JP2001199707A - Method for reducing carbon monoxide in hydrogen- containing gas and catalyst therefor - Google Patents

Method for reducing carbon monoxide in hydrogen- containing gas and catalyst therefor

Info

Publication number
JP2001199707A
JP2001199707A JP2000008928A JP2000008928A JP2001199707A JP 2001199707 A JP2001199707 A JP 2001199707A JP 2000008928 A JP2000008928 A JP 2000008928A JP 2000008928 A JP2000008928 A JP 2000008928A JP 2001199707 A JP2001199707 A JP 2001199707A
Authority
JP
Japan
Prior art keywords
catalyst
hydrogen
carbon monoxide
containing gas
mol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000008928A
Other languages
Japanese (ja)
Inventor
Yasushi Hiramatsu
靖史 平松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP2000008928A priority Critical patent/JP2001199707A/en
Priority to EP00126540A priority patent/EP1110907B1/en
Priority to EP05106392A priority patent/EP1591416A3/en
Priority to DE60036681T priority patent/DE60036681T2/en
Priority to US09/734,888 priority patent/US6548034B2/en
Publication of JP2001199707A publication Critical patent/JP2001199707A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

PROBLEM TO BE SOLVED: To provide a method and a catalyst that can efficiently reduce the concentration of carbon monoxide in the hydrogen-containing gas resultant from methanol reforming process at a low temperature. SOLUTION: The carbon monoxide in the hydrogen-containing gas is brought into contact with oxygen in the presence of a copper-platinum binary catalyst.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は水素含有ガス中の一
酸化炭素低減方法および装置、詳しくは燃料電池の水素
源として利用するために、炭化水素やメタノール等の改
質反応により製造された水素含有ガス中の一酸化炭素低
減する方法および触媒に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for reducing carbon monoxide in a hydrogen-containing gas, and more particularly to hydrogen produced by a reforming reaction of hydrocarbons and methanol for use as a hydrogen source for fuel cells. The present invention relates to a method and a catalyst for reducing carbon monoxide in a contained gas.

【0002】[0002]

【従来技術】水素含有ガスは炭化水素やメタノール等を
水蒸気と改質反応させることにより製造され有機化学品
の原料として用いられているが、最近は特に燃料電池の
水素源としての利用が注目されている。これらの水素含
有ガスには一酸化炭素が含まれており、燃料電池の水素
源として利用する場合には一酸化炭素が燃料電池の電極
の白金触媒に吸着して触媒としての機能を低下させるた
めに水素濃度を極力低下させる必要がある。一酸化炭素
の許容濃度は、例えばリン酸型燃料電池の場合は数%以
下であり、固体高分子型電池の場合は10ppm以下で
ある。メタノールは比較的低温で水蒸気との改質反応を
行うことができ、一酸化炭素の含量が少ないことから燃
料電池の水素源として有利に使用することができる。こ
のためメタノールを原料とする燃料電池の開発、特に車
載可能な自動車用燃料電池の開発が進められている。
2. Description of the Related Art Hydrogen-containing gas is produced by reforming hydrocarbons, methanol and the like with steam, and is used as a raw material for organic chemicals. ing. These hydrogen-containing gases contain carbon monoxide, and when used as a hydrogen source for a fuel cell, the carbon monoxide is adsorbed on the platinum catalyst of the electrode of the fuel cell and deteriorates its function as a catalyst. It is necessary to lower the hydrogen concentration as much as possible. The allowable concentration of carbon monoxide is, for example, several percent or less in the case of a phosphoric acid fuel cell, and 10 ppm or less in the case of a polymer electrolyte battery. Methanol can perform a reforming reaction with steam at a relatively low temperature, and has a low content of carbon monoxide, so that it can be advantageously used as a hydrogen source for a fuel cell. For this reason, development of a fuel cell using methanol as a raw material, particularly development of a fuel cell for a vehicle that can be mounted on a vehicle, is being promoted.

【0003】水素含有ガス中の一酸化炭素低減方法とし
ては、特開平5-245376号に酸化銅・酸化アルミニウム・
酸化マグネシウム触媒を用いて水蒸気による一酸化炭素
の変換を行う方法が記載されており、特開平8-295502号
には金属酸化物に金超微粒子を分散担持された触媒を用
いて一酸化炭素を選択的に酸化低減する方法が記載され
ている。また特開平9-30802 号には白金・ルテニウム触
媒を用いて、メタノールの改質反応により得られた水素
含有ガス中の一酸化炭素濃度を低減する装置が記載され
ている。
As a method for reducing carbon monoxide in a hydrogen-containing gas, Japanese Patent Application Laid-Open No. 5-245376 discloses copper oxide, aluminum oxide, and the like.
A method of performing conversion of carbon monoxide by steam using a magnesium oxide catalyst is described.Japanese Patent Application Laid-Open No. 8-295502 describes a method of converting carbon monoxide using a catalyst in which ultrafine gold particles are dispersed and supported on a metal oxide. A method for selectively reducing oxidation is described. Japanese Patent Application Laid-Open No. 9-30802 discloses an apparatus for reducing the concentration of carbon monoxide in a hydrogen-containing gas obtained by a reforming reaction of methanol using a platinum-ruthenium catalyst.

