JP4044752B2 - Low temperature fired porcelain composition and method for producing low temperature fired porcelain - Google Patents

Low temperature fired porcelain composition and method for producing low temperature fired porcelain Download PDF

Info

Publication number
JP4044752B2
JP4044752B2 JP2001360881A JP2001360881A JP4044752B2 JP 4044752 B2 JP4044752 B2 JP 4044752B2 JP 2001360881 A JP2001360881 A JP 2001360881A JP 2001360881 A JP2001360881 A JP 2001360881A JP 4044752 B2 JP4044752 B2 JP 4044752B2
Authority
JP
Japan
Prior art keywords
dielectric constant
mass
temperature
low
thermal expansion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001360881A
Other languages
Japanese (ja)
Other versions
JP2003165769A (en
Inventor
吉宏 中尾
謙一 永江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2001360881A priority Critical patent/JP4044752B2/en
Publication of JP2003165769A publication Critical patent/JP2003165769A/en
Application granted granted Critical
Publication of JP4044752B2 publication Critical patent/JP4044752B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/161Cap
    • H01L2924/1615Shape
    • H01L2924/16195Flat cap [not enclosing an internal cavity]

Description

【0001】
【発明の属する技術分野】
本発明は高熱膨張性、高誘電率を有し、かつ比誘電率の温度安定性に優れた低温焼成磁器組成物および低温焼成磁器の製造方法に関する。
【0002】
【従来技術】
従来より、多層配線基板、例えば、LSI等の半導体素子を収納する半導体素子収納用パッケージとして、高密度配線が可能なセラミック多層配線基板が多用されている。セラミック多層配線基板は、アルミナ等のセラミックスからなる絶縁基板と、その表面に形成されたWやMo等の高融点金属からなる配線導体層とから構成されるもので、この絶縁基板の一部にキャビティが形成され、このキャビティ内に半導体素子が収納され、蓋体によってキャビティを気密に封止されるものである。
【0003】
近年、高集積化が進むICやLSI等の半導体素子を搭載する上記の半導体素子収納用パッケージや、各種電子部品が搭載される混成集積回路装置等に適用される配線基板においては、高密度化、低抵抗化、小型軽量化が要求されており、アルミナ系セラミック材料に比較して低い誘電率が得られ、配線導体層の低抵抗化が可能なガラスセラミックスを用いた多層配線基板が一層注目されている。
【0004】
このようなガラスセラミックス多層配線基板では、半導体素子の高速、高周波化に伴う集積度の増加、および電子機器をより小型化するための高密度実装化に対応するために、多層配線基板の裏面にボール状の接続端子が固着されたボールグリッドアレイ(BGA)が形成され、さらに、外部回路基板との接続信頼性を向上させるために、絶縁基板の熱膨張係数を外部回路基板に近づけた高熱膨張性の磁器を用いることが提案されている。
【0005】
一方、携帯電話、ノートパソコン等の携帯情報用端末において、例えば、携帯電話のスイッチング回路およびパワーアンプ回路は複数の抵抗体やコンデンサにより構成され、従来より、これらの素子は個々に回路基板上に設置されているが、携帯情報用端末の小型化に伴い、搭載される電子部品の小型化が強く望まれていることから、上記のようなガラスセラミックス等の絶縁材料を用いて形成された多層配線基板の内部に、高誘電率層を介装させ、コンデンサ等の機能素子を内蔵した多層配線基板が提案されている。
【0006】
【発明が解決しようとする課題】
しかしながら、上記のような多層配線基板では、高誘電率層として、従来より、BaO−TiO2系、PbO−TiO2系等を主とする複合ペロブスカイト系誘電体材料が用いられているが、このような誘電体材料ではガラスセラミックスを絶縁材料とする磁器と同時焼成することが困難であるとともに、絶縁層の熱膨張を制御することが困難となるという問題があった。
【0007】
また、高誘電率層の電気特性の面において、上記のような誘電体材料を用いることで高誘電率化を図ることができるものの、比誘電率の温度係数が大きいために共振器としての性能が低いという問題があった。
【0008】
従って、本発明は、高熱膨張、低誘電率の低温焼成磁器と同時焼成することが可能であり、且つ高熱膨張、高誘電率を有するとともに、誘電率の温度安定性に優れた低温焼成磁器組成物及び低温焼成磁器の製造方法を提供することを目的とするものである。
【0009】
【課題を解決するための手段】
本発明者らは、上記課題に対して種々検討を重ねた結果、アルカリ土類金属酸化物とSiO2を含有するガラスに、無機フィラーとして、CaTiO3とCaTiSiO5とを所定比率で組み合わせることによって、磁器の高熱膨張化、高誘電率化とともに、誘電率の温度安定性を得ることができることを見出し、本発明に至った。
【0010】
即ち、本発明の低温焼成磁器組成物は、アルカリ土類金属酸化物を15〜70質量%およびSiOを30〜60質量%含有するガラス20〜80体積%と、全量中にCaTiO を45〜49質量%、CaTiSiO を45〜49質量%および酸化クロムを2〜10質量%の割合で含有する無機フィラーを20〜80体積%とからなることを特徴とする。
また、前記ガラスが、Al およびB を含有するもの、または、Al 、B およびZrO を含有するもののうちいずれかであることが望ましい。
【0011】
た、本発明の低温焼成磁器の製造方法は、上記の低温焼成磁器組成物を成形後、800〜1100℃で焼成することを特徴とする
【0016】
【発明の実施の形態】
(組成物・磁器)
本発明の低温焼成磁器組成物は、アルカリ土類金属酸化物を15〜70質量%とSiOを30〜60質量%含有するガラス20〜80体積%と、無機フィラーを20〜80体積%とからなり、前記無機フィラーがCaTiOとCaTiSiO酸化クロムとを含有することが重要であり、ここで、比誘電率の温度係数を−200×10−6/℃〜200×10−6/℃の範囲とするという理由から、線熱膨張係数が13×10−6/℃、比誘電率が180、比誘電率の温度係数が−1630×10−6/℃であるCaTiOを20〜80質量%と、線熱膨張係数が6.5×10−6/℃、比誘電率が35、比誘電率の温度係数が1200×10−6/℃であるCaTiSiOを20〜80質量%とする。このように−側の比誘電率の温度特性を示すCaTiOと+側の比誘電率の温度特性を示すCaTiSiOとを組み合わせることによって、比誘電率の温度係数を小さくし安定化できるとともに任意の温度係数に制御することができる。
【0017】
無機フィラー中に含まれるCaTiO3とCaTiSiO5を上記範囲に限定したのは、CaTiO3が20質量%より少ないかCaTiSiO5が80質量%より多いと、焼成後に得られる磁器の線熱膨張係数を8×10-6/℃より高めることが困難となる、あるいは比誘電率を16以上に高めることが困難となる、あるいは比誘電率の温度係数を200×10-6/℃以下に抑えることが困難となり、また、CaTiO3が80質量%より多いかCaTiSiO5が20質量%より少ないと、得られる磁器の比誘電率の温度係数を−200×10-6/℃以上に高めることが困難となるためである。
