JP2001236642A - Vapor deposition device for thin film magnetic tape and method for manufacturing thin film magnetic tape - Google Patents

Vapor deposition device for thin film magnetic tape and method for manufacturing thin film magnetic tape

Info

Publication number
JP2001236642A
JP2001236642A JP2000045840A JP2000045840A JP2001236642A JP 2001236642 A JP2001236642 A JP 2001236642A JP 2000045840 A JP2000045840 A JP 2000045840A JP 2000045840 A JP2000045840 A JP 2000045840A JP 2001236642 A JP2001236642 A JP 2001236642A
Authority
JP
Japan
Prior art keywords
oxygen gas
roll
metal magnetic
cooling
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000045840A
Other languages
Japanese (ja)
Inventor
Masaru Segawa
勝 瀬川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Victor Company of Japan Ltd
Original Assignee
Victor Company of Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Victor Company of Japan Ltd filed Critical Victor Company of Japan Ltd
Priority to JP2000045840A priority Critical patent/JP2001236642A/en
Publication of JP2001236642A publication Critical patent/JP2001236642A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

PROBLEM TO BE SOLVED: To enhance the yield of a product and the utilization efficiency of a vapor deposition material when a metal magnetic thin film is formed on a base film. SOLUTION: In a vapor deposition device 1B for thin film magnetic tape wherein the belt-like base film 8 runs along the peripheral surface of a cooling can roll 7 in vacuum vessel 1, a metal magnetic material 10 melted in a crucible 9 provided below the cooling can roll 7 is vaporized, the metal magnetic material 10 vaporized is introduced to the cooling can roll 7 side while an incident angle regulating mask member 13 provided above the crucible 9 is regulated and an oxygen gas is blown to the metal magnetic material vaporized and passed through the incident angle regulating mask member 13 from an oxygen gas introducing pipe 14 provided between the lower side of the cooling can roll 7 and the incident angel regulating mask member 13 to form the metal magnetic thin film on one surface of the base film 8, an oxygen gas heating means 17 for heating the oxygen gas introducing pipe 14 or the oxygen gas itself is provided.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、薄膜磁気テープ用
蒸着装置及び薄膜磁気テープの製造方法に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thin film magnetic tape vapor deposition apparatus and a method for manufacturing a thin film magnetic tape.

【0002】[0002]

【従来の技術】近年、ディジタル・ビデオ・テープレコ
ーダなどに適用される磁気テープは、高密度及び薄膜化
を達成するために、とくに、薄膜磁気テープ,垂直磁気
テープなどが注目されている。
2. Description of the Related Art In recent years, thin-film magnetic tapes, perpendicular magnetic tapes, and the like have attracted attention as magnetic tapes applied to digital video tape recorders and the like in order to achieve high density and thin film.

【0003】図4は斜方蒸着法を適用した一般的な薄膜
磁気テープ用蒸着装置の構成を示した構成図、図5は一
般的な薄膜磁気テープ蒸着装置内で冷却キャンロールの
下方に設けた酸素ガス導入パイプを示した斜視図であ
る。
FIG. 4 is a block diagram showing the structure of a general thin film magnetic tape evaporation apparatus to which the oblique evaporation method is applied. FIG. 5 is provided below a cooling can roll in a general thin film magnetic tape evaporation apparatus. It is the perspective view which showed the oxygen gas introduction pipe which was shown.

【0004】図4に示した如く、斜方蒸着法を適用した
一般的な薄膜磁気テープ用蒸着装置1Aの真空槽2内は
真空状態に保たれている。この真空槽2内には、供給ロ
ール3と、巻取ロール4と、ガイドロール5,6と、冷
却キャンロール7とが回転自在に配置されている。
As shown in FIG. 4, a vacuum chamber 2 of a general thin film magnetic tape evaporation apparatus 1A to which the oblique evaporation method is applied is kept in a vacuum state. In this vacuum chamber 2, a supply roll 3, a take-up roll 4, guide rolls 5, 6, and a cooling can roll 7 are rotatably arranged.

【0005】そして、真空槽2内で、供給ロール3に巻
回した帯状のベースフィルム8は、供給側のガイドロー
ル5、冷却キャンロール7の周面、巻取側のガイドロー
ル6に沿いながら巻取ロール4に向かって矢印方向に走
行している。
[0005] Then, in the vacuum chamber 2, the strip-shaped base film 8 wound around the supply roll 3 is moved along the guide roll 5 on the supply side, the peripheral surface of the cooling can roll 7, and the guide roll 6 on the winding side. It is running in the direction of the arrow toward the winding roll 4.

【0006】ここで、ベースフィルム8はポリエチレン
テレフタレート(PET)フィルムなどを使用してお
り、このベースフィルム8は供給ロール3にロール状に
数千〜数万m巻いたものを真空槽2内にセットし、ベー
スフィルム8の一方の面に冷却キャンロール7の下方に
設置した後述のルツボ9から蒸発した金属磁性材料10
を連続して1ロール蒸着を行う方法が一般的に取られて
いる。
Here, the base film 8 is made of a polyethylene terephthalate (PET) film or the like. The metal magnetic material 10 evaporated from a crucible 9, which is set and placed on one surface of the base film 8 below the cooling can roll 7, which will be described later.
Is generally performed by one-roll evaporation.

