JP2001199706A - Method for reduction of carbon monoxide in hydrogen- containing gas and catalyst therefor - Google Patents

Method for reduction of carbon monoxide in hydrogen- containing gas and catalyst therefor

Info

Publication number
JP2001199706A
JP2001199706A JP2000008927A JP2000008927A JP2001199706A JP 2001199706 A JP2001199706 A JP 2001199706A JP 2000008927 A JP2000008927 A JP 2000008927A JP 2000008927 A JP2000008927 A JP 2000008927A JP 2001199706 A JP2001199706 A JP 2001199706A
Authority
JP
Japan
Prior art keywords
hydrogen
catalyst
carbon monoxide
containing gas
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000008927A
Other languages
Japanese (ja)
Inventor
Yasushi Hiramatsu
靖史 平松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP2000008927A priority Critical patent/JP2001199706A/en
Publication of JP2001199706A publication Critical patent/JP2001199706A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Catalysts (AREA)
  • Industrial Gases (AREA)
  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for efficiently decreasing the concentration of carbon monoxide in the hydrogen-containing gas at a low temperature and a catalyst therefor mainly for development of a fuel cell in which methanol is used as a fuel. SOLUTION: The carbon monoxide in the hydrogen-containing gas is brought into contact with oxygen in the presence of an iron-platinum binary catalyst.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は水素含有ガス中の一
酸化炭素除去方法及び触媒に関し、詳しくは燃料電池等
の水素源として利用するために、炭化水素やメタノール
等の改質反応により製造された水素含有ガス中の一酸化
炭素除去する方法および触媒に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and a catalyst for removing carbon monoxide in a hydrogen-containing gas. And a catalyst for removing carbon monoxide in a hydrogen-containing gas.

【0002】[0002]

【従来技術】水素含有ガスは炭化水素やメタノール等を
水蒸気と改質反応させることにより製造され有機化学品
の原料として用いられているが、最近は特に燃料電池の
水素源としての利用が注目されている。これらの水素含
有ガスには一酸化炭素が含まれており、燃料電池の水素
源として利用する場合には一酸化炭素が燃料電池の電極
の白金触媒に吸着して触媒としての機能を低下させるた
めに水素濃度を極力低下させる必要がある。一酸化炭素
の許容濃度は、例えばリン酸型燃料電池の場合は数%以
下であり、固体高分子型電池の場合は数ppm以下であ
る。メタノールは比較的低温で水蒸気との改質反応を行
うことができ、一酸化炭素の含量が少ないことから燃料
電池の水素源として有利に使用することができる。この
ためメタノールを原料とする燃料電池の開発、特に車載
可能な自動車用燃料電池の開発が進められている。
2. Description of the Related Art Hydrogen-containing gas is produced by reforming hydrocarbons, methanol and the like with steam, and is used as a raw material for organic chemicals. ing. These hydrogen-containing gases contain carbon monoxide, and when used as a hydrogen source for a fuel cell, the carbon monoxide is adsorbed on the platinum catalyst of the electrode of the fuel cell and deteriorates its function as a catalyst. It is necessary to lower the hydrogen concentration as much as possible. The allowable concentration of carbon monoxide is, for example, several percent or less in the case of a phosphoric acid fuel cell and several ppm or less in the case of a polymer electrolyte battery. Methanol can perform a reforming reaction with steam at a relatively low temperature, and has a low content of carbon monoxide, so that it can be advantageously used as a hydrogen source for a fuel cell. For this reason, development of a fuel cell using methanol as a raw material, particularly development of a fuel cell for a vehicle that can be mounted on a vehicle, is being promoted.