【0018】
特に、CaTiO3の量は45質量%〜49質量%が、またCaTiSiO5の量は45質量%〜49質量%が重要である。なお、上記のCaTiO3およびCaTiSiO5は、得られる磁器の1MHzにおける比誘電率を16以上に高める上で、無機フィラー中に、合計で80質量%以上、特に90質量%以上、さらには95質量%以上の割合で含まれるものである。
【0019】
また、本発明によれば、上記ガラス中のアルカリ土類金属酸化物の含有量は15〜70質量%、SiO2の含有量は30〜60質量%であることが重要である。これはアルカリ土類金属酸化物の含有量が15質量%より少ないかSiO2の含有量が60質量%より多いと、ガラスの低軟化が困難となるとともに、線熱膨張係数が低くなり、得られる磁器の40〜400℃における線熱膨張係数を8×10-6/℃以上に高めることが困難であり、また、アルカリ土類金属酸化物の含有量が70質量%より多いかSiO2の含有量が30質量%より少ないと、ガラス化が困難であり、特性が不安定となりやすくなるためである。
【0020】
本発明によれば、上記ガラスと無機フィラーとを、焼成温度や最終的に得られる磁器の熱膨張係数等の目的に応じて適当な比率で混合する。本発明において用いられる上記ガラスは、無機フィラー無添加では収縮開始温度は700℃以下で、850℃以上では溶融してしまい、メタライズ配線層等を配設することができない。しかし、無機フィラーを混合することにより焼成過程において結晶の析出が起こり、無機フィラーを液相焼結させるための液相を適切な温度で形成させることができる。また、成形体全体の収縮開始温度を上昇させることができる。また、成形体全体の収縮開始温度を上昇させることができるため、かかる無機フィラーの含有量の調整により、用いるメタライズの種類によりメタライズ配線層との同時焼成条件のマッチングを図ることができる。
【0021】
また、本発明の低温焼成磁器組成物は、上記ガラス量を20〜80体積%と上記無機フィラー量を20〜80体積%の割合で混合するものである。このガラスと無機フィラーの量を上記範囲に限定したのは、ガラス量が20体積%より少ない、言い換えれば、無機フィラー量が80体積%より多いと液相焼結することが難しく、焼成温度が高くなり、メタライズ配線層との同時焼成時にメタライズ配線層が溶融してしまう恐れがある。また、ガラス量が80体積%より多い、言い換えると無機フィラー量が20体積%より少ないと磁器の特性がガラスの特性に大きく依存してしまい、材料特性の制御が困難となるとともに、焼結開始温度が低くなるためにメタライズ配線層との同時焼成が難しくなるという問題が生じる。また、ガラス量が多いために原料のコストも高くなる傾向にある。
【0022】
また、無機フィラーは、上記ガラスの屈伏点に応じ、その量を適宜調整することが望ましい。即ち、ガラスの屈伏点が400℃〜700℃と低い場合、低温での焼結性が高まるため、無機フィラー量は40〜80体積%と比較的多く配合できる。これに対して、ガラスの屈伏点が700℃〜800℃と高い場合、焼結性が低下するためフィラー量は20〜50体積%と比較的少なく配合することが望ましい。
【0023】
また、上記の組成物中には、無機フィラー成分の1つとして、着色成分として、酸化クロム、酸化コバルト、酸化マンガン、酸化ニッケル、酸化鉄、酸化銅、クロム酸バリウム、シリコン、クオーツの群から選ばれる少なくとも1種を10質量%以下の割合で配合してもよい。この場合にさらに比誘電率の温度係数を0に近づけ、安定化することができる。
【0024】
本発明によれば、上記低温焼成磁器組成物の混合物を成形後、焼成することによって得られる低温焼成磁器は、結晶相とガラス相とから構成されるものであって、前記結晶相がCaTiO3とCaTiSiO5とを含有するものであり、上記の構成からなることに伴って、40℃〜400℃にける線熱膨張係数が8〜15×10−6/℃、1MHzにおける比誘電率が16以上、−40〜85℃における比誘電率の温度係数が3〜8×10 −6 /℃の高熱膨張、高誘電率、かつ誘電率の温度安定性に優れた磁器からなるものである
【0025】
なお、上記低温焼成磁器組成物および低温焼成磁器においては、無機フィラー成分の1つ、あるいは結晶相の1つとして、40〜400℃における線熱膨張係数が6×10-6/℃以上の金属酸化物であるクォーツ(SiO2)、クリストバライト(SiO2)、トリジマイト(SiO2)、フォルステライト(2MgO・SiO2)、スピネル(MgO・Al23)、ウォラストナイト(CaO・SiO2)、モンティセラナイト(CaO・MgO・SiO2)、ネフェリン(Na2O・Al23・SiO2)、ジオプサイド(CaO・MgO・2SiO2 )、メルビナイト(3CaO・MgO・2SiO2)、アケルマイト(2CaO・MgO・2SiO2)、マグネシア(MgO)、アルミナ(Al23)、カーネギアイト(Na2O・Al23・2SiO2)、エンスタタイト(MgO・SiO2)、ホウ酸マグネシウム(2MgO・B23)、セルジアン(BaO・Al23・2SiO2)、B23・2MgO・2SiO2、ガーナイト(ZnO・Al23)の群から選ばれる少なくとも1種を含有してもよい。これらの中でも、クォーツ、クリストバライト、トリジマイト、フォルステライト、エンスタタイトの群から選ばれる少なくとも1種が高熱膨張化を図る上で望ましい。
【0026】
(製造方法)
本発明において、上記の低温焼成磁器を得るための具体的な製造方法は、まず、前述した低温焼成磁器組成物にて説明したようなガラスと無機フィラーとの混合物に対して、適当な成形のための有機樹脂バインダーを添加した後、所望の成形手段、例えば金型プレス、冷間静水圧プレス、射出成形、押出し成形、ドクターブレード法、カレンダーロール法、圧延法等により任意の形状に成形し、得られた成形体を焼成する。焼成にあたっては、まず、成形のために配合したバインダー成分を除去する。バインダーの除去は、700℃〜800℃の大気または窒素雰囲気中で行われる。この時、成形体の収縮開始温度は500〜850℃程度であることが望ましく、かかる収縮開始温度がこれより低いとバインダーの除去が困難となる。
【0027】
なお、配線基板を作製する場合には、上記のようなガラスと無機フィラーとの混合物に、適当な有機バインダー、溶剤、可塑剤を添加混合することによりスラリーを作製し、かかるスラリーを周知のドクターブレードなどの塗工方式によるグリーンシート成形法により、グリーンシートを作製する。さらに、銅、銀、ニッケル、パラジウム、金のうちの1種以上からなる金属粉末に有機バインダー、可塑剤、溶剤を添加混合して得た金属ペーストを上記グリーンシートに周知のスクリーン印刷法により所定パターンに印刷塗布する。また、場合によっては、上記グリーンシートに適当な打ち抜き加工してビアホールを形成し、このホール内にもメタライズペーストを充填する。そしてこれらのグリーンシートを複数枚積層圧着した後、焼成する。焼成にあたっては、成形のために配合したバインダー成分を除去するが、バインダーの除去は、メタライズ配線層を形成する配線導体として、例えば銅を用いる場合には、100〜800℃の水蒸気を含有する窒素雰囲気中で行われる。
【0028】
焼成は、800℃〜1100℃の最適焼成温度で行うことが重要である。かかる最適焼成温度が800℃より低いと緻密化することができず、1100℃より高いとメタライズ配線層との同時焼成が難しくなる。但し、配線導体の成分として銅を用いる場合には、800〜1100℃の非酸化性雰囲気中で焼成されることが望ましい。
【0029】
(構造)
図1は、本発明の低温焼成磁器組成物を用いて焼成して得られた低温焼成磁器の応用例として、多層配線基板、とりわけ、BGA型の半導体素子収納用パッケージとその実装構造の一実施例を示す概略断面図である。このパッケージは、絶縁基板の表面あるいは内部にメタライズ配線層が配設された、いわゆる配線基板を基礎的構造とするものであり、Aは半導体素子収納用パッケージ、Bは外部回路基板をそれぞれ示す。
【0030】
半導体素子収納用パッケージAは、絶縁基板1と蓋体2とメタライズ配線層3と接続端子4により構成され、絶縁基板1及び蓋体2は半導体素子5を内部に気密に収容するためのキャビティ6を形成する。そして、キャビティ6内にて半導体素子5は、ガラス、樹脂等の接着材を介して絶縁基板1に接着固定される。
【0031】