【0007】即ち、冷却キャンロール7の斜め下方に
は、ルツボ材料としてMgO(マグネシア)を用いて箱
状に形成したルツボ9が設置されている。このルツボ9
内には、Co又はCoNiなどの強磁性材料(以下、金
属磁性材料と記す)10が収容されている。
That is, a crucible 9 formed in a box shape using MgO (magnesia) as a crucible material is installed diagonally below the cooling can roll 7. This crucible 9
Inside, a ferromagnetic material such as Co or CoNi (hereinafter, referred to as a metal magnetic material) 10 is accommodated.

【0008】また、真空槽2の側壁2aには、ルツボ9
内に収容した金属磁性材料10を溶融させて、このルツ
ボ9の開口部から溶融した金属磁性材料10を蒸発させ
るピアス型電子銃11が取り付けられている。このピア
ス型電子銃11は、ルツボ9内の金属磁性材料10に向
かって電子ビーム12が出射されており、金属磁性材料
10を溶融してベースフィルム8の一方の面側に蒸発さ
せている。
A crucible 9 is provided on the side wall 2a of the vacuum chamber 2.
A pierce-type electron gun 11 for melting the metal magnetic material 10 housed therein and evaporating the molten metal magnetic material 10 from the opening of the crucible 9 is attached. In the pierce-type electron gun 11, an electron beam 12 is emitted toward the metal magnetic material 10 in the crucible 9, and the metal magnetic material 10 is melted and vaporized on one side of the base film 8.

【0009】また、冷却キャンロール7の下方部位に沿
って入射角規制マスク部材13がルツボ9側と対向して
取り付けられており、この入射角規制マスク部材13
は、ベースフィルム8が冷却キャンロール7に沿って走
行する時に、ルツボ9から蒸着した金属磁性材料10の
ベースフィルム8に対する最大入射角θmax及び最小
入射角θminを規制している。
An incident angle regulating mask member 13 is mounted along the lower portion of the cooling can roll 7 so as to face the crucible 9 side.
Regulates the maximum incident angle θmax and the minimum incident angle θmin of the metallic magnetic material 10 deposited from the crucible 9 with respect to the base film 8 when the base film 8 travels along the cooling can roll 7.

【0010】また、冷却キャンロール7の下方部位に沿
い、且つ、入射角規制マスク部材13のうちで最小入射
角θmin側の内側には酸素ガス導入パイプ14が取り
付けられている。この酸素ガス導入パイプ14は、図5
に拡大して示したように、酸素ガス導入口が1か所ある
直線状パイプをループ状パイプの略中央部で溶接したも
のを用いており、この酸素ガス導入パイプ14のループ
状パイプにはベースフィルム8の幅方向に金属磁性薄膜
を成膜する成膜範囲に沿って酸素ガス吹き出し用の微細
孔14aが複数形成されている。そして、酸素ガス導入
パイプ14に導入した酸素ガスはループ状パイプの左右
両側に回り込んで複数の微細孔14aから蒸着した金属
磁性材料10に向かって吹き出されており、この酸素ガ
スで蒸発した金属磁性材料10を酸化させることにより
後述の金属磁性薄膜に対して静磁気特性の向上と信頼性
(耐久性や耐食性)とを確保することが主流になってい
る。
An oxygen gas introduction pipe 14 is mounted along the lower part of the cooling can roll 7 and inside the incident angle regulating mask member 13 on the side of the minimum incident angle θmin. This oxygen gas introduction pipe 14 is shown in FIG.
As shown in an enlarged manner, a straight pipe having one oxygen gas inlet is welded at a substantially central portion of the loop pipe, and the loop pipe of the oxygen gas inlet pipe 14 is used as the loop pipe. A plurality of fine holes 14a for blowing out oxygen gas are formed along the film formation range where the metal magnetic thin film is formed in the width direction of the base film 8. The oxygen gas introduced into the oxygen gas introduction pipe 14 wraps around the left and right sides of the loop pipe and is blown out toward the metal magnetic material 10 deposited from the plurality of fine holes 14a. It is the mainstream that the magnetic material 10 is oxidized to ensure the improvement of the magnetostatic property and the reliability (durability and corrosion resistance) of the metal magnetic thin film described later.

【0011】図4に戻り、ピアス型電子銃11から出射
される電子ビーム12は、軌道に偏向磁界を印加するた
めの偏向用マグネット15と、ルツボ9に近設した偏向
用マグネット16とにより制御されている。従って、ル
ツボ9の長手方向に電子ビーム12を走査することによ
りベースフィルム8の幅方向にスキャンされて、蒸発し
たCo又はCoNiなどの金属磁性材料10がベースフ
ィルム8の幅方向にCoO又はCoNiOなどの金属磁
性薄膜として成膜され、これをベースフィルム8の長さ
方向に繰り返すことにより長尺な薄膜磁気テープが巻取
ロール4側に巻き取れている。
Referring back to FIG. 4, the electron beam 12 emitted from the pierce-type electron gun 11 is controlled by a deflection magnet 15 for applying a deflection magnetic field to a trajectory and a deflection magnet 16 provided near the crucible 9. Have been. Accordingly, by scanning the crucible 9 with the electron beam 12 in the longitudinal direction, the metal magnetic material 10 such as Co or CoNi is scanned in the width direction of the base film 8 and is evaporated in the width direction of the base film 8 such as CoO or CoNiO. By repeating this in the length direction of the base film 8, a long thin film magnetic tape is wound up on the take-up roll 4 side.

【0012】ここで、ルツボ9から蒸発した金属磁性材
料10をベースフィルム8上に金属磁性薄膜として成膜
する際、ベースフィルム8への耐熱性を考慮して、矢印
方向に回転する冷却キャンロール7の内部には、冷却器
(図示せず)が設置され、蒸着時にベースフィルム8の
温度上昇による変形などを抑制している。そして、この
様な斜方蒸着方法では、冷却した回転自在な冷却キャン
ロール7の周面にルツボ9からの金属磁性材料10が付
着しない様に、ベースフィルム8のエッジ部分を入射角
規制マスク部材13によって覆っており、ベースフィル
ム8の幅寸法に対して入射角規制マスク部材13の幅方
向の開口寸法が狭く設定されている。
Here, when forming the metal magnetic material 10 evaporated from the crucible 9 on the base film 8 as a metal magnetic thin film, a cooling can roll rotating in the direction of the arrow in consideration of heat resistance to the base film 8. A cooler (not shown) is provided inside 7 to suppress deformation of the base film 8 due to a rise in temperature during vapor deposition. In such an oblique deposition method, the edge of the base film 8 is made to have an incident angle regulating mask member so that the metal magnetic material 10 from the crucible 9 does not adhere to the peripheral surface of the cooled rotatable cooling can roll 7. The opening dimension of the incident angle regulating mask member 13 in the width direction is set to be smaller than the width dimension of the base film 8.

【0013】[0013]

【発明が解決しようとする課題】ところで、斜方蒸着法
を適用した一般的な薄膜磁気テープ用蒸着装置1Aを用
いて、ルツボ9から蒸発したCo又はCoNiなどの金
属磁性材料10をベースフィルム8上に金属磁性薄膜と
して成膜する場合に、上述したように入射角規制マスク
部材13のマスク開口部はかなり狭く制限が加えられる
ため、蒸発した金属磁性材料(蒸発金属磁性材料)10
の利用効率は10〜15%程度で残りの大部分は不要な
付着物となっていた。このため、この入射角規制マスク
部材13のマスク開口部を少しでも最小入射角側に広
げ、蒸発金属磁性材料の利用効率を向上させるには静磁
気特性の更なる向上が必要となっていた。
By using a general thin film magnetic tape evaporation apparatus 1A to which the oblique evaporation method is applied, a metal magnetic material 10 such as Co or CoNi evaporated from a crucible 9 is used as a base film 8. When a metal magnetic thin film is formed thereon, the mask opening of the incident angle restricting mask member 13 is considerably narrow as described above, so that the evaporated metal magnetic material (evaporated metal magnetic material) 10
The efficiency of use was about 10 to 15%, and most of the remaining was undesired deposits. For this reason, it is necessary to further improve the magnetostatic properties in order to widen the mask opening of the incident angle regulating mask member 13 to the minimum incident angle side even slightly and to improve the utilization efficiency of the evaporated metal magnetic material.

【0014】また、斜方蒸着法ではベースフィルム8の
一方の面への蒸発飛来粒子の入射角度が諸特性を概ね決
定しており、特に金属磁性薄膜の初期成長層の入射角度
のバラツキや分布はベースフィルム8の幅方向に対する
金属磁性薄膜への特性分布に多大な影響を及ぼしてい
た。とくに、酸素ガス導入パイプ14に形成した複数の
微細孔14aから酸素ガスを蒸着した金属磁性材料10
に向かって吹き付ける際に、略常温状態の酸素ガスを用
いているため、酸素ガスの分子の運動が活発でないの
で、蒸発したCoなどの金属磁性材料との結合が良好に
行われないなどの問題が発生している。このため、金属
磁性薄膜を成膜した後に、薄膜磁気テープの良品歩留ま
りが悪く、また、品質上安全を確保するため、静磁気特
性の分布やバラツキを考慮して膜厚を厚めに製造する必
要があり、蒸着金属磁性材料の利用効率の更なる低下に
伴う製造コストの上昇につながっていた。
Further, in the oblique deposition method, the incident angle of the vaporized flying particles on one surface of the base film 8 substantially determines various characteristics. In particular, the dispersion and distribution of the incident angle of the initial growth layer of the metal magnetic thin film. Has had a great influence on the characteristic distribution of the metal magnetic thin film in the width direction of the base film 8. In particular, the metal magnetic material 10 in which oxygen gas is vapor-deposited from a plurality of fine holes 14a formed in the oxygen gas introduction pipe 14
When using oxygen gas at about normal temperature when spraying toward the surface, the molecules of the oxygen gas are not actively mobilized, so that the bonding with the evaporated metal magnetic material such as Co is not performed well. Has occurred. For this reason, after the metal magnetic thin film is formed, the yield of non-defective thin film magnetic tapes is low, and in order to ensure quality safety, it is necessary to manufacture thicker film in consideration of the distribution and variation of the magnetostatic characteristics. This has led to an increase in manufacturing costs due to a further decrease in the use efficiency of the deposited metal magnetic material.