【0003】水素含有ガス中の一酸化炭素除去方法とし
ては、特開平5-245376号に酸化銅・酸化アルミニウム・
酸化マグネシウム触媒を用いて水蒸気による一酸化炭素
の変換を行う方法が記載されており、特開平8-295502号
には金属酸化物に金超微粒子を分散担持された触媒を用
いて一酸化炭素を選択的に酸化する方法が記載されてい
る。また特開平9-30802 号には白金・ルテニウム触媒を
用いて、メタノールの改質反応により得られた水素含有
ガス中の一酸化炭素濃度を低減する装置が記載されてい
る。特開平11-102719 号には主成分としてルテニウムを
有する触媒を用いて一酸化炭素を選択的に酸化する一酸
化炭素濃度低減装置および低減方法が記載されている。
[0003] As a method for removing carbon monoxide from a hydrogen-containing gas, Japanese Patent Application Laid-Open No. 5-245376 discloses copper oxide, aluminum oxide, and the like.
A method of performing conversion of carbon monoxide by steam using a magnesium oxide catalyst is described.Japanese Patent Application Laid-Open No. 8-295502 discloses a method of converting carbon monoxide using a catalyst in which ultrafine gold particles are dispersed and supported on a metal oxide. A method for selective oxidation is described. Japanese Patent Application Laid-Open No. 9-30802 discloses an apparatus for reducing the concentration of carbon monoxide in a hydrogen-containing gas obtained by a reforming reaction of methanol using a platinum-ruthenium catalyst. JP-A-11-102719 describes a carbon monoxide concentration reducing apparatus and method for selectively oxidizing carbon monoxide using a catalyst having ruthenium as a main component.

【0004】[0004]

【発明が解決しようとする課題】従来技術の酸化銅・酸
化アルミニウム・酸化マグネシウム触媒を用いる方法
(特開平5-245376号) は、反応温度が 300〜400 ℃と高
く、一酸化炭素の変換率が小さい。金属酸化物に金超微
粒子を分散担持された触媒を用いる方法 (特開平8-2955
02号) は、低温で反応するものの、触媒が非常に高価で
ある。また白金・ルテニウム触媒を用いる方法 (特開平
9-30802 号) や主成分としてルテニウムを有する触媒を
用いる方法 (特開平11-102719 号) も触媒が高価であ
り、また一酸化炭素の一部が水素と反応してメタン化を
起こしやすい。メタン化は水素を多く消費するとともに
反応時の発熱量が大きく、反応温度が暴走し易く、温度
制御が困難である。本発明の目的は、主にメタノールを
原料とする燃料電池の開発のために、水素含有ガス中の
一酸化炭素濃度を低温で効率的に低減する方法および触
媒を提供することにある。
SUMMARY OF THE INVENTION A method using a prior art copper oxide / aluminum oxide / magnesium oxide catalyst.
(Japanese Unexamined Patent Publication No. 5-245376) has a high reaction temperature of 300 to 400 ° C. and a low conversion of carbon monoxide. A method using a catalyst in which ultrafine gold particles are dispersed and supported on a metal oxide (Japanese Patent Application Laid-Open No.
No. 02) reacts at low temperature, but the catalyst is very expensive. Also, a method using a platinum / ruthenium catalyst (Japanese Patent Laid-Open
No. 9-30802) and a method using a catalyst containing ruthenium as a main component (JP-A-11-102719) are also expensive, and a part of carbon monoxide reacts with hydrogen to easily cause methanation. Methanation consumes a large amount of hydrogen and generates a large amount of heat during the reaction, so that the reaction temperature tends to run away and it is difficult to control the temperature. An object of the present invention is to provide a method and a catalyst for efficiently reducing the concentration of carbon monoxide in a hydrogen-containing gas at a low temperature, mainly for the development of a fuel cell using methanol as a raw material.

【0005】[0005]

【課題を解決するための手段】本発明者らは上記の如き
課題を有するメタノール改質ガス中の一酸化炭素濃度を
低減する方法について鋭意検討した結果、鉄・白金共存
系触媒を用い、一酸化炭素と酸素を接触させることによ
りメタン化反応などを起さずに水素含有ガス中の一酸化
炭素を低温で効率良く除去することができることを見出
し、本発明に到達した。即ち本発明は、鉄・白金共存系
触媒の存在下、一酸化炭素と酸素を接触させることを特
徴とする水素含有ガス中の一酸化炭素低減方法および、
担体に鉄および白金含有成分を担持させてなる一酸化炭
素低減用触媒である。
The present inventors have conducted intensive studies on a method for reducing the concentration of carbon monoxide in a methanol reformed gas, which has the above-mentioned problems, and as a result, have found that an iron-platinum coexisting catalyst has been used. The inventors have found that carbon monoxide in a hydrogen-containing gas can be efficiently removed at a low temperature without causing a methanation reaction or the like by bringing carbon oxide and oxygen into contact with each other, and arrived at the present invention. That is, the present invention provides a method for reducing carbon monoxide in a hydrogen-containing gas, which comprises contacting carbon monoxide and oxygen in the presence of an iron-platinum coexisting catalyst, and
It is a catalyst for reducing carbon monoxide in which a carrier contains iron and platinum-containing components.