また、絶縁基板1の表面および内部には、メタライズ配線層3が配設されており、半導体素子5と絶縁基板1の下面に形成された接続端子4と電気的に接続するように配設されている。図1の半導体素子収納用パッケージAによれば、接続端子4は、接続パッド4aを介して高融点の半田(錫−鉛合金)から成るボール状端子4bがロウ材により取着されている。
【0032】
一方、外部回路基板Bは、絶縁体7と配線導体8により構成されており、絶縁体7は、少なくとも有機樹脂を含む絶縁材料からなり、具体的には、ガラス−エポキシ系複合材料などのように40〜400℃の線熱膨張係数が12〜16×10-6/℃の特性を有し、一般にはプリント基板等が用いられる。また、この基板Bの表面に形成される配線導体8は、絶縁体7との熱膨張係数の整合性と、良電気伝導性の点で、通常、銅、金、銀、アルミニウム、ニッケル、鉛−錫等の金属導体からなる。
【0033】
半導体素子収納用パッケージAを外部回路基板Bに実装するには、パッケージAの絶縁基板1下面のボール状端子4bを外部回路基板Bの配線導体8上に載置当接させ、しかる後、低融点の半田等のロウ材により約250〜400℃の温度で半田を溶融させて配線導体8とボール状端子4bとを接合することにより、実装される。この時、配線導体8の表面にはボール状端子4bとのロウ材による接続を容易に行うために予めロウ材が被着形成されていることが望ましい。
【0034】
この半導体素子収納用パッケージAにおける絶縁基板1は、図1に示すように、低誘電率層1aと、高誘電率層1bとにより構成される。上記高誘電率層1bが本発明の低温焼成磁器からなるものである。また、高誘電率層1bの上下には銅等の金属導体から成る電極層9が形成され、ビアホール導体10等を経由して基板表面のメタライズ配線層3と接続することにより、配線層3間で所定の静電容量を取り出すことができる。
【0035】
このような低誘電率層1aは、40〜400℃における線熱膨張係数が8〜15×10-6/℃、且つ1MHzにおける比誘電率が8以下の高熱膨張、低誘電率の低温焼成磁器からなることが望ましい。
【0036】
かかる高熱膨張、低誘電率の磁器は、本発明の高誘電率層を形成する低温焼成磁器組成物と同様に、アルカリ土類金属酸化物を15〜70質量%とSiO2を30〜60質量%含有するガラスと、前述の40〜400℃における線熱膨張係数が6×10-6/℃以上の金属酸化物を含有する無機フィラーとから形成されることが望ましい。
【0037】
これは、かかる金属酸化物が焼成後の上記高熱膨張、低誘電率の磁器の結晶相として含まれるようになり、上記高熱膨張、低誘電率の磁器の40〜400℃における線熱膨張係数を8〜15×10-6/℃、且つ1MHzにおける比誘電率を8以下にすることが容易となるためである。
【0038】
この高熱膨張、低誘電率の磁器は、特に高誘電率層1bを形成するガラスと同じガラスを用い、これに40〜400℃における線熱膨張係数が6×10-6/℃以上の金属酸化物フィラーを混合して焼成することによって作製することができ、特に多層配線基板を作製する上では、高誘電率層1bを成形する場合と全く同様の方法により上記低誘電率層1a用の組成物を成形、打ち抜き、電極層9の印刷等を行った高熱膨張、低誘電率のグリーンシートを作製し、本発明の高誘電率層1b用のグリーンシートと積層した後、グリーンシート積層体とメタライズを同時焼成することによって、コンデンサを内蔵する多層配線基板を得ることができる。
【0039】
なお、上記低誘電率層1aと上記高誘電率層1bとの40〜400℃における線熱膨張係数差は0.5×10-6/℃以下であることが望ましい。この線熱膨張係数差が0.5×10-6/℃より大きい場合、焼成段階において、上記低誘電率層1aと上記高誘電率層1bとの層内あるいは層間において破壊が発生しやすく、上記線熱膨張係数差が0.5×10-6/℃よりも大きく、1×10-6/℃以下の場合でも、同時焼成は可能であるものの、層内あるいは層間において多層配線基板内にクラックが発生する場合がある。従って、低誘電率層1aと高誘電率層1bとを同時焼成し、且つ多層基板内にクラック等の発生を防止するという理由から、これらの線熱膨張係数差は0.5×10-6/℃以下にすることが望ましい。
【0040】
この熱膨張の調整は、高誘電率層1bを形成する上記低温焼成磁器の線熱膨張係数を低誘電率層1aを形成する低温焼成磁器の線熱膨張係数に合わせるためには、高誘電率層1b中のフィラー成分であるCaTiO3とCaTiSiO5の含有量を適宜調整することによって、容易に制御することができる。
【0041】
熱膨張低誘電率層1aと、高熱膨張高誘電層1bにより構成されるコンデンサを内蔵した高熱膨張のガラスセラミック多層配線基板は、有機樹脂を含有するプリント基板等に半田からなるボール状端子4bや半田を介して実装した場合においても、外部回路基板Bとの線熱膨張係数が近似しているために、温度サイクルに対する長期信頼性の実装が可能である。しかも、コンデンサを内蔵することにより、該基板を実装するプリント基板等の外部回路基板Bの小型化を図ることができる。
【0042】
【実施例】
実施例1
アルカリ土類金属酸化物及びSiO2含有ガラスとして、SiO2:44質量%−Al23:7質量%−B23:14質量%−CaO:12質量%−BaO:23質量%からなるガラスA(屈伏点:690℃)、SiO2:37質量%−Al23:5質量%−B23:13質量%−CaO:17質量%−BaO:25質量%−ZrO2:3質量%からなるガラスB(屈伏点:710℃)、フィラーとしてCaTiO3、CaTiSiO5、クォーツ、酸化クロムをそれぞれ用意し、表1に示す比率にて秤量混合した。この混合物を粉砕後、有機バインダー、有機溶剤を添加して十分混合してスラリーを作製し、ドクターブレード法により厚み300μmのグリーンシートを作製した。得られたグリーンシートを8枚積層圧着した後、50mm×50mmのサンプルを作製し、700℃の水蒸気を含有する窒素雰囲気中にて脱バインダー処理後、900℃×1時間の窒素雰囲気中にて焼成を行った。
【0043】
次に、上記のようにして得られた磁器に対して、40〜400℃における線熱膨張係数と1MHzにおける比誘電率、−40〜85℃における比誘電率の温度係数τεを測定した。なお、比誘電率の温度係数については25℃での比誘電率ε25を基準値として、−40℃での比誘電率ε-40及び85℃での比誘電率ε85から下記式に基づいて算出した。
【0044】
τε=(ε85−ε-40)/ε25/(85−(−40))
その結果を表1に示す。
【0045】
また、上記焼結体に対して、X線回折測定を行ったところ、CaTiO3の添加されたサンプルについては何れもCaTiO3とCaTiSiO5の結晶相が、CaTiSiO5の添加されたサンプルについては何れもCaTiSiO5の結晶相が存在することを確認した。
実施例2
また、実施例1おける組成物を用いて、ドクターブレード法により厚み500μmの高誘電率層となるグリーンシートを作製するとともに、前記ガラスAおよびガラスBにフィラーとしてクオーツとジオプサイドを用いて低誘電率層となるグリーンシートを作製した。この場合、クオーツとジオプサイドの添加量は高誘電率層との熱膨張係数差を0.5×10-6/℃以内に調整するためにクオーツ量を15〜25質量%、ジオプサイドを75〜85質量%の範囲内で適宜調整した。
【0046】
次に、このグリーンシート表面に銅メタライズペーストをスクリーン印刷法に基づき塗布した。また、グリーンシートの所定箇所にビアホールを形成しその中にも銅メタライズペーストを充填した。そして、メタライズペーストが塗布されたグリーンシートをスルーホール間で位置合わせしながら6枚積層し圧着した。うち1層は高誘電率層となるグリーンシートとした。
【0047】
次に、この積層体を700℃の水蒸気を含有する窒素雰囲気中にて脱バインダー処理後、860℃×1時間+910℃×1時間の窒素雰囲気中にて、メタライズ配線層と絶縁基板とを同時焼成し、多層配線基板を作製した。
【0048】
次に、多層配線基板の下面に設けられた電極パッドに図1に示すように鉛90質量%−錫10質量%からなるボール状半田を低融点半田(鉛37質量%−錫63質量%)により取着した。なお、接続端子は、1cm2当たり30端子の密度で配線基板の下面全体に形成した。
【0049】
そして、この多層配線基板を、ガラス−エポキシ基板から成り、40〜800℃における線熱膨張係数が13×10-6/℃の絶縁体の表面に銅箔から成る配線導体が形成された外部回路基板表面に実装した。実装は、外部回路基板の上の配線導体と配線基板のボール状端子とを位置合わせし、低融点半田によって接続した。その結果を表1に示す。
【0050】
【表1】