【0015】[0015]

【課題を解決するための手段】本発明は上記課題に鑑み
てなされたものであり、第1の発明は、真空槽内で帯状
のベースフィルムを冷却キャンロールの周面に沿って走
行させ、且つ、前記冷却キャンロールの下方に設置した
ルツボ内で溶融させた金属磁性材料を蒸発させて、蒸発
金属磁性材料を前記ルツボの上方に設けた入射角規制マ
スク部材で規制しながら前記冷却キャンロール側に導く
と共に、前記冷却キャンロールの下方と前記入射角規制
マスク部材との間に設けた酸素ガス導入パイプから酸素
ガスを前記入射角規制マスク部材を通り抜けた前記蒸発
金属磁性材料に吹き付けて、前記ベースフィルムの一方
の面に金属磁性薄膜を成膜する薄膜磁気テープ用蒸着装
置において、前記酸素ガス導入パイプもしくは前記酸素
ガスそのものを加熱する酸素ガス加熱手段を備えたこと
を特徴とする薄膜磁気テープ用蒸着装置である。
Means for Solving the Problems The present invention has been made in view of the above problems, and a first invention is to run a strip-shaped base film in a vacuum chamber along a peripheral surface of a cooling can roll, In addition, the metal magnetic material melted in the crucible provided below the cooling can roll is evaporated, and the evaporated metal magnetic material is regulated by the incident angle regulating mask member provided above the crucible, and the cooling can roll is formed. While guiding to the side, oxygen gas is blown from the oxygen gas introduction pipe provided between the lower portion of the cooling can roll and the incident angle regulating mask member onto the evaporated metal magnetic material passing through the incident angle regulating mask member, In a vapor deposition device for a thin film magnetic tape for forming a metal magnetic thin film on one surface of the base film, the oxygen gas introduction pipe or the oxygen gas itself is added. It is an evaporation apparatus for a thin film magnetic tape characterized by comprising an oxygen gas heating means for.

【0016】また、第2の発明は、真空槽内で帯状のベ
ースフィルムを冷却キャンロールの周面に沿って走行さ
せ、且つ、前記冷却キャンロールの下方に設置したルツ
ボ内で溶融させた金属磁性材料を蒸発させて、蒸発金属
磁性材料を前記ルツボの上方に設けた入射角規制マスク
部材で規制しながら前記冷却キャンロール側に導くと共
に、前記冷却キャンロールの下方と前記入射角規制マス
ク部材との間に設けた酸素ガス導入パイプから酸素ガス
を前記入射角規制マスク部材を通り抜けた前記蒸発金属
磁性材料に吹き付けて、前記ベースフィルムの一方の面
に金属磁性薄膜を成膜する薄膜磁気テープの製造方法に
おいて、前記酸素ガス導入パイプから加熱した前記酸素
ガスを前記蒸発金属磁性材料に吹き付けることを特徴と
する薄膜磁気テープの製造方法である。
According to a second aspect of the present invention, there is provided a method for moving a strip-shaped base film along a peripheral surface of a cooling can roll in a vacuum chamber and melting the metal in a crucible installed below the cooling can roll. The magnetic material is evaporated, and the evaporated metal magnetic material is guided to the cooling can roll side while being regulated by the incident angle regulating mask member provided above the crucible. A thin film magnetic tape for spraying an oxygen gas from an oxygen gas introduction pipe provided between the metal film and the evaporated metal magnetic material passing through the incident angle regulating mask member to form a metal magnetic thin film on one surface of the base film. Wherein the oxygen gas heated from the oxygen gas introduction pipe is sprayed on the evaporated metal magnetic material. It is a method of manufacture.

【0017】[0017]

【発明の実施の形態】以下に本発明に係る薄膜磁気テー
プ用蒸着装置及び薄膜磁気テープの製造方法の一実施例
を図1乃至図3を参照して詳細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a thin film magnetic tape vapor deposition apparatus and a method of manufacturing a thin film magnetic tape according to the present invention will be described below in detail with reference to FIGS.

【0018】図1は本発明に係る薄膜磁気テープ用蒸着
装置の構成を示した構成図、図2は本発明に係る薄膜磁
気テープ用蒸着装置内で冷却キャンロールの下方に設け
た酸素ガス導入パイプを示した斜視図、図3は酸素ガス
導入パイプ加熱温度と静磁気特性の関係を示した図であ
る。
FIG. 1 is a structural view showing the structure of a thin film magnetic tape vapor deposition apparatus according to the present invention, and FIG. 2 is an oxygen gas introduction provided below a cooling can roll in the thin film magnetic tape vapor deposition apparatus according to the present invention. FIG. 3 is a perspective view showing the pipe, and FIG. 3 is a view showing the relationship between the heating temperature of the oxygen gas introduction pipe and the magnetostatic property.

【0019】尚、説明の都合上、先に従来例で説明した
構成部材と同じ機能の構成部材について同一の符号を付
して適宜説明し、且つ、従来例と異なる構成部材に新た
な符号を付す共に、この実施例では従来例と異なる点を
中心に説明する。
For convenience of explanation, components having the same functions as the components described in the prior art are denoted by the same reference numerals and will be described as appropriate, and new components will be assigned to components different from those in the conventional example. In addition, this embodiment will be described focusing on points different from the conventional example.

【0020】図1に示した如く、本発明に係る薄膜磁気
テープ用蒸着装置1Bでは、斜方蒸着法を適用して真空
槽2内でベースフィルム8の一方の面に金属磁性薄膜を
成膜する際に、先に図4を用いて説明した一般的な薄膜
磁気テープ用蒸着装置1Aの真空槽2内で冷却キャンロ
ールの下方に設けた酸素ガス導入パイプ14に酸素ガス
を加熱するための酸素ガス加熱手段17を取り付けて、
酸素ガス導入パイプ14に導入した酸素ガスを加熱しな
がら蒸発した金属磁性材料10に吹き付けるように構成
したことを特徴とするものである。
As shown in FIG. 1, in the thin film magnetic tape evaporation apparatus 1B according to the present invention, a metal magnetic thin film is formed on one surface of the base film 8 in the vacuum chamber 2 by applying an oblique evaporation method. In order to heat the oxygen gas to the oxygen gas introduction pipe 14 provided below the cooling can roll in the vacuum chamber 2 of the general thin film magnetic tape deposition apparatus 1A described with reference to FIG. Attach oxygen gas heating means 17,
It is characterized in that the oxygen gas introduced into the oxygen gas introduction pipe 14 is blown onto the evaporated metal magnetic material 10 while heating.