【0006】[0006]

【発明の実施の形態】本発明における原料の水素含有ガ
スは特に限定されないが、通常、炭化水素またはメタノ
ールの水蒸気改質、或いは部分酸化により製造される。
炭化水素としては、メタンを主成分とする気体状の天然
ガス、液体状のLPG、ナフサ、軽質油などが用いられ
る。炭化水素の水蒸気改質炉にはニッケル系触媒が用い
られ 800〜1000℃で反応させ、水素、一酸化炭素および
炭酸ガスを主成分とする合成ガスが製造される。本発明
における原料の水素含有ガスには、上記により得られた
合成ガス中の一酸化炭素を鉄系触媒や銅系触媒を用いて
炭酸ガスに転化したものが用いられる。該水素含有ガス
には通常、1モル%程度の一酸化炭素が含まれるが、こ
れに酸素含有ガスを添加し、本発明による鉄・白金共存
系触媒を用いて反応させることにより、一酸化炭素が選
択的に酸化されて炭酸ガスとなり、一酸化炭素が除去さ
れる。
BEST MODE FOR CARRYING OUT THE INVENTION The hydrogen-containing gas as a raw material in the present invention is not particularly limited, but is usually produced by steam reforming or partial oxidation of hydrocarbon or methanol.
As the hydrocarbon, gaseous natural gas containing methane as a main component, liquid LPG, naphtha, light oil and the like are used. Nickel-based catalysts are used in hydrocarbon steam reforming furnaces and are reacted at 800 to 1000 ° C to produce synthesis gas containing hydrogen, carbon monoxide and carbon dioxide as main components. As the hydrogen-containing gas as a raw material in the present invention, a gas obtained by converting carbon monoxide in the synthesis gas obtained as described above to carbon dioxide using an iron-based catalyst or a copper-based catalyst is used. The hydrogen-containing gas usually contains about 1 mol% of carbon monoxide. The oxygen-containing gas is added to the hydrogen-containing gas, and the reaction is performed using the iron-platinum coexisting catalyst according to the present invention. Is selectively oxidized to carbon dioxide gas, and carbon monoxide is removed.

【0007】メタノールの水蒸気改質は銅−亜鉛系の触
媒、Pd,Ptなどの貴金属系触媒を用いて、200〜350℃程
で反応させ、水素および二酸化炭素を主成分とする合成
ガスが製造される。該合成ガスが本願発明における原料
の水素含有ガスに用いられる。一般に貴金属系触媒を用
いた場合、該水素含有ガスには、1〜5モル%程度の一
酸化炭素が含まれ、、銅−亜鉛系触媒を用いた場合、該
水素含有ガスには、1モル%以下の一酸化炭素が含まれ
るが、これらの水素含有ガスを本発明における原料とし
て直接使用される。
[0007] Methanol steam reforming is carried out at about 200 to 350 ° C using a copper-zinc catalyst or a noble metal catalyst such as Pd or Pt to produce a synthesis gas containing hydrogen and carbon dioxide as main components. Is done. The synthesis gas is used as a raw material hydrogen-containing gas in the present invention. Generally, when a noble metal-based catalyst is used, the hydrogen-containing gas contains about 1 to 5 mol% of carbon monoxide, and when a copper-zinc-based catalyst is used, the hydrogen-containing gas contains 1 mol%. % Of carbon monoxide, but these hydrogen-containing gases are used directly as raw materials in the present invention.