【0004】[0004]

【発明が解決しようとする課題】従来技術の酸化銅・酸
化アルミニウム・酸化マグネシウム触媒を用いる方法
(特開平5-245376号) は、反応温度が 300〜400 ℃と高
く、一酸化炭素の変換率が小さい。金属酸化物に金超微
粒子を分散担持された触媒を用いる方法 (特開平8-2955
02号) は、低温で反応するものの、触媒が非常に高価で
ある。また白金・ルテニウム触媒を用いる方法 (特開平
9-30802 号) も触媒が高価であり、また一酸化炭素の一
部が水素と反応してメタン化を起こしやすい。メタン化
は水素を多く消費するとともに反応時の発熱量が大き
く、温度暴走し易く、反応温度の制御が難しい点があっ
た。本発明の目的は、主にメタノールを原料とする燃料
電池の開発のために、水素含有ガス中の一酸化炭素濃度
を低温で効率的に低減する方法および触媒を提供するこ
とにある。
SUMMARY OF THE INVENTION A method using a prior art copper oxide / aluminum oxide / magnesium oxide catalyst.
(Japanese Unexamined Patent Publication No. 5-245376) has a high reaction temperature of 300 to 400 ° C. and a low conversion of carbon monoxide. A method using a catalyst in which ultrafine gold particles are dispersed and supported on a metal oxide (Japanese Patent Application Laid-Open No.
No. 02) reacts at low temperature, but the catalyst is very expensive. Also, a method using a platinum / ruthenium catalyst (Japanese Patent Laid-Open
9-30802) is also expensive, and some of the carbon monoxide reacts with hydrogen to cause methanation. Methanation consumes a large amount of hydrogen, generates a large amount of heat during the reaction, easily causes a temperature runaway, and has difficulties in controlling the reaction temperature. An object of the present invention is to provide a method and a catalyst for efficiently reducing the concentration of carbon monoxide in a hydrogen-containing gas at a low temperature, mainly for the development of a fuel cell using methanol as a raw material.

【0005】[0005]

【課題を解決するための手段】本発明者らは上記の如き
課題を有するメタノール改質ガス中の一酸化炭素濃度を
低減する方法について鋭意検討した結果、銅・白金共存
系触媒を用い、一酸化炭素と酸素を接触させることによ
り水素含有ガス中の一酸化炭素を低温で効率良く低減す
ることができることを見出し、本発明に到達した。即ち
本発明は、銅・白金共存系触媒の存在下、一酸化炭素と
酸素を接触させることを特徴とする水素含有ガス中の一
酸化炭素低減方法および担体に銅および白金含有成分を
担持させてなる一酸化炭素低減用触媒である。
Means for Solving the Problems The present inventors have conducted intensive studies on a method for reducing the concentration of carbon monoxide in a methanol reformed gas having the above-mentioned problems, and as a result, have found that a method using a copper-platinum coexisting catalyst has been proposed. The present inventors have found that carbon monoxide in a hydrogen-containing gas can be efficiently reduced at a low temperature by bringing carbon oxide and oxygen into contact with each other, and arrived at the present invention. That is, the present invention provides a method for reducing carbon monoxide in a hydrogen-containing gas, which comprises contacting carbon monoxide and oxygen in the presence of a copper-platinum coexisting catalyst, and supporting a copper and platinum-containing component on a carrier. Is a catalyst for reducing carbon monoxide.

【0006】[0006]

【発明の実施の形態】本発明における原料の水素含有ガ
スは特に限定されないが、通常、炭化水素またはメタノ
ールの水蒸気改質、或いは部分酸化により製造される。
炭化水素としては、メタンを主成分とする気体状の天然
ガス、液体状のLPG、ナフサ、軽質油などが用いられ
る。炭化水素の水蒸気改質炉にはニッケル系触媒が用い
られ 800〜1000℃で反応させ、水素、一酸化炭素および
炭酸ガスを主成分とする合成ガスが製造される。本願発
明における原料の水素含有ガスには、該合成ガス中の一
酸化炭素を鉄系触媒や銅系触媒を用いて炭酸ガスに転化
したものが用いられる。該水素含有ガスには通常、1%
程度の一酸化炭素が含まれるが、これに本発明の方法に
より、酸素含有ガスを添加し、銅・白金共存系触媒を用
いて反応させることにより、一酸化炭素が選択的に酸化
されて炭酸ガスとなり、一酸化炭素が低減される。
BEST MODE FOR CARRYING OUT THE INVENTION The hydrogen-containing gas as a raw material in the present invention is not particularly limited, but is usually produced by steam reforming or partial oxidation of hydrocarbon or methanol.
As the hydrocarbon, gaseous natural gas containing methane as a main component, liquid LPG, naphtha, light oil and the like are used. Nickel-based catalysts are used in hydrocarbon steam reforming furnaces and are reacted at 800 to 1000 ° C to produce synthesis gas containing hydrogen, carbon monoxide and carbon dioxide as main components. As the hydrogen-containing gas as the raw material in the present invention, a gas obtained by converting carbon monoxide in the synthesis gas into carbon dioxide using an iron-based catalyst or a copper-based catalyst is used. The hydrogen-containing gas usually contains 1%
Although carbon monoxide is contained by the method of the present invention, the oxygen-containing gas is added thereto, and the reaction is carried out using a copper-platinum coexisting catalyst. It becomes a gas and carbon monoxide is reduced.

