JP2001240467A - Porcelain of dielectrics, process of producing the same and laminated ceramic condenser - Google Patents
Porcelain of dielectrics, process of producing the same and laminated ceramic condenserInfo
- Publication number
- JP2001240467A JP2001240467A JP2000054845A JP2000054845A JP2001240467A JP 2001240467 A JP2001240467 A JP 2001240467A JP 2000054845 A JP2000054845 A JP 2000054845A JP 2000054845 A JP2000054845 A JP 2000054845A JP 2001240467 A JP2001240467 A JP 2001240467A
- Authority
- JP
- Japan
- Prior art keywords
- temperature
- dielectric
- porcelain
- parts
- dielectric constant
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Compositions Of Oxide Ceramics (AREA)
- Ceramic Capacitors (AREA)
- Inorganic Insulating Materials (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、誘電体磁器及びそ
の製法並びに積層セラミックコンデンサに関し、特に、
積層セラミックコンデンサに最適な誘電体磁器及びその
製法並びに積層セラミックコンデンサに関するものであ
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a dielectric ceramic, a method for producing the same, and a multilayer ceramic capacitor.
The present invention relates to a dielectric porcelain optimal for a multilayer ceramic capacitor, a method for producing the same, and a multilayer ceramic capacitor.
【0002】[0002]
【従来技術】従来の積層セラミックコンデンサは、複数
のセラミック層と、複数の長方形状の内部電極を交互に
積層してなる積層体の上下面に、上側端面セラミック層
および下側端面セラミック層が形成されて、コンデンサ
本体が形成されており、このコンデンサ本体の両端部に
外部電極を設けて構成されていた。2. Description of the Related Art In a conventional multilayer ceramic capacitor, an upper end face ceramic layer and a lower end face ceramic layer are formed on the upper and lower surfaces of a laminate formed by alternately stacking a plurality of ceramic layers and a plurality of rectangular internal electrodes. Thus, a capacitor body is formed, and external electrodes are provided at both ends of the capacitor body.
【0003】このような積層セラミックコンデンサは、
例えば、先ず、PETフィルム上に、セラミック粉末、
有機バインダーおよび溶剤を含むセラミックスラリーを
塗布し、乾燥後、これをPETフィルムから剥離して複
数のセラミックグリーンシーを形成し、これらを複数積
層して下側と上側の端面セラミックグリーンシートを形
成する。この下側端面セラミックグリーンシートを台板
上に配置し、プレス機により圧着して貼り付ける。[0003] Such a multilayer ceramic capacitor includes:
For example, first, ceramic powder on a PET film,
A ceramic slurry containing an organic binder and a solvent is applied, dried, and then separated from the PET film to form a plurality of ceramic green sheets, and a plurality of these are laminated to form lower and upper end face ceramic green sheets. . This lower end face ceramic green sheet is arranged on a base plate, and is bonded by pressing with a press machine.
【0004】一方、PETフィルム上に上記と同様のセ
ラミックスラリーを塗布し、乾燥後、このセラミックグ
リーンシート上に、例えば、Ni、Cu、Ag−Pdの
うち一種を含む内部電極ペーストを塗布して、セラミッ
クグリーンシート上に長方形状の内部電極パターンを複
数形成した後、この内部電極パターンが形成されたグリ
ーンシートをPETフィルムから剥離する。On the other hand, the same ceramic slurry as described above is applied to a PET film, and after drying, an internal electrode paste containing, for example, one of Ni, Cu, and Ag-Pd is applied to the ceramic green sheet. After forming a plurality of rectangular internal electrode patterns on the ceramic green sheet, the green sheet on which the internal electrode patterns are formed is peeled from the PET film.
【0005】この後、下側端面セラミックグリーンシー
トの上に、内部電極パターンが形成されたグリーンシー
トを積層し、プレス機により加圧して仮固定する工程を
繰り返して内部電極パターンが形成されたグリーンシー
トを所定枚数積層し、次に、上側端面セラミックグリー
ンシートを積層し、複数のセラミックグリーンシート
と、複数の長方形状の内部電極パターンを交互に積層し
てなる積層成形体の上下面に、端面セラミックグリーン
シート層が積層されたコンデンサ本体成形体を作製す
る。[0005] Thereafter, a green sheet on which an internal electrode pattern is formed is laminated on the lower end face ceramic green sheet, and a step of pressing and temporarily fixing the green sheet on which the internal electrode pattern is formed is repeated by a press. A predetermined number of sheets are stacked, and then an upper end face ceramic green sheet is stacked, and a plurality of ceramic green sheets and a plurality of rectangular internal electrode patterns are alternately stacked. A molded body of a capacitor body on which a ceramic green sheet layer is laminated is produced.
【0006】次に、セラミックグリーンシートと内部電
極パターンが交互に積層されたコンデンサ本体成形体
を、セラミックグリーンシートおよび内部電極パターン
が軟化する温度に一挙に加熱した状態で積層方向からプ
レス機により加圧して圧着し、さらに、この後、コンデ
ンサ本体成形体の上部にゴム型を配置し、上記と同様の
温度に加熱した状態で静水圧成形する。Next, the capacitor body molded body in which the ceramic green sheets and the internal electrode patterns are alternately stacked is heated at a time to a temperature at which the ceramic green sheets and the internal electrode patterns are softened, and are pressed by a press machine in the stacking direction. Then, a rubber mold is placed on the upper part of the molded body of the capacitor, and then subjected to hydrostatic pressure molding while being heated to the same temperature as described above.
【0007】この後、所定のチップ形状にカットし、1
×10-9Pa以下の酸素分圧で1100〜1300℃で
焼成し、この後、降温過程において、1000〜300
℃で、酸素分圧を1×10-7Pa以上として酸化処理
し、コンデンサ本体が作製される。After that, the chip is cut into a predetermined chip shape,
Calcination is performed at 1100 to 1300 ° C. at an oxygen partial pressure of × 10 −9 Pa or less.
At ℃, the oxygen partial pressure is set to 1 × 10 −7 Pa or more, and the oxidation treatment is performed, and the capacitor body is manufactured.
【0008】この後、コンデンサ本体の両端面に外部電
極ペーストを塗布して、焼き付けることにより、積層セ
ラミックコンデンサが形成されていた。Thereafter, external electrode paste is applied to both end surfaces of the capacitor body and baked to form a multilayer ceramic capacitor.