Figure 0004044752
【0051】
表1の結果より明らかなように、サンプルNo.5〜19、24〜41は何れも40℃〜400℃における線熱膨張係数が8.0〜10.7×10−6/℃、1MHzにおける比誘電率が16以上、かつ−40〜85℃における比誘電率の温度係数が−193〜194×10−6/℃であった。
【0052】
また、熱サイクル試験の結果によれば、上記本発明のサンプルNo.5〜19、24〜41を用いた配線基板は、1000サイクルまでの試験に十分に耐えるものであった。
【0053】
また、無機フィラー全量中にCaTiO3を40〜60質量%、CaTiSiO5を40〜60質量%含有させたサンプルNo.6〜10、13〜19、25〜29、36〜41では、比誘電率の温度係数が−70〜70×10-6/℃なり大きく改善された。
【0054】
さらに、CaTiO3を45〜55質量%、CaTiSiO5を45〜55質量%含有させたサンプルNo.7〜9、14〜19、26〜28、および36〜41では、比誘電率の温度係数が−35〜35×10-6/℃の改善された。
【0055】
特に、上記の組成に対し、クオーツ、酸化クロムのうち少なくとも1種を添加したサンプルNo.14〜19および36〜41では、比誘電率の温度係数が8以下となりさらに小さくできた。
【0056】
一方、無機フィラーとしてCaTiO3かCaTiSiO5のうちいずれか一方のみを含有した試料No.1〜4、20〜23では、−40〜85℃における比誘電率の温度係数が−318×10-6/℃以下あるいは256×10-6/℃以上であった。
【0057】
【発明の効果】
以上詳述したように、本発明によれば、アルカリ土類金属酸化物とSiOを含有するガラスに、無機フィラーとしてCaTiO(線熱膨張係数:13×10−6/℃、比誘電率:180、比誘電率の温度係数:−1630×10−6/℃)とCaTiSiO5(線熱膨張係数:6.5×10−6/℃、比誘電率:35、比誘電率の温度係数:1200×10−6/℃)と酸化クロムとを所定比率で組み合わせることによって、磁器の高熱膨張化、高誘電率化とともに、誘電率の温度安定性を得ることができる。
【図面の簡単な説明】
【図1】 本発明の低温焼成磁器組成物を用いて焼成して得られた低温焼成磁器を配線基板に適用した例を説明するための概略断面図である。
【符号の説明】
1 絶縁基板
1a 低誘電率層
1b 高誘電率層
2 蓋体
3 メタライズ配線層
4 接続端子
4a 電極パッド
4b ボール状端子
5 半導体素子
6 キャビティ
7 絶縁体
8 配線導体
9 電極層
10 ビアホール導体
A 半導体素子収納用パッケージ
B 外部回路基板[0001]
BACKGROUND OF THE INVENTION
  The present invention,Low-temperature fired porcelain composition and low-temperature fired porcelain having high thermal expansibility, high dielectric constant, and excellent temperature stability of relative dielectric constantManufacturing methodAbout.
[0002]
[Prior art]
Conventionally, ceramic multilayer wiring boards capable of high-density wiring are frequently used as multilayer wiring boards, for example, semiconductor element housing packages for housing semiconductor elements such as LSIs. A ceramic multilayer wiring board is composed of an insulating substrate made of ceramics such as alumina and a wiring conductor layer made of a refractory metal such as W or Mo formed on the surface thereof. A cavity is formed, a semiconductor element is accommodated in the cavity, and the cavity is hermetically sealed by a lid.
[0003]
In recent years, higher integration has been achieved in wiring substrates applied to the above-described semiconductor element storage packages mounting semiconductor elements such as ICs and LSIs, which have been increasingly integrated, and hybrid integrated circuit devices mounted with various electronic components. Lower resistance, smaller size and lighter weight are required, and multilayer wiring boards using glass ceramics that can achieve lower dielectric constants and lower resistance of wiring conductor layers than alumina-based ceramic materials are attracting more attention Has been.
[0004]
In such a glass-ceramic multilayer wiring board, in order to cope with high-speed integration of semiconductor elements, an increase in the degree of integration with higher frequencies, and high-density mounting for further downsizing of electronic devices, Ball grid array (BGA) with ball-shaped connection terminals fixed is formed, and in order to improve the connection reliability with the external circuit board, the thermal expansion coefficient of the insulating board is close to that of the external circuit board. It has been proposed to use a natural porcelain.
[0005]
On the other hand, in portable information terminals such as mobile phones and laptop computers, for example, a switching circuit and a power amplifier circuit of a mobile phone are composed of a plurality of resistors and capacitors. Conventionally, these elements are individually provided on a circuit board. Although it is installed, there is a strong demand for miniaturization of electronic components to be mounted along with miniaturization of portable information terminals, so that a multilayer formed using an insulating material such as glass ceramic as described above. A multilayer wiring board in which a high dielectric constant layer is interposed inside a wiring board and a functional element such as a capacitor is built in has been proposed.
[0006]
[Problems to be solved by the invention]
However, in the multilayer wiring board as described above, as a high dielectric constant layer, BaO-TiO has been conventionally used.2System, PbO-TiO2Composite perovskite-based dielectric materials, mainly composed of bismuth, etc., are used, but with such dielectric materials, it is difficult to co-fire with ceramics made of glass ceramics as an insulating material, and the thermal expansion of the insulating layer There has been a problem that it becomes difficult to control.
[0007]
In addition, in terms of electrical characteristics of the high dielectric constant layer, the use of the dielectric material as described above can increase the dielectric constant, but the performance as a resonator due to the large temperature coefficient of the relative dielectric constant. There was a problem of low.
[0008]
  Therefore, the present invention is a low-temperature fired ceramic composition that can be fired at the same time as a low-temperature fired ceramic with high thermal expansion and low dielectric constant, has high thermal expansion and high dielectric constant, and is excellent in temperature stability of dielectric constant. And low-temperature fired porcelainManufacturing methodIs intended to provide.
[0009]
[Means for Solving the Problems]
As a result of repeated studies on the above problems, the present inventors have found that alkaline earth metal oxides and SiO2As a inorganic filler, CaTiOThreeAnd CaTiSiOFiveIt was found that the temperature stability of the dielectric constant can be obtained as well as the high thermal expansion and high dielectric constant of the porcelain by combining the above with a predetermined ratio.
[0010]
  That is, the low-temperature fired porcelain composition of the present invention contains 15 to 70% by mass of alkaline earth metal oxide.andSiO2Containing 30 to 60% by massThe20-80% by volume,CaTiO in the total amount 3 45-49 mass%, CaTiSiO 5 45 to 49 mass% and chromium oxide in a ratio of 2 to 10 mass%From 20 to 80% by volume of inorganic fillerBecomeIt is characterized by that.
  The glass is made of Al. 2 O 3 And B 2 O 3 Containing Al or Al 2 O 3 , B 2 O 3 And ZrO 2 It is desirable that it is either of the thing containing.
[0011]
  MaThe low-temperature fired porcelain of the present inventionManufacturing methodThe aboveLow temperature fired porcelainAfter molding the composition, firing at 800 to 1100 ° CCharacterized by.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
  (Composition / Porcelain)
  The low-temperature fired ceramic composition of the present invention comprises 15 to 70% by mass of an alkaline earth metal oxide and SiO 2220 to 80% by volume of glass containing 30 to 60% by mass and 20 to 80% by volume of inorganic filler, and the inorganic filler is CaTiO.3And CaTiSiO5WhenWith chromium oxideIn which the temperature coefficient of relative permittivity is −200 × 10-6/ ° C. to 200 × 10-6The linear thermal expansion coefficient is 13 x 10-6/ ° C., relative permittivity is 180, and relative permittivity temperature coefficient is −1630 × 10-6CaTiO that is / ℃320 to 80% by mass and the coefficient of linear thermal expansion is 6.5 × 10-6/ ° C., relative permittivity is 35, and relative permittivity temperature coefficient is 1200 × 10-6CaTiSiO // ° C520 to 80% by mass. ThisAs shown, the temperature characteristic of the negative side relative permittivity is CaTiO.3And CaTiSiO showing the temperature characteristics of the relative dielectric constant on the + side5In combination, the temperature coefficient of the dielectric constant can be reduced and stabilized, and can be controlled to an arbitrary temperature coefficient.
[0017]
CaTiO contained in inorganic fillerThreeAnd CaTiSiOFiveIs limited to the above range.ThreeIs less than 20% by mass or CaTiSiOFiveIs more than 80% by mass, the linear thermal expansion coefficient of the porcelain obtained after firing is 8 × 10-6It becomes difficult to raise the temperature above / ° C, or it becomes difficult to raise the relative dielectric constant to 16 or more, or the temperature coefficient of the relative dielectric constant is 200 × 10-6It becomes difficult to keep the temperature below / ° C, and CaTiOThreeIs more than 80% by mass or CaTiSiOFiveIs less than 20% by mass, the temperature coefficient of the relative permittivity of the porcelain obtained is -200 × 10-6This is because it becomes difficult to increase the temperature to more than / ° C.
[0018]
  In particular, the amount of CaTiO3 is 45% by mass to49% By mass, and the amount of CaTiSiO5 is 45% by mass to49% By massis important. The above CaTiO3 and CaTiSiO5 are 80% by mass or more, particularly 90% by mass or more, more preferably 95% by mass or more in total in the inorganic filler, in order to increase the relative dielectric constant at 1 MHz of the obtained porcelain to 16 or more. It is included in the ratio.
[0019]
Further, according to the present invention, the content of the alkaline earth metal oxide in the glass is 15 to 70% by mass, SiO 22It is important that the content of is 30 to 60% by mass. This is because the alkaline earth metal oxide content is less than 15% by mass or SiO 22When the content of S is more than 60% by mass, it is difficult to soften the glass, and the coefficient of linear thermal expansion becomes low. The resulting ceramic has a coefficient of linear thermal expansion at 40 to 400 ° C. of 8 × 10.-6It is difficult to increase to more than / ° C., and the content of alkaline earth metal oxide is more than 70% by mass or SiO 22When the content of is less than 30% by mass, vitrification is difficult, and the characteristics tend to become unstable.
[0020]
According to the present invention, the glass and the inorganic filler are mixed at an appropriate ratio according to the purpose such as the firing temperature and the final thermal expansion coefficient of the porcelain. The glass used in the present invention has a shrinkage start temperature of 700 ° C. or lower when no inorganic filler is added, and melts at 850 ° C. or higher, so that a metallized wiring layer or the like cannot be provided. However, by mixing the inorganic filler, crystal precipitation occurs in the firing process, and a liquid phase for liquid phase sintering of the inorganic filler can be formed at an appropriate temperature. In addition, the shrinkage start temperature of the entire molded body can be increased. In addition, since the shrinkage start temperature of the entire molded body can be increased, matching of the simultaneous firing conditions with the metallized wiring layer can be achieved by adjusting the content of the inorganic filler depending on the type of metallized used.