【0007】本発明においてメタノールの水蒸気改質は
銅−亜鉛系の触媒、Pd,Ptなどの貴金属系触媒を用いて
200〜350 ℃程で反応させ、水素および二酸化炭素を主
成分とする合成ガスが製造される。該合成ガスが本願発
明における原料の水素含有ガスに用いられる。一般に貴
金属系触媒を用いた場合、該水素含有ガスには、1〜5
%程度の一酸化炭素が含まれ、銅−亜鉛系触媒を用いた
場合、該水素含有ガスには、1%以下の一酸化炭素が含
まれるが、これに本発明の方法により、酸素含有ガスを
添加し、銅・白金共存系触媒を用いて反応させることに
より、一酸化炭素が選択的に酸化されて炭酸ガスとな
り、一酸化炭素が低減される。
In the present invention, the steam reforming of methanol is performed using a copper-zinc catalyst or a noble metal catalyst such as Pd or Pt.
The reaction is performed at about 200 to 350 ° C. to produce a synthesis gas containing hydrogen and carbon dioxide as main components. The synthesis gas is used as a raw material hydrogen-containing gas in the present invention. Generally, when a noble metal-based catalyst is used, the hydrogen-containing gas contains 1 to 5
% Of carbon monoxide, and when a copper-zinc catalyst is used, the hydrogen-containing gas contains 1% or less of carbon monoxide. Is added and reacted using a copper / platinum coexisting catalyst, carbon monoxide is selectively oxidized to carbon dioxide gas, and carbon monoxide is reduced.

【0008】本発明において触媒活性成分となる銅およ
び白金を含有する組成物としては、担持触媒、共沈殿触
媒などの形体を選ぶことが出来る。車載型燃料電池に使
用するために、担体に銅および白金含有成分を担持させ
てなる触媒を用いることが好ましい。触媒担体は表面積
の高いアルミナ、シリカ等が好適であるが、活性成分担
持の際の順序、方法は特に限定なく、含浸法や析出法な
どの公知の方法を組み合わせて使うことが出来る。共沈
殿触媒は、銅および白金を含む水溶液から、例えば炭酸
アルカリ沈澱剤により沈澱させる方法などを使うことが
出来る。また、銅沈澱スラリーに担体成分スラリーを添
加して炭酸ガスにより炭酸化する方法等公知の方法から
得られた銅触媒に白金成分を担持するなど適宜採用でき
る。触媒組成物の含有量としては銅は 0.1〜70重量% 、
好ましくは 0.5〜50重量%、Ptは 0.1〜10重量% 、好ま
しくは 0.2〜5 重量% である。
In the present invention, as the composition containing copper and platinum as catalytically active components, forms such as a supported catalyst and a coprecipitation catalyst can be selected. For use in a vehicle-mounted fuel cell, it is preferable to use a catalyst having a carrier carrying copper and platinum-containing components. As the catalyst carrier, alumina, silica or the like having a high surface area is suitable, but the order and method for carrying the active ingredient are not particularly limited, and known methods such as impregnation method and precipitation method can be used in combination. As the coprecipitation catalyst, a method of precipitating from an aqueous solution containing copper and platinum with, for example, an alkali carbonate precipitant can be used. In addition, a platinum component can be supported on a copper catalyst obtained by a known method such as a method of adding a carrier component slurry to a copper precipitation slurry and carbonating with a carbon dioxide gas. As the content of the catalyst composition, copper is 0.1 to 70% by weight,
Preferably 0.5 to 50% by weight, Pt 0.1 to 10% by weight, preferably 0.2 to 5% by weight.

【0009】一酸化炭素を選択的に酸化するための反応
条件は次の通りである。反応温度は通常 100〜200 ℃で
あり、好ましくは 120〜160 ℃である。改質原料ガスへ
の酸素添加量は一酸化炭素含量の 0.5〜4 倍、好ましく
は 0.5〜2 倍である。反応圧力は常圧から20気圧程度で
ある。触媒の使用量は、ガス空間速度(GHSV)とし
て 500〜50000[1/h]、好ましくは1000〜30000[1/h]であ
る。
The reaction conditions for selectively oxidizing carbon monoxide are as follows. The reaction temperature is usually from 100 to 200 ° C, preferably from 120 to 160 ° C. The amount of oxygen added to the reforming raw material gas is 0.5 to 4 times, preferably 0.5 to 2 times the carbon monoxide content. The reaction pressure is from normal pressure to about 20 atm. The amount of the catalyst used is 500 to 50000 [1 / h], preferably 1000 to 30000 [1 / h] as a gas hourly space velocity (GHSV).

【0010】本発明の方法で使用される銅・白金共存系
触媒は、酸素反応率が高く、CO酸化選択率が低温で著
しく高いのが特徴である。すなわち 260℃までの温度で
一酸化炭素と水素との反応によるメタン化反応は殆ど起
こらない。また 160℃以下の温度で炭酸ガスと水素によ
る逆シフト反応が起きず、一酸化炭素の酸化による炭酸
ガス生成反応が酸素の消費に対して 40%以上の選択率で
行われる。本発明の方法では、COが1モル%程度含ま
れるメタノールの水蒸気改質による水素含有ガスを処理
する場合、ほぼ 120〜160 ℃程度の低温でCO濃度を
0.1モル%以下とすることができ、水素燃焼量が極めて
少ない。このため、本発明の方法により 120〜160 ℃程
度の温度範囲で処理した水素含有ガスをリン酸型燃料電
池や固体高分子型電池に直接使用することもできる。従
って本発明の方法により処理した水素含有ガスは車載型
等の燃料電池に極めて好適に用いることができる。
The copper / platinum coexisting catalyst used in the method of the present invention is characterized by a high oxygen reaction rate and a remarkably high CO oxidation selectivity at low temperatures. That is, at temperatures up to 260 ° C., the methanation reaction due to the reaction between carbon monoxide and hydrogen hardly occurs. At a temperature below 160 ° C, the reverse shift reaction between carbon dioxide and hydrogen does not occur, and the carbon dioxide generation reaction by oxidation of carbon monoxide is performed with a selectivity of 40% or more with respect to the consumption of oxygen. In the method of the present invention, when treating a hydrogen-containing gas by steam reforming of methanol containing about 1 mol% of CO, the CO concentration is reduced at a low temperature of about 120 to 160 ° C.
0.1 mol% or less, and the amount of hydrogen combustion is extremely small. Therefore, the hydrogen-containing gas treated in the temperature range of about 120 to 160 ° C. by the method of the present invention can be directly used for a phosphoric acid type fuel cell or a solid polymer type cell. Therefore, the hydrogen-containing gas treated by the method of the present invention can be used very suitably for a fuel cell of a vehicle type or the like.

【0011】[0011]

【実施例】以下に実施例により本発明を更に具体的に説
明する。但し本発明は以下の実施例により制限されるも
のではない。なお、各実施例および比較例における触媒
性能の評価における原料ガスには、CO 0.5〜1.0 モル
%、O2 0.5〜1.0 モル%、CO2 25モル%、H2 73〜
74モル%の組成の酸素含有の改質ガスを用いた。常圧
下、空間速度 (SV) を5000〜11500 hr-1で反応温度を
40〜260 ℃に変化させた時の反応後のガス組成をガスク
ロマトグラフにより分析した。触媒性能の評価の結果を
示す図において、酸素反応率は原料ガス中の酸素の反応
率(転化率)を示し、CO酸化選択率は反応酸素の中で
CO酸化反応に寄与したものの比率を示す。反応酸素の
中でCO酸化反応に寄与しなかったものは殆ど水素の燃
焼に消費される。
The present invention will be described more specifically with reference to the following examples. However, the present invention is not limited by the following examples. In addition, the raw material gas in the evaluation of the catalyst performance in each of Examples and Comparative Examples includes CO 0.5 to 1.0 mol%, O 2 0.5 to 1.0 mol%, CO 2 25 mol%, H 2 73 to
An oxygen-containing reformed gas having a composition of 74 mol% was used. Under normal pressure, the space temperature (SV) should be 5000 ~ 11500 hr -1
The gas composition after the reaction when the temperature was changed to 40 to 260 ° C. was analyzed by gas chromatography. In the graph showing the results of the evaluation of the catalyst performance, the oxygen reaction rate indicates the reaction rate (conversion rate) of oxygen in the raw material gas, and the CO oxidation selectivity indicates the ratio of reaction oxygen that contributed to the CO oxidation reaction. . Most of the reactive oxygen that has not contributed to the CO oxidation reaction is consumed for hydrogen combustion.

【0012】実施例1 市販のアルミナ球(平均径1.5mm 、BET比表面積: 200
〜240m3 /g)を硝酸銅3水和物を溶かした水溶液中に
加え攪拌しておく。その後、過剰な炭酸ナトリウム溶液
を加え、アルミナ担体上にCuとして 0.25wt%量の塩基性
炭酸銅を析出させた。担体を濾過、乾燥後、ついで0.75
wt%Pt 相当のアセチルアセトナト白金のアセトン溶液を
用い、エバポレータにて減圧乾燥で更に0.5wt%の白金を
担持し、それを乾燥後 400℃で焼成し、0.25wt%Cu-0.75
wt%Pt/アルミナ触媒を得た。CO 1.0モル%、O2 1.0
モル%、CO2 25モル%、H2 73モル%のガスを用い、
空間速度を約 5200[1/h]の触媒性能評価の結果を図1に
示す。この触媒を用いた場合、 100〜220 ℃の温度範囲
ではメタンの発生はなく、反応温度が 115〜155 ℃の範
囲でCO濃度が 0.1モル% 以下に低下している。この温
度範囲での酸素反応率が 95%以上であり、CO酸化選択率
が45〜55% の範囲内であった。
Example 1 Commercially available alumina spheres (average diameter 1.5 mm, BET specific surface area: 200)
240240 m 3 / g) into an aqueous solution in which copper nitrate trihydrate is dissolved and stirred. Thereafter, an excess sodium carbonate solution was added to precipitate 0.25 wt% of basic copper carbonate as Cu on the alumina carrier. The carrier was filtered and dried, then 0.75
Using an acetone solution of acetylacetonato platinum equivalent to wt% Pt, 0.5% by weight of platinum is further supported by drying under reduced pressure with an evaporator, and after drying, calcination is performed at 400 ° C. to obtain 0.25% by weight of Cu-0.75.
A wt% Pt / alumina catalyst was obtained. CO 1.0 mol%, O 2 1.0
Used mol%, CO 2 25 mol%, H 2 73 mol% of the gas,
FIG. 1 shows the results of the catalyst performance evaluation at a space velocity of about 5200 [1 / h]. When this catalyst was used, methane was not generated in the temperature range of 100 to 220 ° C, and the CO concentration was reduced to 0.1 mol% or less when the reaction temperature was in the range of 115 to 155 ° C. The oxygen reaction rate in this temperature range was 95% or more, and the CO oxidation selectivity was in the range of 45 to 55%.

【0013】実施例2 実施例1と同様な方法により0.5wt%Cu-0.5wt%Pt/アルミ
ナ触媒を得た。CO 0.5モル%、O2 0.5モル%、CO
2 25モル%、H2 74モル%のガスを用い、空間速度を約
6200[1/h] の触媒性能評価の結果を図2に示す。この触
媒を用いた場合100〜220 ℃の温度範囲ではメタンの発
生はなく、反応温度が 120〜160 ℃の範囲でCO濃度が
0.1モル% 以下に低下している。この温度範囲での酸素
反応率が95%以上であり、CO酸化選択率が45〜55% の範
囲内であった。
Example 2 A 0.5 wt% Cu-0.5 wt% Pt / alumina catalyst was obtained in the same manner as in Example 1. CO 0.5 mol%, O 2 0.5 mol%, CO
2 Using a gas of 25 mol% and 74 mol% of H 2 ,
FIG. 2 shows the results of the catalyst performance evaluation of 6200 [1 / h]. When this catalyst is used, methane is not generated in the temperature range of 100 to 220 ° C, and the CO concentration becomes lower in the reaction temperature range of 120 to 160 ° C.
It has decreased to 0.1 mol% or less. The oxygen reaction rate in this temperature range was 95% or more, and the CO oxidation selectivity was in the range of 45 to 55%.

【0014】実施例3 実施例1と同様な方法により0.75wt%Cu-0.25wt%Pt/アル
ミナ触媒を得た。CO1.0モル%、O2 1.0モル%、C
2 25モル%、H2 73モル%のガスを用い、空間速度を
約6200[1/h]の触媒性能評価の結果を図3に示す。この
触媒を用いた場合 100〜220 ℃の温度範囲ではメタンの
発生はなく、反応温度が 130〜175 ℃の範囲でCO濃度
が 0.1モル% 以下に低下している。この温度範囲での酸
素反応率が95%以上であり、CO酸化選択率が45〜55% の
範囲内であった。
Example 3 A 0.75 wt% Cu-0.25 wt% Pt / alumina catalyst was obtained in the same manner as in Example 1. CO1.0 mol%, O 2 1.0 mol%, C
FIG. 3 shows the results of a catalyst performance evaluation using a gas of 25 mol% of O 2 and 73 mol% of H 2 and a space velocity of about 6200 [1 / h]. When this catalyst is used, methane is not generated in the temperature range of 100 to 220 ° C, and the CO concentration falls to 0.1 mol% or less when the reaction temperature is in the range of 130 to 175 ° C. The oxygen reaction rate in this temperature range was 95% or more, and the CO oxidation selectivity was in the range of 45 to 55%.

【0015】実施例4 炭酸ナトリウム(無水)177gを1000ミリリットルのイオ
ン交換水とともに5 リットルの丸底フラスコに入れ溶解
し、40℃とした。ここに硫酸銅(5水塩)315g、ホウ
酸19.7g 及びイオン交換水 800ミリリットルを40℃に調
節した溶液を注下し、続いて酸化亜鉛77.0g をイオン交
換水 300ミリリットルに分散したスラリーを加え、直ち
に炭酸ガスを6リットル/hの割合で吹き込んだ。1時
間後80℃に昇温し、30分間保持した。炭酸ガスは2 時間
で停止した。次いで60℃まで冷却した。ここに硫酸アル
ミニウム51.4gを150ミリリットルのイオン交換
水に溶解した溶液と、水酸化ナトリウム21.9gを1
60ミリリットルのイオン交換水に溶解した溶液とから
調製したスラリーを加え20分間攪拌した。このように調
製した混合スラリーを濾過しし、0.05% の水酸化ナトリ
ウム水溶液12リットルとイオン交換水 3リットルで洗浄
した。続いて80℃で乾燥し、Cu-Zn-Al触媒を得た。Cu-Z
n-Al触媒粉末 20gをアセチルアセトナト白金0.158gのア
セトン溶液50ミリリットルに浸漬し、減圧下30〜50
℃にてアセトンを蒸発除去した。その後、360 ℃にて2
時間焼成し、0.5wt%Pt-Cu-Zn-Al 触媒を得た。触媒は、
打錠成形器で嵩密度が2.5g/ミリリットルになるよう
に成形した後、粉砕し、篩で0.5〜1.0mmの範囲
で粒径を揃え反応に供した。CO 0.5モル%、O2 0.5
モル%、CO2 25モル%、H2 74モル%のガスを用い、
空間速度を約11500[1/h]の触媒性能評価の結果を図4に
示す。この触媒を用いた場合 100〜220 ℃の温度範囲で
はメタンの発生はなく、反応温度が 130〜170℃の範囲
でCO濃度が 0.1モル% 以下に低下している。この温度
範囲での酸素に対するCO反応率は酸素転化率が 95%以
上であり、CO酸化選択率が45〜55%の範囲内であった。
Example 4 177 g of sodium carbonate (anhydrous) was put into a 5 liter round bottom flask together with 1000 ml of ion-exchanged water and dissolved at 40 ° C. A solution in which 315 g of copper sulfate (pentahydrate), 19.7 g of boric acid and 800 ml of ion-exchanged water were adjusted to 40 ° C. was poured, and then a slurry in which 77.0 g of zinc oxide was dispersed in 300 ml of ion-exchanged water was added. In addition, carbon dioxide gas was immediately blown at a rate of 6 L / h. After 1 hour, the temperature was raised to 80 ° C. and maintained for 30 minutes. Carbon dioxide was stopped in 2 hours. Then cooled to 60 ° C. Here, a solution obtained by dissolving 51.4 g of aluminum sulfate in 150 ml of ion-exchanged water and 21.9 g of sodium hydroxide were added to 1 solution.
A slurry prepared from a solution dissolved in 60 ml of ion-exchanged water was added and stirred for 20 minutes. The mixed slurry thus prepared was filtered and washed with 12 liters of a 0.05% aqueous sodium hydroxide solution and 3 liters of ion-exchanged water. Subsequently, drying was performed at 80 ° C. to obtain a Cu—Zn—Al catalyst. Cu-Z
20 g of n-Al catalyst powder was immersed in 50 ml of acetone solution of 0.158 g of acetylacetonato platinum,
The acetone was evaporated off at ℃. Then at 360 ° C 2
After calcination for 0.5 hour, a 0.5 wt% Pt-Cu-Zn-Al catalyst was obtained. The catalyst is
The mixture was molded to a bulk density of 2.5 g / milliliter with a tableting machine, pulverized, and sized with a sieve in a range of 0.5 to 1.0 mm for reaction. CO 0.5 mol%, O 2 0.5
Used mol%, CO 2 25 mol%, H 2 74 mol% of the gas,
FIG. 4 shows the results of the catalyst performance evaluation at a space velocity of about 11500 [1 / h]. When this catalyst is used, methane is not generated in the temperature range of 100 to 220 ° C, and the CO concentration falls to 0.1 mol% or less when the reaction temperature is in the range of 130 to 170 ° C. The CO conversion to oxygen in this temperature range was such that the oxygen conversion was 95% or more and the CO oxidation selectivity was in the range of 45 to 55%.

【0016】比較例1 実施例1において白金を担持せずに1wt%Cu/アルミナ
を得た。実施例2と同様な条件で反応させた。結果を図
5に示す。この触媒では 100〜220 ℃の温度範囲ではメ
タンの発生はないが、約 210℃以上にしないと酸素反応
率を 80%以上にとすることができず、CO選択率は 12%以
下でCO濃度を 0.4モル% 以下にすることはできなかっ
た。
Comparative Example 1 In Example 1, 1 wt% Cu / alumina was obtained without carrying platinum. The reaction was carried out under the same conditions as in Example 2. FIG. 5 shows the results. With this catalyst, methane is not generated in the temperature range of 100 to 220 ° C, but the oxygen reaction rate cannot be increased to 80% or more unless the temperature is increased to about 210 ° C or higher. Could not be reduced to 0.4 mol% or less.

【0017】比較例2 実施例1において銅を担持せずに1wt%Pt/アルミナ
を得た。実施例2と同様な条件で反応させた。結果を図
6に示す。この触媒では 100〜220 ℃の温度範囲ではメ
タンの発生はないが、約150℃以上にしないと酸素反応
率を 95%以上にすることができず、CO選択率は50%程度
あるものの、CO濃度を 0.1モル% 以下となる温度範囲は
約 140〜190 ℃であった。
Comparative Example 2 In Example 1, 1 wt% Pt / alumina was obtained without carrying copper. The reaction was carried out under the same conditions as in Example 2. FIG. 6 shows the results. With this catalyst, methane is not generated in the temperature range of 100 to 220 ° C, but the oxygen reaction rate cannot be increased to 95% or more unless the temperature is increased to about 150 ° C or higher. The temperature range in which the concentration was 0.1 mol% or less was about 140 to 190 ° C.

【0018】比較例3 比較例2で得た1wt%Pt/アルミナを用い、実施例1
と同様な条件で反応させた。結果を図7に示す。この触
媒では 100〜220 ℃の温度範囲ではメタンの発生はない
が、約 170℃以上にしないと酸素反応率を 95%以上にと
することができず、CO選択率は 50%程度あるものの、CO
濃度を 0.1モル% 以下となる温度範囲は約 170〜200℃
であった。
Comparative Example 3 Using 1 wt% Pt / alumina obtained in Comparative Example 2, Example 1
The reaction was carried out under the same conditions as described above. FIG. 7 shows the results. With this catalyst, methane is not generated in the temperature range of 100 to 220 ° C, but the oxygen reaction rate cannot be increased to 95% or more unless the temperature is increased to about 170 ° C or higher, and the CO selectivity is about 50%. CO
The temperature range where the concentration is 0.1 mol% or less is about 170-200 ° C
Met.

【0019】比較例4 実施例1において銅を担持せずに、アセチルアセトナト
白金に代えてアセチルアセトナトルテニウムを用い、1
wt%Ru/アルミナを得た。実施例2と同様な条件で反
応させた。結果を図8に示す。この触媒では 150℃以上
でメタンの発生があり、温度上昇によりメタンの発生が
急激に増大する。約 135℃以上にしないと酸素反応率を
95%以上にとすることができず、CO選択率は50%程度あ
るものの、CO濃度が 0.1モル% 以下となる温度範囲は約
140℃以上である。
Comparative Example 4 In Example 1, acetylacetonatoruthenium was used instead of acetylacetonatoplatinum without supporting copper, and
wt% Ru / alumina was obtained. The reaction was carried out under the same conditions as in Example 2. FIG. 8 shows the results. With this catalyst, methane is generated at 150 ° C or higher, and methane generation increases sharply as the temperature rises. If the temperature does not exceed 135 ° C, the oxygen reaction rate
Although it cannot be set to 95% or more and the CO selectivity is about 50%, the temperature range where the CO concentration is 0.1 mol% or less is about
140 ° C or higher.

【0020】比較例5 実施例4において、白金を担持せずに焼成しCu-Zn-Al触
媒を得た。実施例4と同様に整粒し、同条件で反応させ
た。結果を図9に示す。この触媒では 100〜220 ℃の温
度範囲ではメタンの発生せず、約 115℃以上において酸
素反応率が 95%以上になるものの、CO選択率が 31%以下
であり、CO濃度を 0.2モル% 以下にすることはできなか
った。
Comparative Example 5 In Example 4, calcination was carried out without carrying platinum to obtain a Cu-Zn-Al catalyst. The particles were sized in the same manner as in Example 4 and reacted under the same conditions. FIG. 9 shows the results. This catalyst does not generate methane in the temperature range of 100 to 220 ° C, and has an oxygen reaction rate of 95% or more at about 115 ° C or higher, but has a CO selectivity of 31% or less and a CO concentration of 0.2 mol% or less. Couldn't be.

【0021】[0021]

【発明の効果】以上の実施例からも明らかなように、本
発明の方法によればCOが1%程度含まれるメタノール
の水蒸気改質による水素含有ガスが約 120〜160 ℃程度
の低温でCO濃度を 0.1モル%以下とすることができ、
水素損失が極めて少ない。従って本発明の方法により処
理した水素含有ガスは車載型等の燃料電池に極めて好適
に用いることができ、本発明の工業的意義は大きい。
As is clear from the above examples, according to the method of the present invention, the hydrogen-containing gas obtained by steam reforming of methanol containing about 1% of CO can be used at a low temperature of about 120-160 ° C. The concentration can be 0.1 mol% or less,
Very low hydrogen loss. Therefore, the hydrogen-containing gas treated by the method of the present invention can be very suitably used for a fuel cell of a vehicle type or the like, and the present invention has great industrial significance.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1の触媒における性能評価の結果を示す
図面である。
FIG. 1 is a drawing showing the results of performance evaluation of a catalyst of Example 1.

【図2】実施例2の触媒における性能評価の結果を示す
図面である。
FIG. 2 is a drawing showing the results of performance evaluation of a catalyst of Example 2.

【図3】実施例3の触媒における性能評価の結果を示す
図面である。
FIG. 3 is a drawing showing the results of performance evaluation of the catalyst of Example 3.

【図4】実施例4の触媒における性能評価の結果を示す
図面である。
FIG. 4 is a drawing showing results of performance evaluation of a catalyst of Example 4.

【図5】比較例1の触媒における性能評価の結果を示す
図面である。
FIG. 5 is a drawing showing the results of performance evaluation of the catalyst of Comparative Example 1.

【図6】比較例2の触媒における性能評価の結果を示す
図面である。
6 is a drawing showing the results of performance evaluation of the catalyst of Comparative Example 2. FIG.