【0009】[0009]
【発明が解決しようとする課題】一般に、積層セラミッ
クコンデンサの体積当たりの静電容量を大きくするため
には、誘電体層を薄層化したり、誘電体層の高誘電率化
を図ることが行われているが、誘電体層を薄層化、例え
ば、3μm以下にしようとすると、セラミックグリーン
シートがプレス機の加圧力に応じて伸び、層厚が薄くな
り、ショートの発生率が増加するという問題があった。
特に、セラミックグリーンシートを薄くすればする程シ
ョート発生率が増加し、信頼性が低下するという問題が
あった。Generally, in order to increase the capacitance per volume of a multilayer ceramic capacitor, it is necessary to reduce the thickness of the dielectric layer or to increase the dielectric constant of the dielectric layer. However, if the thickness of the dielectric layer is reduced to, for example, 3 μm or less, the ceramic green sheet expands according to the pressing force of the press machine, the layer thickness becomes thinner, and the occurrence rate of short circuit increases. There was a problem.
In particular, there has been a problem that the thinner the ceramic green sheet, the higher the short-circuit occurrence rate and the lower the reliability.
【0010】また、従来から知られているチタン酸バリ
ウムを主成分とし、マグネシウム、マンガン、及び希土
類元素を含む誘電体材料は、平坦な温度特性を有するも
のの、比誘電率は4200以下であり、さらに高誘電率
化が要求されていた。A conventionally known dielectric material containing barium titanate as a main component and containing magnesium, manganese, and a rare earth element has a flat temperature characteristic, but a relative dielectric constant of 4,200 or less. Further, higher dielectric constant has been required.
【0011】本発明は、比誘電率を大きくできる誘電体
磁器及びその製法を提供することを目的とし、さらには
誘電体層を薄層化することなく単位体積当たりの静電容
量を大きくすることができ、信頼性の高い積層セラミッ
クコンデンサを提供することを目的とする。An object of the present invention is to provide a dielectric porcelain capable of increasing the relative permittivity and a method for producing the same, and further to increase the capacitance per unit volume without reducing the thickness of the dielectric layer. And to provide a highly reliable multilayer ceramic capacitor.
【0012】[0012]
【課題を解決するための手段】本発明の誘電体磁器は、
チタン酸バリウムを主成分とし、金属元素として、マグ
ネシウム、マンガン及び希土類元素を含有するととも
に、25℃における比誘電率が4300以上であること
を特徴とする。According to the present invention, there is provided a dielectric porcelain comprising:
It is characterized by containing barium titanate as a main component, magnesium, manganese and a rare earth element as metal elements, and having a relative dielectric constant of 4300 or more at 25 ° C.
【0013】このような25℃における比誘電率が43
00以上の誘電体磁器は、チタン酸バリウムを主成分と
し、酸化マグネシウム、酸化マンガン及び希土類元素酸
化物を含有する成形体を焼結した後、一旦焼結温度から
700℃以下まで冷却し、再度900℃以上まで温度を
上げて熱処理する誘電体磁器の製法において、焼結後1
000℃から700℃までの降温過程における酸素分圧
を1×10-17〜1×10-10Paとすることにより得ら
れる。The relative dielectric constant at 25 ° C. is 43
After sintering a molded body containing barium titanate as a main component and containing magnesium oxide, manganese oxide, and a rare earth element oxide, the ceramic body was cooled from the sintering temperature to 700 ° C. or less, and then again. In the method of producing dielectric porcelain in which the temperature is increased to 900 ° C. or higher and heat-treated,
It can be obtained by setting the oxygen partial pressure in the temperature lowering process from 000 ° C. to 700 ° C. to 1 × 10 −17 to 1 × 10 −10 Pa.
【0014】このように、焼成後1000℃から700
℃までの降温過程における酸素分圧を1×10-17〜1
×10-10Paとすることにより、1000℃から70
0℃までの降温過程で還元処理し、その後、再度900
℃以上まで温度を上げて熱処理することにより、酸素拡
散速度が大きくなって誘電体磁器に効率的に酸素が補給
され、平坦な温度特性を有しながら比誘電率を4300
以上とできる。Thus, after firing, the temperature is increased from 1000 ° C to 700 ° C.
The oxygen partial pressure in the process of cooling down to 1 ° C. is 1 × 10 −17 to 1
By setting the pressure to 10 -10 Pa, the temperature is reduced from 1000 ° C to 70 ° C.
Reduction treatment is performed in the course of cooling to 0 ° C.
By performing the heat treatment at a temperature higher than or equal to ° C., the oxygen diffusion rate is increased and oxygen is efficiently supplied to the dielectric ceramic, and the relative dielectric constant is increased to 4300 while having a flat temperature characteristic.
I can do that.
【0015】ここで、20℃の比誘電率に対する−25
〜85℃での比誘電率の温度変化率が±15%以内であ
ることが望ましい。Here, -25 with respect to the relative dielectric constant at 20 ° C.
It is desirable that the temperature change rate of the relative dielectric constant at -85 ° C be within ± 15%.
【0016】また、本発明の誘電体磁器は、BaTiO
3100モル部と、該BaTiO310モル部に対して、
YをY2O3換算で0.4〜3.0モル部、MgをMgO
換算で0.5〜8.0モル部、MnをMnO換算で0.
04〜0.5モル部含有するとともに、ガラス成分とし
てSi、BaおよびCaを含有することが望ましい。The dielectric porcelain of the present invention is made of BaTiO.
3 100 mol parts and 10 mol parts of BaTiO 3 ,
Y is 0.4 to 3.0 mole parts in terms of Y 2 O 3 , and Mg is MgO
0.5 to 8.0 parts by mol in terms of Mn, and Mn is in the range of 0,0 in terms of MnO.
It is desirable that the glass component be contained in an amount of from 0.4 to 0.5 mol part and also contain Si, Ba and Ca as glass components.
【0017】本発明の積層セラミックコンデンサは、卑
金属を主成分とする内部電極と誘電体層を交互に積層し
てなる積層セラミックコンデンサであって、前記誘電体
層が、上記誘電体磁器からなるものである。A multilayer ceramic capacitor according to the present invention is a multilayer ceramic capacitor in which internal electrodes mainly composed of a base metal and dielectric layers are alternately laminated, wherein the dielectric layer comprises the above-mentioned dielectric ceramic. It is.