【0021】ここで、図2に拡大して示した如く、酸素
ガス導入パイプ14は、先に説明したと同様に、酸素ガ
ス導入口が1か所の直線状パイプをループ状パイプの略
中央部で溶接したものを用いており、この酸素ガス導入
パイプ14のループ状パイプにはベースフィルム8の幅
方向に金属磁性薄膜を成膜する成膜範囲に沿って酸素ガ
ス吹き出し用の微細孔14aが複数形成されている。更
に、酸素ガス導入パイプ14には、吹き出し用の複数の
微細孔14aの部位を除いて、酸素ガス加熱手段用の電
熱線(ニクロム線)17が巻かれている。そして、酸素
ガス加熱手段となるニクロム線17に電流を流すことに
より、酸素ガス導入パイプ14が暖められて、加熱され
た酸素ガスが複数の微細孔14aから金属磁性材料10
に向かって吹き出されている。
Here, as shown in FIG. 2 in an enlarged manner, the oxygen gas introduction pipe 14 is formed by connecting a straight pipe having one oxygen gas introduction port to substantially the center of the loop pipe in the same manner as described above. In the loop-shaped pipe of the oxygen gas introduction pipe 14, micro holes 14a for blowing out oxygen gas are formed along the film forming range where the metal magnetic thin film is formed in the width direction of the base film 8. Are formed. Further, the heating wire (Nichrome wire) 17 for the oxygen gas heating means is wound around the oxygen gas introduction pipe 14 except for a part of the plurality of fine holes 14a for blowing. Then, an electric current is caused to flow through the nichrome wire 17 serving as an oxygen gas heating means, whereby the oxygen gas introduction pipe 14 is heated, and the heated oxygen gas flows through the plurality of fine holes 14a into the metal magnetic material 10.
It is blowing out towards.

【0022】また、上記した薄膜磁気テープ用蒸着装置
1Bの概要を説明すると、冷却キャンロール7の直径は
1000mm,冷却キャンロール7の幅は300mm,
ベースフィルム8の幅は280mm,ベースフィルム8
への成膜幅は250mm,セラミック(MgO)を用い
たルツボ9内の強磁性材料(純Co)の溶融,蒸着は出
力100kWの90゜偏向ピアス型電子銃11を用い
た。入射角規制マスク部材13は10mm厚さのステン
レス製で成膜エリア外周を囲んでいる。また、ルツボ9
の付近には電子ビームの適正な入射に必要な偏向用マグ
ネット16(図5)を設置した。更に、ルツボ9の片端
部分からは連続的に強磁性材料(純Co)が一定量供給
されるように供給機(図示せず)を設置した。この装置
1Bを用いて以下の実験を行った。
The outline of the vapor deposition device 1B for a thin film magnetic tape described above is as follows. The diameter of the cooling can roll 7 is 1000 mm, the width of the cooling can roll 7 is 300 mm,
The width of the base film 8 is 280 mm,
The ferromagnetic material (pure Co) in the crucible 9 using a ceramic (MgO) was melted and vapor-deposited using a 90 ° deflection pierce-type electron gun 11 with an output of 100 kW. The incident angle regulating mask member 13 is made of stainless steel having a thickness of 10 mm and surrounds the outer periphery of the film forming area. In addition, crucible 9
A deflection magnet 16 (FIG. 5) required for proper incidence of the electron beam was installed in the vicinity of. Further, a feeder (not shown) was provided so that a constant amount of ferromagnetic material (pure Co) was continuously supplied from one end of the crucible 9. The following experiment was performed using this apparatus 1B.

【0023】[実験1]図2に示すように、酸素ガス導
入パイプ14は、φ1/4”のステンレス管を用いたル
ープ状パイプにφ0.5mmの酸素ガス吹き出し用の微
細孔14aを3mmピッチで開けたものを使用した。ま
た、酸素ガス導入パイプ14に導入した酸素ガスを加熱
するために、酸素ガス吹き出し用の複数の微細孔14a
部分以外の箇所に酸素ガス加熱用のニクロム線17を巻
き、熱電対を用いた温度調節器によりこのパイプの温度
調整が出来るようにした。
[Experiment 1] As shown in FIG. 2, the oxygen gas introducing pipe 14 is a loop pipe using a stainless steel pipe of φ 1/4 ”with fine holes 14a for blowing out oxygen gas of φ 0.5 mm having a pitch of 3 mm. In order to heat the oxygen gas introduced into the oxygen gas introduction pipe 14, a plurality of fine holes 14a for blowing out oxygen gas were used.
A nichrome wire 17 for heating oxygen gas was wound around a portion other than the portion, and the temperature of this pipe could be adjusted by a temperature controller using a thermocouple.

【0024】上記酸素ガス導入パイプ14の複数の微細
孔14a部分が蒸気流入射部に向かってベースフィルム
8の幅方向に平行になるように設置し、この酸素ガス導
入パイプ14の加熱温度を常温約20℃(加熱なし)〜
500℃まで段階的に変えて全部で10通りの温度を設
定して、最小入射角側からの酸素ガス導入量900cc
mでCoO膜を膜厚0.16μmになるよう透過型膜厚
モニターで制御しながら処理長100mをそれぞれ成膜
した。
The oxygen gas introduction pipe 14 is set so that the plurality of micro holes 14a are parallel to the vapor flow incident portion in the width direction of the base film 8, and the heating temperature of the oxygen gas introduction pipe 14 is set to room temperature. About 20 ° C (without heating)
The temperature was changed stepwise to 500 ° C., and a total of 10 temperatures were set, and the amount of oxygen gas introduced from the minimum incident angle side was 900 cc.
The thickness of the CoO film was controlled to be 0.16 μm by a transmission type film thickness monitor, and a processing length of 100 m was formed.

【0025】酸素ガス導入パイプ14の加熱温度を10
通り変えて成膜したそれぞれ100mのロールからサン
プリングし、希硝酸にてCoO膜の一部分をエッチング
した後、接触型段差計(タリステップ)によりCoO膜
の成膜幅センター部の膜厚が約0.16μmになってい
ることを確かめた。
The heating temperature of the oxygen gas introduction pipe 14 is set to 10
Sampling was performed from a roll of 100 m each formed in a different manner, and a part of the CoO film was etched with dilute nitric acid. .16 μm.

【0026】その後、各サンプルのエッチングしていな
い残り部分の静磁気特性を振動型磁力計(VSM)によ
り測定した。その結果を図3に示す。Hcは保磁力、M
sは飽和磁化量、Rsは角形比を示す。
Thereafter, the magnetostatic properties of the remaining unetched portions of each sample were measured by a vibrating magnetometer (VSM). The result is shown in FIG. Hc is the coercive force, M
s indicates the saturation magnetization, and Rs indicates the squareness ratio.

【0027】図3より明らかなように、酸素ガス温度が
0゜C〜30゜Cの範囲は酸素ガス温度が常温状態で従
来例の状態であり、この場合に保磁力Hc及び角形比R
sが落ち込んでいる。一方、酸素ガス導入パイプ14を
加熱した場合には、飽和磁化量Msの変化がないにも関
わらず、酸素ガス導入パイプ14の加熱温度が100℃
以上で保磁力Hc、角形比Rsが大幅に向上し、良好な
値を示すことが判った。この理由は、酸素ガスが加熱さ
れると、酸素ガスの分子の運動が活発となり運動エネル
ギーが増加するため蒸発したCoなどの金属磁性材料の
原子と結合し易くなり、とくに、保磁力Hcの増加と酸
素ガスの温度との相関が顕著に現われている。
As is apparent from FIG. 3, when the oxygen gas temperature is in the range of 0 ° C. to 30 ° C., the oxygen gas temperature is at room temperature, which is the state of the prior art. In this case, the coercive force Hc and the squareness ratio R
s is depressed. On the other hand, when the oxygen gas introduction pipe 14 is heated, the heating temperature of the oxygen gas introduction pipe 14 is 100 ° C. despite the fact that there is no change in the saturation magnetization Ms.
As described above, it was found that the coercive force Hc and the squareness ratio Rs were significantly improved, and exhibited good values. The reason for this is that when the oxygen gas is heated, the motion of the oxygen gas molecules becomes active and the kinetic energy increases, so that the oxygen gas easily bonds to the atoms of the evaporated metal magnetic material such as Co, and in particular, the coercive force Hc increases. The correlation between the temperature and the temperature of oxygen gas is remarkable.

【0028】[実験2]酸素ガス導入パイプ14のφ
0.5mmの酸素ガス吹き出し用の微細孔14aのピッ
チを5mmに変えた以外は実験1と全く同条件で同様の
実験を行ったところ、実験1と略同様の結果が得られ
た。
[Experiment 2] φ of oxygen gas introduction pipe 14
The same experiment as in Experiment 1 was carried out under the same conditions except that the pitch of the fine holes 14a for blowing oxygen gas of 0.5 mm was changed to 5 mm, and almost the same results as in Experiment 1 were obtained.

【0029】[実験3]酸素ガス導入パイプ14のφ
0.5mmの酸素ガス吹き出し用の微細孔14aのピッ
チを10mmに変えた以外は実験1と全く同条件で同様
の実験を行ったところ、実験1と略同様の結果が得られ
た。 [実験4]酸素ガス導入パイプ14をφ1/8”のステ
ンレス管に変えた以外は実験3と全く同じ条件で同様の
実験を行ったところ、実験3と略同様の結果が得られ
た。
[Experiment 3] φ of oxygen gas introduction pipe 14
The same experiment was performed under the same conditions as in Experiment 1 except that the pitch of the fine holes 14a for blowing oxygen gas of 0.5 mm was changed to 10 mm, and almost the same results as in Experiment 1 were obtained. [Experiment 4] A similar experiment was performed under the same conditions as in Experiment 3 except that the oxygen gas introduction pipe 14 was changed to a に ″ stainless steel tube, and almost the same results as in Experiment 3 were obtained.