【0008】本発明において触媒活性成分となる鉄およ
び白金を含有する組成物としては、担持触媒、共沈殿触
媒などの形体を選ぶことが出来る。車載型燃料電池に使
用するためには、鉄および白金含有成分を担体に担持さ
せてなる触媒が好ましい。触媒担体は表面積の高いアル
ミナ、シリカ等が好適であり、活性成分担持の際の順
序、方法は特に限定なく、含浸法や析出法などの公知の
方法を組み合わせて使うことが出来る。共沈殿触媒は、
鉄、白金を含む水溶液から、例えば炭酸アルカリ沈澱剤
により沈澱させる方法などを使うことが出来る。また、
鉄沈澱スラリーに担体成分スラリーを添加して炭酸ガス
により炭酸化する方法等公知の方法から得られた鉄触媒
に白金成分を担持するなど適宜採用できる。組成物含有
量としては鉄は 0.1〜70重量% 、好ましくは 0.5〜50重
量% 、Ptは0.1〜10重量% 、好ましくは 0.2〜5 重量%
である。
In the present invention, as the composition containing iron and platinum as the catalytically active components, forms such as a supported catalyst and a coprecipitation catalyst can be selected. For use in a vehicle-mounted fuel cell, a catalyst in which iron and platinum-containing components are supported on a carrier is preferable. As the catalyst carrier, alumina, silica or the like having a high surface area is suitable. The order and method for carrying the active component are not particularly limited, and known methods such as impregnation method and precipitation method can be used in combination. The coprecipitation catalyst is
For example, a method of precipitating from an aqueous solution containing iron and platinum using, for example, an alkali carbonate precipitant can be used. Also,
The method can be appropriately adopted, for example, by supporting a platinum component on an iron catalyst obtained by a known method such as a method of adding a carrier component slurry to an iron precipitation slurry and carbonating with a carbon dioxide gas. As the composition content, iron is 0.1 to 70% by weight, preferably 0.5 to 50% by weight, and Pt is 0.1 to 10% by weight, preferably 0.2 to 5% by weight.
It is.

【0009】本発明において一酸化炭素と酸素を接触さ
せる反応条件は特に限定されない。通常、反応温度は20
〜120 ℃であり、好ましくは30〜100 ℃である。改質原
料ガスに対する酸素量としては一酸化炭素量の 0.5〜4
倍、好ましくは 0.5〜2 倍である。反応圧力は常圧から
20気圧(0.1〜2MPa) 程度である。触媒の使用量は、ガス
空間速度(GHSV)として 500〜50000[1/h]、好まし
くは1000〜30000[1/h]である。
In the present invention, the reaction conditions for bringing carbon monoxide into contact with oxygen are not particularly limited. Usually the reaction temperature is 20
~ 120 ° C, preferably 30-100 ° C. The amount of oxygen for the reforming raw material gas is 0.5 to 4 times the amount of carbon monoxide.
And preferably 0.5 to 2 times. Reaction pressure from normal pressure
It is about 20 atm (0.1-2MPa). The amount of the catalyst used is 500 to 50000 [1 / h], preferably 1000 to 30000 [1 / h] as a gas hourly space velocity (GHSV).

【0010】本発明の方法で使用される鉄・白金共存系
触媒は、酸素反応率が高く、CO酸化選択率が低温で著
しく高いのが特徴である。すなわち 260℃までの温度で
一酸化炭素と水素との反応によるメタン化反応は殆ど起
こらない。また 100℃以下の温度で炭酸ガスと水素によ
る逆シフト反応が起きず、一酸化炭素の酸化による炭酸
ガス生成反応が酸素の消費に対して 50%以上の選択率で
行われる。本発明の方法では、COが1モル%程度含ま
れるメタノールの水蒸気改質による水素含有ガスを処理
する場合、40〜100 ℃程度の低温でCO濃度を 0.1モル
%以下とすることができ、水素燃焼量が極めて少ない。
更に80℃以下の温度範囲においてCO濃度を0.01モル%
以下にすることができる。このため、本発明の方法によ
り40〜100 ℃程度の温度範囲で処理した水素含有ガスを
リン酸型燃料電池に、80℃以下の温度で処理した水素含
有ガスを固体高分子型電池に直接使用することができ
る。従って本発明の方法により処理した水素含有ガスは
車載型等の燃料電池に極めて好適に用いることができ
る。
The iron-platinum coexisting catalyst used in the method of the present invention is characterized by a high oxygen reaction rate and a remarkably high CO oxidation selectivity at low temperatures. That is, at temperatures up to 260 ° C., the methanation reaction due to the reaction between carbon monoxide and hydrogen hardly occurs. At temperatures below 100 ° C, the reverse shift reaction between carbon dioxide and hydrogen does not occur, and the carbon dioxide generation reaction by oxidation of carbon monoxide is performed with a selectivity of 50% or more with respect to oxygen consumption. In the method of the present invention, when treating a hydrogen-containing gas by steam reforming of methanol containing about 1 mol% of CO, the CO concentration can be reduced to 0.1 mol% or less at a low temperature of about 40 to 100 ° C. Very low combustion.
Further, the CO concentration is reduced to 0.01 mol% in a temperature range of 80 ° C. or lower.
It can be: For this reason, the hydrogen-containing gas treated at a temperature range of about 40 to 100 ° C. by the method of the present invention is directly used for a phosphoric acid fuel cell, and the hydrogen-containing gas treated at a temperature of 80 ° C. or less is used directly for a polymer electrolyte battery. can do. Therefore, the hydrogen-containing gas treated by the method of the present invention can be used very suitably for a fuel cell of a vehicle type or the like.