【図7】比較例3の触媒における性能評価の結果を示す
図面である。
FIG. 7 is a drawing showing the results of performance evaluation of the catalyst of Comparative Example 3.

【図8】比較例4の触媒における性能評価の結果を示す
図面である。
FIG. 8 is a drawing showing the results of performance evaluation of the catalyst of Comparative Example 4.

【図9】比較例5の触媒における性能評価の結果を示す
図面である。
FIG. 9 is a drawing showing the results of performance evaluation of the catalyst of Comparative Example 5.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】銅・白金共存系触媒の存在下、一酸化炭素
と酸素を接触させることを特徴とする水素含有ガス中の
一酸化炭素低減方法。
1. A method for reducing carbon monoxide in a hydrogen-containing gas, comprising contacting carbon monoxide with oxygen in the presence of a copper / platinum coexisting catalyst.
【請求項2】水素含有ガス中に含まれる一酸化炭素に対
して 0.5〜4 倍の酸素を接触させ、100〜200℃で反応さ
せる請求項1に記載の水素含有ガス中の一酸化炭素低減
方法。
2. The reduction of carbon monoxide in a hydrogen-containing gas according to claim 1, wherein 0.5 to 4 times of oxygen is brought into contact with carbon monoxide contained in the hydrogen-containing gas and the reaction is carried out at 100 to 200 ° C. Method.
【請求項3】担体に銅および白金含有成分を担持させて
なる一酸化炭素低減用触媒。
3. A catalyst for reducing carbon monoxide, comprising a carrier carrying copper and platinum-containing components.
JP2000008928A 1999-12-21 2000-01-18 Method for reducing carbon monoxide in hydrogen- containing gas and catalyst therefor Pending JP2001199707A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2000008928A JP2001199707A (en) 2000-01-18 2000-01-18 Method for reducing carbon monoxide in hydrogen- containing gas and catalyst therefor
EP00126540A EP1110907B1 (en) 1999-12-21 2000-12-11 Process for reducing concentration of carbon monoxide in hydrogen-containing gas and catalyst used therefor
EP05106392A EP1591416A3 (en) 1999-12-21 2000-12-11 Process for reducing concentration of carbon monoxide in hydrogen-containing gas and catalyst used therefor
DE60036681T DE60036681T2 (en) 1999-12-21 2000-12-11 A method for reducing the carbon monoxide concentration in a hydrogen-containing gas and catalyst therefor
US09/734,888 US6548034B2 (en) 1999-12-21 2000-12-13 Process for reducing concentration of carbon monoxide in hydrogen-containing gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000008928A JP2001199707A (en) 2000-01-18 2000-01-18 Method for reducing carbon monoxide in hydrogen- containing gas and catalyst therefor

Publications (1)

Publication Number Publication Date
JP2001199707A true JP2001199707A (en) 2001-07-24

Family

ID=18537143

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000008928A Pending JP2001199707A (en) 1999-12-21 2000-01-18 Method for reducing carbon monoxide in hydrogen- containing gas and catalyst therefor

Country Status (1)

Country Link
JP (1) JP2001199707A (en)

Similar Documents

Publication Publication Date Title
US6299995B1 (en) Process for carbon monoxide preferential oxidation for use with fuel cells
US6409939B1 (en) Method for producing a hydrogen-rich fuel stream
US7384986B2 (en) Process for the selective methanation of carbonmonoxide (CO) contained in a hydrogen-rich reformate gas
US7906098B2 (en) Method for making hydrogen using a gold containing water-gas shift catalyst
EP1138383B1 (en) Method for oxidising carbon monoxide contained in hydrogen
US6548034B2 (en) Process for reducing concentration of carbon monoxide in hydrogen-containing gas
JP3574469B2 (en) Method for oxidizing CO to CO2 and method for producing hydrogen-containing gas for fuel cell
JP2001199707A (en) Method for reducing carbon monoxide in hydrogen- containing gas and catalyst therefor
JP2001180907A (en) Catalyst and method of reducing carbon monoxide in gas containing hydrogen
JP2001199706A (en) Method for reduction of carbon monoxide in hydrogen- containing gas and catalyst therefor
JP2002273223A (en) Method for manufacturing co removing catalyst
JP2001220109A (en) Method of reducing carbon monoxide in hydrogen- containing gas and catalyst
JP2001302205A (en) Method for reducing carbon monoxide in hydrogen- containing gas, and catalyst
JP2004330106A (en) Catalyst for modifying carbon monoxide and method for modifying carbon monoxide using it
EP1648816B1 (en) Method for making hydrogen using a gold containing water-gas shift catalyst
JP2001199708A (en) Method for reducing carbon monoxide in hydrogen- containing gas and catalyst therefor
JPH0311813B2 (en)
JP4206813B2 (en) Carbon monoxide conversion catalyst and carbon monoxide conversion method using the catalyst
JP2003160302A (en) Method for producing hydrogen-containing gas
JP2003159529A (en) Catalyst for reforming methanol and producing method for hydrogen-containing gas