケージとその実装構造の一実施例を示した概略図であり、Aは半導体素子収納用パッケージ、Bは外部電気回路基板をそれぞれ示す。
【0031】
図1において、半導体素子収納用パッケージAは、絶縁基板1と蓋体2とメタライズ配線層3と接続端子4及びパッケージの内部に収納される半導体素子5により構成され、絶縁基板1及び蓋体2は半導体素子5を内部に気密に収納するためのキャビティ6を構成する。また、絶縁基板1のキャビティ6内の表面には、載置収納された半導体素子5とメタライズ配線層3とがボンディングワイヤ等によって電気的に接続されている。絶縁基板1の下面には、外部電気回路基板Bと電気的に接続するための接続端子4が複数個形成されている。
【0032】
この接続端子4は、図2に示すように、電極パッド7に対して高融点材料からなる球状端子8が低融点のロウ材9によりロウ付けされている。この高融点材料は、ロウ付けに使用される低融点ロウ材よりも高融点であることが必要で、ロウ付け用ロウ材が例えばPb40重量%−Sn60重量%の低融点の半田からなる場合、球状端子は、例えばPb90重量%−Sn10重量%の高融点半田や、Ag、Cu、Al、Au、Pt、Fe等の金属により構成される。
【0033】
また、絶縁基板1は、通常、複数の絶縁層によって構成され、キャビティ6内の半導体素子5と接続端子4とを電気的に接続させるために、基板表面および絶縁層間に導体層3aや層間を接続するためのビアホール導体3b等からなるメタライズ配線層3を具備している。
【0034】
一方、外部電気回路基板Bは、絶縁体10と配線導体11により構成されており、絶縁体10は、少なくとも有機樹脂を含む材料からなり、具体的には、ガラス−エポキシ系複合材料からなり、一般にはプリント基板等が用いられる。また、この基板Bの表面に形成される配線導体11は、絶縁体10との熱膨張係数との整合性と、良電気伝導性の点で、通常、Cu、Au、Al、Ni、Pb−Snなどの金属導体からなる。
【0035】
かかる構成において、パッケージAの絶縁基板1下面の球状端子8を外部電気回路基板Bの配線導体11上に載置当接させ、しかる後、球状端子8を半田などのロウ材12により配線導体11に接着させて外部電気回路基板B上に実装することができる。また、低融点のロウ材としてAu−Sn合金を用いて接続端子を外部電気回路基板に接続してもよく、さらに上記球状端子に代わりに柱状の端子を用いてもよい。
【0036】
本発明における高誘電率、高熱膨張係数のガラスセラミック焼結体の利用形態の1つとしては、上記絶縁基板すべてを前述したガラスセラミック焼結体を用いる。この場合、半導体素子収納用パッケージの絶縁基板1が40〜400℃の温度範囲における熱膨張係数が10〜15ppm/℃であり、かつ誘電率が8以上の焼結体からなることによって、前述した外部電気回路基板Bとの熱膨張差により熱応力の発生を緩和し、外部電気回路基板BとパッケージAとの電気的接続状態を長期にわたり良好な状態に維持することができる。しかも、誘電率が8以上と大きいために、パッケージのサイズを小型化でき、例えば、一般的な誘電率が5程度のガラスセラミックスの場合と比較すると、パッケージサイズを20%以上小型化できる。
【0037】
この場合、絶縁基板の熱膨張係数が8ppm/℃より小さいと熱膨張差に起因する熱応力が大きくなり、外部電気回路基板BとパッケージAとの電気的接続状態が悪化することを防止することができない。また、熱膨張係数が18ppm/℃よりも大きいと、搭載される半導体素子との熱膨張係数差が大きくなり、半導体素子との接続不良が生じやすくなる。また、誘電率が8より小さいと、パッケージサイズを小型化することができない。
【0038】
また、本発明における第2の利用形態としては、パッケージ等の配線基板の内部に、高誘電率、高熱膨張係数のガラスセラミックスからなる絶縁層を配設する。この形態においては、この高誘電率ガラスセラミックスは、いわゆるコンデンサ層として機能する。このコンデンサ層は、半導体素子と接続され、ノイズ除去のために利用されるもので、図3に示すように、高誘電率、高熱膨張係数のガラスセラミック焼結体からなるコンデンサ層13の両側に、一対の電極層14を設け、この電極層14をビアホール導体15を介して静電容量を抽出することができる。この第2の利用形態において、前記コンデンサ層13以外の絶縁層16は、コンデンサ層13と同一材質であってもよいし、コンデンサ層13よりも低誘電率の絶縁材料から構成されていてもよい。好ましくは、コンデンサ層13や電極層14との同時焼成を実現する上では、40〜400℃における熱膨張係数がほぼ同様の材料からなることが望ましく、例えば、前述した40〜400℃における熱膨張係数が6〜18ppm/℃のガラス成分20〜80体積%と、前述した40〜400℃における熱膨張係数が6ppm/℃以上のフィラー成分80〜20体積%からなる混合物を成形し焼成したものが好適に使用される。
【0039】
また、第3の利用形態としては、パッケージなどの多層配線基板において、コンデンサのみならず、アンテナ回路やフィルター回路などの素子を形成する場合に、これらの回路形成箇所を前述したような低誘電率ガラスセラミック焼結体からなる絶縁層間に形成し、それら以外を高誘電率のガラスセラミック焼結体によって構成することも可能である。かかる場合においても、多層配線基板を有機樹脂を含む絶縁体を具備する外部電気回路基板に実装する上では、両ガラスセラミック焼結体は、いずれも40〜400℃における熱膨張係数が8ppm/℃以上であることが望ましい。
【0040】
【実施例】(参考例を含む)結晶性ガラスとして、表1、2に示す種々のガラスを準備した。なお、表1、2中、熱膨張係数は、ガラスを各焼成温度で1時間加熱後、5℃/hrの降温速度で冷却した後の40〜400℃における熱膨張係数の値である。
【0041】
、このガラスに対して表1、2に示すようにフィラー成分として、TiO、ZrO、BaTiO、CaTiOの高誘電率、高熱膨張係数のフィラーと、場合によっては、高熱膨張係数の下記
フォルステライト(2MgO・SiO、熱膨張係数10ppm/℃)、
クォーツ(SiO、熱膨張係数15ppm/℃)、
クリストバライト(SiO、熱膨張係数20ppm/℃)、
ウォラストナイト(CaO・SiO、熱膨張係数9ppm/℃)、
マグネシア(MgO、熱膨張係数9ppm/℃)、
アルミナ(Al、熱膨張係数7ppm/℃)
を用いて表1、2に示す調合組成になるように秤量混合した。この混合物を粉砕後、有機バインダーを添加して十分に混合した後、1軸プレス法により3.5×3.5×15mmの形状の成形体を作製し、この成形体を700℃のN+HO中で脱バインダ処理した後、窒素雰囲気中で表1に示す温度で焼成して焼結体を作製した。
【0042】
次に、上記のようにして得られた焼結体に対して40〜400℃の熱膨張係数を測定し表1、2に示した。また、焼結体を直径60mm、厚さ2mmに加工し、JISC2141の手法で誘電率と誘電損失を求めた。測定はLCRメータ(Y.H.P4284A)を用いて行い、1MHz,1.0Vrsmの条件で25℃における静電容量を測定し、この静電容量から25℃における誘電率を測定した。
【0043】
(実装時の熱サイクル試験)
また、表1、2における各原料組成物を用いて、ドクターブレード法により厚み500μmのグリーンシートを作製し、このシート表面にCuメタライズペーストをスクリーン印刷法に基づき塗布した。また、グリーンシートの所定箇所にスルーホールを形成しその中ににもCuメタライズペーストを充填した。そして、メタライズペーストが塗布されたグリーンシートをスルーホールの位置合わせを行いながら6枚積層し圧着した。この積層体を700℃でN+HO中で脱バインダ後、各焼成温度で窒素雰囲気中でメタライズ配線層と絶縁基板とを同時に焼成し配線基板を作製した。また、同時焼成によるCuメタライズ層に対して、メタライズ層の剥離、溶融、焼結不良についての評価を行った。
【0044】
次に、配線基板の下面に設けられた電極パッドに図1に示すようにPb90重量%、Sn10重量%からなる球状半田ボールを低融点半田(Pb37%−Sn63%)により取着した。なお、接続端子は、1cm当たり30端子の密度で配線基板の下面全体に形成した。
【0045】
そして、この配線基板を、ガラス−エポキシ基板からなる40〜800℃における熱膨張係数が13ppm/℃の絶縁体の表面に銅箔からなる配線導体が形成されたプリント基板表面に実装した。実装は、プリント基板の上の配線導体と配線基板の球状端子とを位置合わせし、低融点半田によって接続実装した。
【0046】
次に、上記のようにしてパッケージ用配線基板をプリント基板表面に実装したものを大気の雰囲気にて−40℃と125℃の各温度に制御した恒温槽に試験サンプルを15分/15分の保持を1サイクルとして最高1000サイクル繰り返した。そして、各サイクル毎にプリント基板の配線導体とパッケージ用配線基板との電気抵抗を測定し電気抵抗に変化が現れるまでのサイクル数を表1、2に示した。
【0047】
【表1】