【0011】[0011]

【実施例】以下に実施例により本発明を更に具体的に説
明する。但し本発明は以下の実施例により制限されるも
のではない。なお、各実施例および比較例における触媒
性能の評価における原料ガスには、CO 0.5モル%、O
2 0.5モル%、CO2 24モル%、H2 75モル%(O2
COモル比=1.0)の組成の酸素含有の改質ガスを用い
た。常圧下、空間速度 (SV) 約6000hr-1で反応温度を
40〜260 ℃に変化させた時の反応後のガス組成をガスク
ロマトグラフにより分析した。触媒性能の評価の結果を
示す図において、酸素反応率は原料ガス中の酸素の反応
率(転化率)を示し、CO酸化選択率は反応酸素の中で
CO酸化反応に寄与したものの比率を示す。反応酸素の
中でCO酸化反応に寄与しなかったものは殆ど水素の燃
焼に消費される。
The present invention will be described more specifically with reference to the following examples. However, the present invention is not limited by the following examples. The raw material gas in the evaluation of the catalyst performance in each of Examples and Comparative Examples contained 0.5 mol% of CO and O
2 0.5 mol%, CO 2 24 mol%, H 2 75 mol% (O 2 /
An oxygen-containing reformed gas having a composition (CO molar ratio = 1.0) was used. At normal pressure, space velocity (SV) about 6000hr -1
The gas composition after the reaction when the temperature was changed to 40 to 260 ° C. was analyzed by gas chromatography. In the graph showing the results of the evaluation of the catalyst performance, the oxygen reaction rate indicates the reaction rate (conversion rate) of oxygen in the raw material gas, and the CO oxidation selectivity indicates the ratio of reaction oxygen that contributed to the CO oxidation reaction. . Most of the reactive oxygen that has not contributed to the CO oxidation reaction is consumed for hydrogen combustion.

【0012】実施例1 市販のアルミナ球(平均径1.5mm、BET比表面積:200〜2
40m3 /g)を硝酸第二鉄9水和物を溶かした水溶液中
に加え攪拌した。その後、過剰な水酸化ナトリウム溶液
を加え、アルミナ担体上にFeとして1.0wt%量の鉄水酸化
物を析出させた。担体を濾過・乾燥後、次いで0.5wt%Pt
相当のアセチルアセトナト白金のアセトン溶液を用いて
エバポレータにて減圧乾燥で更に0.5wt%の白金を担持
し、それを乾燥・400℃焼成し、1.0wt%Fe-0.5wt%Pt/ア
ルミナ触媒を得た。触媒性能評価の結果を図1に示す。
この触媒を用いた場合、40〜260℃の温度範囲ではメタ
ンの発生はなく、反応温度が40〜100℃の範囲でCO濃
度が 0.1モル%以下に低下している。この温度範囲での
酸素に対するCOの反応率は酸素反応率が95%以上であ
り、CO酸化選択率が45〜55%の範囲内であった。さら
に、約80℃以下においてはCO濃度が0.01モル% 以下であ
る。
Example 1 Commercially available alumina spheres (average diameter 1.5 mm, BET specific surface area: 200 to 2)
(40 m 3 / g) was added to an aqueous solution in which ferric nitrate nonahydrate was dissolved, followed by stirring. Thereafter, an excess sodium hydroxide solution was added to precipitate 1.0% by weight of iron hydroxide as Fe on the alumina carrier. After filtering and drying the carrier, then 0.5 wt% Pt
Using a corresponding acetone solution of acetylacetonatoplatinum, further support 0.5 wt% of platinum by drying under reduced pressure with an evaporator, and then drying and calcining at 400 ° C to obtain 1.0 wt% Fe-0.5 wt% Pt / alumina catalyst. Obtained. FIG. 1 shows the results of the catalyst performance evaluation.
When this catalyst is used, methane is not generated in the temperature range of 40 to 260 ° C, and the CO concentration is reduced to 0.1 mol% or less when the reaction temperature is in the range of 40 to 100 ° C. The reaction rate of CO to oxygen in this temperature range was such that the oxygen reaction rate was 95% or more and the CO oxidation selectivity was in the range of 45 to 55%. Further, at about 80 ° C. or less, the CO concentration is 0.01 mol% or less.