[0021]
Moreover, the low-temperature-fired porcelain composition of this invention mixes the said glass amount in 20-80 volume% and the said inorganic filler amount in the ratio of 20-80 volume%. The amount of the glass and the inorganic filler is limited to the above range because the glass amount is less than 20% by volume, in other words, if the amount of the inorganic filler is more than 80% by volume, liquid phase sintering is difficult and the firing temperature is low. The metallized wiring layer may be melted at the time of simultaneous firing with the metallized wiring layer. Also, if the amount of glass is more than 80% by volume, in other words, if the amount of inorganic filler is less than 20% by volume, the properties of the porcelain greatly depend on the properties of the glass, making it difficult to control the material properties and starting sintering. Since the temperature is lowered, there arises a problem that simultaneous firing with the metallized wiring layer becomes difficult. Moreover, since the amount of glass is large, the cost of raw materials tends to increase.
[0022]
In addition, it is desirable that the amount of the inorganic filler is appropriately adjusted according to the yield point of the glass. That is, when the yield point of glass is as low as 400 ° C. to 700 ° C., the sinterability at low temperatures is enhanced, so that the amount of inorganic filler can be relatively large such as 40 to 80% by volume. On the other hand, when the yield point of the glass is as high as 700 ° C. to 800 ° C., the sinterability is lowered, so that the filler amount is desirably 20-50% by volume, which is relatively small.
[0023]
Further, in the above composition, as one of the inorganic filler components, the coloring component includes chromium oxide, cobalt oxide, manganese oxide, nickel oxide, iron oxide, copper oxide, barium chromate, silicon, and quartz. You may mix | blend the at least 1 sort (s) chosen in the ratio of 10 mass% or less. In this case, the temperature coefficient of the relative dielectric constant can be made closer to 0 and stabilized.
[0024]
  According to the present invention, the mixture of the low-temperature fired porcelain composition is molded and then fired.LowThe warm-fired porcelain is composed of a crystal phase and a glass phase, and the crystal phase contains CaTiO3 and CaTiSiO5. The linear thermal expansion coefficient is 8-15 × 10-6The relative permittivity is 16 or more at 1 ° C / ° C, and the temperature coefficient of the relative permittivity at -40 to 85 ° C is3-8x10 -6 / ℃It is made of porcelain with high thermal expansion, high dielectric constant, and excellent dielectric constant temperature stability..
[0025]
In the low-temperature fired ceramic composition and the low-temperature fired ceramic, the linear thermal expansion coefficient at 40 to 400 ° C. is 6 × 10 6 as one of the inorganic filler components or one of the crystal phases.-6/ Quartz (SiO2), Cristobalite (SiO2), Tridymite (SiO2), Forsterite (2MgO · SiO2), Spinel (MgO · Al2OThree), Wollastonite (CaO.SiO)2), Monticeranite (CaO / MgO / SiO)2), Nepheline (Na2O ・ Al2OThree・ SiO2), Diopside (CaO · MgO · 2SiO2 ), Melvinite (3CaO · MgO · 2SiO2), Achelite (2CaO · MgO · 2SiO2), Magnesia (MgO), alumina (Al2OThree), Carne Gite (Na2O ・ Al2OThree・ 2SiO2), Enstatite (MgO · SiO2), Magnesium borate (2MgO · B2OThree), Celsian (BaO · Al2OThree・ 2SiO2), B2OThree・ 2MgO ・ 2SiO2, Garnite (ZnO · Al2OThree) At least one selected from the group of Among these, at least one selected from the group of quartz, cristobalite, tridymite, forsterite, and enstatite is desirable for achieving high thermal expansion.
[0026]
(Production method)
In the present invention, a specific manufacturing method for obtaining the above-mentioned low-temperature fired ceramic is first to appropriately form a mixture of glass and inorganic filler as described in the above-mentioned low-temperature fired ceramic composition. After adding the organic resin binder for the desired shape, it can be formed into any shape by any desired molding means such as die press, cold isostatic pressing, injection molding, extrusion molding, doctor blade method, calendar roll method, rolling method, etc. The obtained molded body is fired. In baking, the binder component mix | blended for shaping | molding is removed first. The removal of the binder is performed in an air or nitrogen atmosphere at 700 ° C to 800 ° C. At this time, the shrinkage start temperature of the molded body is preferably about 500 to 850 ° C. If the shrinkage start temperature is lower than this, it is difficult to remove the binder.
[0027]
When preparing a wiring board, a slurry is prepared by adding and mixing an appropriate organic binder, solvent, and plasticizer to the mixture of glass and inorganic filler as described above. A green sheet is produced by a green sheet forming method using a coating method such as a blade. Furthermore, a metal paste obtained by adding and mixing an organic binder, a plasticizer, and a solvent to a metal powder composed of one or more of copper, silver, nickel, palladium, and gold is predetermined on the green sheet by a well-known screen printing method. Print and apply to the pattern. In some cases, the green sheet is appropriately punched to form a via hole, and this hole is filled with a metallized paste. A plurality of these green sheets are laminated and pressure-bonded and then fired. In firing, the binder component blended for molding is removed, but the binder is removed by nitrogen containing water vapor at 100 to 800 ° C. when copper is used as the wiring conductor for forming the metallized wiring layer, for example. Performed in an atmosphere.
[0028]
  Firing is performed at an optimum firing temperature of 800 ° C. to 1100 ° C.is important. If the optimum firing temperature is lower than 800 ° C., it cannot be densified, and if it is higher than 1100 ° C., simultaneous firing with the metallized wiring layer becomes difficult. However, when copper is used as the component of the wiring conductor, it is desirable to fire in a non-oxidizing atmosphere at 800 to 1100 ° C.
[0029]
  (Construction)
  FIG.Obtained by firing using the low-temperature fired ceramic composition of the present inventionAs an application example of a low-temperature fired ceramic, it is a schematic cross-sectional view showing an example of a multilayer wiring board, in particular, a BGA type semiconductor element housing package and its mounting structure. This package has a basic structure of a so-called wiring board in which a metallized wiring layer is disposed on the surface or inside of an insulating board, A is a package for housing a semiconductor element, and B is an external circuit board.
[0030]
The semiconductor element storage package A includes an insulating substrate 1, a lid 2, a metallized wiring layer 3, and connection terminals 4, and the insulating substrate 1 and the lid 2 have a cavity 6 for accommodating the semiconductor element 5 in an airtight manner. Form. In the cavity 6, the semiconductor element 5 is bonded and fixed to the insulating substrate 1 through an adhesive such as glass or resin.
[0031]
A metallized wiring layer 3 is disposed on the surface and inside of the insulating substrate 1 so as to be electrically connected to the semiconductor element 5 and the connection terminal 4 formed on the lower surface of the insulating substrate 1. ing. According to the semiconductor element housing package A of FIG. 1, the connection terminal 4 has a ball-shaped terminal 4b made of high-melting-point solder (tin-lead alloy) attached through a connection pad 4a with a brazing material.
[0032]
On the other hand, the external circuit board B is composed of an insulator 7 and a wiring conductor 8, and the insulator 7 is made of an insulating material containing at least an organic resin, specifically, a glass-epoxy composite material or the like. The linear thermal expansion coefficient at 40 to 400 ° C. is 12 to 16 × 10-6In general, a printed circuit board or the like is used. Also, the wiring conductor 8 formed on the surface of the substrate B is usually copper, gold, silver, aluminum, nickel, lead in terms of consistency of thermal expansion coefficient with the insulator 7 and good electrical conductivity. -It consists of metal conductors, such as tin.
[0033]
In order to mount the semiconductor element housing package A on the external circuit board B, the ball-like terminals 4b on the lower surface of the insulating substrate 1 of the package A are placed on and contacted with the wiring conductors 8 of the external circuit board B, Mounting is performed by melting the solder at a temperature of about 250 to 400 ° C. with a soldering material such as solder having a melting point and joining the wiring conductor 8 and the ball-shaped terminal 4 b. At this time, it is desirable that a brazing material is previously formed on the surface of the wiring conductor 8 in order to easily connect the ball terminal 4b with the brazing material.
[0034]
As shown in FIG. 1, the insulating substrate 1 in the semiconductor element housing package A is composed of a low dielectric constant layer 1a and a high dielectric constant layer 1b. The high dielectric constant layer 1b is made of the low-temperature fired ceramic of the present invention. Further, electrode layers 9 made of a metal conductor such as copper are formed on the upper and lower sides of the high dielectric constant layer 1b, and connected to the metallized wiring layer 3 on the substrate surface via the via-hole conductor 10 or the like. The predetermined electrostatic capacity can be taken out.
[0035]
Such a low dielectric constant layer 1a has a linear thermal expansion coefficient of 8 to 15 × 10 4 at 40 to 400 ° C.-6It is desirable to comprise a low-temperature-fired porcelain having a high thermal expansion and a low dielectric constant of 1 / MHz and a relative dielectric constant of 1 or less at 1 MHz.
[0036]
Such a high thermal expansion, low dielectric constant porcelain is composed of 15 to 70% by mass of an alkaline earth metal oxide and SiO 2 in the same manner as the low temperature fired porcelain composition forming the high dielectric constant layer of the present invention.2Of 30 to 60% by mass, and the coefficient of linear thermal expansion at 40 to 400 ° C. is 6 × 10.-6It is desirable that it be formed from an inorganic filler containing a metal oxide at / C or higher.
[0037]