【0030】尚、上記した実験では酸素ガス導入パイプ
14をニクロム線17により加熱して酸素ガスを加熱し
ている例を説明したが、他の酸素ガス加熱手段により予
め加熱した酸素ガスを酸素ガス導入パイプ14に導入し
て、加熱した酸素ガスを酸素ガス吹き出し用の複数の微
細孔14aから蒸発金属磁性材料に吹き付けても上記と
同様の効果が得られることは言うまでもない。
In the above experiment, an example was described in which the oxygen gas introduction pipe 14 was heated by the nichrome wire 17 to heat the oxygen gas. However, the oxygen gas heated in advance by another oxygen gas heating means was replaced with the oxygen gas. It goes without saying that the same effect as described above can be obtained even when the heated oxygen gas is introduced into the introduction pipe 14 and sprayed onto the evaporated metal magnetic material from the plurality of fine holes 14a for blowing out the oxygen gas.

【0031】[0031]

【発明の効果】以上詳述した本発明に係る薄膜磁気テー
プ用蒸着装置及び薄膜磁気テープの製造方法磁気テープ
の製造装置よれば、とくに、酸素ガス導入パイプもしく
は前記酸素ガスそのものを加熱する酸素ガス加熱手段を
備え、酸素ガス導入パイプから加熱した酸素ガスを蒸発
金属磁性材料に吹き付けているため、ベースフィルム上
に金属磁性薄膜を成膜した後の静磁気特性のうちでとく
に保磁力、角形比が大幅に向上する。これにより、薄膜
磁気テープの歩留まりと蒸発した磁性金属材料の利用効
率を向上することができ、薄膜磁気テープを低コストで
提供できるようになる。
According to the vapor deposition apparatus for a thin film magnetic tape and the method for manufacturing a thin film magnetic tape according to the present invention described above in detail, the oxygen gas for heating the oxygen gas itself or the oxygen gas itself can be used. Since heating means is provided and oxygen gas heated from an oxygen gas introduction pipe is sprayed on the evaporated metal magnetic material, the magnetostatic properties after forming the metal magnetic thin film on the base film, particularly the coercive force and squareness ratio Is greatly improved. As a result, the yield of the thin film magnetic tape and the utilization efficiency of the evaporated magnetic metal material can be improved, and the thin film magnetic tape can be provided at low cost.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は本発明に係る薄膜磁気テープ用蒸着装置
の構成を示した構成図である。
FIG. 1 is a configuration diagram showing a configuration of a vapor deposition apparatus for a thin film magnetic tape according to the present invention.

【図2】本発明に係る薄膜磁気テープ用蒸着装置内で冷
却キャンロールの下方に設けた酸素ガス導入パイプを示
した斜視図である。
FIG. 2 is a perspective view showing an oxygen gas introducing pipe provided below a cooling can roll in the thin film magnetic tape vapor deposition apparatus according to the present invention.

【図3】酸素ガス導入パイプ加熱温度と静磁気特性の関
係を示した図である。
FIG. 3 is a diagram illustrating a relationship between an oxygen gas introduction pipe heating temperature and magnetostatic characteristics.

【図4】斜方蒸着法を適用した一般的な薄膜磁気テープ
用蒸着装置の構成を示した構成図である。
FIG. 4 is a configuration diagram showing a configuration of a general thin film magnetic tape deposition apparatus to which an oblique deposition method is applied.

【図5】一般的な薄膜磁気テープ蒸着装置内で冷却キャ
ンロールの下方に設けた酸素ガス導入パイプを示した斜
視図である。
FIG. 5 is a perspective view showing an oxygen gas introduction pipe provided below a cooling can roll in a general thin film magnetic tape deposition apparatus.

【符号の説明】[Explanation of symbols]

1B…本発明に係る薄膜磁気テープ用蒸着装置、2…真
空槽、7…冷却キャンロール、8…ベースフィルム、9
…ルツボ、10…金属磁性材料、11…ピアス型電子
銃、12…電子ビーム、13…入射角規制マスク部材、
14…酸素ガス導入パイプ、14a…微細孔、17…酸
素ガス加熱手段(ニクロム線)。
1B: Vapor deposition device for thin-film magnetic tape according to the present invention, 2: vacuum tank, 7: cooling can roll, 8: base film, 9
... Crucible, 10 ... Metal magnetic material, 11 ... Pierce type electron gun, 12 ... Electron beam, 13 ... Mask member for restricting incident angle,
14 ... oxygen gas introduction pipe, 14a ... micropore, 17 ... oxygen gas heating means (Nichrome wire).

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】真空槽内で帯状のベースフィルムを冷却キ
ャンロールの周面に沿って走行させ、且つ、前記冷却キ
ャンロールの下方に設置したルツボ内で溶融させた金属
磁性材料を蒸発させて、蒸発金属磁性材料を前記ルツボ
の上方に設けた入射角規制マスク部材で規制しながら前
記冷却キャンロール側に導くと共に、前記冷却キャンロ
ールの下方と前記入射角規制マスク部材との間に設けた
酸素ガス導入パイプから酸素ガスを前記入射角規制マス
ク部材を通り抜けた前記蒸発金属磁性材料に吹き付け
て、前記ベースフィルムの一方の面に金属磁性薄膜を成
膜する薄膜磁気テープ用蒸着装置において、 前記酸素ガス導入パイプもしくは前記酸素ガスそのもの
を加熱する酸素ガス加熱手段を備えたことを特徴とする
薄膜磁気テープ用蒸着装置。
1. A belt-shaped base film is moved along a peripheral surface of a cooling can roll in a vacuum chamber, and a metal magnetic material melted in a crucible installed below the cooling can roll is evaporated. The evaporating metal magnetic material is guided to the cooling can roll side while being regulated by the incident angle regulating mask member provided above the crucible, and provided between the lower portion of the cooling can roll and the incident angle regulating mask member. An evaporation apparatus for a thin film magnetic tape for spraying an oxygen gas from an oxygen gas introduction pipe onto the evaporated metal magnetic material passing through the incident angle control mask member to form a metal magnetic thin film on one surface of the base film, An evaporation apparatus for a thin-film magnetic tape, comprising an oxygen gas introduction pipe or an oxygen gas heating means for heating the oxygen gas itself.
【請求項2】真空槽内で帯状のベースフィルムを冷却キ
ャンロールの周面に沿って走行させ、且つ、前記冷却キ
ャンロールの下方に設置したルツボ内で溶融させた金属
磁性材料を蒸発させて、蒸発金属磁性材料を前記ルツボ
の上方に設けた入射角規制マスク部材で規制しながら前
記冷却キャンロール側に導くと共に、前記冷却キャンロ
ールの下方と前記入射角規制マスク部材との間に設けた
酸素ガス導入パイプから酸素ガスを前記入射角規制マス
ク部材を通り抜けた前記蒸発金属磁性材料に吹き付け
て、前記ベースフィルムの一方の面に金属磁性薄膜を成
膜する薄膜磁気テープの製造方法において、 前記酸素ガス導入パイプから加熱した前記酸素ガスを前
記蒸発金属磁性材料に吹き付けることを特徴とする薄膜
磁気テープの製造方法。
2. A strip-shaped base film is run along a peripheral surface of a cooling can roll in a vacuum chamber, and a metal magnetic material melted in a crucible installed below the cooling can roll is evaporated. The evaporating metal magnetic material is guided to the cooling can roll side while being regulated by the incident angle regulating mask member provided above the crucible, and provided between the lower portion of the cooling can roll and the incident angle regulating mask member. A method of manufacturing a thin-film magnetic tape, wherein oxygen gas is blown from an oxygen gas introduction pipe onto the evaporated metal magnetic material passing through the incident angle control mask member to form a metal magnetic thin film on one surface of the base film, A method for manufacturing a thin-film magnetic tape, comprising blowing the oxygen gas heated from an oxygen gas introduction pipe onto the evaporated metal magnetic material.
JP2000045840A 2000-02-23 2000-02-23 Vapor deposition device for thin film magnetic tape and method for manufacturing thin film magnetic tape Pending JP2001236642A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000045840A JP2001236642A (en) 2000-02-23 2000-02-23 Vapor deposition device for thin film magnetic tape and method for manufacturing thin film magnetic tape

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000045840A JP2001236642A (en) 2000-02-23 2000-02-23 Vapor deposition device for thin film magnetic tape and method for manufacturing thin film magnetic tape

Publications (1)

Publication Number Publication Date
JP2001236642A true JP2001236642A (en) 2001-08-31

Family

ID=18568370

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000045840A Pending JP2001236642A (en) 2000-02-23 2000-02-23 Vapor deposition device for thin film magnetic tape and method for manufacturing thin film magnetic tape

Country Status (1)

Country Link
JP (1) JP2001236642A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007035161A (en) * 2005-07-27 2007-02-08 Tdk Corp Manufacturing apparatus and manufacturing method of magnetic recording medium
CN103805957A (en) * 2012-11-14 2014-05-21 三星显示有限公司 Device for depositing organic material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007035161A (en) * 2005-07-27 2007-02-08 Tdk Corp Manufacturing apparatus and manufacturing method of magnetic recording medium
CN103805957A (en) * 2012-11-14 2014-05-21 三星显示有限公司 Device for depositing organic material

Similar Documents

Publication Publication Date Title
JP2001236642A (en) Vapor deposition device for thin film magnetic tape and method for manufacturing thin film magnetic tape
JPH10154329A (en) Apparatus for production of magnetic recording medium
JP2001236641A (en) Vapor deposition device for thin film magnetic tape
JPH0863732A (en) Production of magnetic recording medium and thin film and apparatus for production of thin film
JP3103676B2 (en) Vacuum evaporation method
JP2006260659A (en) Manufacturing apparatus of magnetic recording medium
JPS63277752A (en) Vacuum deposition device
JPH10312537A (en) Apparatus for producing magnetic recording medium
JP3687557B2 (en) Thin film magnetic tape manufacturing equipment
JP2000265260A (en) Production of magnetic recording medium
JP2002083420A (en) Method for manufacturing thin film magnetic tape and thin film magnetic tape
JP2000339675A (en) Manufacture and manufacturing device of magnetic tape
JPS5814329A (en) Production of magnetic recording medium
JPH053052B2 (en)
JPS60157728A (en) Production of magnetic recording medium
JPS6093640A (en) Producing device of magnetic recording medium
JP2000339680A (en) Manufacture and manufacturing device of magnetic tape
JPS58141444A (en) Production of magnetic recording medium
JPH0121534B2 (en)
JPH117627A (en) Magnetic recording medium and its method and device of manufacturing
JPH11154327A (en) Production of magnetic recording medium
JPH05128518A (en) Manufacture of magnetic recording medium
JP2002020857A (en) Vacuum film deposition apparatus, and crucible for film deposition
JPH06111316A (en) Vacuum deposition device for producing magnetic recording medium
JP2000030252A (en) Apparatus for producing magnetic recording medium and crucible used in the same