【0013】比較例1 実施例1において白金を担持せずに1.0wt%Fe/アルミナ
触媒を得た。実施例1と同様な条件で反応させた。結果
を図2に示す。この触媒では40〜260℃の温度範囲では
メタンの発生はないが、約230℃以上にしないと酸素反
応率を80%以上にすることができず、CO選択率も12%以下
でCO濃度を 0.4モル% 以下にすることはできない。反応
温度が40〜100℃の範囲では、ほとんど反応が進行しな
い。
Comparative Example 1 In Example 1, a 1.0 wt% Fe / alumina catalyst was obtained without carrying platinum. The reaction was carried out under the same conditions as in Example 1. The results are shown in FIG. With this catalyst, methane is not generated in the temperature range of 40 to 260 ° C, but the oxygen reaction rate cannot be increased to 80% or more unless the temperature is increased to about 230 ° C or higher. It cannot be less than 0.4 mol%. When the reaction temperature is in the range of 40 to 100 ° C., the reaction hardly proceeds.

【0014】比較例2 実施例1において鉄を担持せずに1.0wt%Pt/アルミナを
得た。実施例1と同様な条件で反応させた。結果を図3
に示す。この触媒では40〜260 ℃の温度範囲ではメタン
の発生はないが、約 150℃以上にしないと酸素反応率を
80%以上にすることができず、CO選択率は 50%程度ある
ものの、CO濃度が0.1%以下となる温度範囲は約 130〜19
0 ℃の範囲であり、反応温度が40〜100 ℃の範囲では、
CO濃度を0.42モル%以下にはできない。
Comparative Example 2 In Example 1, 1.0 wt% Pt / alumina was obtained without carrying iron. The reaction was carried out under the same conditions as in Example 1. Fig. 3 shows the results.
Shown in This catalyst does not generate methane in the temperature range of 40 to 260 ° C, but if the temperature is not higher than about 150 ° C, the oxygen reaction rate will decrease.
Although it cannot be 80% or more and the CO selectivity is about 50%, the temperature range where the CO concentration is 0.1% or less is about 130 to 19
0 ° C, and when the reaction temperature is in the range of 40 to 100 ° C,
CO concentration cannot be reduced below 0.42 mol%.

【0015】比較例3 実施例1において鉄を担持せずに、アセチルアセトナト
白金に代えてアセチルアセトナトルテニウムを用い、1.
0wt%Ru/アルミナを得た。実施例1と同様な条件で反
応させた。結果を図4に示す。この触媒では150℃以上
でメタンの発生があり、温度上昇によりメタンの発生が
急激に増大する。約130℃以上にしないと酸素反応率を8
0%以上にすることができず、CO選択率は50%程度あるも
のの、CO濃度が0.1%以下となる温度範囲は約140℃以上
である。反応温度が40〜100 ℃の範囲では、CO濃度を
0.4モル%以下にはできない。
Comparative Example 3 In Example 1, acetylacetonatoruthenium was used instead of acetylacetonatoplatinum without supporting iron, and 1.
0 wt% Ru / alumina was obtained. The reaction was carried out under the same conditions as in Example 1. FIG. 4 shows the results. With this catalyst, methane is generated at 150 ° C. or higher, and the methane generation increases sharply as the temperature rises. Do not raise the oxygen reaction rate to
Although it cannot be set to 0% or more and the CO selectivity is about 50%, the temperature range where the CO concentration is 0.1% or less is about 140 ° C. or more. If the reaction temperature is between 40 and 100 ° C, the CO concentration
It cannot be less than 0.4 mol%.