This is because the metal oxide is included as a crystal phase of the high thermal expansion, low dielectric constant porcelain after firing, and the linear thermal expansion coefficient of the high thermal expansion, low dielectric constant porcelain at 40 to 400 ° C. 8-15x10-6This is because it is easy to make the relative dielectric constant at / ° C. and 1 MHz 8 or less.
[0038]
This high thermal expansion, low dielectric constant porcelain is made of the same glass as that forming the high dielectric constant layer 1b, and has a linear thermal expansion coefficient of 6 × 10 4 at 40 to 400 ° C.-6Can be prepared by mixing and firing a metal oxide filler at / ° C. or higher, and in particular for producing a multilayer wiring board, the low dielectric constant can be obtained by the same method as that for forming the high dielectric constant layer 1b. After forming and punching the composition for the dielectric constant layer 1a, printing the electrode layer 9, etc., producing a high thermal expansion, low dielectric constant green sheet and laminating it with the green sheet for the high dielectric constant layer 1b of the present invention By simultaneously firing the green sheet laminate and metallization, a multilayer wiring board with a built-in capacitor can be obtained.
[0039]
The difference in linear thermal expansion coefficient at 40 to 400 ° C. between the low dielectric constant layer 1a and the high dielectric constant layer 1b is 0.5 × 10.-6/ ° C. or less is desirable. This linear thermal expansion coefficient difference is 0.5 × 10-6When it is higher than / ° C., in the firing stage, breakdown is likely to occur in or between the low dielectric constant layer 1a and the high dielectric constant layer 1b, and the difference in coefficient of linear thermal expansion is 0.5 × 10.-6Greater than 1 ° C-6Even in the case of / ° C. or lower, simultaneous firing is possible, but cracks may occur in the multilayer wiring board within the layers or between the layers. Therefore, for the reason that the low dielectric constant layer 1a and the high dielectric constant layer 1b are simultaneously fired and the occurrence of cracks or the like in the multilayer substrate is prevented, the difference in coefficient of linear thermal expansion between these is 0.5 × 10.-6/ ° C. or less is desirable.
[0040]
The adjustment of the thermal expansion is carried out by adjusting the linear thermal expansion coefficient of the low temperature fired ceramic forming the high dielectric constant layer 1b with the linear thermal expansion coefficient of the low temperature fired ceramic forming the low dielectric constant layer 1a. CaTiO which is a filler component in the layer 1bThreeAnd CaTiSiOFiveIt can be easily controlled by appropriately adjusting the content of.
[0041]
  HighIt is composed of a thermal expansion low dielectric constant layer 1a and a high thermal expansion high dielectric layer 1b.RucoHigh thermal expansion glass-ceramic multilayer wiring board with built-in capacitor has linear thermal expansion with external circuit board B even when mounted on a printed circuit board containing an organic resin via ball-like terminals 4b made of solder or solder. Due to the approximation of the coefficients, it is possible to implement long-term reliability against temperature cycling. In addition, by incorporating the capacitor, it is possible to reduce the size of the external circuit board B such as a printed board on which the board is mounted.
[0042]
【Example】
Example 1
Alkaline earth metal oxides and SiO2As contained glass, SiO2: 44% by mass-Al2OThree: 7% by mass-B2OThree: Glass A consisting of 14% by mass-CaO: 12% by mass-BaO: 23% by mass (deflection point: 690 ° C), SiO2: 37% by mass-Al2OThree: 5% by mass-B2OThree: 13 mass%-CaO: 17 mass%-BaO: 25 mass%-ZrO2: Glass B composed of 3% by mass (deflection point: 710 ° C), CaTiO as fillerThree, CaTiSiOFive, Quartz and chromium oxide were prepared and weighed and mixed at the ratios shown in Table 1. After pulverizing this mixture, an organic binder and an organic solvent were added and mixed well to prepare a slurry, and a green sheet having a thickness of 300 μm was prepared by a doctor blade method. After stacking and pressing 8 sheets of the obtained green sheets, a sample of 50 mm × 50 mm was prepared, and after removing the binder in a nitrogen atmosphere containing 700 ° C. water vapor, in a nitrogen atmosphere of 900 ° C. × 1 hour. Firing was performed.
[0043]
Next, for the porcelain obtained as described above, the linear thermal expansion coefficient at 40 to 400 ° C., the relative dielectric constant at 1 MHz, and the temperature coefficient τ of the relative dielectric constant at −40 to 85 ° C.εWas measured. As for the temperature coefficient of the relative permittivity, the relative permittivity ε at 25 ° C.twenty fiveAs a reference value, relative permittivity ε at −40 ° C.-40And dielectric constant ε at 85 ° C.85From the following formula.
[0044]
τε= (Ε85−ε-40) / Εtwenty five/ (85-(-40))
The results are shown in Table 1.
[0045]
Further, when X-ray diffraction measurement was performed on the sintered body, CaTiO was used.ThreeFor all the samples with added CaTiOThreeAnd CaTiSiOFiveThe crystal phase of CaTiSiOFiveFor all the samples to which CaTiSiO was addedFiveIt was confirmed that a crystalline phase of
Example 2
In addition, a green sheet to be a high dielectric constant layer having a thickness of 500 μm was prepared by the doctor blade method using the composition in Example 1, and low dielectric constant was obtained by using quartz and diopside as fillers in the glass A and glass B. The green sheet used as a layer was produced. In this case, the amount of addition of quartz and diopside is such that the difference in thermal expansion coefficient from the high dielectric constant layer is 0.5 × 10-6In order to adjust within / ° C., the quartz amount was appropriately adjusted within the range of 15 to 25% by mass and the diopside within the range of 75 to 85% by mass.
[0046]
Next, a copper metallized paste was applied to the green sheet surface based on a screen printing method. In addition, via holes were formed at predetermined locations on the green sheet, and copper metallized paste was filled therein. Then, six green sheets coated with the metallized paste were stacked and pressure-bonded while being aligned between the through holes. One of them was a green sheet to be a high dielectric constant layer.
[0047]
Next, the laminate is subjected to binder removal treatment in a nitrogen atmosphere containing water vapor at 700 ° C., and then the metallized wiring layer and the insulating substrate are simultaneously formed in a nitrogen atmosphere at 860 ° C. × 1 hour + 910 ° C. × 1 hour. Firing was performed to produce a multilayer wiring board.
[0048]
Next, as shown in FIG. 1, a ball-shaped solder composed of 90% by mass of lead-10% by mass of tin is low-melting solder (37% by mass of lead-63% by mass of tin) on the electrode pad provided on the lower surface of the multilayer wiring board. Attached by. The connection terminal is 1cm2It was formed on the entire lower surface of the wiring board with a density of 30 terminals per hit.
[0049]
And this multilayer wiring board consists of a glass-epoxy board | substrate, and the linear thermal expansion coefficient in 40-800 degreeC is 13 * 10.-6It was mounted on the surface of an external circuit board in which a wiring conductor made of copper foil was formed on the surface of an insulator at / ° C. For mounting, the wiring conductor on the external circuit board and the ball-shaped terminal of the wiring board were aligned and connected by low melting point solder. The results are shown in Table 1.
[0050]
[Table 1]
Figure 0004044752
[0051]
  As is clear from the results in Table 1., SaSample No. 5 to 19 and 24 to 41 all have a linear thermal expansion coefficient of 8.0 to 10.7 × 10 at 40 ° C. to 400 ° C.-6/ ° C., relative permittivity at 1 MHz is 16 or more, and temperature coefficient of relative permittivity at −40 to 85 ° C. is −193 to 194 × 10-6/ ° C.
[0052]
Further, according to the result of the thermal cycle test, the sample No. of the present invention described above. Wiring boards using 5 to 19 and 24 to 41 were sufficiently resistant to tests up to 1000 cycles.
[0053]
In addition, CaTiO in the total amount of inorganic fillerThree40-60 mass%, CaTiSiOFiveSample No. containing 40 to 60% by mass. In 6 to 10, 13 to 19, 25 to 29, and 36 to 41, the temperature coefficient of relative permittivity is −70 to 70 × 10.-6/ ° C, greatly improved.
[0054]
In addition, CaTiOThree45-55 mass%, CaTiSiOFiveSample No. containing 45 to 55% by mass. In 7-9, 14-19, 26-28, and 36-41, the temperature coefficient of relative permittivity is −35 to 35 × 10-6/ ° C improved.
[0055]
In particular, sample No. 1 in which at least one of quartz and chromium oxide was added to the above composition. In 14-19 and 36-41, the temperature coefficient of the relative permittivity was 8 or less, which could be further reduced.
[0056]
On the other hand, CaTiO as an inorganic fillerThreeOr CaTiSiOFiveSample No. containing only one of them. 1 to 4, 20 to 23, the temperature coefficient of the relative dielectric constant at −40 to 85 ° C. is −318 × 10-6/ ° C or less or 256 × 10-6/ ° C or higher.
[0057]
【The invention's effect】
  As detailed above, according to the present invention, alkaline earth metal oxides and SiO2CaTiO as an inorganic filler in glass containing3(Linear thermal expansion coefficient: 13 × 10-6/ ° C., relative dielectric constant: 180, temperature coefficient of relative dielectric constant: −1630 × 10-6/ ° C.) and CaTiSiO5 (linear thermal expansion coefficient: 6.5 × 10-6/ ° C., relative dielectric constant: 35, temperature coefficient of relative dielectric constant: 1200 × 10-6/ ℃)And chromium oxideBy combining these at a predetermined ratio, it is possible to obtain the temperature stability of the dielectric constant as well as the high thermal expansion and high dielectric constant of the porcelain.
[Brief description of the drawings]
FIG. 1 of the present inventionLow-temperature fired porcelain obtained by firing using a low-temperature fired porcelain compositionWiring boardApplied toIt is a schematic sectional drawing for demonstrating an example.
[Explanation of symbols]
1 Insulating substrate
1a Low dielectric constant layer
1b High dielectric constant layer
2 lid
3 Metallized wiring layer
4 connection terminals
4a electrode pad
4b Ball terminal
5 Semiconductor elements
6 cavity
7 Insulator
8 Wiring conductor
9 Electrode layer
10 Via-hole conductor
A Package for storing semiconductor elements
B External circuit board

Claims (3)

アルカリ土類金属酸化物を15〜70質量%およびSiOを30〜60質量%含有するガラス20〜80体積%と、全量中にCaTiO を45〜49質量%、CaTiSiO を45〜49質量%および酸化クロムを2〜10質量%の割合で含有する無機フィラーを20〜80体積%とからなることを特徴とする低温焼成磁器組成物。15-70 wt% of an alkaline earth metal oxide and 20 to 80% by volume glass containing SiO 2 30 to 60 wt%, a CaTiO 3 in the total amount of 45 to 49 wt%, the CaTiSiO 5 45-49 A low-temperature fired porcelain composition comprising 20 to 80% by volume of an inorganic filler containing 2% by mass and 2% by mass of chromium oxide . 前記ガラスが、AlThe glass is Al 2 O 3 およびBAnd B 2 O 3 を含有するもの、または、AlContaining Al or Al 2 O 3 、B, B 2 O 3 およびZrOAnd ZrO 2 を含有するもののうちいずれかであることを特徴とする請求項1に記載の低温焼成磁器組成物。The low-temperature-fired porcelain composition according to claim 1, wherein the composition is any one of the above-described ones. 請求項1または請求項2に記載の低温焼成磁器組成物を成形後、800〜1100℃で焼成することを特徴とする低温焼成磁器の製造方法A method for producing a low-temperature fired ceramic , comprising molding the low-temperature fired ceramic composition according to claim 1 or 2 and firing at 800 to 1100 ° C.
JP2001360881A 2001-11-27 2001-11-27 Low temperature fired porcelain composition and method for producing low temperature fired porcelain Expired - Fee Related JP4044752B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001360881A JP4044752B2 (en) 2001-11-27 2001-11-27 Low temperature fired porcelain composition and method for producing low temperature fired porcelain

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001360881A JP4044752B2 (en) 2001-11-27 2001-11-27 Low temperature fired porcelain composition and method for producing low temperature fired porcelain

Publications (2)

Publication Number Publication Date
JP2003165769A JP2003165769A (en) 2003-06-10
JP4044752B2 true JP4044752B2 (en) 2008-02-06

Family

ID=19171626

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001360881A Expired - Fee Related JP4044752B2 (en) 2001-11-27 2001-11-27 Low temperature fired porcelain composition and method for producing low temperature fired porcelain

Country Status (1)

Country Link
JP (1) JP4044752B2 (en)

Also Published As

Publication number Publication date
JP2003165769A (en) 2003-06-10

Similar Documents

Publication Publication Date Title
JP5056528B2 (en) Insulator ceramic composition and insulator ceramic using the same
JP3680713B2 (en) Insulator porcelain, ceramic multilayer substrate, ceramic electronic component and multilayer ceramic electronic component
JP3680683B2 (en) Insulator porcelain composition
JP4780995B2 (en) Glass ceramic sintered body and wiring board using the same
JP4077625B2 (en) Low temperature fired porcelain composition and method for producing low temperature fired porcelain
JP4044752B2 (en) Low temperature fired porcelain composition and method for producing low temperature fired porcelain
JP3559407B2 (en) Glass ceramic sintered body and multilayer wiring board using the same
JP2003342064A (en) Glass ceramic sintered compact and multilayer wiring board
JP2003040670A (en) High thermal expansion ceramic composition, high thermal expansion ceramic and its manufacturing method, and multilayer wiring substrate and its mounting structure
JP2004083373A (en) High thermal expansion porcelain formulation, high thermal expansion porcelain, its manufacturing method, multilayered wiring board, and its mounting structure
JP3805173B2 (en) Glass ceramic sintered body and multilayer wiring board using the same
JP3793557B2 (en) Glass ceramic sintered body and multilayer wiring board using the same
JP2002043759A (en) Multilayer wiring board
JP4540297B2 (en) Low-temperature fired porcelain composition, low-temperature fired porcelain, and wiring board
JP3441924B2 (en) Wiring board and its mounting structure
JP4623851B2 (en) Multilayer wiring board
JP3719834B2 (en) Low temperature fired ceramics
JP4395320B2 (en) Low-temperature fired porcelain composition, low-temperature fired porcelain, and wiring board
JPH1153940A (en) Copper metalized composition and glass ceramic wiring board using it
JP2000226255A (en) Dielectric ceramic composition and ceramic multi-layered substrate
JP4761647B2 (en) Ceramic composition and multilayer wiring board using the same
JP2004231454A (en) Low temperature fired porcelain and wiring board
JP4057853B2 (en) Glass ceramic sintered body and multilayer wiring board
JP3273112B2 (en) Multilayer wiring board and package for semiconductor device storage
JP3934811B2 (en) High thermal expansion glass ceramic sintered body and manufacturing method thereof, wiring board and mounting structure thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040518

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070605

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070806

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071023

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071116

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101122

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101122

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111122

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111122

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121122

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121122

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131122

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees