JP2001220109A - Method of reducing carbon monoxide in hydrogen- containing gas and catalyst - Google Patents

Method of reducing carbon monoxide in hydrogen- containing gas and catalyst

Info

Publication number
JP2001220109A
JP2001220109A JP2000033523A JP2000033523A JP2001220109A JP 2001220109 A JP2001220109 A JP 2001220109A JP 2000033523 A JP2000033523 A JP 2000033523A JP 2000033523 A JP2000033523 A JP 2000033523A JP 2001220109 A JP2001220109 A JP 2001220109A
Authority
JP
Japan
Prior art keywords
catalyst
hydrogen
carbon monoxide
containing gas
platinum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000033523A
Other languages
Japanese (ja)
Inventor
Koki Takamura
光喜 高村
Yasushi Hiramatsu
靖史 平松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP2000033523A priority Critical patent/JP2001220109A/en
Priority to EP00126540A priority patent/EP1110907B1/en
Priority to EP05106392A priority patent/EP1591416A3/en
Priority to DE60036681T priority patent/DE60036681T2/en
Priority to US09/734,888 priority patent/US6548034B2/en
Publication of JP2001220109A publication Critical patent/JP2001220109A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PROBLEM TO BE SOLVED: To provide a method and a catalyst for efficiently reducing the concentration of carbon monoxide in a hydrogen-containing gas obtained by a methanol reforming reaction. SOLUTION: Carbon monoxide in the hydrogen-containing gas and oxygen are brought into contact with each other in the presence of a cobalt-platinum coexistence based catalyst.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は触媒を用いて水素含
有ガス中の一酸化炭素を低減する方法および触媒に関
し、詳しくは燃料電池の水素源として利用するために、
炭化水素やメタノール等の改質反応により製造された水
素含有ガス中の一酸化炭素を低減する方法および触媒に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and a catalyst for reducing carbon monoxide in a hydrogen-containing gas using a catalyst.
The present invention relates to a method and a catalyst for reducing carbon monoxide in a hydrogen-containing gas produced by a reforming reaction of a hydrocarbon or methanol.

【0002】[0002]

【従来技術】水素含有ガスは炭化水素やメタノール等を
水蒸気と改質反応させることにより製造され有機化学品
の原料として用いられているが、最近は特に燃料電池の
水素源としての利用が注目されている。これらの水素含
有ガスには一酸化炭素が含まれており、燃料電池の水素
源として利用する場合には一酸化炭素が燃料電池の電極
の白金触媒に吸着して触媒としての機能を低下させるた
めに水素濃度を極力低下させる必要がある。一酸化炭素
の許容濃度は、例えばリン酸型燃料電池の場合は数%以
下であり、固体高分子型電池の場合は数10ppm以下
である。メタノールは比較的低温で水蒸気との改質反応
を行うことができ、一酸化炭素の含量が少ないことから
燃料電池の水素源として有利に使用することができる。
このためメタノールを原料とする燃料電池の開発、特に
車載可能な自動車用燃料電池の開発が進められている。
2. Description of the Related Art Hydrogen-containing gas is produced by reforming hydrocarbons, methanol and the like with steam, and is used as a raw material for organic chemicals. ing. These hydrogen-containing gases contain carbon monoxide, and when used as a hydrogen source for a fuel cell, the carbon monoxide is adsorbed on the platinum catalyst of the electrode of the fuel cell and deteriorates its function as a catalyst. It is necessary to lower the hydrogen concentration as much as possible. The allowable concentration of carbon monoxide is, for example, several percent or less in the case of a phosphoric acid fuel cell, and several tens ppm or less in the case of a polymer electrolyte battery. Methanol can perform a reforming reaction with steam at a relatively low temperature, and has a low content of carbon monoxide, so that it can be advantageously used as a hydrogen source for a fuel cell.
For this reason, development of a fuel cell using methanol as a raw material, particularly development of a fuel cell for a vehicle that can be mounted on a vehicle, is being promoted.

【0003】触媒を用いて水素含有ガス中の一酸化炭素
を酸化して炭酸ガスとすることにより一酸化炭素濃度を
低減する方法としては、特開平5-245376号に酸化銅・酸
化アルミニウム・酸化マグネシウム触媒を用いて水蒸気
による一酸化炭素の変換を行う方法が記載されており、
特開平8-295502号には金属酸化物に金超微粒子を分散担
持された触媒を用いて一酸化炭素を選択的に酸化除去す
る方法が記載されている。また特開平9-30802 号には白
金・ルテニウム触媒を用いて、メタノールの改質反応に
より得られた水素含有ガス中の一酸化炭素濃度を低減す
る装置が記載されている。特開平11-102719 号にはルテ
ニウムにアルカリ金属を添加した触媒を用いて水素リッ
チガス中に含まれる一酸化炭素濃度を選択的に酸化する
装置が記載されている。
A method of reducing carbon monoxide concentration by oxidizing carbon monoxide in a hydrogen-containing gas to carbon dioxide using a catalyst is disclosed in Japanese Patent Application Laid-Open No. 5-245376. A method of performing conversion of carbon monoxide by steam using a magnesium catalyst has been described,
JP-A-8-295502 describes a method for selectively oxidizing and removing carbon monoxide using a catalyst in which ultrafine gold particles are dispersed and supported on a metal oxide. Japanese Patent Application Laid-Open No. 9-30802 discloses an apparatus for reducing the concentration of carbon monoxide in a hydrogen-containing gas obtained by a reforming reaction of methanol using a platinum-ruthenium catalyst. JP-A-11-102719 describes an apparatus for selectively oxidizing the concentration of carbon monoxide contained in a hydrogen-rich gas using a catalyst obtained by adding an alkali metal to ruthenium.

【0004】[0004]

【発明が解決しようとする課題】上記の酸化銅・酸化ア
ルミニウム・酸化マグネシウム触媒を用いる方法 (特開
平5-245376号) は、反応温度が 300〜400 ℃と高く、一
酸化炭素の変換率が小さい。金属酸化物に金超微粒子を
分散担持された触媒を用いる方法 (特開平8-295502号)
は、低温で反応するものの、触媒が非常に高価である。
また白金・ルテニウム触媒を用いる方法 (特開平9-3080
2 号) やルテニウムにアルカリ金属を添加した触媒を用
いる方法 (特開平11-102719 号) も触媒が高価であり、
また一酸化炭素の一部が水素と反応してメタン化を起こ
しやすい。メタン化は水素を多く消費するとともに反応
時の発熱量が大きく、温度暴走し易く、反応温度の制御
が困難である。
The above-mentioned method using a copper oxide / aluminum oxide / magnesium oxide catalyst (JP-A-5-245376) has a high reaction temperature of 300 to 400 ° C. and a high conversion rate of carbon monoxide. small. A method using a catalyst in which ultrafine gold particles are dispersed and supported on a metal oxide (JP-A-8-295502)
Reacts at low temperatures, but the catalyst is very expensive.
Also, a method using a platinum-ruthenium catalyst (Japanese Patent Application Laid-Open No. 9-3080)
No. 2) and a method using a catalyst obtained by adding an alkali metal to ruthenium (JP-A-11-102719) are also expensive,
In addition, part of carbon monoxide easily reacts with hydrogen to cause methanation. Methanation consumes a large amount of hydrogen, generates a large amount of heat during the reaction, easily causes temperature runaway, and makes it difficult to control the reaction temperature.

【0005】本発明の目的は、燃料電池の開発のため
に、メタノールの改質反応等により得られた水素含有ガ
ス中の一酸化炭素濃度を効率的に低減する方法および触
媒を提供することにある。
An object of the present invention is to provide a method and a catalyst for efficiently reducing the concentration of carbon monoxide in a hydrogen-containing gas obtained by a reforming reaction of methanol for the development of a fuel cell. is there.

【0006】[0006]

【課題を解決するための手段】本発明者らは上記の如き
課題を有する水素含有ガス中の一酸化炭素濃度を低減す
る方法について鋭意検討した結果、コバルト・白金共存
系触媒を用い、一酸化炭素と酸素を接触させることによ
り水素含有ガス中の一酸化炭素濃度を効率良く低減する
ことができることを見出し、本発明に到達した。
Means for Solving the Problems The present inventors have conducted intensive studies on a method for reducing the concentration of carbon monoxide in a hydrogen-containing gas, which has the above-mentioned problems, and as a result, using a catalyst coexisting with cobalt / platinum, The present inventors have found that the concentration of carbon monoxide in a hydrogen-containing gas can be efficiently reduced by bringing carbon and oxygen into contact with each other, and arrived at the present invention.

【0007】即ち本発明は、コバルト・白金共存系触媒
の存在下、一酸化炭素と酸素を接触させることを特徴と
する水素含有ガス中の一酸化炭素低減方法および、担体
にニッケルおよび白金含有成分を担持させてなる一酸化
炭素低減用触媒である。
That is, the present invention provides a method for reducing carbon monoxide in a hydrogen-containing gas, which comprises bringing carbon monoxide and oxygen into contact with each other in the presence of a cobalt-platinum coexisting catalyst. This is a catalyst for reducing carbon monoxide, which is made of a catalyst.

【0008】[0008]

【発明の実施の形態】本発明における原料の水素含有ガ
スは特に限定されないが、通常、炭化水素またはメタノ
ールの水蒸気改質、或いは部分酸化により製造される。
炭化水素としては、メタンを主成分とする気体状の天然
ガス、液体状のLPG、ナフサ、軽質油などが用いられ
る。炭化水素の水蒸気改質炉にはニッケル系触媒が用い
られ 800〜1000℃で反応させ、水素、一酸化炭素および
二酸化炭素を主成分とする合成ガスが製造される。本発
明における原料の水素含有ガスには、上記により製造さ
れた合成ガス中の一酸化炭素を鉄系触媒や銅系触媒を用
いて二酸化炭素に転化したものが用いられる。該水素含
有ガスには通常 1モル%程度の一酸化炭素が含まれる。
BEST MODE FOR CARRYING OUT THE INVENTION The hydrogen-containing gas as a raw material in the present invention is not particularly limited, but is usually produced by steam reforming or partial oxidation of hydrocarbon or methanol.
As the hydrocarbon, gaseous natural gas containing methane as a main component, liquid LPG, naphtha, light oil and the like are used. A nickel-based catalyst is used in a hydrocarbon steam reforming furnace, and is reacted at 800 to 1000 ° C. to produce a synthesis gas containing hydrogen, carbon monoxide and carbon dioxide as main components. As the hydrogen-containing gas as the raw material in the present invention, a gas obtained by converting carbon monoxide in the synthesis gas produced as described above to carbon dioxide using an iron-based catalyst or a copper-based catalyst is used. The hydrogen-containing gas usually contains about 1 mol% of carbon monoxide.

【0009】メタノールの水蒸気改質は銅−亜鉛系の触
媒、Pd,Pt などの貴金属系触媒を用いて、 200〜350 ℃
程で反応させ、水素および二酸化炭素を主成分とする合
成ガスが製造される。一般に貴金属系触媒を用いた場
合、該合成ガスには、1〜5モル%程度の一酸化炭素が
含まれ、銅−亜鉛系触媒を用いた場合、該合成ガスに
は、1モル%以下の一酸化炭素が含まれるが、これらの
合成ガスを本発明における原料の水素含有ガスとして直
接に使用される。
[0009] Steam reforming of methanol is carried out at 200 to 350 ° C using a copper-zinc catalyst or a noble metal catalyst such as Pd or Pt.
To produce a synthesis gas containing hydrogen and carbon dioxide as main components. Generally, when a noble metal-based catalyst is used, the synthesis gas contains about 1 to 5 mol% of carbon monoxide. When a copper-zinc-based catalyst is used, the synthesis gas contains 1 mol% or less. Although carbon monoxide is included, these synthesis gases are used directly as the raw material hydrogen-containing gas in the present invention.

【0010】本発明おいて上記による原料の水素含有ガ
スに酸素含有ガスを添加し、ニッケル・白金共存系触媒
を用いて反応させることにより、一酸化炭素が選択的に
酸化されて二酸化炭素となり、一酸化炭素濃度が低減さ
れる。触媒活性成分となるコバルトおよび白金を含有す
る組成物としては、共沈殿触媒、担持触媒などの形体を
選ぶことが出来る。共沈殿触媒では、コバルト、白金を
含む水溶液から、例えば炭酸アルカリ沈澱剤により沈澱
させる方法などを使うことが出来る。また担持触媒で
は、コバルト沈澱スラリーに担体成分スラリーを添加し
て炭酸ガスにより炭酸化する方法等から得られたコバル
ト含有触媒に白金含有成分を担持するなど適宜採用でき
る。触媒担体は表面積の高いアルミナ、シリカ等が好適
であるが、活性成分担持の際の順序、方法は特に限定な
く、含浸法や析出法などの公知の方法を組み合わせて使
うことが出来る。車載型燃料電池に使用するためには担
体にコバルト含有成分および白金含有成分を担持させて
なる触媒が好ましい。組成物含有量としてはコバルトは
0.1〜80重量%、好ましくは 0.5〜50重量%であり、Pt
は0.05〜50重量%、好ましくは 0.2〜5 重量%である。
In the present invention, by adding an oxygen-containing gas to the above-mentioned raw material hydrogen-containing gas and reacting it with a nickel-platinum coexisting catalyst, carbon monoxide is selectively oxidized to carbon dioxide, The carbon monoxide concentration is reduced. As the composition containing cobalt and platinum as the catalytically active components, forms such as a coprecipitation catalyst and a supported catalyst can be selected. As the coprecipitation catalyst, a method of precipitating from an aqueous solution containing cobalt and platinum with, for example, an alkali carbonate precipitant can be used. As the supported catalyst, a platinum-containing component may be supported on a cobalt-containing catalyst obtained by, for example, adding a carrier component slurry to a cobalt precipitation slurry and carbonating with a carbon dioxide gas. As the catalyst carrier, alumina, silica or the like having a high surface area is suitable, but the order and method for carrying the active ingredient are not particularly limited, and known methods such as impregnation method and precipitation method can be used in combination. For use in a vehicle-mounted fuel cell, a catalyst comprising a carrier carrying a cobalt-containing component and a platinum-containing component is preferred. As a composition content, cobalt is
0.1 to 80% by weight, preferably 0.5 to 50% by weight;
Is 0.05 to 50% by weight, preferably 0.2 to 5% by weight.

【0011】一酸化炭素を選択的に酸化するための反応
条件は次の通りである。反応温度は通常40〜200 ℃であ
り、好ましくは60〜160 ℃である。水素含有ガスへの酸
素添加量は一酸化炭素含量の 0.5〜4 倍、好ましくは
0.5〜2 倍である。圧力は常圧〜20気圧(0.1〜2MPa)程
度である。触媒の使用量はガス空間速度(GHSV)と
して 100〜50000[1/h]、好ましくは50〜30000[1/h]であ
る。
The reaction conditions for selectively oxidizing carbon monoxide are as follows. The reaction temperature is usually from 40 to 200 ° C, preferably from 60 to 160 ° C. The amount of oxygen added to the hydrogen-containing gas is 0.5 to 4 times the carbon monoxide content, preferably
0.5 to 2 times. The pressure ranges from normal pressure to 20 atm (0.1 to 2 MPa). The amount of the catalyst used is 100 to 50,000 [1 / h], preferably 50 to 30,000 [1 / h] as a gas hourly space velocity (GHSV).

【0012】本発明の方法で使用されるコバルト・白金
共存系触媒は、酸素反応率が高く、低温でCO酸化選択
率が著しく高いのが特徴である。すなわち 260℃までの
温度で一酸化炭素と水素との反応によるメタン化反応は
殆ど起こらない。また 200℃以下の温度で炭酸ガスと水
素による逆シフト反応が起きず、一酸化炭素の酸化によ
る炭酸ガス生成反応が酸素の消費に対して 50%以上の選
択率で行われる。本発明の方法では、COが1モル%程
度含まれるメタノールの水蒸気改質による水素含有ガス
を処理する場合、30〜200 ℃程度の比較的低温でCO濃
度を 0.1モル%以下とすることができ、水素燃焼量が極
めて少ない。更に40℃から 180℃程度の温度範囲におい
てCO濃度を0.01モル%以下にすることができる。この
ため、本発明の方法により30〜200 ℃程度の温度範囲で
処理した水素含有ガスをリン酸型燃料電池に、40〜180
℃程度の温度範囲で処理した水素含有ガスを固体高分子
型電池に直接使用することができる。従って本発明の方
法により処理した水素含有ガスは車載型等の燃料電池に
極めて好適に用いることができる。
The cobalt-platinum coexisting catalyst used in the method of the present invention is characterized by a high oxygen reaction rate and a remarkably high CO oxidation selectivity at low temperatures. That is, at temperatures up to 260 ° C., the methanation reaction due to the reaction between carbon monoxide and hydrogen hardly occurs. At a temperature below 200 ° C, no reverse shift reaction occurs between carbon dioxide and hydrogen, and the carbon dioxide generation reaction by oxidation of carbon monoxide is performed with a selectivity of 50% or more with respect to oxygen consumption. In the method of the present invention, when treating a hydrogen-containing gas by steam reforming of methanol containing about 1 mol% of CO, the CO concentration can be reduced to 0.1 mol% or less at a relatively low temperature of about 30 to 200 ° C. And the amount of hydrogen combustion is extremely small. Further, the CO concentration can be reduced to 0.01 mol% or less in a temperature range of about 40 ° C. to 180 ° C. Therefore, the hydrogen-containing gas treated in the temperature range of about 30 to 200 ° C. by the method of the present invention is supplied to the phosphoric acid type fuel cell by 40 to 180 ° C.
The hydrogen-containing gas treated in a temperature range of about ° C. can be directly used for a polymer electrolyte battery. Therefore, the hydrogen-containing gas treated by the method of the present invention can be used very suitably for a fuel cell of a vehicle type or the like.

【0013】[0013]

【実施例】次に実施例により本発明をより具体的に説明
する。但し本発明は以下の実施例により制限されるもの
ではない。なお、各実施例および比較例における触媒性
能の評価における原料ガスには、CO 0.5モル%、O2
0.5 モル%、CO2 24モル%、H2 75モル%(O2 /C
Oモル比=1.0)の組成の酸素含有の改質ガスを用いた。
常圧下、一定の空間速度 (SV) で反応温度を40〜260
℃に変化させた時の反応後のガス組成をガスクロマトグ
ラフにより分析した。触媒性能の評価の結果を示す図に
おいて、酸素反応率は原料ガス中の酸素の反応率(転化
率)を示し、CO酸化選択率は反応酸素の中でCO酸化
反応に寄与したものの比率を示す。反応酸素の中でCO
酸化反応に寄与しなかったものは殆ど水素の燃焼に消費
されている。
Next, the present invention will be described more specifically with reference to examples. However, the present invention is not limited by the following examples. The raw material gas in the evaluation of the catalyst performance in each of Examples and Comparative Examples contained 0.5 mol% of CO, O 2
0.5 mol%, CO 2 24 mol%, H 2 75 mol% (O 2 / C
An oxygen-containing reformed gas having a composition (O molar ratio = 1.0) was used.
Under normal pressure, at a constant space velocity (SV), increase the reaction temperature to 40-260.
The gas composition after the reaction when the temperature was changed to ° C. was analyzed by gas chromatography. In the graph showing the results of the evaluation of the catalyst performance, the oxygen reaction rate indicates the reaction rate (conversion rate) of oxygen in the raw material gas, and the CO oxidation selectivity indicates the ratio of reaction oxygen that contributed to the CO oxidation reaction. . CO in reaction oxygen
Those that did not contribute to the oxidation reaction are mostly consumed in the combustion of hydrogen.

【0014】実施例1 Coとして0.5wt%量の酢酸コバルト2水和物を溶かした水
溶液を用い、市販のアルミナ球(平均径1.5mm 、BET 比
表面積:200 〜240m3 /g)にエバポレータにて減圧乾
燥で0.5wt%のCoを担持し、乾燥した。次ぎに、0.5wt%Pt
相当のアセチルアセトナト白金のアセトン溶液を用い、
エバポレータにて減圧乾燥で更に0.5wt%の白金を担持
し、乾燥した後、360 ℃で焼成し、0.5wt%Co-0.5wt%Pt/
アルミナ触媒を得た。触媒性能評価 (SV=13000[1/h])
の結果を図1に示す。該触媒を用いた場合、40〜260 ℃
の温度範囲ではメタンの発生はなく、反応温度が約 40
〜190 ℃の範囲でCO濃度が0.05mol%以下に低下してい
る。この温度範囲での酸素反応率が 90%以上であり、C
O酸化選択率が約50%である。
Example 1 Using an aqueous solution in which 0.5% by weight of cobalt acetate dihydrate was dissolved as Co, commercially available alumina spheres (average diameter 1.5 mm, BET specific surface area: 200 to 240 m 3 / g) were applied to an evaporator. Then, 0.5 wt% of Co was supported by drying under reduced pressure and dried. Next, 0.5wt% Pt
Using a corresponding acetone solution of acetylacetonato platinum,
Further, 0.5 wt% of platinum was supported by drying under reduced pressure by an evaporator, dried, and calcined at 360 ° C. to obtain 0.5 wt% Co-0.5 wt% Pt /
An alumina catalyst was obtained. Catalyst performance evaluation (SV = 13000 [1 / h])
FIG. 1 shows the results. When using this catalyst, 40-260 ° C
Methane was not generated in the temperature range of
The CO concentration falls to 0.05 mol% or less in the range of -190 ° C. The oxygen reaction rate in this temperature range is 90% or more, and C
O oxidation selectivity is about 50%.

【0015】比較例1 実施例1において白金を担持せずに0.5wt%Co/アルミナ
触媒を得た。実施例1と同様な条件で反応させた (SV
=13000 [1/h]) 。結果を図2に示す。該触媒では、40〜
260 ℃の温度範囲ではメタンの発生はないが、約 230℃
以上にしないと酸素反応率を 80%以上とすることができ
ず、CO酸化選択率は 40%以下であり、CO濃度を 0.4
mol%以下にすることができなかった。
Comparative Example 1 In Example 1, a 0.5 wt% Co / alumina catalyst was obtained without carrying platinum. The reaction was carried out under the same conditions as in Example 1 (SV
= 13000 [1 / h]). The results are shown in FIG. In the catalyst, 40-
No methane is generated in the temperature range of 260 ° C, but about 230 ° C
Otherwise, the oxygen reaction rate cannot be increased to 80% or more, the CO oxidation selectivity is 40% or less, and the CO concentration becomes 0.4% or less.
mol% or less could not be achieved.

【0016】比較例2 実施例1においてコバルトを担持せずに1.0wt%Pt/アル
ミナ触媒を得た。実施例1と同様な条件で反応させた
(SV=13000 [1/h]) 。結果を図3に示す。該触媒では
約 170℃以上にしないと酸素反応率を 80%以上とするこ
とができず、CO酸化選択率は 55%以下であり、約 170
〜220 ℃の温度範囲でCO濃度が 0.1mol%以下となり、
CO濃度を0.03mol%以下にすることができなかった。
Comparative Example 2 A 1.0 wt% Pt / alumina catalyst was obtained in Example 1 without supporting cobalt. The reaction was carried out under the same conditions as in Example 1.
(SV = 13000 [1 / h]). The results are shown in FIG. If the temperature of the catalyst is not higher than about 170 ° C., the oxygen reaction rate cannot be increased to 80% or more, the CO oxidation selectivity is 55% or less, and the
CO concentration is below 0.1mol% in the temperature range of ~ 220 ℃,
The CO concentration could not be reduced to 0.03 mol% or less.

【0017】比較例3 実施例1においてコバルトを担持せずに、アセチルアセ
トナト白金に代えてアセチルアセトナトルテニウムを用
い、1.0wt%Ru/アルミナ触媒を得た。実施例1と同様な
条件で反応させた (SV=13000 [1/h]) 。結果を図4に
示す。該触媒では 150℃以上でメタンの発生があり、温
度上昇によりメタン発生量が急激に増大する。約 100℃
以上にしないと酸素反応率を 80%以上とすることができ
ず、CO酸化選択率は 50%以下であり、約 190℃以上の
温度でCO濃度が0.05mol%以下となる。従って該触媒で
は酸素をCO濃度低減に有効に使用できず、高温ではメ
タンや水素燃焼のために水素が大量に消費することにな
る。
Comparative Example 3 In Example 1, 1.0 wt% Ru / alumina catalyst was obtained by using acetylacetonatoruthenium instead of acetylacetonatoplatinum without carrying cobalt. The reaction was carried out under the same conditions as in Example 1 (SV = 13000 [1 / h]). FIG. 4 shows the results. In the catalyst, methane is generated at 150 ° C. or higher, and the amount of methane generated increases rapidly with an increase in temperature. About 100 ℃
Otherwise, the oxygen reaction rate cannot be increased to 80% or more, the CO oxidation selectivity is 50% or less, and the CO concentration becomes 0.05 mol% or less at a temperature of about 190 ° C or more. Therefore, the catalyst cannot effectively use oxygen to reduce the CO concentration, and consumes a large amount of hydrogen for combustion of methane and hydrogen at high temperatures.

【0018】[0018]

【発明の効果】以上の実施例からも明らかなように、本
発明の方法によればCOが1%程度含まれるメタノール
の水蒸気改質による水素含有ガスが30〜200 ℃程度の比
較的低温でCO濃度を 0.1mol%以下とすることができ、
水素損失が極めて少ない。従って本発明の方法により処
理した水素含有ガスは車載型等の燃料電池に極めて好適
に用いることができ、本発明の工業的意義は大きい。
As is clear from the above embodiments, according to the method of the present invention, the hydrogen-containing gas obtained by steam reforming of methanol containing about 1% of CO can be used at a relatively low temperature of about 30 to 200 ° C. CO concentration can be 0.1 mol% or less,
Very low hydrogen loss. Therefore, the hydrogen-containing gas treated by the method of the present invention can be very suitably used for a fuel cell of a vehicle type or the like, and the present invention has great industrial significance.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1の触媒における性能評価の結果を示す
図面である。
FIG. 1 is a drawing showing the results of performance evaluation of a catalyst of Example 1.

【図2】比較例1の触媒における性能評価の結果を示す
図面である。
FIG. 2 is a drawing showing the results of performance evaluation of a catalyst of Comparative Example 1.