【0016】[0016]

【発明の効果】以上の実施例からも明らかなように、本
発明の方法によればCOが1モル%程度含まれるメタノ
ールの水蒸気改質による水素含有ガスが40〜100 ℃程度
の低温でCO濃度を 0.1モル%以下とすることができ、
水素損失が極めて少ない。従って本発明の方法により処
理した水素含有ガスは車載型等の燃料電池に極めて好適
に用いることができ、本発明の工業的意義は大きい。
As is clear from the above examples, according to the method of the present invention, the hydrogen-containing gas obtained by steam reforming of methanol containing about 1 mol% of CO can be used at a low temperature of about 40 to 100.degree. The concentration can be 0.1 mol% or less,
Very low hydrogen loss. Therefore, the hydrogen-containing gas treated by the method of the present invention can be very suitably used for a fuel cell of a vehicle type or the like, and the present invention has great industrial significance.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1の触媒における性能評価の結果を示す
図面である。
FIG. 1 is a drawing showing the results of performance evaluation of a catalyst of Example 1.

【図2】比較例1の触媒における性能評価の結果を示す
図面である。
FIG. 2 is a drawing showing the results of performance evaluation of a catalyst of Comparative Example 1.

【図3】比較例2の触媒における性能評価の結果を示す
図面である。
FIG. 3 is a drawing showing the results of performance evaluation of a catalyst of Comparative Example 2.

【図4】比較例3の触媒における性能評価の結果を示す
図面である。
FIG. 4 is a drawing showing the results of performance evaluation of a catalyst of Comparative Example 3.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】鉄・白金共存系触媒の存在下、一酸化炭素
と酸素を接触させることを特徴とする水素含有ガス中の
一酸化炭素低減方法。
1. A method for reducing carbon monoxide in a hydrogen-containing gas, comprising contacting carbon monoxide with oxygen in the presence of an iron-platinum coexisting catalyst.
【請求項2】水素含有ガス中に含まれる一酸化炭素に対
して 0.5〜4 倍の酸素を20〜120℃で接触させる請求項
1に記載の水素含有ガス中の一酸化炭素低減方法。
2. The method for reducing carbon monoxide in a hydrogen-containing gas according to claim 1, wherein 0.5 to 4 times of oxygen is contacted at 20 to 120 ° C. with respect to carbon monoxide contained in the hydrogen-containing gas.
【請求項3】鉄および白金含有成分を担体に担持させて
なる一酸化炭素低減用触媒。
3. A catalyst for reducing carbon monoxide, comprising an iron and platinum-containing component supported on a carrier.
JP2000008927A 2000-01-18 2000-01-18 Method for reduction of carbon monoxide in hydrogen- containing gas and catalyst therefor Pending JP2001199706A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000008927A JP2001199706A (en) 2000-01-18 2000-01-18 Method for reduction of carbon monoxide in hydrogen- containing gas and catalyst therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000008927A JP2001199706A (en) 2000-01-18 2000-01-18 Method for reduction of carbon monoxide in hydrogen- containing gas and catalyst therefor

Publications (1)

Publication Number Publication Date
JP2001199706A true JP2001199706A (en) 2001-07-24

Family

ID=18537142

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000008927A Pending JP2001199706A (en) 2000-01-18 2000-01-18 Method for reduction of carbon monoxide in hydrogen- containing gas and catalyst therefor

Country Status (1)

Country Link
JP (1) JP2001199706A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6913739B2 (en) 2000-09-25 2005-07-05 Engelhard Corporation Platinum group metal promoted copper oxidation catalysts and methods for carbon monoxide remediation