【0018】[0018]
【発明の実施の形態】本発明の誘電体磁器は、チタン酸
バリウムを主成分とし、酸化マグネシウム、酸化マンガ
ン及び希土類元素酸化物を含有するとともに、25℃に
おける比誘電率が4300以上、特に4500以上のも
のである。20℃の比誘電率に対する−25〜85℃で
の比誘電率の温度変化率が±15%以内であることが望
ましい。BEST MODE FOR CARRYING OUT THE INVENTION The dielectric porcelain of the present invention contains barium titanate as a main component, contains magnesium oxide, manganese oxide and rare earth oxide, and has a relative dielectric constant at 25 ° C. of 4300 or more, particularly 4500 or more. That's all. It is desirable that the rate of temperature change of the relative dielectric constant at −25 to 85 ° C. relative to the relative dielectric constant at 20 ° C. is within ± 15%.
【0019】希土類元素としては、Y,La,Ce,P
r,Nd,Sm,Dy,Ho,Er,Yb等があるが、
これらのうちでも、Y,Ho,Er,Ybが高温負荷寿
命の延長という点から望ましい。また、本発明の誘電体
磁器を形成する元素として、焼結性という点から、ガラ
ス成分としてSi、BaおよびCaを含有すること、さ
らにはこれにLiを含有することが望ましく、さらに
は、焼結性向上という点からK,B等を添加しても良
い。As rare earth elements, Y, La, Ce, P
r, Nd, Sm, Dy, Ho, Er, Yb, etc.
Among them, Y, Ho, Er, and Yb are preferable from the viewpoint of extending the high temperature load life. Further, from the viewpoint of sintering properties, it is desirable that the dielectric ceramic of the present invention contains Si, Ba, and Ca as glass components, and further that it contains Li, and further, it is desirable that the glass component contains Li. K, B, etc. may be added from the viewpoint of improving the binding properties.
【0020】本発明の誘電体磁器は、BaTiO310
0モル部と、BaTiO3100モル部に対して、Yを
Y2O3換算で0.4〜3.0モル部、MgをMgO換算
で0.5〜8.0モル部、MnをMnO換算で0.04
〜0.5モル部含有するとともに、ガラス成分としてS
i、BaおよびCaを含有することが望ましい。The dielectric porcelain of the present invention is made of BaTiO 3 10
Y is 0.4 to 3.0 mol parts in terms of Y 2 O 3 , Mg is 0.5 to 8.0 mol parts in terms of MgO, and Mn is MnO with respect to 0 mol parts and 100 mol parts of BaTiO 3. 0.04 in conversion
0.50.5 mol part and S as a glass component
It is desirable to contain i, Ba and Ca.
【0021】本発明の誘電体磁器は、少なくともBaお
よびTiを含有するペロブスカイト型複合酸化物からな
る主結晶粒子と、この主結晶粒子中に、Y、Mg、Mn
が固溶しており、また、粒界にも、Y2O3、MgO、M
nO相を含む場合がある。また、粒界には、Si、Ba
およびCaを含むガラス相が形成されている。ガラス相
中にはLiを含むことが望ましい。The dielectric porcelain of the present invention comprises a main crystal particle composed of a perovskite-type composite oxide containing at least Ba and Ti, and Y, Mg, Mn in the main crystal particle.
Is dissolved in the solid solution, and Y 2 O 3 , MgO, M
It may include an nO phase. In addition, Si, Ba
And a glass phase containing Ca is formed. It is desirable that the glass phase contains Li.
【0022】さらに、本発明の誘電体磁器には、Fe、
Al等の原料中の不可避不純物が混入したり、例えば粉
砕ボールのボール成分、例えばZrO2等が製造工程中
に混入する場合がある。Further, the dielectric porcelain of the present invention includes Fe,
Inevitable impurities in the raw material such as Al may be mixed, or a ball component of the pulverized ball, for example, ZrO 2 may be mixed during the manufacturing process.
【0023】特に、本発明の誘電体磁器は、BaTiO
3100モル部に対して、YをY2O 3換算で0.4〜
3.0モル部、MgをMgO換算で0.5〜8.0モル
部、MnをMnO換算で0.04〜0.5モル部含有す
るとともに、Si、Ba、CaおよびLiのモル比によ
る組成式を、aSiO2+bBaO+cCaO+dLi2
Oと表したとき、a、b、cおよびdが、0.30≦a
≦0.70、0.10≦b≦0.40、0.10≦c≦
0.40、0.05≦d≦0.30、a+b+c+d=
1を満足する副成分を、BaTiO3100重量部に対
して1〜4重量部含有することが望ましい。In particular, the dielectric porcelain of the present invention is made of BaTiO.
ThreeFor 100 mole parts, Y is YTwoO Three0.4 ~
3.0 mol parts, 0.5 to 8.0 mol of Mg in terms of MgO
Parts, 0.04 to 0.5 mol parts of Mn in terms of MnO.
And the molar ratio of Si, Ba, Ca and Li
The composition formula isTwo+ BBaO + cCaO + dLiTwo
When represented by O, a, b, c, and d are 0.30 ≦ a
≦ 0.70, 0.10 ≦ b ≦ 0.40, 0.10 ≦ c ≦
0.40, 0.05 ≦ d ≦ 0.30, a + b + c + d =
1 is BaTiO.Three100 parts by weight
It is desirable to contain 1 to 4 parts by weight.
【0024】ここで、Y2O3を0.4〜3.0モル部含
有したのは、0.4モル部未満では絶縁抵抗が低くな
り、CR積が小さくなる傾向があり、3.0モル部を越
える場合には比誘電率が低下する傾向があるからであ
る。比誘電率の観点から、Y2O3は、BaTiO310
0モル部に対して0.5〜2.0モル部含有することが
好ましい。Here, the reason for containing 0.4 to 3.0 mole parts of Y 2 O 3 is that if it is less than 0.4 mole parts, the insulation resistance tends to be low, and the CR product tends to be small. If the amount exceeds the molar part, the relative permittivity tends to decrease. From the viewpoint of the relative dielectric constant, Y 2 O 3 is made of BaTiO 3 10
It is preferably contained in an amount of 0.5 to 2.0 mol parts per 0 mol parts.
