JPH0226798B2 - - Google Patents

Info

Publication number
JPH0226798B2
JPH0226798B2 JP56115040A JP11504081A JPH0226798B2 JP H0226798 B2 JPH0226798 B2 JP H0226798B2 JP 56115040 A JP56115040 A JP 56115040A JP 11504081 A JP11504081 A JP 11504081A JP H0226798 B2 JPH0226798 B2 JP H0226798B2
Authority
JP
Japan
Prior art keywords
paste
resistor
amorphous glass
circuit
insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56115040A
Other languages
Japanese (ja)
Other versions
JPS5817695A (en
Inventor
Hiromi Tozaki
Nobuyuki Sugishita
Akira Ikegami
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP56115040A priority Critical patent/JPS5817695A/en
Publication of JPS5817695A publication Critical patent/JPS5817695A/en
Publication of JPH0226798B2 publication Critical patent/JPH0226798B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Parts Printed On Printed Circuit Boards (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)

Description

【発明の詳細な説明】 本発明は、配線導体のみならず抵抗体をも多層
化した多層回路板とその製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a multilayer circuit board in which not only wiring conductors but also resistors are multilayered, and a method for manufacturing the same.

近年、電子回路には、半導体ICを装着した回
路板が使用されている。そして、半導体ICには
セラミツクなどで封止した、いわゆる封止ICが
使用されている。
In recent years, circuit boards equipped with semiconductor ICs have been used in electronic circuits. As semiconductor ICs, so-called sealed ICs, which are sealed with ceramic or the like, are used.

半導体ICを装着した回路板の小形化は、ICチ
ツプ自体を回路板に装置すれば、以下(a)、(b)の理
由で達成される。
The miniaturization of a circuit board on which a semiconductor IC is mounted can be achieved by installing the IC chip itself on the circuit board for the following reasons (a) and (b).

(a) チツプ素子自体は、封止ICより小さい。(a) The chip element itself is smaller than the encapsulated IC.

(b) 接続用端子間隔が狭くなる。(b) The spacing between connection terminals becomes narrower.

この場合、基板上のIC接続用導体間隔は200μ
m程度と微細で高密度にする必要がある。しか
し、このような微細パターンはセラミツク基板上
に導体ペーストを印刷し、乾燥し、焼成する厚膜
技術では、印刷だれ、印刷ペースト乾燥中の低粘
度化によるにじみなどにより導体間隔が400μm
程度となり製造できなかつた。
In this case, the spacing between the IC connection conductors on the board is 200μ
It is necessary to make it as fine and dense as about m. However, such fine patterns are produced using thick film technology in which conductor paste is printed on a ceramic substrate, dried, and fired, but due to printing sag and bleeding due to the lower viscosity of the printing paste during drying, the conductor spacing is 400 μm.
It was not possible to manufacture the product due to the poor quality.

これに対し、アルミナを主成分とするグリーン
シート(未焼結板)に導体ペーストを印刷し、乾
燥し、焼成するいわゆるグリーンシート法は、以
下(a)、(b)の理由で微細で高密度な配線導体を形成
するのに適している。
On the other hand, the so-called green sheet method, in which a conductive paste is printed on a green sheet (unsintered board) whose main component is alumina, dried, and fired, produces fine and high-quality materials for the following reasons (a) and (b). Suitable for forming dense wiring conductors.

(a) 印刷したペースト中の溶剤がグリーンシート
中にしみ込むため、印刷したペーストはだれ、
にじみを生じない。
(a) The solvent in the printed paste soaks into the green sheet, causing the printed paste to sag and
Does not cause smudging.

(b) グリーンシートは焼結時にシートが10〜20%
収縮する。
(b) The green sheet has a sheet content of 10-20% during sintering.
Shrink.

しかし、アルミナのグリーンシートは1500〜
1600℃で焼結させるため、導体は焼結時変質しな
いモリブデン、タングステン、マンガンなどの高
融点金属にせねばならず、抵抗体は多層構造の内
層に設けると、グリーンシート焼結時変質するた
め、多層板ではこれを焼結してから最上層に抵抗
体を形成せざるを得なかつた。
However, alumina green sheet costs 1500~
In order to sinter at 1600℃, the conductor must be made of a high melting point metal such as molybdenum, tungsten, or manganese, which does not change in quality during sintering.If the resistor is installed in the inner layer of a multilayer structure, the quality will change during green sheet sintering. In the case of a multilayer board, it was necessary to sinter it and then form the resistor on the top layer.

ここで、アルミナの替りに1000℃程度以下で焼
結する絶縁材料をグリーンシート、層間絶縁層と
すれば、導体、抵抗体などの各種厚膜材料が適用
でき、微細で高密度な配線の形成と、導体と抵抗
体よりなる抵抗回路の多層化ができると思われ
る。
Here, if we use an insulating material that is sintered at temperatures below about 1000°C as a green sheet or interlayer insulating layer instead of alumina, various thick film materials such as conductors and resistors can be applied, and fine, high-density wiring can be formed. It seems possible to create multi-layered resistance circuits made up of conductors and resistors.

このような材料には、βリチア輝石を主成分と
しメタ珪酸リチウムを副成分とした微結晶を析出
する結晶化ガラス、α−菫青石を主成分とし斜頑
輝石を副成分とした微結晶を析出する結晶化ガラ
スが知られている。これら材料は昇温速度2℃/
分以下、高温保持時間1〜5時間、降温速度4
℃/分以下と加熱時間が長く、かつ短時間加熱で
は導体が基板よりはく離することがあつた。
Such materials include crystallized glass which precipitates microcrystals with β-spodyroxene as the main component and lithium metasilicate as a sub-component, and microcrystals with α-cordierite as the main component and clinopyroxene as a sub-component. Crystallized glass that precipitates is known. These materials have a heating rate of 2℃/
Minutes or less, high temperature holding time 1 to 5 hours, cooling rate 4
The heating time was long, less than 0.degree. C./min, and the conductor sometimes peeled off from the substrate when heated for a short time.

本発明の目的は、上記した従来技術の欠点をな
くし、グリーンシート法により微細で高密度な導
体配線を有し、かつ抵抗体をその層間に形成した
新規な小形多層回路板と短時間焼成で上記の多層
回路板が製造できる方法を提供するにある。
The purpose of the present invention is to eliminate the above-mentioned drawbacks of the prior art, and to provide a novel compact multilayer circuit board that has fine, high-density conductor wiring using the green sheet method and that has resistors formed between the layers, and that can be fired in a short time. The object of the present invention is to provide a method by which the above multilayer circuit board can be manufactured.

上記目的は、絶縁層が非晶質ガラスと絶縁性酸
化物結晶微粒子の混合絶縁材料であり、厚膜導体
が金属粒子あるいは金属粒子と前記非晶質ガラス
からなり、厚膜抵抗体が導電性粒子と前記非晶質
ガラスからなること、印刷基体を上記絶縁材料に
高分子結合剤を加えたグリーンシートを基体とす
ること、および高分子結合剤と有機溶剤の混合物
(ベヒクル)に上記絶縁材料、上記厚膜導体、上
記厚膜抵抗体を構成する粉末をそれぞれ加えて絶
縁ペースト、導体ペースト、抵抗体ペーストと
し、上記グリーンシート上にこれらペーストの印
刷を繰り返し、あるいは導体ペーストと抵抗体ペ
ーストを印刷したグリンシートを積層し、抵抗体
を層間および層上に形成した多層構造体を1000℃
以下の温度で熱処理することで達成される。
The above object is that the insulating layer is a mixed insulating material of amorphous glass and insulating oxide crystal fine particles, the thick film conductor is made of metal particles or metal particles and the amorphous glass, and the thick film resistor is a conductive material. particles and the amorphous glass, the printing substrate is a green sheet made of the above insulating material and a polymeric binder, and a mixture (vehicle) of the polymeric binder and an organic solvent is made of the above insulating material. , add the powders constituting the thick film conductor and the thick film resistor to form an insulating paste, a conductor paste, and a resistor paste, respectively, and repeat printing these pastes on the green sheet, or paste the conductor paste and the resistor paste. A multilayer structure made by laminating printed green sheets and forming resistors between and on the layers is heated to 1000℃.
This is achieved by heat treatment at the following temperatures.

以下発明の特徴を詳細に説明する。多層構造体
を構成するグリンシートおよび絶縁層用の絶縁材
において非晶質ガラス粉末と絶縁性酸化物結晶微
粒子の混合物中の50〜80重量%より好ましくは60
〜70重量%が非晶質ガラスであり、残部が酸化物
結晶微粒子である。非晶質ガラスが50重量%より
少ないと焼結体が多孔質となり、吸湿性が著しく
高くなるとともに、この上に形成した抵抗膜に細
かな発泡を生じる。また、80重量%より多いとガ
ラスの流動による影響が大きく、シート上に形成
した導体・抵抗体パタンの変形を生じる。残部の
酸化物結晶には1種以上用いることができるが、
これらはその熱膨脹係数が非晶質ガラスに対し
て、それぞれ+30×10-7〜−10×10-7/degの範
囲になければならない。この範囲外の熱膨脹係数
の組み合せでは多層構造体にクラツクを生じる。
The features of the invention will be explained in detail below. In the insulating material for the green sheet and insulating layer constituting the multilayer structure, preferably 60% by weight from 50 to 80% by weight in the mixture of amorphous glass powder and insulating oxide crystal fine particles.
~70% by weight is amorphous glass, and the remainder is oxide crystal fine particles. When the amount of amorphous glass is less than 50% by weight, the sintered body becomes porous and has significantly high hygroscopicity, and fine foaming occurs in the resistive film formed thereon. Moreover, if the amount exceeds 80% by weight, the influence of glass flow will be large, causing deformation of the conductor/resistance pattern formed on the sheet. One or more types can be used for the remaining oxide crystals, but
These should each have a coefficient of thermal expansion in the range of +30×10 −7 to −10×10 −7 /deg relative to the amorphous glass. Combinations of thermal expansion coefficients outside this range will cause cracks in the multilayer structure.

用いる非晶質ガラスは、その組成を限定されな
いがBaO、CaO、ZnO、SrO、TiO2、Bi2O3等を
含むアルミノホウケイ酸鉛ガラスが実用上よく、
Na2O、Li2O、K2O等のアルカリ金属の酸化物を
少量加えてもよい。非晶質ガラスの熱的特性とし
ての軟化点は、多層構造体の焼結温度の範囲を決
めるものである。1000℃以下で熱処理するために
はこれより150℃以上低く、好ましくは250℃低い
750℃以下に軟化点をもつものがよい。なお、本
発明に用いうる非晶質ガラスの軟化点は400℃以
上のものがよく、焼結温度は550℃以上が望まし
い。
The composition of the amorphous glass to be used is not limited, but lead aluminoborosilicate glass containing BaO, CaO, ZnO, SrO, TiO 2 , Bi 2 O 3 etc. is suitable for practical use.
A small amount of alkali metal oxide such as Na 2 O, Li 2 O, K 2 O, etc. may be added. The softening point as a thermal property of amorphous glass determines the range of sintering temperatures of the multilayer structure. For heat treatment below 1000°C, the temperature should be at least 150°C lower, preferably 250°C lower.
It is best to have a softening point below 750℃. Note that the softening point of the amorphous glass that can be used in the present invention is preferably 400°C or higher, and the sintering temperature is preferably 550°C or higher.

また、酸化物結晶は、印刷基体および焼結体の
表面平滑性を確保するのに最大粒径10μm、平均
粒径0.5〜3.0μmの微粒子であることが望ましい。
Al2O3、SiO2、MgO、SrO、BaO、CaO、ZrO2
TiO2等の絶縁性金属酸化物、MgAl2O3
CaZrO3、Mg2SiO4、ZrSiO4、BaAl2Si2O8
CaAl2Si2O8等のアルミン酸塩、ジルコン酸塩、
ケイ酸塩、アルミノケイ酸塩等の酸化物結晶の微
粒子のうち、非晶質ガラスの熱膨脹係数によつて
規定される範囲のものが用いられる。
Further, the oxide crystals are preferably fine particles with a maximum particle size of 10 μm and an average particle size of 0.5 to 3.0 μm in order to ensure surface smoothness of the printed substrate and the sintered body.
Al2O3 , SiO2 , MgO, SrO, BaO, CaO, ZrO2 ,
Insulating metal oxides such as TiO 2 , MgAl 2 O 3 ,
CaZrO 3 , Mg 2 SiO 4 , ZrSiO 4 , BaAl 2 Si 2 O 8 ,
Aluminates, zirconates such as CaAl 2 Si 2 O 8 ,
Among fine particles of oxide crystals such as silicate and aluminosilicate, those within the range defined by the coefficient of thermal expansion of amorphous glass are used.

配線および抵抗体電極用の導体は、金属成分と
して金、銀、パラジウム、白金等の貴金属が用い
られる。この時いわゆるバインダガラスとして、
絶縁材料に用いた非晶質ガラスを最大5重量%ま
で含有させうる。これより多いガラスを含む導体
では、熱処理によつて絶縁材料中のガラスが導体
層へ浸み込むことから、はんだ接続が全く不可能
となる。バインダガラスを含まない金属粒子とベ
ヒクルからなる導体ペーストを用いた場合も、導
体は絶縁材に良好に接着する。
For the conductors for wiring and resistor electrodes, noble metals such as gold, silver, palladium, and platinum are used as metal components. At this time, as a so-called binder glass,
The amorphous glass used as the insulating material can be contained up to 5% by weight at most. For conductors containing more glass than this, the heat treatment causes the glass in the insulating material to penetrate into the conductor layer, making solder connections completely impossible. Even when a conductor paste consisting of metal particles and vehicle without binder glass is used, the conductor adheres well to the insulating material.

抵抗体には、バインダガラスとして絶縁材料に
用いた非晶質ガラスをRuO2、Bi2Ru2O7
Pb2Ru2O6等の主導電性成分とから成り、抵抗値
の調整のためにガラスを50〜90重量%含む。
TCR、雑音特性等抵抗体特性の改善のために、
金、白金等の貴金属粒子およびMnO2、CdO、
NiO等の半導体性酸化物も加えてもよい。
The resistor is made of amorphous glass used as an insulating material as a binder glass, such as RuO 2 , Bi 2 Ru 2 O 7 ,
It consists of a main conductive component such as Pb 2 Ru 2 O 6 and contains 50 to 90% by weight of glass to adjust the resistance value.
To improve resistor characteristics such as TCR and noise characteristics,
Precious metal particles such as gold and platinum, and MnO 2 , CdO,
Semiconductor oxides such as NiO may also be added.

上記材料を用いる多層構造体の製造方法におい
て、非晶質ガラス粉末の製造、グリンシートの製
造および各種ペーストの製造そのものは、従来か
らよく知られた方法に依り、後述の実施例で示す
ようにして行なつた。本発明の最も特徴となる点
は、本発明により形成した抵抗体をも含む多層構
造体を通常の焼結基板上に形成した厚膜回路と全
く同様な温度条件で焼結することにある。即ち、
非晶質ガラスの軟化点より150℃以上高い温度を
5〜10分保持し、昇・降温速度が50〜100℃/分、
全熱処理時間が30分〜1時間の条件で焼結するこ
とである。これより早い速度の昇・降温では、多
層基板の不均一な収縮、彎曲、クラツクを生じ
る。
In the method for producing a multilayer structure using the above-mentioned materials, the production of amorphous glass powder, the production of green sheets, and the production of various pastes themselves are performed by conventionally well-known methods, as shown in the examples below. I did it. The most distinctive feature of the present invention is that the multilayer structure including the resistor formed according to the present invention is sintered under exactly the same temperature conditions as a thick film circuit formed on a normal sintered substrate. That is,
Maintain a temperature 150℃ or more higher than the softening point of amorphous glass for 5 to 10 minutes, and increase and decrease the temperature at a rate of 50 to 100℃/min.
Sintering is performed under conditions where the total heat treatment time is 30 minutes to 1 hour. If the temperature is increased or decreased at a faster rate than this, non-uniform shrinkage, curvature, or cracking of the multilayer substrate will occur.

このような短いサイクルの熱処理においても、
本発明のグリンシートは均一な収縮を示し、反
り、彎曲、クラツク等の無い良好な多層構造体を
形成できる。また導体のはく離、抵抗膜のクラツ
ク、導体電極と抵抗膜の接合界面のくびれおよび
クラツク、さらに電極と抵抗膜の重なり部の発泡
等のいろいろな欠陥を全く生じない。
Even in such short cycle heat treatment,
The green sheet of the present invention shows uniform shrinkage and can form a good multilayer structure without warping, curvature, cracks, etc. In addition, various defects such as peeling of the conductor, cracks in the resistive film, constrictions and cracks at the bonding interface between the conductive electrode and the resistive film, and bubbling at the overlapping portion of the electrode and the resistive film do not occur at all.

以下具体例により、詳しく説明する。 This will be explained in detail below using specific examples.

実施例 1 グリンシートおよび絶縁用絶縁体材料は次のよ
うにして調製した。重量百分率で、SiO2が55%、
PbOが17%、Al2O3が9%、CaOが8%、B2O3
5%、MgOが1%、Na2Oが3%、K2Oが2%と
なるように酸化物、炭酸塩あるいは水酸化物をボ
ールミルで混合し、これを白金ビーカに入れて
1500℃で溶融し、次いで水中に注いで急冷してガ
ラスの粗砕物をつくる。これをメノー製乳鉢およ
びホールミルで粋砕して平均粒径が2.5μmの非晶
質ガラス微粉末を製造した。このガラスの熱膨脹
係数は60×10-7/℃軟化点は690℃であつた。
Example 1 A green sheet and an insulator material for insulation were prepared as follows. By weight percentage, SiO 2 is 55%,
Oxides such that PbO is 17%, Al2O3 is 9%, CaO is 8%, B2O3 is 5 %, MgO is 1 %, Na2O is 3%, and K2O is 2%. , carbonate or hydroxide are mixed in a ball mill and placed in a platinum beaker.
It is melted at 1500°C, then poured into water and rapidly cooled to produce a coarse glass material. This was ground in an agate mortar and a whole mill to produce an amorphous glass fine powder with an average particle size of 2.5 μm. This glass had a coefficient of thermal expansion of 60×10 -7 /°C and a softening point of 690°C.

次いで、90〜50×10-7/℃の熱膨脹係数を有す
る絶縁性酸化物として、平均粒径が0.6μmのアル
ミナ粉末35gに対して65gの割合で前記非晶質ガ
ラスを加えて混合した。
Next, as an insulating oxide having a coefficient of thermal expansion of 90 to 50×10 −7 /° C., 65 g of the amorphous glass was added to and mixed with 35 g of alumina powder having an average particle size of 0.6 μm.

ガラス質のグリンシートは、広く一般に知られ
た方法により。次のようにして調製した。アルミ
ナと非晶質ガラスの混合物に、ポリビニルビチラ
ールを加えて混合後、ブチルフタリルブチルグリ
コレートとトリクレン−パークレン−アルコール
の混合溶剤を加えてアルミナボールミル中で混練
してスラリー状とする。これをドクターブレード
に通して乾燥膜厚0.8mmのシートを作成し、適当
に切断して回路形成用の印刷用グリンシート(未
焼成基板)とした。
The vitreous green sheet is produced by a widely known method. It was prepared as follows. After adding and mixing polyvinyl bityral to a mixture of alumina and amorphous glass, a mixed solvent of butylphthalyl butyl glycolate and tricrene-percrene-alcohol is added and kneaded in an alumina ball mill to form a slurry. This was passed through a doctor blade to create a sheet with a dry film thickness of 0.8 mm, which was cut into appropriate pieces to obtain printing green sheets (unfired substrates) for circuit formation.

層間絶縁用のペーストは、グリンシート用に用
いたアルミナと非晶質ガラスの混合物に厚膜用の
有機ビヒクルを加えて混練して調製した。
A paste for interlayer insulation was prepared by adding an organic vehicle for thick film to the mixture of alumina and amorphous glass used for the green sheet and kneading the mixture.

抵抗ペーストは、平均粒径0.8μmのRuO2に前
記非晶質ガラスを80wt%加え、厚膜ペースト用
の有機ビヒクルを加えて混練して調製した。
The resistance paste was prepared by adding 80 wt % of the amorphous glass to RuO 2 having an average particle size of 0.8 μm, adding an organic vehicle for thick film paste, and kneading.

導電ペーストは、Ag粉末とPd粉末を7:3の
重量比で混合し、前記非晶質ガラスを5wt%加
え、厚膜ペースト用の有機ビヒクルを加えて混練
して調製した。
The conductive paste was prepared by mixing Ag powder and Pd powder at a weight ratio of 7:3, adding 5 wt % of the amorphous glass, adding an organic vehicle for thick film paste, and kneading.

次に、第1図により本発明の構成を説明する。
非晶質ガラスとアルミナ微粒子からなる前記グリ
ンシートを印刷基体1とし、調製した導電ペース
トを印刷して抵抗体用電極3および第1層配線2
を形成した。風乾後調製した抵抗ペーストを所定
の位置に印刷し、第1層抵抗体4を形成した。次
いで、グリンシートと同じ成分をもつ調製した絶
縁用ガラスペーストを印刷して層間絶縁層5を形
成した。この時、厚の上・下を電気的に接続する
ためのスルホール6を形成しておく。次いで、導
電ペーストを印刷してスルーホールを介して層間
導電をとるとともに、第1層と同様に第2層配線
7と抵抗体用電極3を形成し、抵抗ペーストを印
刷して第2層抵抗体8を形成した。
Next, the configuration of the present invention will be explained with reference to FIG.
The green sheet made of amorphous glass and fine alumina particles is used as the printing substrate 1, and the prepared conductive paste is printed to form resistor electrodes 3 and first layer wiring 2.
was formed. After air drying, the prepared resistor paste was printed at a predetermined position to form a first layer resistor 4. Next, an insulating glass paste prepared having the same components as the green sheet was printed to form an interlayer insulating layer 5. At this time, through holes 6 are formed to electrically connect the top and bottom of the thickness. Next, a conductive paste is printed to obtain interlayer conduction through the through holes, and the second layer wiring 7 and the resistor electrode 3 are formed in the same manner as the first layer, and the resistor paste is printed to form the second layer resistor. Body 8 was formed.

第1図では、抵抗体を2層としているため、こ
の層には外部接続用端子9やIC素子、チツプコ
ンデンサ等の素子接続用端子10が形成してあ
る。抵抗体をさらに多層化する場合には、前述の
ように絶縁ペースト、導電ペースト、そして抵抗
ペーストの印刷を繰返して行なう。
In FIG. 1, since the resistor has two layers, external connection terminals 9 and element connection terminals 10 such as IC elements and chip capacitors are formed in this layer. If the resistor is to be made into multiple layers, printing of insulating paste, conductive paste, and resistive paste is repeated as described above.

このようにして印刷積層した未焼結基板を、
900℃を10分保持する通常の厚膜焼成用のベルト
炉により空気中で焼成し、抵抗体を内装した多層
回路基板を作成した。この熱処理によつてグリン
シートは15%収縮した。
The unsintered substrate printed and laminated in this way is
A multilayer circuit board with built-in resistors was created by firing in air using a belt furnace for thick film firing, which was maintained at 900°C for 10 minutes. This heat treatment caused the green sheet to shrink by 15%.

本発明により構成した抵抗体では、層間の抵抗
体の抵抗値が絶縁層上のものに比べてやや大きく
なるものの、層上の抵抗体にクラツクや電極との
接合部にくびれ等の欠陥は全くみられず、良好な
抵抗膜を形成することができた。
In the resistor constructed according to the present invention, although the resistance value of the interlayer resistor is slightly larger than that of the resistor on the insulating layer, there are no defects such as cracks in the resistor on the layer or constrictions at the joint with the electrode. It was possible to form a good resistive film.