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5353596A (en) * 1976-10-07 1978-05-16 Engelhard Min & Chem Catalytic oxidation process for carbon monoxide
JPS6135853A (en) * 1984-07-27 1986-02-20 Nikki Universal Co Ltd Carbon monoxide removing catalyst
JPH01148344A (en) * 1987-09-08 1989-06-09 Phillips Petroleum Co Catalyst composition for oxidizing carbon monoxide and its production
JPH03109944A (en) * 1989-08-07 1991-05-09 Phillips Petroleum Co Co oxidative catalyst composition
JPH07256112A (en) * 1994-03-19 1995-10-09 Masahiro Watanabe Reformed gas oxidation catalyst and oxidation of carbon monoxide in reformed gas using the same
JPH11347414A (en) * 1998-06-10 1999-12-21 Tanaka Kikinzoku Kogyo Kk Catalyst for oxidation of reformed gas
JP2003508216A (en) * 1999-09-09 2003-03-04 エンゲルハード・コーポレーシヨン Catalyst for selective oxidation of carbon monoxide and its production

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5353596A (en) * 1976-10-07 1978-05-16 Engelhard Min & Chem Catalytic oxidation process for carbon monoxide
JPS6135853A (en) * 1984-07-27 1986-02-20 Nikki Universal Co Ltd Carbon monoxide removing catalyst
JPH01148344A (en) * 1987-09-08 1989-06-09 Phillips Petroleum Co Catalyst composition for oxidizing carbon monoxide and its production
JPH03109944A (en) * 1989-08-07 1991-05-09 Phillips Petroleum Co Co oxidative catalyst composition
JPH07256112A (en) * 1994-03-19 1995-10-09 Masahiro Watanabe Reformed gas oxidation catalyst and oxidation of carbon monoxide in reformed gas using the same
JPH11347414A (en) * 1998-06-10 1999-12-21 Tanaka Kikinzoku Kogyo Kk Catalyst for oxidation of reformed gas
JP2003508216A (en) * 1999-09-09 2003-03-04 エンゲルハード・コーポレーシヨン Catalyst for selective oxidation of carbon monoxide and its production

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6913739B2 (en) 2000-09-25 2005-07-05 Engelhard Corporation Platinum group metal promoted copper oxidation catalysts and methods for carbon monoxide remediation

Similar Documents

Publication Publication Date Title
US6299995B1 (en) Process for carbon monoxide preferential oxidation for use with fuel cells
US6409939B1 (en) Method for producing a hydrogen-rich fuel stream
US7906098B2 (en) Method for making hydrogen using a gold containing water-gas shift catalyst
EP1138383B1 (en) Method for oxidising carbon monoxide contained in hydrogen
JP5094028B2 (en) Carbon monoxide methanation catalyst and carbon monoxide methanation method using the catalyst
JP3746401B2 (en) Selective oxidation catalyst for carbon monoxide in reformed gas
TWI294413B (en) Method for converting co and hydrogen into methane and water
JP2001279274A (en) Fuel oil for fuel cell, desulfurization method and method for producing hydrogen
JP3943902B2 (en) Hydrocarbon desulfurization catalyst, desulfurization method, and fuel cell system
JP3756565B2 (en) Method for removing CO in hydrogen gas
EP1110907B1 (en) Process for reducing concentration of carbon monoxide in hydrogen-containing gas and catalyst used therefor
JPH0748101A (en) Production of hydrogen-containing gas for fuel cell
JP3574469B2 (en) Method for oxidizing CO to CO2 and method for producing hydrogen-containing gas for fuel cell
JP4210130B2 (en) Hydrocarbon desulfurization catalyst, desulfurization method, and fuel cell system
JP2001199706A (en) Method for reduction of carbon monoxide in hydrogen- containing gas and catalyst therefor
JP2002273223A (en) Method for manufacturing co removing catalyst
JP2001180907A (en) Catalyst and method of reducing carbon monoxide in gas containing hydrogen
JP2001220109A (en) Method of reducing carbon monoxide in hydrogen- containing gas and catalyst
JP2001302205A (en) Method for reducing carbon monoxide in hydrogen- containing gas, and catalyst
JP2001199707A (en) Method for reducing carbon monoxide in hydrogen- containing gas and catalyst therefor
JP2001199708A (en) Method for reducing carbon monoxide in hydrogen- containing gas and catalyst therefor
JP4057314B2 (en) Hydrocarbon desulfurization method and fuel cell system
CA2739542C (en) Method for making hydrogen using a gold containing water-gas shift catalyst
JP2006314870A (en) Shift catalyst
JPWO2004000457A1 (en) Selective oxidation catalyst for carbon monoxide in reformed gas

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090724

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090729

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100414