【図3】比較例2の触媒における性能評価の結果を示す
図面である。
FIG. 3 is a drawing showing the results of performance evaluation of a catalyst of Comparative Example 2.

【図4】比較例3の触媒における性能評価の結果を示す
図面である。
FIG. 4 is a drawing showing the results of performance evaluation of a catalyst of Comparative Example 3.

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成12年4月27日(2000.4.2
7)
[Submission date] April 27, 2000 (200.4.2
7)

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0007[Correction target item name] 0007

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0007】即ち本発明は、コバルト・白金共存系触媒
の存在下、一酸化炭素と酸素を接触させることを特徴と
する水素含有ガス中の一酸化炭素低減方法および、担体
コバルトおよび白金含有成分を担持させてなる一酸化
炭素低減用触媒である。
That is, the present invention provides a method for reducing carbon monoxide in a hydrogen-containing gas, which comprises bringing carbon monoxide and oxygen into contact with each other in the presence of a cobalt-platinum coexisting catalyst, and a method for reducing a component containing cobalt and platinum on a carrier. This is a catalyst for reducing carbon monoxide, which is made of a catalyst.

【手続補正2】[Procedure amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0014[Correction target item name] 0014

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0014】実施例1 Coとして0.5wt%量の酢酸コバルト2水和物を溶かした水
溶液を用い、市販のアルミナ球(平均径1.5mm、BET 比
表面積:200〜240m2 /g)にエバポレータにて減圧乾燥
で0.5wt%のCoを担持し、乾燥した。次ぎに、0.5wt%Pt相
当のアセチルアセトナト白金のアセトン溶液を用い、エ
バポレータにて減圧乾燥で更に0.5wt%の白金を担持し、
乾燥した後、360 ℃で焼成し、0.5wt%Co-0.5wt%Pt/アル
ミナ触媒を得た。触媒性能評価 (SV=13000[1/h])の結
果を図1に示す。該触媒を用いた場合、40〜260 ℃の温
度範囲ではメタンの発生はなく、反応温度が約 40〜190
℃の範囲でCO濃度が0.05mol%以下に低下している。
この温度範囲での酸素反応率が 90%以上であり、CO酸
化選択率が約50%である。
Example 1 An aqueous solution in which 0.5% by weight of cobalt acetate dihydrate was dissolved as Co was used to evaporate commercially available alumina spheres (average diameter 1.5 mm, BET specific surface area: 200 to 240 m 2 / g). Was dried under reduced pressure to carry 0.5 wt% of Co and dried. Next, using an acetone solution of acetylacetonatoplatinum equivalent to 0.5 wt% Pt, 0.5% by weight of platinum was further supported by drying under reduced pressure with an evaporator,
After drying, it was calcined at 360 ° C. to obtain 0.5 wt% Co-0.5 wt% Pt / alumina catalyst. FIG. 1 shows the results of the catalyst performance evaluation (SV = 13000 [1 / h]). When the catalyst is used, methane is not generated in the temperature range of 40 to 260 ° C, and the reaction temperature is about 40 to 190 ° C.
The CO concentration falls to 0.05 mol% or less in the range of ° C.
The oxygen reaction rate in this temperature range is 90% or more, and the CO oxidation selectivity is about 50%.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4G040 FA06 FB04 FC07 FE01 4G069 AA03 BA01B BC67A BC67B BC75A BC75B CC17 4H060 AA01 AA04 BB08 BB11 FF02 GG02 5H027 BA01 BA16  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4G040 FA06 FB04 FC07 FE01 4G069 AA03 BA01B BC67A BC67B BC75A BC75B CC17 4H060 AA01 AA04 BB08 BB11 FF02 GG02 5H027 BA01 BA16