本実施例の材料系において、規定した組成範囲
内で良好な結果を得た。即ち、 (1) 絶縁体中の非晶質ガラス成分が80wt%より
多いと、絶縁体は非多孔質となるが、層間、層
上に形成した導体抵抗パタンが変形し、また導
体の実質的ガラス含量が増して外部素子接続端
子部に半田がのらなくなつてくる。一方、
50wt%より少ないと、絶縁体が多孔質となり、
層間絶縁性が著しく低下する等の好ましくない
結果を生じる。
In the material system of this example, good results were obtained within the specified composition range. That is, (1) If the amorphous glass component in the insulator is more than 80wt%, the insulator becomes non-porous, but the conductor resistance pattern formed between and on the layers is deformed, and the conductor's substantial As the glass content increases, it becomes difficult for solder to adhere to the external element connection terminals. on the other hand,
If it is less than 50wt%, the insulator becomes porous,
This results in unfavorable results such as a significant decrease in interlayer insulation.

(2) 抵抗組成物中のガラス含量は、その抵抗値を
主に決めるもので、実用性の高い10〜1Ml/口
のシート抵抗値を得る範囲が50〜90wt%であ
る。
(2) The glass content in the resistive composition mainly determines its resistance value, and the range for obtaining a sheet resistance value of 10 to 1 Ml/mouth, which is highly practical, is 50 to 90 wt%.

(3) 導電ペースト組成物中にガラスを含まなくて
も、接合部に欠陥のない良好な抵抗膜が形成で
きる。しかし、ガラス含量が多くなると、抵抗
膜は良好であるものの、5wt%を越えると外部
素子接続用端子に半田がつかなくなる。
(3) Even if the conductive paste composition does not contain glass, it is possible to form a good resistance film with no defects at the joint. However, when the glass content increases, although the resistive film is good, when the glass content exceeds 5 wt%, solder does not stick to external element connection terminals.

本発明によらず、抵抗ペーストや導電ペースト
に絶縁材料中の非晶質ガラス成分と異なるものを
用いると、抵抗膜にクラツクや電極との接合部に
くびれ等の欠陥を生じた。
If a resistive paste or a conductive paste other than the amorphous glass component in the insulating material is used in accordance with the present invention, defects such as cracks in the resistive film and constrictions at the joints with the electrodes occur.

さらに、アルミナ等のグリンシート法で形成す
るセラミツク多層配線基板と同様に本発明におい
てもグリンシートの溶剤の吸取り効果により、焼
結したアルミナ基板を用いる厚膜混成集積回路に
比べてより微細な導体の配線ができた。
Furthermore, similar to the ceramic multilayer wiring board formed by the green sheet method using alumina, in the present invention, due to the solvent absorption effect of the green sheet, finer conductors can be formed compared to thick film hybrid integrated circuits using sintered alumina substrates. The wiring has been completed.

実施例 2 実施例1で調製した熱膨脹係数が60×10-7
℃、軟化点が690℃、平均粒径が2.5μmの非晶質
ガラス70gに、熱膨脹係数が90〜50×10-7/℃の
結晶性酸化物として平均粒径が0.6μmのアルミナ
を10g、平均粒径2.0μmのマグネシアスピネル
(MgAl2O4)を10g、さらに平均粒径2.5μmのジ
ルコン酸カルシウム(CaZrO3)を10gの割合で
加えて混合し、グリンシート用の非晶質ガラスと
結晶性酸化物の混合物を調製した。
Example 2 The thermal expansion coefficient prepared in Example 1 is 60×10 -7 /
℃, 70 g of amorphous glass with a softening point of 690℃ and an average particle size of 2.5 μm, and 10 g of alumina with an average particle size of 0.6 μm as a crystalline oxide with a coefficient of thermal expansion of 90 to 50 × 10 -7 /℃. , 10 g of magnesia spinel (MgAl 2 O 4 ) with an average particle size of 2.0 μm and 10 g of calcium zirconate (CaZrO 3 ) with an average particle size of 2.5 μm were added and mixed to produce an amorphous glass for green sheets. and crystalline oxide mixtures were prepared.

この混合物のグリンシートと、実施例1で調製
した導電ペーストと抵抗体ペーストとを用いて、
第2図に示す多層回路基板を次のようにして作成
した。
Using the green sheet of this mixture, the conductive paste and the resistor paste prepared in Example 1,
The multilayer circuit board shown in FIG. 2 was produced in the following manner.

グリンシートの印刷基体1−1に導電ペースト
を印刷して、第1層配線2と抵抗体用電極3を形
成し、抵抗体ペーストを印刷し第1層目抵抗体4
を形成した。次に第2図の6に示すようなスルー
ホールを形成したグリンシートの印刷基体1−2
に、第2層配線7、第2層抵抗体8、外部接続用
端子9、素子接続用端子10を形成するとともに
スルーホールに導体を充填して、上層と下層の導
通をもたせ、抵抗体を印刷して形成した。これら
の2枚のグリンシートを重ね合わせた後100℃に
加熱し、500Kg/cm2の荷重で圧着し、900℃を10分
間保持する通常の空気焼成厚膜ベルト炉で熱処理
した。収謝は16%であつた。
A conductive paste is printed on the printed base 1-1 of the green sheet to form the first layer wiring 2 and the resistor electrode 3, and the resistor paste is printed to form the first layer resistor 4.
was formed. Next, a printing substrate 1-2 of a green sheet with through holes formed as shown in 6 in FIG.
Then, the second layer wiring 7, the second layer resistor 8, the external connection terminal 9, and the element connection terminal 10 are formed, and the through holes are filled with a conductor to provide continuity between the upper layer and the lower layer, and the resistor is formed. Printed and formed. These two green sheets were stacked on top of each other, heated to 100°C, pressed together under a load of 500 kg/cm 2 , and heat-treated in a conventional air firing thick film belt furnace that held the temperature at 900°C for 10 minutes. The revenue was 16%.

この多層回路基板において、層間の抵抗体の抵
抗値が層上のものに比べてやや大きくなるもの
の、層上の抵抗体にクラツクや電極との接合部に
くびれ等の欠陥は全くみられなかつた。
In this multilayer circuit board, although the resistance value of the resistor between the layers was slightly larger than that of the resistor on the layer, there were no defects such as cracks in the resistor on the layer or constrictions at the joints with the electrodes. .

実施例 3 実施例1の非晶質ガラスに加える結晶性酸化物
として、熱膨脹係数が90〜50×10-7/℃にあるそ
の他の微粒子、例えばジルコン酸塩、ケイ酸塩、
アルミン酸塩などを単独にあるいは他のものとの
混合して用いても良好な効果が得られた。
Example 3 As the crystalline oxide added to the amorphous glass of Example 1, other fine particles having a coefficient of thermal expansion of 90 to 50 × 10 -7 /°C, such as zirconate, silicate,
Good effects were obtained even when aluminates were used alone or in combination with others.

実施例 4 グリンシートおよび絶縁用絶縁体材料は次のよ
うにして調製した。重量百分率でSiO2が40%、
BaOが28%、Al2O3が9%、Pb3O4が10%、
Bi2O3が5%、CaOが3%そしてNa2B2O7が5%
となるように酸化物、炭酸塩等の原料粉末を混合
し、溶融・粋砕して平均粒径3.0μmの非晶質ガラ
スの微粉末を調製した。この熱膨脹係数は80×
10-7/℃、軟化点は600℃であつた。この非晶質
ガラス60gに、熱膨脹係数が110〜70×10-7/℃
の結晶性酸化物として平均粒径が3.0μmのジルコ
ニア(ZrO2)を25g、平均粒径が1.5μmのフオ
ルステライト(Mg2SiO4)を15gの割合で加え
て混合し、グリンシート用の非晶質ガラスと結晶
性酸化物の混合物を調製した。グリンシートおよ
び絶縁ペーストは実施例1に示した要領で作成し
た。
Example 4 A green sheet and an insulator material for insulation were prepared as follows. 40% SiO2 by weight percentage;
28% BaO, 9% Al 2 O 3 , 10% Pb 3 O 4 ,
5% Bi 2 O 3 , 3% CaO and 5% Na 2 B 2 O 7
Raw material powders such as oxides and carbonates were mixed, melted and crushed to prepare a fine powder of amorphous glass with an average particle size of 3.0 μm. This thermal expansion coefficient is 80×
10 -7 /℃, and the softening point was 600℃. 60g of this amorphous glass has a coefficient of thermal expansion of 110 to 70×10 -7 /℃
As a crystalline oxide, 25 g of zirconia (ZrO 2 ) with an average particle size of 3.0 μm and 15 g of forsterite (Mg 2 SiO 4 ) with an average particle size of 1.5 μm were added and mixed. A mixture of amorphous glass and crystalline oxide was prepared. A green sheet and an insulating paste were prepared as shown in Example 1.

次いで、この非晶質ガラスが80wt%と0.8μm
のBi2Ru2O7が20wt%から成る抵抗ペーストと、
この非晶質ガラスを5wt%含むAg・Pd系導電ペ
ーストを調製した。
Next, this amorphous glass is 80wt% and 0.8μm
A resistive paste consisting of 20wt% Bi 2 Ru 2 O 7 ;
An Ag/Pd-based conductive paste containing 5 wt% of this amorphous glass was prepared.

グリンシートに導体ペースト、抵抗ペーストお
よび絶縁ペーストを印刷し、実施例1の要領によ
り多層化し、850℃を10分間保持する厚膜ベルト
炉で熱処理し、第1図に示した回路基板を作成し
た。
A conductive paste, a resistive paste, and an insulating paste were printed on a green sheet, multilayered according to the procedure of Example 1, and heat treated in a thick film belt furnace maintained at 850°C for 10 minutes to create the circuit board shown in Figure 1. .

このガラス質絶縁層上に形成した抵抗体にはク
ラツク等の欠陥がなく、層間に形成した抵抗体と
ともに実用に適した諸特性を得た。
The resistor formed on this glassy insulating layer had no defects such as cracks, and together with the resistor formed between the layers, it had various properties suitable for practical use.

実施例 5 実施例4の非晶質ガラスに結晶性酸化物とし
て、熱膨脹係数が110〜70×10-7/℃の範囲にあ
る、例えば実施例1および2で用いたアルミナ、
マグネシアスピネル、ジルコン酸カルシウムやそ
の他のジルコン酸マグネシウムなどのジルコン酸
塩、ケイ酸塩、アルミン酸塩なども単独あるいは
混合して用いても良好な結果が得られた。
Example 5 As a crystalline oxide in the amorphous glass of Example 4, alumina, which has a coefficient of thermal expansion in the range of 110 to 70 × 10 -7 /°C, for example, used in Examples 1 and 2,
Good results were also obtained when magnesia spinel, calcium zirconate, and other zirconates such as magnesium zirconate, silicates, and aluminates were used alone or in combination.

実施例 6 グリンシートおよび絶縁用絶縁体材料は、次の
ようにして調製した。重量百分率でSiO2が64%、
B2O3が24%、Al2O3が4%、ZnOが3%、Na2O
が2%、K2Oが3%となるように酸化物、炭酸塩
等の原料粉末を混合し、溶融、粉砕して平均粒径
2.5μmの非晶質ガラス微粉末を調製した。この熱
膨脹係数は45×10-7/℃軟化点は720℃であつた。
この非晶質ガラス60gに、熱膨脹係数が75〜35×
10-7/℃の結晶性酸化物として平均粒径が3.5μm
のジルコン(ZrSiO4)を5g、平均粒径が2.0μm
のセルジアン(BaAl2Si2O8)を15g、そして平
均粒径0.6μmのアルミナを20gの割合で加えて混
合してて作成した。
Example 6 A green sheet and an insulator material for insulation were prepared as follows. 64% SiO2 by weight percentage;
24% B2O3 , 4% Al2O3 , 3 % ZnO, Na2O
Mix raw material powders such as oxides and carbonates so that K2O is 2% and K2O is 3%, melted and crushed to obtain an average particle size.
Amorphous glass fine powder of 2.5 μm was prepared. The coefficient of thermal expansion was 45×10 -7 /°C, and the softening point was 720°C.
60g of this amorphous glass has a coefficient of thermal expansion of 75 to 35×
10 -7 /℃ as a crystalline oxide with an average particle size of 3.5μm
5g of zircon (ZrSiO 4 ), average particle size 2.0μm
It was prepared by adding and mixing 15 g of Celsian (BaAl 2 Si 2 O 8 ) and 20 g of alumina with an average particle size of 0.6 μm.

グリンシートおよび絶縁ペーストは、実施例1
に示した要領で調製した。次いで、この非晶質ガ
ラス80wt%、平均粒径0.5μmのRuO220wt%から
成る抵抗ペーストと、この非晶質ガラスを含まな
いAg・Pd系導電ペーストを調製した。グリンシ
ートに導体ペースト、抵抗ペーストおよび絶縁層
ペーストを印刷し、実施例1の要領により多層化
した。その後、空気焼成の厚膜ベルト炉により、
950℃を10分間保持する条件で熱処理した。
Green sheet and insulation paste were prepared in Example 1.
It was prepared as described in . Next, a resistance paste consisting of 80 wt % of this amorphous glass and 20 wt % of RuO 2 having an average particle size of 0.5 μm and an Ag/Pd based conductive paste not containing this amorphous glass were prepared. A conductive paste, a resistive paste, and an insulating layer paste were printed on a green sheet, and multilayers were formed in the same manner as in Example 1. Then, in an air-fired thick-film belt furnace,
Heat treatment was performed under conditions of holding the temperature at 950°C for 10 minutes.

このガラス質絶縁層上に形成した抵抗体は、ク
ラツク等の発生がなく、層間に形成した抵抗体と
ともに実用に適した諸特性を得た。
The resistor formed on this glassy insulating layer did not cause any cracks, and together with the resistor formed between the layers, it achieved various properties suitable for practical use.

実施例 7 実施例6の非晶質ガラス65gに、結晶性酸化物
として平均粒径2.5μmのムライト(3Al2O3
2SiO2)10g、平均粒径2.0μmのアノーサイト
(CaAl2Si2O8)10g、そして平均粒径0.6μmのア
ルミナ15gの割合で加えて混合し、実施例1に示
した要領でグリンシートおよび絶縁ペーストを調
製した。
Example 7 Mullite (3Al 2 O 3 .
2SiO 2 ), 10 g of anorthite (CaAl 2 Si 2 O 8 ) with an average particle size of 2.0 μm, and 15 g of alumina with an average particle size of 0.6 μm were added and mixed in the same manner as in Example 1 to form a green sheet. and an insulation paste was prepared.

このグリンシートに、実施例6で調製した導電
ペーストと抵抗ペーストとを印刷し、さらに本実
施例で調製した絶縁層用ペーストを印刷し、実施
例2の要領により多層化した。焼成は、空気中
950℃で10分間を保持する条件で行なつた。本実
施例においても良好な結果を得た。
The conductive paste and resistive paste prepared in Example 6 were printed on this green sheet, and then the insulating layer paste prepared in this example was printed, and the sheet was multilayered in the same manner as in Example 2. Firing in the air
The test was carried out under conditions of holding at 950°C for 10 minutes. Good results were also obtained in this example.

以上述べたように、本発明によれば、微細で高
密度の配線導体を有し、かつ抵抗体をその層間に
も形成した多層構造体を、短時間の熱処理によつ
て作成できるようになり、半導体IC、その他の
部品を高密度に実装できる小形の多層混成集積回
路基板を製造できるようになつた。
As described above, according to the present invention, a multilayer structure having fine, high-density wiring conductors and having a resistor formed between the layers can be created by a short heat treatment. It has become possible to manufacture compact multilayer hybrid integrated circuit boards on which semiconductor ICs and other components can be mounted at high density.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による多層回路板の一例を示す
断面図、第2図は本発明の他の例の断面図であ
る。 1,1−1,1−2:印刷基体、2:第1層配
線、3:抵抗体用電極、4:第1層抵抗体、5:
層間絶縁層、6:スルーホール、7:第2層配
線、8:第2層抵抗体、9:外部接続用端子、1
0:素子接続用端子。
FIG. 1 is a cross-sectional view showing an example of a multilayer circuit board according to the present invention, and FIG. 2 is a cross-sectional view of another example of the present invention. 1, 1-1, 1-2: Printed substrate, 2: First layer wiring, 3: Resistor electrode, 4: First layer resistor, 5:
Interlayer insulating layer, 6: Through hole, 7: Second layer wiring, 8: Second layer resistor, 9: External connection terminal, 1
0: Element connection terminal.

Claims (1)