【0025】MgOを0.5〜8.0モル部含有したの
は、0.5モル部未満の場合には絶縁抵抗が低くなり、
CR積が小さくなる傾向があり、8.0モル部を越える
場合には比誘電率が低下する傾向があるからである。と
りわけ、MgOは、BaTiO3100モル部に対して
0.5〜2.0モル部が好ましい。The reason for containing 0.5 to 8.0 mol parts of MgO is that if less than 0.5 mol part, the insulation resistance becomes low,
This is because the CR product tends to decrease, and when it exceeds 8.0 mole parts, the relative dielectric constant tends to decrease. Especially, MgO is 0.5 to 2.0 molar parts with respect to BaTiO 3 100 molar parts are preferred.
【0026】MnOを0.04〜0.5モル部含有した
のは、0.04モル部未満の場合には絶縁抵抗が低くな
り、CR積が小さくなる傾向があり、0.5モル部を越
える場合には容量の経時変化が大きくなる傾向があるか
らである。とりわけ、MnOはBaTiO3100モル
部に対して0.1〜0.4モル部含有することが好まし
い。The reason that MnO is contained in an amount of 0.04 to 0.5 mol part is that if it is less than 0.04 mol part, the insulation resistance tends to be low and the CR product tends to be small. If it exceeds, the change with time of the capacity tends to increase. In particular, it is preferable that MnO be contained in an amount of 0.1 to 0.4 part by mol with respect to 100 parts by mol of BaTiO 3 .
【0027】さらに、モル比による組成式が、aSiO
2+bBaO+cCaO+dLi2Oで表わされる副成分
(ガラス成分)を、BaTiO3100重量部に対して
1〜4重量部含有したのは、副成分が1重量部未満の場
合には焼結性が低下し、絶縁抵抗が低くなり、CR積が
小さくなる傾向があり、4重量部を越える場合には、比
誘電率、絶縁抵抗が低くなる傾向があるからである。副
成分は、BaTiO3100重量部に対して1〜2.5
重量部であることが望ましい。Further, the composition formula based on the molar ratio is aSiO
The reason that the sub-component (glass component) represented by 2 + bBaO + cCaO + dLi 2 O was contained in an amount of 1 to 4 parts by weight based on 100 parts by weight of BaTiO 3 is that when the sub-component is less than 1 part by weight, the sinterability deteriorates. This is because the insulation resistance tends to decrease and the CR product tends to decrease, and if it exceeds 4 parts by weight, the relative permittivity and the insulation resistance tend to decrease. The auxiliary component is 1 to 2.5 parts by weight based on 100 parts by weight of BaTiO 3.
Desirably, parts by weight are used.
【0028】副成分のうち、SiO2のモル比を示すa
を、0.30≦a≦0.70としたのは、モル比aが
0.30未満の場合には焼結性が低下する傾向があり、
0.70を越える場合には比誘電率が低下する傾向があ
るからである。SiO2のモル比aは、より効果を得る
ためには0.40≦a≦0.60が好ましい。A indicating the molar ratio of SiO 2 among the subcomponents
Is set to 0.30 ≦ a ≦ 0.70 because the sinterability tends to decrease when the molar ratio a is less than 0.30,
If it exceeds 0.70, the relative permittivity tends to decrease. The molar ratio a of SiO 2 is preferably 0.40 ≦ a ≦ 0.60 in order to obtain more effects.
【0029】また、BaOのモル比を示すbを0.10
≦b≦0.40としたのは、モル比bが0.10未満の
場合には焼結性が低下する傾向があり、0.40を越え
る場合には焼結性が低下し、比誘電率が低下する傾向が
あるからである。とりわけ、BaOのモル比を示すbは
0.10≦b≦0.25が好ましい。Further, b representing the molar ratio of BaO is 0.10
The reason why ≦ b ≦ 0.40 is that when the molar ratio b is less than 0.10, the sinterability tends to decrease, and when the molar ratio b exceeds 0.40, the sinterability decreases. This is because the rate tends to decrease. In particular, b representing the molar ratio of BaO is preferably 0.10 ≦ b ≦ 0.25.
【0030】CaOのモル比を示すcを0.10≦c≦
0.40としたのは、モル比cが0.10未満の場合に
は焼結性が低下する傾向があり、0.40を越える場合
には焼結性が低下し、比誘電率が低下する傾向があるか
らである。とりわけ、CaOのモル比を示すcは、0.
10≦c≦0.25が好ましい。The molar ratio of CaO, c, is 0.10 ≦ c ≦
The reason for setting the ratio to 0.40 is that when the molar ratio c is less than 0.10, the sinterability tends to decrease, and when it exceeds 0.40, the sinterability decreases and the relative dielectric constant decreases. This is because there is a tendency to do so. In particular, c indicating the molar ratio of CaO is 0.1.
10 ≦ c ≦ 0.25 is preferred.
【0031】Li2Oのモル比を示すdを0.05≦d
≦0.30としたのは、モル比dが0.05未満の場合
には焼結性が低下する傾向があり、0.30を越える場
合には絶縁抵抗が低下する傾向があるからである。D representing the molar ratio of Li 2 O is 0.05 ≦ d
≦ 0.30 because the sinterability tends to decrease when the molar ratio d is less than 0.05, and the insulation resistance tends to decrease when the molar ratio d exceeds 0.30. .
【0032】本発明の比誘電率が4300以上の誘電体
磁器は、チタン酸バリウムを主成分とし、酸化マグネシ
ウム、酸化マンガン及び希土類元素酸化物を含有する成
形体を焼結した後、一旦焼結温度から700℃以下まで
冷却し、再度900℃以上まで温度を上げて熱処理する
誘電体磁器の製法において、焼結後1000℃から70
0℃までの降温過程における酸素分圧を1×10-17〜
1×10-10Paとすることにより得られる。The dielectric ceramic having a relative dielectric constant of 4300 or more according to the present invention is obtained by sintering a compact containing barium titanate as a main component, magnesium oxide, manganese oxide and rare earth element oxide, and then sintering the compact. In the method for producing a dielectric ceramic in which the temperature is lowered from the temperature to 700 ° C. or less, and the temperature is raised again to 900 ° C. or more and the heat treatment is performed, the temperature is reduced from 1000 ° C. to 70 ° C. after sintering.
Oxygen partial pressure in the process of cooling down to 0 ° C. is 1 × 10 −17 to
It can be obtained by setting it to 1 × 10 −10 Pa.
【0033】本発明の誘電体磁器は、具体的には、例え
ば、BaTiO3粉末に、MnCO3粉末、Y2O3粉末、
およびMgO粉末、ガラス成分(SiO2、BaO、C
aO、Li2O)を加えた粉末に、水および分散剤を加
え、ボールミルにて混合粉砕した後、有機バインダーを
混合し、所定厚みのシート状に成形した後、例えば、酸
素分圧3×10-8〜3×10-3Pa、温度1100〜1
300℃で0.5〜3時間焼結する。The dielectric ceramic of the present invention, specifically, for example, a BaTiO 3 powder, MnCO 3 powder, Y 2 O 3 powder,
And MgO powder, glass components (SiO 2 , BaO, C
aO, Li 2 O), water and a dispersant are added to the powder, mixed and pulverized by a ball mill, mixed with an organic binder, and formed into a sheet having a predetermined thickness. 10 -8 to 3 × 10 -3 Pa, temperature 1100 to 1
Sinter at 300 ° C for 0.5-3 hours.
【0034】即ち、図1に示すように、例えば、昇温速
度150〜400℃/hで昇温し、焼成温度1100〜
1300℃で0.5〜3時間焼成した後、焼結温度から
700℃以下、特には600〜300℃まで降温し、こ
の後、酸素分圧1×10-2〜2×104Paで900℃
以上、特には、温度900〜1100℃で0.5〜7時
間熱処理を行うが、この際に、700℃以下までの降温
工程において、1000℃から700℃以下の降温度に
降温する際の酸素分圧を1×10-17〜1×10-10Pa
とし、還元処理する必要がある。That is, as shown in FIG. 1, for example, the temperature is raised at a heating rate of 150 to 400 ° C./h, and the firing temperature is 1100 to 1100.
After firing at 1300 ° C. for 0.5 to 3 hours, the temperature is lowered from the sintering temperature to 700 ° C. or less, particularly to 600 to 300 ° C., and then 900 at an oxygen partial pressure of 1 × 10 −2 to 2 × 10 4 Pa. ° C
As described above, in particular, the heat treatment is performed at a temperature of 900 to 1100 ° C. for 0.5 to 7 hours. Partial pressure of 1 × 10 -17 to 1 × 10 -10 Pa
And it is necessary to perform a reduction treatment.
【0035】1000℃から700℃での降温時におけ
る酸素分圧を1×10-17〜1×10-10Paとしたの
は、1000℃から700℃での降温時における酸素分
圧が1×10-17よりも低いと、磁器強度が低下するか
らであり、1×10-10Paよりも高いと誘電率が低下
するからである。The reason that the oxygen partial pressure at the time of temperature decrease from 1000 ° C. to 700 ° C. is 1 × 10 −17 to 1 × 10 −10 Pa is that the oxygen partial pressure at the time of temperature decrease from 1000 ° C. to 700 ° C. is 1 ×. If it is lower than 10 -17 , the strength of the porcelain decreases, and if it is higher than 1 × 10 -10 Pa, the dielectric constant decreases.
【0036】また、酸素分圧を1×10-17〜1×10
-10Paに制御する温度を1000℃から700℃とし
たのは、粒成長を抑制しながら還元処理を行うことがで
きるからである。The oxygen partial pressure is set to 1 × 10 −17 to 1 × 10
The temperature for controlling to -10 Pa is set to 1000 to 700 ° C. because the reduction treatment can be performed while suppressing grain growth.
【0037】1000℃から700℃までの降温速度
は、還元処理を進めるという点から、50〜500℃/
hが望ましく、この際の酸素分圧は、信頼性を高めると
いう点から1×10-16〜3×10-11Paが望ましい。
特に、高誘電率とするためには、900℃から750℃
の降温過程において酸素分圧を1×10-15〜1×10-
11Paの間に制御することが望ましい。The rate of temperature decrease from 1000 ° C. to 700 ° C. is 50 to 500 ° C. /
h is desirable, and the oxygen partial pressure at this time is desirably 1 × 10 −16 to 3 × 10 −11 Pa from the viewpoint of improving reliability.
In particular, in order to obtain a high dielectric constant, 900 ° C. to 750 ° C.
The oxygen partial pressure is reduced from 1 × 10 −15 to 1 × 10 − during the temperature lowering process.
It is desirable to control it between 11 Pa.
【0038】降温度700℃以下までの降温速度は20
0〜300℃/hが信頼性を高めるという点から望まし
い。また、降温度から熱処理温度までの昇温速度は20
0〜300℃/hが信頼性を向上するという点から望ま
しい。熱処理条件は900〜1050℃が望ましい。The cooling rate at a cooling temperature of 700 ° C. or less is 20
0 to 300 ° C./h is desirable from the viewpoint of enhancing reliability. The rate of temperature rise from the temperature drop to the heat treatment temperature is 20
0 to 300 ° C./h is desirable from the viewpoint of improving reliability. The heat treatment condition is desirably 900 to 1050 ° C.
【0039】尚、MnCO3粉末の代わりにMnO2粉
末、MgO粉末の代わりにMgCO3粉末、BaO、C
aO、Li2Oとして炭酸塩粉末を用いても良いことは
勿論である。It should be noted that MnO 2 powder was used instead of MnCO 3 powder, and MgCO 3 powder, BaO, C
Needless to say, carbonate powder may be used as aO and Li 2 O.
【0040】本発明の誘電体磁器は、上記した誘電体磁
器と、卑金属、特にNiを主成分とする内部電極層とを
交互に積層した積層体に、一対の外部電極を形成した積
層セラミックコンデンサに好適に用いられる。The dielectric ceramic of the present invention is a multilayer ceramic capacitor in which a pair of external electrodes are formed on a laminate of the above-described dielectric ceramic and internal electrode layers mainly composed of a base metal, particularly Ni. It is preferably used.
【0041】本発明における誘電体磁器のBaTiO3
粒子は、誘電損失低減と誘電率向上という観点から平均
粒径0.2〜1μmのものが望ましい。BaTiO 3 of dielectric porcelain in the present invention
The particles preferably have an average particle size of 0.2 to 1 μm from the viewpoint of reducing dielectric loss and improving dielectric constant.
【0042】[0042]
【実施例】先ず、BaTiO3を主成分とし、この主成
分100モル部に対して、Y2O3、MgO、MnCO3
を、それぞれY2O3、MgO、MnO換算で表1に示す
量だけ添加した誘電体粉末に、SiO2粉末、BaCO3
粉末、CaCO3粉末、Li2CO3粉末が、SiO2、B
aO、CaO、Li2O換算で表1で示したモル比とな
る副成分を、BaTiO3100重量部に対して、表1
に示す割合だけ添加し、これに、水および分散剤を加
え、ボールミルにて混合粉砕した後、ZrO2を用いた
ボールミルにて混合粉砕し、有機バインダーを混合し、
得られたスラリーを厚み5μmのフィルム状シートに成
形した。First, BaTiO 3 was used as a main component, and Y 2 O 3 , MgO, MnCO 3 was used with respect to 100 mole parts of the main component.
The respective Y 2 O 3, MgO, the dielectric powder added by an amount shown in Table 1 in terms of MnO, SiO 2 powder, BaCO 3
Powder, CaCO 3 powder, Li 2 CO 3 powder is SiO 2 , B
The subcomponents having the molar ratios shown in Table 1 in terms of aO, CaO, and Li 2 O were added to 100 parts by weight of BaTiO 3 in Table 1.
, And water and a dispersant were added thereto, mixed and pulverized with a ball mill, mixed and pulverized with a ball mill using ZrO 2, and mixed with an organic binder.
The obtained slurry was formed into a film-like sheet having a thickness of 5 μm.
【0043】このフィルム状シートに、ニッケル粉末に
有機可塑剤を加えたNiペーストをスクリーン印刷法に
より印刷した後、これを100層積層し、最上層にNi
ペーストを印刷していないフィルム状シートを積層し、
熱圧着後、切断した。A Ni paste obtained by adding an organic plasticizer to nickel powder is printed on this film-like sheet by a screen printing method, and then 100 layers of the Ni paste are laminated.
Laminate film-like sheets without printing paste,
After thermocompression bonding, it was cut.
【0044】これを大気中、300℃の温度で4時間加
熱して脱バインダー処理し、引き続いて、昇温速度30
0℃/hで温度を上げて、温度1260℃、酸素分圧1
×10-6Paで2時間焼成し、焼結した。この後、表1
に示す降温度まで300℃/hで降温したが、この際に
表1に示す温度範囲で、表1に示す酸素分圧で降温し、
還元処理した。This was heated in the atmosphere at a temperature of 300 ° C. for 4 hours to remove the binder.
The temperature was raised at 0 ° C / h, the temperature was 1260 ° C, and the oxygen partial pressure was 1
It was fired at × 10 −6 Pa for 2 hours and sintered. After this, Table 1
The temperature was lowered at a rate of 300 ° C./h to the temperature shown in Table 1. At this time, the temperature was lowered in the temperature range shown in Table 1 with the oxygen partial pressure shown in Table 1,
Reduction treatment was performed.
【0045】次に、表1に示す温度まで300℃/hで
温度を上げて加熱し、酸素分圧1×10Paで2時間熱
処理し、磁器の寸法2.0mm×1.1mm×0.9m
m、1層の有効電極面積1.05mm2、誘電体層厚み
4μm×100層のコンデンサ本体を得た。その後、こ
のコンデンサ本体の両端面に銅ペーストを塗布し、90
0℃で焼き付けて外部電極を形成し、さらにその上にN
iメッキ及びSnメッキを施し、本発明の積層セラミッ
クコンデンサを得た。Next, the temperature was increased to 300 ° C./h at a temperature shown in Table 1, and the mixture was heated at an oxygen partial pressure of 1 × 10 Pa for 2 hours, and the dimensions of the porcelain were 2.0 mm × 1.1 mm × 0.9 m.
m, a capacitor body having an effective electrode area of one layer of 1.05 mm 2 and a dielectric layer thickness of 4 μm × 100 layers was obtained. Thereafter, a copper paste is applied to both end surfaces of the capacitor body,
It is baked at 0 ° C. to form an external electrode.
i-plating and Sn-plating were performed to obtain a multilayer ceramic capacitor of the present invention.
【0046】比較例として、焼結温度からの降温過程に
おいて酸素分圧を1×10-7〜1×10-4Paとし、熱
処理した試料も用意した。尚、表2では、熱処理の酸素
分圧を還元処理の欄に記載した。As a comparative example, a sample heat-treated at an oxygen partial pressure of 1 × 10 −7 to 1 × 10 −4 Pa in the process of decreasing the temperature from the sintering temperature was also prepared. In Table 2, the oxygen partial pressure of the heat treatment is shown in the column of the reduction treatment.
【0047】次にこれらの評価試料を、LCRメーター
4284Aを用いて、周波数1.0kHz、入力信号レ
ベル1.0Vrmsにて−25℃、20℃、25℃及び
85℃における静電容量および誘電損失を測定し、比誘
電率を算出するとともに、20℃の比誘電率に対する−
25℃、85℃での比誘電率の温度変化率を算出した。Next, these evaluation samples were measured for capacitance and dielectric loss at −25 ° C., 20 ° C., 25 ° C. and 85 ° C. using an LCR meter 4284A at a frequency of 1.0 kHz and an input signal level of 1.0 Vrms. Is measured, and the relative permittivity is calculated.
The temperature change rate of the relative dielectric constant at 25 ° C. and 85 ° C. was calculated.
【0048】また、絶縁抵抗計DSM8103を用い
て、DC10Vを60秒間印加した後に、電極間の絶縁
抵抗値を測定した。これらの結果を表1にまとめた。After applying DC 10 V for 60 seconds, the insulation resistance between the electrodes was measured using an insulation resistance meter DSM8103. These results are summarized in Table 1.
【0049】[0049]
【表1】 [Table 1]
【0050】[0050]
【表2】 [Table 2]
【0051】この表1、2から、焼結温度からの降温過
程において酸素分圧を1×10-7〜1×10-4Paとし
た比較例の場合、+25℃における誘電率は3500程
度であったのに対して、1000℃から700℃の降温
過程において酸素分圧を1×10-17〜1×10-10Pa
に制御して還元処理した本発明の試料では、誘電率は4
300以上であった。From Tables 1 and 2, it can be seen that in the comparative example in which the oxygen partial pressure was set to 1 × 10 −7 to 1 × 10 −4 Pa in the process of decreasing the temperature from the sintering temperature, the dielectric constant at + 25 ° C. was about 3500. On the other hand, the oxygen partial pressure was increased from 1 × 10 −17 to 1 × 10 −10 Pa in the temperature decreasing process from 1000 ° C. to 700 ° C.
In the sample of the present invention, which was reduced and controlled to
It was 300 or more.
【0052】[0052]
【発明の効果】本発明の誘電体磁器は、チタン酸バリウ
ムを主成分とし、マグネシウム、マンガン及び希土類元
素を含有する成形体を焼結させた後、一旦700℃以下
まで冷却した後、再度900℃以上まで温度を上げて熱
処理する製造方法において、1000℃から700℃ま
での降温過程における酸素分圧を、1×10-17〜1×
10-10Paとすることによって、25℃における比誘
電率を4300以上とすることができ、このような誘電
体磁器を用いて積層セラミックコンデンサを作製するこ
とにより、誘電体層を薄層化することなく単位体積当た
りの静電容量を大きくすることができる。According to the dielectric porcelain of the present invention, after a compact containing barium titanate as a main component and containing magnesium, manganese and a rare earth element is sintered, it is once cooled to 700 ° C. or less, and then cooled again to 900 ° C. In the manufacturing method in which the temperature is increased to at least 100 ° C. and the heat treatment is performed, the oxygen partial pressure in the temperature decreasing process from 1000 ° C. to 700 ° C. is set to 1 × 10 −17 to 1 ×.
By setting the pressure to 10 −10 Pa, the relative dielectric constant at 25 ° C. can be 4300 or more. By manufacturing a multilayer ceramic capacitor using such a dielectric ceramic, the dielectric layer can be thinned. The capacitance per unit volume can be increased without the need.
【図1】本発明の焼成パターンを示すグラフである。FIG. 1 is a graph showing a firing pattern of the present invention.
───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4G031 AA03 AA04 AA06 AA07 AA08 AA11 AA19 AA30 BA09 CA01 CA05 GA08 GA11 GA16 5E001 AB03 AC04 AC09 AE00 AE02 AE03 AE04 AF00 AF06 AH01 AH05 AH06 AH08 AH09 AJ01 AJ02 5G303 AA01 AB06 AB11 BA12 CA01 CA03 CB03 CB06 CB17 CB18 CB30 CB35 CB40 CB43 DA05 ──────────────────────────────────────────────────の Continued on the front page F term (reference) 4G031 AA03 AA04 AA06 AA07 AA08 AA11 AA19 AA30 BA09 CA01 CA05 GA08 GA11 GA16 5E001 AB03 AC04 AC09 AE00 AE02 AE03 AE04 AF00 AF06 AH01 AH05 AH06 AH08 AH09 AJ01 AJ01 AJ01 CA03 CB03 CB06 CB17 CB18 CB30 CB35 CB40 CB43 DA05
Claims (5)
として、マグネシウム、マンガン及び希土類元素を含有
するとともに、25℃における比誘電率が4300以上
であることを特徴とする誘電体磁器。1. A dielectric ceramic comprising barium titanate as a main component, magnesium, manganese, and a rare earth element as metal elements, and having a relative dielectric constant of 4300 or more at 25 ° C.
での比誘電率の温度変化率が±15%以内であることを
特徴とする請求項1記載の誘電体磁器。2. A relative dielectric constant of 20.degree.
2. The dielectric ceramic according to claim 1, wherein the temperature change rate of the relative dielectric constant at the time is within ± 15%.
O3100モル部に対して、YをY2O3換算で0.4〜
3.0モル部、MgをMgO換算で0.5〜8.0モル
部、MnをMnO換算で0.04〜0.5モル部含有す
るとともに、ガラス成分としてSi、BaおよびCaを
含有することを特徴とする請求項1または2記載の誘電
体磁器。 3. 100 parts by mole of BaTiO 3 ,
With respect to 100 mole parts of O 3 , Y is 0.4 to 0.4 in terms of Y 2 O 3.
3.0 mol parts, 0.5 to 8.0 mol parts of Mg in terms of MgO, 0.04 to 0.5 mol parts of Mn in terms of MnO, and Si, Ba and Ca as glass components. The dielectric porcelain according to claim 1, wherein:
ネシウム、酸化マンガン及び希土類元素酸化物を含有す
る成形体を焼結した後、焼結温度から700℃以下まで
冷却し、再度900℃以上まで温度を上げて熱処理する
誘電体磁器の製法において、焼結後1000℃から70
0℃までの降温過程における酸素分圧を1×10-17〜
1×10-10Paとしたことを特徴とする誘電体磁器の
製法。4. After sintering a compact containing barium titanate as a main component and containing magnesium oxide, manganese oxide and a rare earth element oxide, the compact is cooled from a sintering temperature to 700 ° C. or lower and again to 900 ° C. or higher. In the method of producing dielectric porcelain which is heat-treated by raising the temperature, the temperature is raised from 1000 ° C. to 70 ° C. after sintering.
Oxygen partial pressure in the process of cooling down to 0 ° C. is 1 × 10 −17 to
A method for producing a dielectric porcelain, wherein the pressure is 1 × 10 −10 Pa.
とを交互に積層してなる積層セラミックコンデンサであ
って、前記誘電体層が、請求項1乃至3のうちいずれか
に記載の誘電体磁器からなることを特徴とする積層セラ
ミックコンデンサ。5. A multilayer ceramic capacitor in which internal electrodes containing a base metal as a main component and dielectric layers are alternately laminated, wherein the dielectric layer is any one of claims 1 to 3. A multilayer ceramic capacitor comprising a dielectric porcelain.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000054845A JP5051937B2 (en) | 2000-02-29 | 2000-02-29 | Dielectric porcelain, manufacturing method thereof, and multilayer ceramic capacitor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000054845A JP5051937B2 (en) | 2000-02-29 | 2000-02-29 | Dielectric porcelain, manufacturing method thereof, and multilayer ceramic capacitor |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2001240467A true JP2001240467A (en) | 2001-09-04 |
JP5051937B2 JP5051937B2 (en) | 2012-10-17 |
Family
ID=18576045
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000054845A Expired - Lifetime JP5051937B2 (en) | 2000-02-29 | 2000-02-29 | Dielectric porcelain, manufacturing method thereof, and multilayer ceramic capacitor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5051937B2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002265260A (en) * | 2001-03-07 | 2002-09-18 | Kyocera Corp | Dielectric ceramic and lamination type electronic part |
JP2005314224A (en) * | 2004-03-30 | 2005-11-10 | Nippon Chemicon Corp | Dielectric ceramic composition and electronic component |
JP2009176801A (en) * | 2008-01-22 | 2009-08-06 | Panasonic Corp | Manufacturing process of multilayer ceramic capacitor |
US8582277B2 (en) | 2010-11-22 | 2013-11-12 | Tdk Corporation | Laminated type ceramic electronic parts |
KR20190074019A (en) * | 2017-12-19 | 2019-06-27 | 삼성전자주식회사 | Ceramic dielectric and method of manufacturing the same and ceramic electronic component and electronic device |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60119009A (en) * | 1983-11-30 | 1985-06-26 | 太陽誘電株式会社 | Dielectric porcelain composition |
JPS60118667A (en) * | 1983-11-30 | 1985-06-26 | 太陽誘電株式会社 | Dielectric ceramic composition |
JPH0684692A (en) * | 1992-07-13 | 1994-03-25 | Tdk Corp | Multilayer ceramic chip capacitor |
JPH06342735A (en) * | 1993-06-01 | 1994-12-13 | Tdk Corp | Laminated type ceramic chip capacitor |
-
2000
- 2000-02-29 JP JP2000054845A patent/JP5051937B2/en not_active Expired - Lifetime
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60119009A (en) * | 1983-11-30 | 1985-06-26 | 太陽誘電株式会社 | Dielectric porcelain composition |
JPS60118667A (en) * | 1983-11-30 | 1985-06-26 | 太陽誘電株式会社 | Dielectric ceramic composition |
JPH0684692A (en) * | 1992-07-13 | 1994-03-25 | Tdk Corp | Multilayer ceramic chip capacitor |
JPH06342735A (en) * | 1993-06-01 | 1994-12-13 | Tdk Corp | Laminated type ceramic chip capacitor |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002265260A (en) * | 2001-03-07 | 2002-09-18 | Kyocera Corp | Dielectric ceramic and lamination type electronic part |
JP4663141B2 (en) * | 2001-03-07 | 2011-03-30 | 京セラ株式会社 | Dielectric porcelain and multilayer electronic components |
JP2005314224A (en) * | 2004-03-30 | 2005-11-10 | Nippon Chemicon Corp | Dielectric ceramic composition and electronic component |
JP2009176801A (en) * | 2008-01-22 | 2009-08-06 | Panasonic Corp | Manufacturing process of multilayer ceramic capacitor |
US8582277B2 (en) | 2010-11-22 | 2013-11-12 | Tdk Corporation | Laminated type ceramic electronic parts |
KR20190074019A (en) * | 2017-12-19 | 2019-06-27 | 삼성전자주식회사 | Ceramic dielectric and method of manufacturing the same and ceramic electronic component and electronic device |
KR102483896B1 (en) | 2017-12-19 | 2022-12-30 | 삼성전자주식회사 | Ceramic dielectric and method of manufacturing the same and ceramic electronic component and electronic device |
Also Published As
Publication number | Publication date |
---|---|
JP5051937B2 (en) | 2012-10-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100631995B1 (en) | Dielectric ceramic compositions for low temperature sintering and multilayer ceramic condenser using the same | |
JP3746763B2 (en) | Reduction-resistant low-temperature fired dielectric ceramic composition, multilayer ceramic capacitor using the same, and manufacturing method thereof | |
KR100888020B1 (en) | Dielectric ceramics and multi layer ceramic capacitor | |
EP1710817B1 (en) | Electronic device, dielectric ceramic composition, and method of production of the same | |
KR100632001B1 (en) | Glass compositions for low temperature sintering, glass frit, dielectric compositions and multilayer ceramic condenser using the same | |
JP4821357B2 (en) | Electronic component, dielectric ceramic composition and method for producing the same | |
US20120075768A1 (en) | Dielectric ceramic composition and manufacturing method thereof, and ceramic electronic device | |
KR100519821B1 (en) | Dielectric Composition for Multilayer Ceramic Condenser, Multilayer Ceramic Condenser, and Method for Manufacturing Multilayer Ceramic Condenser | |
JP2010052964A (en) | Dielectric ceramic and method for producing the same, and monolithic ceramic capacitor | |
JP5194370B2 (en) | Electronic component, dielectric ceramic composition and method for producing the same | |
JP4557472B2 (en) | Multilayer ceramic capacitor and manufacturing method thereof | |
JP3961454B2 (en) | Low temperature fired dielectric ceramic composition and multilayer ceramic capacitor using the same | |
JP2011241129A (en) | Dielectric ceramic composition and ceramic electronic component | |
JP4663141B2 (en) | Dielectric porcelain and multilayer electronic components | |
JP2010208905A (en) | Method for manufacturing dielectric ceramic, dielectric ceramic, method for manufacturing laminated ceramic capacitor and the laminated ceramic capacitor | |
JP2001307940A (en) | Laminated ceramic capacitor and its manufacturing method | |
JP2007261913A (en) | Dielectric porcelain composition, electronic part and multilayer ceramic capacitor | |
JP5051937B2 (en) | Dielectric porcelain, manufacturing method thereof, and multilayer ceramic capacitor | |
JP3856984B2 (en) | Dielectric porcelain and manufacturing method thereof | |
JP2005162557A (en) | Method of manufacturing dielectric ceramic composition, method of manufacturing dielectric layer-containing electronic component, and dielectric layer-containing electronic component | |
JP2002080279A (en) | Method of manufacturing dielectric ceramic composition and method of manufacturing electronic component | |
JP4111754B2 (en) | Ceramic capacitor, dielectric composition thereof, and method for producing the same | |
JP3602361B2 (en) | Manufacturing method of multilayer ceramic capacitor | |
JP2002293617A (en) | Dielectric ceramic, laminated electronic parts and production method for the laminated electronic parts | |
JP4463095B2 (en) | Multilayer ceramic capacitor and manufacturing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070213 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100222 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100225 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100414 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100610 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100805 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110830 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20111014 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120626 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120724 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5051937 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150803 Year of fee payment: 3 |
|
EXPY | Cancellation because of completion of term |