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】コバルト・白金共存系触媒の存在下、一酸
化炭素と酸素を接触させることを特徴とする水素含有ガ
ス中の一酸化炭素低減方法。
1. A method for reducing carbon monoxide in a hydrogen-containing gas, which comprises contacting carbon monoxide with oxygen in the presence of a cobalt-platinum coexisting catalyst.
【請求項2】水素含有ガス中に含まれる一酸化炭素に対
して 0.5〜2 倍の酸素を、30〜200 ℃で接触させる請求
項1に記載の水素含有ガス中の一酸化炭素低減方法。
2. The method for reducing carbon monoxide in a hydrogen-containing gas according to claim 1, wherein 0.5 to 2 times the amount of oxygen contained in the hydrogen-containing gas is contacted at 30 to 200 ° C.
【請求項3】担体にコバルトおよび白金含有成分を担持
させてなる一酸化炭素低減用触媒。
3. A catalyst for reducing carbon monoxide comprising a carrier carrying cobalt and platinum-containing components.
JP2000033523A 1999-12-21 2000-02-10 Method of reducing carbon monoxide in hydrogen- containing gas and catalyst Pending JP2001220109A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2000033523A JP2001220109A (en) 2000-02-10 2000-02-10 Method of reducing carbon monoxide in hydrogen- containing gas and catalyst
EP00126540A EP1110907B1 (en) 1999-12-21 2000-12-11 Process for reducing concentration of carbon monoxide in hydrogen-containing gas and catalyst used therefor
EP05106392A EP1591416A3 (en) 1999-12-21 2000-12-11 Process for reducing concentration of carbon monoxide in hydrogen-containing gas and catalyst used therefor
DE60036681T DE60036681T2 (en) 1999-12-21 2000-12-11 A method for reducing the carbon monoxide concentration in a hydrogen-containing gas and catalyst therefor
US09/734,888 US6548034B2 (en) 1999-12-21 2000-12-13 Process for reducing concentration of carbon monoxide in hydrogen-containing gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000033523A JP2001220109A (en) 2000-02-10 2000-02-10 Method of reducing carbon monoxide in hydrogen- containing gas and catalyst

Publications (1)

Publication Number Publication Date
JP2001220109A true JP2001220109A (en) 2001-08-14

Family

ID=18557996

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000033523A Pending JP2001220109A (en) 1999-12-21 2000-02-10 Method of reducing carbon monoxide in hydrogen- containing gas and catalyst

Country Status (1)

Country Link
JP (1) JP2001220109A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008076061A1 (en) * 2006-12-18 2008-06-26 Scania Cv Ab A method to reduce the rotary resistance at gear wheels of a gear box at a motor vehicle, and a gear box to carry out the method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008076061A1 (en) * 2006-12-18 2008-06-26 Scania Cv Ab A method to reduce the rotary resistance at gear wheels of a gear box at a motor vehicle, and a gear box to carry out the method

Similar Documents

Publication Publication Date Title
US7384986B2 (en) Process for the selective methanation of carbonmonoxide (CO) contained in a hydrogen-rich reformate gas
US6299995B1 (en) Process for carbon monoxide preferential oxidation for use with fuel cells
EP1138383B1 (en) Method for oxidising carbon monoxide contained in hydrogen
US7906098B2 (en) Method for making hydrogen using a gold containing water-gas shift catalyst
JP5127115B2 (en) Method for desulfurizing hydrocarbons by partial oxidation
JP3746401B2 (en) Selective oxidation catalyst for carbon monoxide in reformed gas
JP2006239551A (en) Co methanizing catalyst, co removing catalyst device and fuel cell system
US6548034B2 (en) Process for reducing concentration of carbon monoxide in hydrogen-containing gas
JPH08295503A (en) Method for removing co in gaseous hydrogen
JPH0748101A (en) Production of hydrogen-containing gas for fuel cell
JP2001220109A (en) Method of reducing carbon monoxide in hydrogen- containing gas and catalyst
JPH06256779A (en) Method for desulfurizing town bas
KR100460433B1 (en) Catalyst for Purifying Reformate Gas and Process for Selectively Removing Carbon Monoxide Contained in Hydrogen-enriched Reformate Gas Using the Same
JP2002273223A (en) Method for manufacturing co removing catalyst
JP2001302205A (en) Method for reducing carbon monoxide in hydrogen- containing gas, and catalyst
JP2001180907A (en) Catalyst and method of reducing carbon monoxide in gas containing hydrogen
JP2001199706A (en) Method for reduction of carbon monoxide in hydrogen- containing gas and catalyst therefor
US7345007B2 (en) Catalyst for selective oxidation of carbon monoxide in reformed gas
US20050119118A1 (en) Water gas shift catalyst for fuel cells application
JP4569408B2 (en) Water gas shift reaction catalyst and method for removing carbon monoxide gas from hydrogen gas using the same
JP2001199708A (en) Method for reducing carbon monoxide in hydrogen- containing gas and catalyst therefor
AU2004255562B2 (en) Method for making hydrogen using a gold containing water-gas shift catalyst
JP2001199707A (en) Method for reducing carbon monoxide in hydrogen- containing gas and catalyst therefor
JP2006314870A (en) Shift catalyst
JP2001342465A (en) Desulfurizer for petroleum hydrocarbon and method of producing hydrogen for fuel cell