【特許請求の範囲】 1 抵抗回路の設けられた基板、この基板の回路
形成面の接続部を除いた全面に設けられた絶縁
層、この絶縁層上に上記接続部で上記回路と接続
されている第2抵抗回路、必要に応じて更に絶縁
層、抵抗回路が上記と同様にして最小1回設けら
れた多層回路板において、前記基板、前記絶縁層
が夫々軟化点750℃以下の非晶質ガラス50〜80wt
%、絶縁性酸化物50〜20wt%よりなり、かつこ
の絶縁性酸化物とこの非晶質ガラスの熱膨脹係数
の差が+30×10-7〜−10×10-7/degの範囲にあ
るものからなり、前記抵抗回路のすべての導体路
が金属95wt%以上、上記非晶質ガラス5wt%以下
のものからなり、前記抵抗回路のすべての抵抗体
が導電性物質と上記非晶質ガラスのものからなる
ことを特徴とする多層回路板。 2 グリーンシート上に導体ペースト、抵抗ペー
ストを夫々印刷、乾燥して導体回路で抵抗体が接
続された未焼成抵抗回路を形成し、ついで上記の
グリーンシートの抵抗回路形成面の接続部を除い
た全面に絶縁ペーストを印刷、乾燥して未焼成絶
縁層を形成し、更にこの絶縁層上に導体ペースト
で上記抵抗回路と接続するように未焼成導体回路
を印刷、乾燥して形成すると共に抵抗ペーストを
印刷、乾燥して未焼成第2抵抗回路を形成し、必
要に応じて更に未焼成絶縁層、未焼成抵抗回路を
上記と同様にして夫々最小1回設けて多層化した
未焼成回路板とし、その後これを焼成することを
特徴とする多層回路板の製造方法。 3 グリーンシートが軟化点750℃以下の非晶質
ガラス粉50〜80wt%、絶縁性酸化物粉50〜20wt
%よりなる絶縁物質、高分子物質、有機溶剤より
なり、かつ上記非晶質ガラスと絶縁性酸化物の熱
膨脹係数の差が+30×10-7〜−10×10-7/degの
範囲にあるものを用いたペーストからグリーンシ
ート化したものであり、導体ペーストが金属粉、
上記非晶質ガラス粉、ビヒクルよりなるものであ
り、抵抗ペーストが抵抗体粉、上記非晶質ガラス
粉、ビヒクルよりなるものであり、絶縁ペースト
が上記の非晶質ガラスと絶縁性酸化物の混合物、
ビヒクルより、焼成を上記非晶質ガラスの軟化点
より150〜250℃高温で行なうことを特徴とする特
許請求の範囲第2項記載の多層回路板の製造方
法。
[Scope of Claims] 1. A substrate on which a resistor circuit is provided, an insulating layer provided on the entire surface of the circuit formation surface of the substrate except for the connecting portion, and a substrate connected to the circuit at the connecting portion on the insulating layer. In a multilayer circuit board in which an insulating layer and a resistor circuit are provided at least once in the same manner as described above, each of the substrate and the insulating layer is amorphous with a softening point of 750°C or less. glass 50~80wt
%, insulating oxide 50 to 20 wt%, and the difference in coefficient of thermal expansion between this insulating oxide and this amorphous glass is in the range of +30 × 10 -7 to -10 × 10 -7 /deg. All the conductor paths of the resistance circuit are made of 95wt% or more of metal and 5wt% or less of the amorphous glass, and all the resistors of the resistance circuit are made of a conductive material and the amorphous glass. A multilayer circuit board characterized by comprising: 2. Print a conductor paste and a resistance paste on a green sheet, dry them to form an unfired resistance circuit in which a resistor is connected by a conductor circuit, and then remove the connection part on the resistance circuit forming surface of the green sheet. An insulating paste is printed on the entire surface and dried to form an unfired insulating layer, and then an unfired conductor circuit is printed and dried on this insulating layer to be connected to the resistor circuit using a conductor paste, and a resistor paste is formed. is printed and dried to form an unfired second resistance circuit, and if necessary, an unfired insulating layer and an unfired resistance circuit are provided at least once each in the same manner as above to form a multilayered unfired circuit board. , and then firing the same. 3 The green sheet consists of 50-80wt% amorphous glass powder with a softening point of 750℃ or less, and 50-20wt% insulating oxide powder.
%, and the difference in thermal expansion coefficient between the amorphous glass and the insulating oxide is in the range of +30×10 -7 to -10×10 -7 /deg. The conductor paste is made from metal powder and green sheets.
The resistor paste is made of the above amorphous glass powder and a vehicle, the resistance paste is made of the resistor powder, the above amorphous glass powder, and the vehicle, and the insulating paste is made of the above amorphous glass and an insulating oxide. blend,
3. The method of manufacturing a multilayer circuit board according to claim 2, wherein the firing is performed in a vehicle at a temperature of 150 to 250[deg.] C. higher than the softening point of the amorphous glass.
JP56115040A 1981-07-24 1981-07-24 Multilayer circuit board and method of producing same Granted JPS5817695A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56115040A JPS5817695A (en) 1981-07-24 1981-07-24 Multilayer circuit board and method of producing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56115040A JPS5817695A (en) 1981-07-24 1981-07-24 Multilayer circuit board and method of producing same

Publications (2)

Publication Number Publication Date
JPS5817695A JPS5817695A (en) 1983-02-01
JPH0226798B2 true JPH0226798B2 (en) 1990-06-12

Family

ID=14652699

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56115040A Granted JPS5817695A (en) 1981-07-24 1981-07-24 Multilayer circuit board and method of producing same

Country Status (1)

Country Link
JP (1) JPS5817695A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61117163A (en) * 1984-06-01 1986-06-04 鳴海製陶株式会社 Manufacture of low temperature burnt ceramics and equipment therefor
JPS6247196A (en) * 1985-08-26 1987-02-28 松下電器産業株式会社 Ceramic multilayer substrate
JPS62113758A (en) * 1985-10-25 1987-05-25 株式会社住友金属セラミックス Low temperature burnt ceramics
JPH01286389A (en) * 1988-05-12 1989-11-17 Matsushita Electric Ind Co Ltd Ceramic multilayer board material
JPH07101774B2 (en) * 1988-09-21 1995-11-01 日本電装株式会社 Integrated circuit device
JPH0496396A (en) * 1990-08-13 1992-03-27 Matsushita Electric Ind Co Ltd Manufacture of ceramic multilayer board

Also Published As

Publication number Publication date
JPS5817695A (en) 1983-02-01

Similar Documents

Publication Publication Date Title
JPH0343786B2 (en)
JPH0361359B2 (en)
JP3331083B2 (en) Low temperature firing ceramic circuit board
GB2149222A (en) Multilatered ceramic substrate and method of making the same
JPH0226798B2 (en)
JPH0676227B2 (en) Glass ceramic sintered body
JPH0758454A (en) Glass ceramic multilayered substrate
JPH0617250B2 (en) Glass ceramic sintered body
JP2872273B2 (en) Ceramic substrate material
JP2003277852A (en) Copper metallized composition and ceramic wiring board
JPH0632384B2 (en) Method for manufacturing laminated ceramic substrate
JPH08153945A (en) Ceramic circuit board
JP3719834B2 (en) Low temperature fired ceramics
JPH0260236B2 (en)
JPH068189B2 (en) Oxide dielectric material
JP3047985B2 (en) Manufacturing method of multilayer ceramic wiring board
JP2003347732A (en) Ceramic substrate and method for its manufacturing
JPS58108792A (en) Multilayer circuit board and method of producing same
JP2005216998A (en) Ceramic circuit board and manufacturing method therefor
JP2001244408A (en) Semiconductor device
JPH11135899A (en) Ceramic circuit board
JP4120736B2 (en) Ceramic circuit board
JP2000119041A (en) Crystallized glass composition for circuit board and crystallized glass sintered compact
JPS58108793A (en) Multilayer circuit board and method of producing same
JP3240873B2 (en) Low temperature fired ceramic dielectric and low temperature fired ceramic multilayer circuit board