Figure 0003559407
【0048】
【表2】
Figure 0003559407
【0049】
表1より明らかなように、フィラー量が20体積%より少ない試料No.1、2では、焼成温度が低く、銅との同時焼成でできず、フィラー量40体積%より少ない試料No.3を含め、誘電率が低いものであった。また、フィラー量が80体積%を越える試料No.6では、メタライズ層が溶融しCuと同時焼成できなかった。
【0050】
また、ガラスの熱膨張係数が6ppm/℃以下の試料No.15では、熱膨張係数8ppm/℃以上の焼結体を得ることができず、熱サイクル試験で不良が生じた。さらに、熱膨張係数が6ppm/℃のフィラーのみからなる試料No.11、20、23、28、33では、いずれも誘電率8以上の焼結体を作製することができなかった。
【0051】
これらの比較例以外の本発明品は、いずれも熱膨張係数が10〜15ppm/℃を示し、誘電率が8以上の高誘電率を有するものであった。しかもCuメタライズの同時焼成も良好であり、熱サイクル試験においても全く問題のない優れた耐久性を示した。さらに、本発明の焼結体は、いずれも誘電損失が30×10−4以下の良好な特性を示した。
【0052】
【発明の効果】以上詳述したように、本発明のガラスセラミック焼結体は、誘電率8以上、40〜400℃のおける熱膨張係数が10〜15ppm/℃の高熱膨張係数を有することから、パッケージなどの配線基板における絶縁基板として用いることにより、熱膨張係数が大きいプリント基板などの外部電気回路基板への実装した場合に、両者の熱膨張係数の差に起因する応力発生を抑制し、パッケージと外部電気回路とを長期間にわたり正確、かつ強固に電気的接続させることが可能となる。しかも絶縁基板全体をこのガラスセラミック焼結体によって構成すれば、基板の小型化が可能であり、その他、上記外部電気回路基板との長期的に安定な接続構造を維持しつつコンデンサ層として機能を付加することができる。
【図面の簡単な説明】
【図1】本発明における半導体素子収納用パッケージの実装構造を説明するための概略図である。
【図2】図1の接続端子の要部拡大断面図である。
【図3】本発明の多層配線基板の一実施例を説明するための断面図である。
【符号の説明】
1・・・絶縁基板
2・・・蓋体
3・・・メタライズ配線層
4・・・接続端子
5・・・半導体素子
6・・・キャビティ
7・・・電極パッド
8・・・球状端子
9、12・・・低融点ロウ材
10・・絶縁体
11・・配線導体
13・・コンデンサ層
14・・電極層
15・・ビアホール導体
16・・絶縁層
A・・・半導体素子収納用パッケージ
B・・・外部電気回路基板[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a glass ceramic sintered body having a high dielectric constant and a high coefficient of thermal expansion, and to a multilayer wiring board provided with such a glass ceramic sintered body.
[0002]
[Prior art]
Conventionally, a multilayer wiring board has a structure in which a metallized wiring layer is disposed on the surface or inside of an insulating substrate in which insulating layers are stacked in multiple layers. A typical example of the use of the multilayer wiring board is a semiconductor element housing package for housing a semiconductor integrated circuit element such as an LSI. As this package, a ceramic package, particularly an insulating substrate made of ceramics such as alumina or mullite, is frequently used as a package capable of high integration, and more recently, a glass ceramic which can be co-fired with a copper metallized wiring layer has been used. Is used as an insulating substrate.
[0003]
In such a ceramic package, as the degree of integration of the semiconductor element increases, the number of connection terminals for connecting to an external electric circuit board such as a printed board in the semiconductor element storage package also tends to increase, so that the size of the package is further reduced. In order to achieve this, various forms have been proposed as package connection terminals, such as a pin grid array (PGA) in which the connection terminals are made of metal pins such as Kovar, and a quad in which L-shaped metal pins are led out to the side surface of the package. A flat package (QFP), a ball grid array (BGA) in which spherical connection terminals made of solder are attached to the lower surface of an insulating substrate, and the like are known. Among them, it is said that the BGA can achieve the highest density. . In this ball grid array (BGA), a spherical connection terminal made of solder formed on an insulating substrate of a package is placed and abutted on a wiring conductor of an external electric circuit board, and then heated to reduce the spherical terminal. The connection is made by melting, or the spherical terminals are connected by low melting point solder and mounted.
[0004]
On the other hand, in the advanced information age, information transmission tends to be faster and higher frequency. In mobile media such as mobile phones and personal radio, new media such as satellite broadcasting, satellite communication and CATV, devices are being made more compact, and microwave circuit elements such as dielectric resonators have been increasingly used. Although there is a strong demand for miniaturization, the size of microwave circuit elements is based on the wavelength of electromagnetic waves used. The wavelength (λ) of an electromagnetic wave propagating in a dielectric having a dielectric constant (εr) is represented by 0 Then λ = λ 0 / (Εr) 1/2 It becomes. Therefore, the device becomes smaller as the dielectric constant of the substrate used increases.
[0005]
Therefore, BaO-TiO, which has been conventionally used as a capacitor material, is mainly used as a high dielectric constant ceramic material. 2 System, PbO-TiO 2 A composite perovskite-based dielectric material mainly comprising a material is known, but as an alumina-based material, a metal such as tungsten is dispersed in alumina according to JP-A-3-87091 and JP-A-59-108397. In the glass ceramic material system, as disclosed in JP-A-8-55516 and JP-A-7-118060, SiO 2 is used. 2 , BaO, TiO 2 A glass-ceramic material has been proposed in which a glass powder mainly comprising, for example, is combined with a ceramic filler powder having a high dielectric constant and a low dielectric loss.
[0006]
[Problems to be solved by the invention]
Ceramics such as alumina and mullite used as insulating substrates in these packages have high strength of 200 MPa or more, and are useful because they are highly reliable as a multi-layering technology with metallized wiring layers, etc. The coefficient of thermal expansion is about 4 to 7 ppm / ° C., whereas the coefficient of thermal expansion of a printed board made of glass-epoxy or the like, which is most frequently used as an external electric circuit board on which a package is mounted, is 12 to 18 ppm. / ° C is very large.
[0007]
Therefore, when a package or the like made of alumina or mullite whose insulating substrate is soldered to an external electric circuit board such as a printed circuit board, heat generated during operation of the semiconductor element is caused by a difference in thermal expansion between the package and the external electric circuit board. Large thermal stress occurs. The effect of the thermal stress tends to increase as the number of terminals in the package increases or as the size of the package itself increases. When the thermal stress is repeatedly applied by repeating the operation and stop of the semiconductor element, the thermal stress acts on the mounting portion of the package and the circuit board, and the connection terminal is separated from the insulating substrate or the terminal is separated from the wiring conductor. As a result, there is a problem that mounting failure occurs.
[0008]
Further, according to the above-mentioned high dielectric constant ceramic material, in the case of alumina or mullite-based material, the above mounting failure is unavoidable, and in the case of composite perovskite-based ceramic, it is necessary to fire at a temperature of 1200 ° C. or more. Therefore, silver or copper cannot be used as an electrode or a conductor material.
[0009]
The glass ceramic material is advantageous in that a conductor material such as copper can be used, but the glass ceramic described in JP-A-8-55516 or JP-A-7-118060 has a small coefficient of thermal expansion, There is a problem that the thermal expansion coefficient difference from the external electric circuit board is large and the reliability at the time of mounting is lacking for the above-mentioned reason.
[0010]
Accordingly, the present invention provides a glass-ceramic sintered body having a high dielectric constant, capable of copper wiring, and having excellent long-term reliability even when mounted on an external electric circuit board such as a printed circuit board. The purpose is to provide a wiring board
[0011]
[Means for Solving the Problems]
According to the present invention, a glass component having a thermal expansion coefficient of 6 to 18 ppm / ° C. at 40 to 400 ° C. is used as a glass component, and a ceramic filler having a high dielectric constant and high thermal expansion characteristics is selected as a filler component. It has been found that the above objects can be achieved by mixing and firing these.
[0012]
That is, the glass ceramic sintered body of the present invention has a glass component of 20 to 60% by volume having a thermal expansion coefficient of 6 to 18 ppm / ° C. at 40 to 400 ° C. and a thermal expansion coefficient of 6 ppm / ° C. or more at 40 to 400 ° C. A composition comprising 40 to 80% by volume of a filler component containing a dielectric material having a dielectric constant of 10 or more is molded and fired to obtain lithium silicic acid, PbSiO 3 , PbZnSiO 4 , ZnO · Al 2 O 3 , ZnO · nB 2 O 3 , BaAl 2 Si 2 O 8 , BaSi 2 O 5 , BaB 2 Si 2 O 8 At least one kind of crystal phase selected from the group consisting of: has a coefficient of thermal expansion at 40 to 400 ° C. of 10 to 15 ppm / ° C., and a dielectric constant of 8 or more.
[0013]
Further, in a multilayer wiring board in which a metallized wiring layer is disposed on the surface or inside of an insulating substrate in which insulating layers are stacked in multiple layers, at least one of the insulating layers has a thermal expansion coefficient of 6 at 40 to 400 ° C. A composition comprising 20 to 60% by volume of a glass component of 1818 ppm / ° C. and 40 to 80% by volume of a filler containing a dielectric material having a thermal expansion coefficient of 6 ppm / ° C. or more and a dielectric constant of 10 or more at 40 to 400 ° C. Formed and fired, lithium silicic acid, PbSiO 3 , PbZnSiO 4 , ZnO · Al 2 O 3 , ZnO · nB 2 O 3 , BaAl 2 Si 2 O 8 , BaSi 2 O 5 , BaB 2 Si 2 O 8 Wherein at least one kind of crystal phase selected from the following is precipitated, and has a coefficient of thermal expansion at 40 to 400 ° C. of 10 to 15 ppm / ° C. and a dielectric constant of 8 or more. is there.
[0014]
Since the glass ceramic sintered body of the present invention has a high coefficient of thermal expansion, when used as an insulating substrate of a wiring board, an external electric circuit comprising a wiring board such as a package and an insulating base containing an organic resin such as a printed board is used. Even if a thermal cycle is applied in a state where the semiconductor device is mounted on the substrate, the generation of thermal stress due to a difference in thermal expansion can be suppressed, and thus stable mounting can be performed for a long time. In addition, since the glass ceramic sintered body has a high dielectric constant, the size of a wiring board such as a package can be reduced.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
The glass ceramic sintered body of the present invention is composed of a glass component and a filler component. First, as the glass component, it is important that the coefficient of thermal expansion at 40 to 400 ° C is 6 to 18 ppm / ° C. As such a glass component, lithium silicate glass, PbO glass, BaO glass, ZnO glass, or the like is suitably used. In the case of crystallized glass, the coefficient of thermal expansion of the glass component indicates a coefficient of thermal expansion after heat treatment at a firing temperature, and means a coefficient of linear thermal expansion.
[0016]
Lithium silicate glass includes Li 2 It contains O in an amount of 5 to 30% by weight, particularly 5 to 20% by weight, and can precipitate lithium silicic acid having a high coefficient of thermal expansion after firing. In addition, as the lithium silicate glass, Li 2 SiO other than O 2 As an essential component, 2 Is present in a proportion of 60 to 85% by weight in the total amount of glass, 2 And Li 2 It is desirable that the total amount with O be 65 to 95% by weight based on the total amount of the glass in order to precipitate lithium silicate crystals. Further, in addition to these components, Al 2 O 3 , MgO, TiO 2 , B 2 O 3 , Na 2 O, K 2 O, P 2 O 5 , ZnO, F and the like may be blended. The lithium silicate glass contains B 2 O 3 Is desirably 1% by weight or less.
[0017]
PbO-based glass contains PbO as a main component, 2 O 3 , SiO 2 Glass powder containing at least one of the following: PbSiO 3 , PbZnSiO 4 Those which precipitate a crystal phase having high thermal expansion, such as, for example, are preferably used. In particular, PbO (65-85% by weight) -B 2 O 3 (5 to 15% by weight) -ZnO (6 to 20% by weight) -SiO 2 (0.5-5% by weight) -crystalline glass composed of BaO (0-5% by weight) or PbO (50-60% by weight) -SiO 2 (35-50% by weight) -Al 2 O 3 (1 to 9% by weight) is desirable.
[0018]
The ZnO-based glass is a glass containing 10% by weight or more of ZnO, and after firing, ZnO.Al 2 O 3 , ZnO · nB 2 O 3 A crystal phase having a high thermal expansion coefficient such as 2 (60% by weight or less), Al 2 O 3 (60% by weight or less), B 2 O 3 (30% by weight or less), P 2 O 5 (50% by weight or less), alkaline earth oxide (20% by weight or less), Bi 2 O 3 (30% by weight or less). In particular, ZnO 10 to 50% by weight-Al 2 O 3 10-30% by weight-SiO 2 30-60% by weight of crystalline glass or ZnO 10-50% by weight-SiO 2 5-40% by weight-Al 2 O 3 A crystalline glass composed of 0 to 15% by weight, 0 to 60% by weight of BaO, and 0 to 35% by weight of MgO is preferably used.
[0019]
Further, the BaO-based glass contains BaO at 10% by weight or more, and after firing, BaAl 2 Si 2 O 8 , BaSi 2 O 5 , BaB 2 Si 2 O 8 For example, those which precipitate a crystal phase are employed. Components other than BaO include Al 2 O 3 , SiO 2 , B 2 O 3 , P 2 O 5 , Alkaline earth oxides, alkali metal oxides, and the like.
[0020]
Further, the sag point of the above glass component is desirably 400 to 800 ° C, preferably 400 to 650 ° C. This is to efficiently remove a molding binder such as an organic resin added when molding a mixture composed of a glass component and a filler component, and to match a simultaneous firing condition with metallization such as copper. If the yield point is lower than 400 ° C., sintering is started at a low temperature of the crystalline glass. Therefore, simultaneous sintering with metallizing, for example, a sintering start temperature of 600 to 800 ° C. for Ag, Cu, etc. is difficult, and molding is difficult. Since the densification of the body starts at a low temperature, the binder cannot be decomposed and volatilized, and the binder component remains to affect the properties. On the other hand, if the yield point is higher than 800 ° C., sintering becomes difficult unless the amount of glass is increased, so that a large amount of expensive glass is required and the cost of the sintered body is increased.
[0021]
On the other hand, it is important that the filler component has a thermal expansion coefficient (α) at 40 to 400 ° C. of 6 ppm / ° C. or more and a dielectric constant of 10 or more, particularly 15 or more, and more preferably 20 or more. If the coefficient of thermal expansion is lower than 6 ppm / ° C., it becomes difficult to control the coefficient of thermal expansion of the sintered body to 8 ppm / ° C. or more. The filler used is not limited to this, for example,
CaTiO 3 (Α = 13 ppm / ° C., ε = 180),
BaTiO 3 (Α = 14 ppm / ° C., ε = 3000-8000)
SrTiO 3 ( α = 9 ppm / ° C., ε = 300 )
TiO 2 (Α = 9 ppm / ° C., ε = 80),
ZrO 2 (Α = 10 ppm / ° C., ε = 30),
In addition to having the above-mentioned high dielectric constant and high thermal expansion coefficient, a composite with other metal oxides based on these may be used. Note that the dielectric constant is, more precisely, the relative dielectric constant, and the thermal expansion coefficient is a linear thermal expansion coefficient.
[0022]
The above glass component and filler component are blended at a ratio of 20 to 60% by volume of the glass component and 40 to 80% by volume of the filler component. If the amount of glass is less than 20% by volume and the amount of filler is more than 80% by weight, co-firing with copper cannot be performed, and if the amount of glass is more than 60% by weight and the amount of filler is less than 40% by weight. This is because it becomes difficult to increase the dielectric constant of the sintered body.
[0023]
In addition, as the filler component, other filler components can be blended for controlling the coefficient of thermal expansion within a range that does not deviate from the above range of the amount of the high dielectric filler. In particular, as such fillers, compounds having a coefficient of thermal expansion of 6 ppm / ° C. or more at 40 to 400 ° C., specifically, cristobalite (SiO 2 ), Quartz (SiO 2 ), Tridymite (SiO 2 ), Forsterite (2MgO.SiO), spinel (MgO.Al) 2 O 3 ), Wollastonite (CaO.SiO) 2 ), Monticellanite (CaO.MgO.SiO) 2 ), Nepheline (Na 2 O ・ Al 2 O 3 ・ SiO 2 ), Lithium silicate (Li 2 O ・ SiO 2 ), Diopside (CaO.MgO.2SiO) 2 ), Melvinite (3CaO.MgO.2SiO) 2 ), Akermite (2CaO.MgO.2SiO) 2 ), Magnesia (MgO), alumina (Al 2 O 3 ), Carnegieite (Na 2 O ・ Al 2 O 3 ・ 2SiO 2 ), Enstatite (MgO.SiO) 2 ), Magnesium borate (2MgOB 2 O 3 ), Celsian (BaO.Al) 2 O 3 ・ 2SiO 2 ), B 2 O 3 ・ 2MgO ・ 2SiO 2 , Garnite (ZnO · Al 2 O 3 ), Petalite (LiAlSi) 4 O 10 At least one member selected from the group of (1) is preferably used.
[0024]
The mixture of the glass component and the filler component, after adding an appropriate molding organic resin binder, desired molding means, for example, a mold press, a cold isostatic press, injection molding, extrusion molding, a doctor blade method, It is formed into an arbitrary shape by a calender roll method, a rolling method, or the like.
[0025]
Next, in firing the above-mentioned molded body, first, the binder component blended for molding is removed. The removal of the binder is performed in an air atmosphere at about 700 ° C., for example, when Cu is used as the wiring conductor, it is performed in a nitrogen atmosphere containing steam at 100 to 700 ° C. At this time, the shrinkage start temperature of the molded body is desirably about 700 to 850 ° C. If the shrinkage start temperature is lower than this, it becomes difficult to remove the binder, so that the properties of the crystallized glass in the molded body, especially It is necessary to control the yield point as described above.
[0026]
The firing is performed in an oxidizing atmosphere or a non-oxidizing atmosphere at 850 ° C. to 1050 ° C., whereby the relative density is increased to 90% or more. If the firing temperature at this time is lower than 850 ° C., densification cannot be achieved, and if it exceeds 1050 ° C., the metallized layer is melted by simultaneous firing with the metallized wiring layer. However, when co-firing with a wiring conductor such as Cu is performed in a non-oxidizing atmosphere.
[0027]
In the glass ceramic sintered body produced in this way, the crystal phase generated from the glass component, the crystal phase generated by the reaction between the glass component and the filler component, or the filler component, or the filler component is generated by decomposition. There exist crystal phases and the like, and a glass phase exists at the grain boundaries of these crystal phases.
[0028]
The glass-ceramic sintered body of the present invention thus manufactured has a high thermal expansion and high dielectric constant glass-ceramic sintered body having a thermal expansion coefficient of 8 to 18 ppm / ° C. at 40 to 400 ° C. and a dielectric constant of 8 or more. It is. In addition, since firing can be performed at a firing temperature of 850 ° C. to 1050 ° C., simultaneous firing with metallization using a low-resistance metal such as copper is possible.
[0029]
Further, in order to manufacture a wiring board or a package in which the sintered body is used as an insulating substrate and a metallized wiring layer made of at least one of Cu, Ag, and Au is provided, the above-described method for forming the insulating substrate is required. A suitable organic binder, a plasticizer, and a solvent are added to and mixed with the raw material powder comprising the crystallized glass and the filler to form a slurry, and the slurry is subjected to a doctor blade method or a calendar roll method to obtain a green sheet ( Raw sheet). Then, as the metallized wiring layer 3 and the connection pads, a metal paste obtained by adding and mixing an appropriate metal powder with an organic binder, a plasticizer and a solvent is printed and applied on the green sheet in a predetermined pattern by a known screen printing method. In some cases, the green sheet is appropriately punched to form a through hole, and the hole is filled with a metallizing paste. By stacking a plurality of these green sheets and simultaneously firing the green sheets and metallization, a package having a multilayer structure can be obtained.
[0030]
Next, as an example in which the glass ceramic of the present invention is applied to a multilayer wiring substrate, an example of application to a ball grid array type semiconductor element storage package will be described. FIG. 1 is a schematic view showing one embodiment of the semiconductor element housing package and its mounting structure, wherein A denotes a semiconductor element housing package, and B denotes an external electric circuit board.
[0031]
In FIG. 1, a semiconductor element housing package A is composed of an insulating substrate 1, a lid 2, a metallized wiring layer 3, a connection terminal 4, and a semiconductor element 5 housed inside the package. Constitutes a cavity 6 for hermetically housing the semiconductor element 5 therein. The semiconductor element 5 mounted and stored and the metallized wiring layer 3 are electrically connected to the surface inside the cavity 6 of the insulating substrate 1 by a bonding wire or the like. On the lower surface of the insulating substrate 1, a plurality of connection terminals 4 for electrically connecting to the external electric circuit board B are formed.
[0032]
As shown in FIG. 2, the connection terminal 4 is formed by soldering a spherical terminal 8 made of a high melting point material to an electrode pad 7 with a low melting point brazing material 9. This high melting point material needs to have a higher melting point than the low melting point brazing material used for brazing, and when the brazing material is made of a solder having a low melting point of, for example, 40% by weight of Pb-60% by weight of Sn, The spherical terminal is made of, for example, a high melting point solder of 90% by weight of Pb-10% by weight of Sn, or a metal such as Ag, Cu, Al, Au, Pt, and Fe.
[0033]
The insulating substrate 1 is usually composed of a plurality of insulating layers. In order to electrically connect the semiconductor element 5 in the cavity 6 and the connection terminal 4, a conductive layer 3a or an interlayer is provided between the substrate surface and the insulating layer. A metallized wiring layer 3 including a via-hole conductor 3b for connection is provided.
[0034]
On the other hand, the external electric circuit board B is composed of an insulator 10 and a wiring conductor 11, and the insulator 10 is made of a material containing at least an organic resin, specifically, made of a glass-epoxy composite material, Generally, a printed board or the like is used. In addition, the wiring conductor 11 formed on the surface of the substrate B is usually made of Cu, Au, Al, Ni, Pb- in terms of matching with the thermal expansion coefficient with the insulator 10 and good electrical conductivity. It is made of a metal conductor such as Sn.
[0035]
In such a configuration, the spherical terminal 8 on the lower surface of the insulating substrate 1 of the package A is placed and abutted on the wiring conductor 11 of the external electric circuit board B, and then the spherical terminal 8 is connected to the wiring conductor 11 with a brazing material 12 such as solder. And mounted on the external electric circuit board B. The connection terminal may be connected to an external electric circuit board using an Au-Sn alloy as a low melting point brazing material, and a columnar terminal may be used instead of the spherical terminal.
[0036]
As one of utilization forms of the glass ceramic sintered body having a high dielectric constant and a high coefficient of thermal expansion in the present invention, the above-mentioned glass ceramic sintered body is used for all the insulating substrates. In this case, the thermal expansion coefficient of the insulating substrate 1 of the semiconductor device housing package in the temperature range of 40 to 400 ° C. 10-15 ppm / ° C And a sintered body having a dielectric constant of 8 or more, thereby alleviating the occurrence of thermal stress due to a difference in thermal expansion between the external electric circuit board B and the external electric circuit board B, and electrically connecting the external electric circuit board B and the package A. The state can be maintained in a good state for a long time. Moreover, since the dielectric constant is as large as 8 or more, the size of the package can be reduced. For example, the package size can be reduced by 20% or more as compared with a general case of a glass ceramic having a dielectric constant of about 5.
[0037]
In this case, if the coefficient of thermal expansion of the insulating substrate is less than 8 ppm / ° C., the thermal stress caused by the difference in thermal expansion becomes large, thereby preventing the electrical connection between the external electric circuit board B and the package A from deteriorating. Can not. On the other hand, if the coefficient of thermal expansion is larger than 18 ppm / ° C., the difference in the coefficient of thermal expansion from the semiconductor element to be mounted becomes large, and connection failure with the semiconductor element is likely to occur. If the dielectric constant is smaller than 8, the package size cannot be reduced.
[0038]
In a second mode of use of the present invention, an insulating layer made of glass ceramic having a high dielectric constant and a high coefficient of thermal expansion is provided inside a wiring board such as a package. In this embodiment, the high dielectric constant glass ceramic functions as a so-called capacitor layer. This capacitor layer is connected to a semiconductor element and is used for removing noise. As shown in FIG. 3, on both sides of a capacitor layer 13 made of a glass ceramic sintered body having a high dielectric constant and a high thermal expansion coefficient. A pair of electrode layers 14 are provided, and the capacitance can be extracted from the electrode layers 14 via the via-hole conductors 15. In the second mode of use, the insulating layer 16 other than the capacitor layer 13 may be made of the same material as the capacitor layer 13 or may be made of an insulating material having a lower dielectric constant than the capacitor layer 13. . Preferably, in order to realize simultaneous firing with the capacitor layer 13 and the electrode layer 14, it is desirable to use a material having substantially the same thermal expansion coefficient at 40 to 400 ° C. A mixture obtained by molding and firing a mixture comprising a glass component having a coefficient of 6 to 18 ppm / ° C. and 20 to 80% by volume and a filler component having a thermal expansion coefficient of 6 ppm / ° C. or more at 40 to 400 ° C. and 6 ppm / ° C. or more, is used. It is preferably used.
[0039]
Further, as a third mode of use, when not only capacitors but also elements such as an antenna circuit and a filter circuit are formed on a multilayer wiring board such as a package, these circuit-forming portions may have a low dielectric constant as described above. It is also possible to form between the insulating layers made of a glass ceramic sintered body, and to configure the other parts with a glass ceramic sintered body having a high dielectric constant. Even in such a case, in mounting the multilayer wiring board on an external electric circuit board having an insulator containing an organic resin, both of the glass ceramic sintered bodies have a thermal expansion coefficient of 8 ppm / ° C. at 40 to 400 ° C. It is desirable that this is the case.
[0094]
【Example】 (Including reference examples) Various glasses shown in Tables 1 and 2 were prepared as crystalline glasses. In Tables 1 and 2, the coefficient of thermal expansion is the value of the coefficient of thermal expansion at 40 to 400 ° C. after heating the glass at each firing temperature for 1 hour and cooling it at a rate of 5 ° C./hr.
[0041]
As shown in Tables 1 and 2, TiO. 2 , ZrO 2 , BaTiO 3 , CaTiO 3 High dielectric constant, high thermal expansion coefficient filler and, in some cases, high thermal expansion coefficient
Forsterite (2MgO ・ SiO 2 , Thermal expansion coefficient 10 ppm / ° C),
Quartz (SiO 2 , Thermal expansion coefficient 15 ppm / ° C),
Cristobalite (SiO 2 , Thermal expansion coefficient 20 ppm / ° C),
Wollastonite (CaO / SiO 2 , Thermal expansion coefficient 9 ppm / ° C),
Magnesia (MgO, coefficient of thermal expansion 9 ppm / ° C),
Alumina (Al 2 O 3 , Thermal expansion coefficient 7 ppm / ° C)
And weighed and mixed so as to have the composition shown in Tables 1 and 2. After pulverizing the mixture, adding an organic binder and sufficiently mixing the mixture, a 3.5 × 3.5 × 15 mm shaped body was prepared by a uniaxial pressing method. 2 + H 2 After the binder removal treatment in O, firing was performed at a temperature shown in Table 1 in a nitrogen atmosphere to produce a sintered body.
[0042]
Next, the thermal expansion coefficients of the sintered bodies obtained as described above at 40 to 400 ° C. were measured and are shown in Tables 1 and 2. Further, the sintered body was processed into a diameter of 60 mm and a thickness of 2 mm, and the dielectric constant and the dielectric loss were determined by the method of JISC2141. The measurement was performed using an LCR meter (YHP4284A), the capacitance at 25 ° C. was measured under the conditions of 1 MHz and 1.0 Vrsm, and the dielectric constant at 25 ° C. was measured from the capacitance.
[0043]
(Heat cycle test during mounting)
Further, a green sheet having a thickness of 500 μm was prepared by a doctor blade method using each of the raw material compositions in Tables 1 and 2, and a Cu metallizing paste was applied to the sheet surface based on a screen printing method. Further, a through hole was formed at a predetermined portion of the green sheet, and the inside thereof was filled with Cu metallized paste. Then, six green sheets to which the metallizing paste was applied were stacked and pressed while aligning the through holes. The laminate is heated at 700 ° C. with N 2 + H 2 After removing the binder in O, the metallized wiring layer and the insulating substrate were simultaneously fired in a nitrogen atmosphere at each firing temperature to produce a wiring substrate. Further, with respect to the Cu metallized layer formed by the simultaneous firing, the metallized layer was evaluated for peeling, melting, and sintering failure.
[0044]
Next, as shown in FIG. 1, spherical solder balls composed of 90% by weight of Pb and 10% by weight of Sn were attached to the electrode pads provided on the lower surface of the wiring board by low melting point solder (Pb 37% -Sn 63%). The connection terminal is 1cm 2 It was formed on the entire lower surface of the wiring board at a density of 30 terminals per unit.
[0045]
Then, this wiring board was mounted on the surface of a printed board in which a wiring conductor made of copper foil was formed on the surface of an insulator made of a glass-epoxy substrate having a thermal expansion coefficient of 13 ppm / ° C. at 40 to 800 ° C. The mounting was performed by aligning the wiring conductor on the printed circuit board with the spherical terminal of the wiring board, and connecting and mounting with low-melting solder.
[0046]
Next, the test sample was mounted on the surface of the printed circuit board with the package wiring board mounted as described above, and the test sample was placed in a thermostatic chamber controlled at -40 ° C and 125 ° C in an air atmosphere for 15 minutes / 15 minutes. One cycle of holding was repeated up to 1000 cycles. Then, the electrical resistance between the wiring conductor of the printed circuit board and the wiring substrate for the package was measured for each cycle, and the number of cycles until the electrical resistance changed was shown in Tables 1 and 2.
[0047]
[Table 1]
Figure 0003559407
[0048]
[Table 2]
Figure 0003559407
[0049]
As is clear from Table 1, Sample No. 1 in which the amount of filler was less than 20% by volume was used. In Samples Nos. 1 and 2, the sintering temperature was low and simultaneous sintering with copper was not possible. Including 3, the dielectric constant was low. In addition, the sample No. having a filler amount of more than 80% by volume. In No. 6, the metallized layer was melted and could not be co-fired with Cu.
[0050]
In addition, Sample No. 5 in which the coefficient of thermal expansion of glass was 6 ppm / ° C. or less. In No. 15, a sintered body having a thermal expansion coefficient of 8 ppm / ° C. or more could not be obtained, and a failure occurred in a heat cycle test. Further, Sample No. consisting of only a filler having a thermal expansion coefficient of 6 ppm / ° C. In any of 11, 20, 23, 28, and 33, a sintered body having a dielectric constant of 8 or more could not be produced.
[0051]
The products of the present invention other than these comparative examples all have a thermal expansion coefficient of 10-15 ppm / ° C And had a high dielectric constant of 8 or more. Moreover, simultaneous firing of Cu metallization was also good, and excellent durability was shown without any problem even in a heat cycle test. Furthermore, each of the sintered bodies of the present invention has a dielectric loss of 30 × 10 -4 The following good characteristics were exhibited.
[0052]
As described in detail above, the glass ceramic sintered body of the present invention has a dielectric constant of 8 or more and a thermal expansion coefficient at 40 to 400 ° C. 10-15 ppm / ° C Since it has a high thermal expansion coefficient, it can be used as an insulating substrate in a wiring board such as a package, so that when it is mounted on an external electric circuit board such as a printed circuit board with a large thermal expansion coefficient, the difference between the two thermal expansion coefficients can be reduced. The resulting stress generation can be suppressed, and the package and the external electric circuit can be accurately and firmly electrically connected for a long period of time. In addition, if the entire insulating substrate is made of this glass ceramic sintered body, the size of the substrate can be reduced, and in addition, it can function as a capacitor layer while maintaining a long-term stable connection structure with the external electric circuit board. Can be added.
[Brief description of the drawings]
FIG. 1 is a schematic diagram for explaining a mounting structure of a semiconductor device housing package according to the present invention.
FIG. 2 is an enlarged sectional view of a main part of the connection terminal of FIG.
FIG. 3 is a cross-sectional view for explaining one embodiment of the multilayer wiring board of the present invention.
[Explanation of symbols]
1 ... insulating substrate
2 Lid
3 ... metallized wiring layer
4: Connection terminal
5 ... Semiconductor element
6 ... cavity
7 ... Electrode pad
8 spherical terminal
9,12 ・ ・ ・ Low melting point brazing material
10. Insulator
11. Wiring conductor
13. Capacitor layer
14. Electrode layer
15. Via conductor
16. Insulating layer
A: Semiconductor element storage package
B: External electric circuit board

Claims (3)

40〜400℃における熱膨張係数が6〜18ppm/℃のガラス成分20〜60体積%と、40〜400℃における熱膨張係数が6ppm/℃以上かつ誘電率が10以上の誘電体を含むフィラー成分40〜80体積%とからなる組成物を成形、焼成して、リチウム珪酸、PbSiO、PbZnSiO、ZnO・Al、ZnO・nB、BaAlSi、BaSi、BaBSiから選ばれる少なくとも1種の結晶相が析出してなり、40〜400℃における熱膨張係数が10〜15ppm/℃、誘電率が8以上であることを特徴とするガラスセラミック焼結体。20 to 60% by volume of a glass component having a thermal expansion coefficient of 6 to 18 ppm / ° C at 40 to 400 ° C and a filler component containing a dielectric material having a thermal expansion coefficient of 6 ppm / ° C or higher and a dielectric constant of 10 or higher at 40 to 400 ° C. A composition comprising 40 to 80% by volume is molded and fired to obtain lithium silicic acid, PbSiO 3 , PbZnSiO 4 , ZnO.Al 2 O 3 , ZnO.nB 2 O 3 , BaAl 2 Si 2 O 8 , BaSi 2 O 5 , at least one crystal phase selected from BaB 2 Si 2 O 8 is precipitated, has a coefficient of thermal expansion at 40 to 400 ° C. of 10 to 15 ppm / ° C., and a dielectric constant of 8 or more. Glass ceramic sintered body. 絶縁層が多層に積層された絶縁基板の表面あるいは内部にメタライズ配線層が配設されてなる多層配線基板において、前記絶縁層の少なくとも1層が、40〜400℃における熱膨張係数が6〜18ppm/℃のガラス成分20〜60体積%と、40〜400℃における熱膨張係数が6ppm/℃以上かつ誘電率が10以上の誘電体を含むフィラーを40〜80体積%からなる組成物を成形、焼成して、リチウム珪酸、PbSiO、PbZnSiO、ZnO・Al、ZnO・nB、BaAlSi、BaSi、BaBSiから選ばれる少なくとも1種の結晶相を析出してなり、40〜400℃における熱膨張係数が10〜15ppm/℃、誘電率が8以上のガラスセラミック焼結体からなることを特徴とする多層配線基板。In a multilayer wiring board in which a metallized wiring layer is disposed on the surface or inside of an insulating substrate in which insulating layers are stacked in multiple layers, at least one of the insulating layers has a thermal expansion coefficient at 40 to 400 ° C. of 6 to 18 ppm. Molding a composition comprising 20 to 60% by volume of a glass component of / ° C and 40 to 80% by volume of a filler containing a dielectric material having a thermal expansion coefficient of 6 ppm / ° C or higher and a dielectric constant of 10 or higher at 40 to 400 ° C, firing the at least one selected from lithium silicates, PbSiO 3, PbZnSiO 4, ZnO · Al 2 O 3, ZnO · nB 2 O 3, BaAl 2 Si 2 O 8, BaSi 2 O 5, BaB 2 Si 2 O 8 A glass-ceramic sintered body having a seed crystal phase precipitated, a coefficient of thermal expansion at 40 to 400 ° C. of 10 to 15 ppm / ° C., and a dielectric constant of 8 or more Multi-layer wiring board, characterized in that Ranaru. 前記メタライズ配線層が、銅を主成分とすることを特徴とする請求項1または2に記載の多層配線基板。The multilayer wiring board according to claim 1 or 2 wherein the metallized wiring layer, characterized in that copper as a main ingredient.
JP31495796A 1996-11-26 1996-11-26 Glass ceramic sintered body and multilayer wiring board using the same Expired - Fee Related JP3559407B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31495796A JP3559407B2 (en) 1996-11-26 1996-11-26 Glass ceramic sintered body and multilayer wiring board using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31495796A JP3559407B2 (en) 1996-11-26 1996-11-26 Glass ceramic sintered body and multilayer wiring board using the same

Publications (2)

Publication Number Publication Date
JPH10158032A JPH10158032A (en) 1998-06-16
JP3559407B2 true JP3559407B2 (en) 2004-09-02

Family

ID=18059708

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31495796A Expired - Fee Related JP3559407B2 (en) 1996-11-26 1996-11-26 Glass ceramic sintered body and multilayer wiring board using the same

Country Status (1)

Country Link
JP (1) JP3559407B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4577956B2 (en) * 2000-07-31 2010-11-10 京セラ株式会社 Glass ceramic sintered body and wiring board using the same
JP4761647B2 (en) * 2001-04-27 2011-08-31 京セラ株式会社 Ceramic composition and multilayer wiring board using the same
EP2952486A1 (en) 2014-06-03 2015-12-09 Heraeus Precious Metals North America Conshohocken LLC Dielectric glass composition
JP7315902B2 (en) * 2020-03-25 2023-07-27 Tdk株式会社 Dielectric porcelain composition and electronic parts

Also Published As

Publication number Publication date
JPH10158032A (en) 1998-06-16

Similar Documents

Publication Publication Date Title
JP3426926B2 (en) Wiring board and its mounting structure
JP3793560B2 (en) Low-temperature fired porcelain and manufacturing method thereof
JP2001240470A (en) Porcelain composition for high-frequency use, porcelain for high-frequency use and method for producing porcelain for high-frequency use
JP4780995B2 (en) Glass ceramic sintered body and wiring board using the same
JP3559407B2 (en) Glass ceramic sintered body and multilayer wiring board using the same
JP2002128564A (en) Glass ceramic and its manufacturing method and wiring board using it
JP3346693B2 (en) Glass-ceramic sintered body and wiring board using the same
JP4549029B2 (en) Glass ceramic composition, glass ceramic sintered body, method for producing glass ceramic sintered body, and wiring board
JP4077625B2 (en) Low temperature fired porcelain composition and method for producing low temperature fired porcelain
JP2003040670A (en) High thermal expansion ceramic composition, high thermal expansion ceramic and its manufacturing method, and multilayer wiring substrate and its mounting structure
JP3719834B2 (en) Low temperature fired ceramics
JP2004256346A (en) Glass-ceramic composition, glass-ceramic sintered compact, its producing method, wiring board using the sintered compact body, and its mounting structure
JP3441924B2 (en) Wiring board and its mounting structure
JP4540297B2 (en) Low-temperature fired porcelain composition, low-temperature fired porcelain, and wiring board
JP2004083373A (en) High thermal expansion porcelain formulation, high thermal expansion porcelain, its manufacturing method, multilayered wiring board, and its mounting structure
JP3323074B2 (en) Wiring board, package for housing semiconductor element and its mounting structure
JPH11186727A (en) Wiring board and manufacture thereof
JP3339999B2 (en) Wiring board, semiconductor device storage package using the same, and mounting structure thereof
JP3441950B2 (en) Wiring board and its mounting structure
JP4044752B2 (en) Low temperature fired porcelain composition and method for producing low temperature fired porcelain
JP2000264719A (en) Porcelain composition, porcelain and circuit board using same
JP2004231454A (en) Low temperature fired porcelain and wiring board
JP4395320B2 (en) Low-temperature fired porcelain composition, low-temperature fired porcelain, and wiring board
JP3314131B2 (en) Wiring board
JP3305579B2 (en) Wiring board, semiconductor element storage package and mounting structure

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040210

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040408

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040511

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040521

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090528

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090528

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100528

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110528

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110528

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120528

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120528

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees