JP3746401B2 - Selective oxidation catalyst for carbon monoxide in reformed gas - Google Patents

Selective oxidation catalyst for carbon monoxide in reformed gas Download PDF

Info

Publication number
JP3746401B2
JP3746401B2 JP18990799A JP18990799A JP3746401B2 JP 3746401 B2 JP3746401 B2 JP 3746401B2 JP 18990799 A JP18990799 A JP 18990799A JP 18990799 A JP18990799 A JP 18990799A JP 3746401 B2 JP3746401 B2 JP 3746401B2
Authority
JP
Japan
Prior art keywords
carbon monoxide
catalyst
reformed gas
selective oxidation
ruthenium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP18990799A
Other languages
Japanese (ja)
Other versions
JP2001017861A (en
Inventor
知史 市石
勝 香川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tanaka Kikinzoku Kogyo KK
Original Assignee
Tanaka Kikinzoku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tanaka Kikinzoku Kogyo KK filed Critical Tanaka Kikinzoku Kogyo KK
Priority to JP18990799A priority Critical patent/JP3746401B2/en
Publication of JP2001017861A publication Critical patent/JP2001017861A/en
Application granted granted Critical
Publication of JP3746401B2 publication Critical patent/JP3746401B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Fuel Cell (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Catalysts (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、改質ガス中の一酸化炭素を選択的に酸化する触媒に係り、更に詳細には、低温で作動する燃料電池、特に固体高分子型燃料電池に用いられる改質ガス中の一酸化炭素を選択酸化する触媒に関する。
本発明の触媒によれば、改質ガス中の一酸化炭素が選択的に酸化されるので、かかる燃料電池を低温においても効果的に作動させることができる。
【0002】
【従来の技術】
従来、燃料電池用の燃料ガスとしては、コスト面を考慮して、メタンやプロパンなどの天然ガスの炭化水素、メタノール等のアルコール又はナフサ等を水蒸気改質して得られる改質ガスが広く用いられている。かかる改質ガスには、水素や二酸化炭素など以外にも一酸化炭素が含まれており、シフト反応で処理した後であっても、約1容量%の一酸化炭素が含まれていることが知られている。
【0003】
かかる副生一酸化炭素は、溶融炭酸塩型などの高温作動型燃料電池では、燃料としても利用されるが、燐酸型や固体高分子型の低温作動型燃料電池では、電極触媒である白金系触媒に対して触媒毒作用を呈し、特に燐酸型燃料電池よりも低温で運転される固体高分子型燃料電池においては、改質ガス中に共存する一酸化炭素による触媒被毒が著しく、発電効率の低下という問題が生じた。
そして、このような問題に対し、従来は、種々の白金族金属を用いたアルミナ触媒が提案されていた。
【0004】
【発明が解決しようとする課題】
しかしながら、かかる白金族金属を用いたアルミナ触媒にあっては、酸素による酸化反応の選択性や活性が低いため、改質ガスの主成分であり燃料ガスとなる水素が同時に酸化浪費されてしまい、燃料利用効率の低下を引き起こすという課題があった。
また、固体高分子型燃料電池においては、改質ガスを用いながら要求される発電効率を得るには、共存する一酸化炭素を当初の約1容量%からその1/100程度以下に低減した後に供給する必要があるが、上記従来の白金−アルミナ系触媒では、一酸化炭素の酸化低減が十分でなく、残留する一酸化炭素により発電効率の劣化を招いていた。
【0005】
本発明は、このような従来技術の有する課題に鑑みてなされたものであり、その目的とするところは、改質ガス中の一酸化炭素を選択的に酸化して低減し、良好な燃料利用効率や発電効率を実現し得る一酸化炭素選択酸化触媒を提供することにある。
【0006】
【課題を解決するための手段】
本発明者らは、上記目的を達成すべく鋭意検討を重ねた結果、ルテニウム等をαアルミナ担体に適切に担持した触媒が、酸素ガスが一酸化炭素に対して過剰に存在する条件下で、優れた一酸化炭素の選択的酸化を行うことを見出し、本発明を完成するに至った。
【0007】
即ち、本発明の一酸化炭素選択酸化触媒は、改質ガス中の一酸化炭素を酸素ガスによって選択的に酸化する触媒であって、ルテニウム又はルテニウムと白金をαアルミナ粒状又はペレット状担体に担持して成り、そのルテニウム又はルテニウムと白金が上記αアルミナ粒状又はペレット状担体の外表面から100μm以内の深さに局在しており、このルテニウム又はルテニウムと白金の粒子径が200Å以下であることを特徴とする。
【0010】
また、本発明の一酸化炭素選択酸化触媒の他の好適形態は、上記ルテニウム又はルテニウムと白金の混合物を0.01〜10重量%の割合で含有することを特徴とする。
【0011】
更にまた、本発明の一酸化炭素選択酸化触媒の更に他の好適形態は、上記改質ガスが固体高分子型燃料電池に用いられる改質ガスであることを特徴とする。
【0012】
【作用】
本発明の選択酸化触媒が、一酸化炭素(CO)の優れた選択酸化性を発揮する理由の詳細は必ずしも明らかではないが、現時点では以下のように推察される。
【0013】
即ち、本発明では、αアルミナ担体を用いることにより、触媒金属であるルテニウム(Ru)又はRuと白金(Pt)が該担体の最表面近傍に存在するようにした。
このように、触媒金属を担体表面に局在化させることによって、COの酸化が起こる温度を低温側にシフトさせることができ、他の反応に対する選択性を向上でき、これにより、反応後の改質ガス中のCO濃度を低減させ、且つ水素の消費を防ぐことができるものと思われる。
【0014】
また、本発明では、αアルミナを担体として好適に使用し、このαアルミナは上述した触媒金属の表面局在化を実現し得るが、これ以外にも、γアルミナやシリカの代わりにαアルミナを使用することにより、反応ガス中に含まれる水蒸気の影響を減らすことができる。
一般に、ガス中に水蒸気が混入することにより水蒸気吸着が起こり、COの酸化が起こる温度が高温側にシフトされるが、αアルミナを用いることにより、その吸着による反応温度の高温側へのシフトを回避できる。この結果、CO酸化の選択性を向上させることができ、反応後の改質ガス中のCO濃度を低減させ、水素の消費を防ぐことができるものと考えられる。
【0015】
【発明の実施の形態】
以下、本発明の一酸化炭素選択酸化触媒について詳細に説明する。
上述如く、本発明の一酸化炭素選択酸化触媒は、改質ガス中のCOを酸素ガスによって選択的に酸化する触媒である。
ここで、改質ガスは、一般にメタンやプロパン等の炭化水素、メタノール等のアルコール又はナフサ等を水蒸気改質して得られるガスをいい、代表的に、メタノール改質ガスは水素ガスを主成分とし、二酸化炭素(CO)、メタン(CH)、水(HO)及びCOを含む。
なお、本発明の適用対象として効果的なものは、これらのうちでもシフト反応後の改質ガスであって、CO濃度が1容量%程度のものである。
【0016】
次に、酸素ガスは、COとの反応当量よりも過剰に存在すれば特に限定されるものではないが、代表的には、COとの反応当量の1.1〜5倍の酸素を存在させることが好ましい。
1.1倍未満では、酸化されないCOが残留し、5倍を超えると、水素の消費量が増大することがあり、好ましくない。
【0017】
また、本発明の一酸化炭素選択酸化触媒は、Ru又はRuとPtを、αアルミナ担体に担持して成る。
ここで、Ruは優れた酸化触媒性能を有し、酸素によるCOの選択酸化を担うが、同様に酸化触媒性能を有するPtを混入することも可能である。
なお、Ruの担持量は、得られる触媒全体の0.01〜10重量%、望ましくは0.02〜0.5重量%とすることが好ましい。一方、RuとPtとの混合物の担持量も、触媒全体の0.01〜10重量%、望ましくは0.02〜5重量%とすることが好ましい。
Ruの担持量が0.02重量%未満では、COの酸化活性が十分でないことがあり、0.5重量%を超えると、Ruが有効に利用されないことがある。
一方、RuとPtの混合物の担持量が0.02重量%未満では、COの酸化活性が十分でないことがあり、0.5重量%を超えると、Ru、Ptが有効に利用されないことがある。
【0018】
更に、本発明の選択酸化触媒では、担持されているRu又はPtの粒子径が200Å以下、望ましくは5〜200Åであることが好ましい。
粒子径が200Åを超えると、COの酸化活性が十分でなくなることがあり、好ましくない。
【0019】
また、上記αアルミナ担体としては、Ru又はRu−Pt混合物を当該担体外表面から100μm以内、好ましくは20μm以内に存在させることができる担体であれば、特に限定されるものではない。
なお、Ru等を担体外表面から100μm以内に担持できない場合は、触媒表面のRu濃度が薄くなり、所期の効果が得られないことがある。
【0020】
更に、本発明の選択酸化触媒においては、αアルミナを担体として好適に使用できるが、この理由は、αアルミナは上述の局在化を容易に実現するからであり、また、上述のように水蒸気の影響を低減できるからである。
なお、γアルミナは、1000℃以上の温度で保持すればαアルミナに転移するが、その温度に保つと触媒金属であるRuやPtがシンタリングを起こし、十分な活性が得られなくなるので、本発明の触媒に単独で用いるのには適していない。
但し、上述の特性を満足する多孔質担体とαアルミナを併用することは可能である。
【0021】
本発明の選択酸化触媒は、上述のような構成を有し、優れたCO選択酸化性を有するが、代表的には、改質ガス中に共存する1容量%程度のCOを100ppm程度に酸化除去する。
なお、使用条件も特に限定されるものではないが、空間速度(SV)を30,000/hr以下、触媒温度を80〜180℃とすれば、顕著な効果が得られる。
【0022】
また、触媒形態は、粒状やペレット状とする。
【0023】
【実施例】
以下、本発明を実施例及び比較例により更に詳細に説明するが、本発明はこれら実施例に限定されるものではない。
なお、以下、特記しない限り「%」は「重量%」を示す。
【0024】
[性能評価]
以下の実施例及び比較例において、得られた触媒の性能は下記の手法で評価した。
(触媒金属の担持粒子径)
触媒を粉砕して、透過型電子顕微鏡により担持金属を直接観察して、その粒径を確認した。
(触媒金属の担体表面局在化)
触媒をほぼ半分に割り、その断面をEPMAにより観察して担持幅を確認した。
【0025】
(実施例1)
平均粒径が2mm程度のαアルミナにRuを約0.2%担持させて本例の選択酸化触媒を得た。この触媒において、Ruはαアルミナ外表面から50μmまでの深さに存在していた。また、Ruの担持粒子径は、平均で100Åであった。
この選択酸化触媒に、1容量%の一酸化炭素を含む改質ガスに酸素を2.5容量%分投入した試験ガスをSV30000/hrで通過させたところ、触媒層の温度が100℃〜160℃の範囲において、CO濃度が100ppm以下になった。
【0026】
(比較例1)
平均粒径が2mm程度のγアルミナにRuを約0.2%担持させて本例の触媒を得た。Ruはγアルミナ外表面から500μmまでの深さに存在しており、Ruの担持粒子径は平均で80Åであった。
この触媒に、1容量%の一酸化炭素を含む改質ガスに酸素を2.5容量%分投入した試験ガスをSV30000/hrで通過させたところ、触媒層の温度が100℃〜160℃の範囲において、CO濃度は5000ppmであった。
【0027】
(実施例2)
平均粒径が2mm程度のαアルミナにRuを約0.2%担持させたて本例の選択酸化触媒を得た。Ruはαアルミナ外表面から50μmまでの深さに存在しており、Ruの担持粒子径は平均で100Åであった。
この選択酸化触媒に、0.1容量%の一酸化炭素を含む改質ガスに酸素を0.1容量%分投入した試験ガスをSV20000/hrで通過させたところ、触媒層の温度が100℃〜150℃の範囲において、CO濃度が50ppm以下になった。
【0028】
(比較例2)
平均粒径が2mm程度のγアルミナにRuを約0.2%担持させて本例の触媒を得た。Ruはγアルミナ外表面から500μmまでの深さに存在しており、Ruの担持粒子径は平均で80Åであった。
この触媒に、0.1容量%の一酸化炭素を含む改質ガスに酸素を0.1容量%分投入した試験ガスをSV20000/hrで通過させたところ、触媒層の温度が100℃〜160℃の範囲において、CO濃度は100ppm以上であった。
【0029】
(実施例3)
平均粒径が2mm程度のαアルミナにRu:Pt(重量比4:1)を約0.2%担持させて本例の選択酸化触媒を得た。Ru及びPtはαアルミナ外表面から100μmまでの深さに存在しており、Ru及びPtの担持粒子径は平均で80Åであった。
この選択酸化触媒に、1容量%の一酸化炭素を含む改質ガスに酸素を2.5容量%分投入した試験ガスをSV30000/hrで通過させたところ、触媒層の温度が100℃〜150℃の範囲において、CO濃度は50ppm以下になり、特に110℃付近においては、20ppm以下になっていた。
【0030】
以上、本発明を好適実施例により詳細に説明したが、本発明はこれら実施例に限定されるものではなく、本発明の開示の範囲内において種々の変形実施が可能である。
例えば、本発明の選択酸化触媒の用途は、固体高分子型燃料電池に供給される改質ガスに限定されるものではなく、他の改質ガス中のCOの低減にも利用可能であり、高純度水素ガスを必要とするアンモニアの合成などの各種プロセスにも適用可能である。
【0031】
【発明の効果】
以上説明してきたように、本発明によれば、ルテニウム等をαアルミナ担体に適切に担持して酸素過剰条件下で処理することとしたため、改質ガス中の一酸化炭素を選択的に酸化して低減し、良好な燃料利用効率や発電効率を実現し得る一酸化炭素選択酸化触媒を提供することができる。
例えば、本発明の触媒を用いることにより、改質ガス中に1容量%程度存在する一酸化炭素を過剰量の酸素の存在下150℃程度で反応させれば、一酸化炭素濃度を0.1容量%以下に低減することができる。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a catalyst that selectively oxidizes carbon monoxide in a reformed gas. More specifically, the present invention relates to a catalyst in a reformed gas used in a fuel cell operating at a low temperature, particularly a polymer electrolyte fuel cell. The present invention relates to a catalyst that selectively oxidizes carbon oxide.
According to the catalyst of the present invention, carbon monoxide in the reformed gas is selectively oxidized, so that the fuel cell can be effectively operated even at a low temperature.
[0002]
[Prior art]
Conventionally, as a fuel gas for a fuel cell, in view of cost, a reformed gas obtained by steam reforming a natural gas hydrocarbon such as methane or propane, an alcohol such as methanol or naphtha is widely used. It has been. Such reformed gas contains carbon monoxide in addition to hydrogen, carbon dioxide, and the like, and it may contain about 1% by volume of carbon monoxide even after being processed by the shift reaction. Are known.
[0003]
Such by-product carbon monoxide is also used as a fuel in a high temperature operation type fuel cell such as a molten carbonate type, but in a phosphoric acid type or solid polymer type low temperature operation type fuel cell, a platinum-based electrode catalyst is used. Catalytic poisoning to the catalyst, especially in polymer electrolyte fuel cells that are operated at lower temperatures than phosphoric acid fuel cells, the catalyst poisoning due to carbon monoxide coexisting in the reformed gas is significant, and power generation efficiency There was a problem of decline.
For such problems, conventionally, alumina catalysts using various platinum group metals have been proposed.
[0004]
[Problems to be solved by the invention]
However, in the alumina catalyst using such a platinum group metal, since the selectivity and activity of the oxidation reaction with oxygen is low, hydrogen that is the main component of the reformed gas and the fuel gas is wasted and oxidized at the same time. There was a problem of causing a decrease in fuel utilization efficiency.
In the polymer electrolyte fuel cell, in order to obtain the required power generation efficiency using the reformed gas, the coexisting carbon monoxide is reduced from about 1% by volume to about 1/100 or less of the initial volume. Although it is necessary to supply the above-mentioned conventional platinum-alumina-based catalyst, the oxidation reduction of carbon monoxide is not sufficient, and the remaining carbon monoxide causes deterioration in power generation efficiency.
[0005]
The present invention has been made in view of such problems of the prior art, and an object of the present invention is to selectively oxidize and reduce carbon monoxide in the reformed gas, and to make good use of fuel. The object is to provide a carbon monoxide selective oxidation catalyst capable of realizing efficiency and power generation efficiency.
[0006]
[Means for Solving the Problems]
As a result of intensive investigations to achieve the above object, the present inventors have found that a catalyst in which ruthenium or the like is appropriately supported on an α-alumina support is in a condition where oxygen gas is excessively present relative to carbon monoxide. The inventors have found that excellent selective oxidation of carbon monoxide is performed, and have completed the present invention.
[0007]
That is, the carbon monoxide selective oxidation catalyst of the present invention is a catalyst that selectively oxidizes carbon monoxide in the reformed gas with oxygen gas, and ruthenium or ruthenium and platinum are supported on an α-alumina granular or pellet-like support. Ri formed by, the ruthenium or ruthenium and platinum are localized in depth within 100μm from the outer surface of the α-alumina granular or pellet-like carrier, the particle diameter of the ruthenium or ruthenium and platinum is 200Å or less It is characterized by that.
[0010]
In addition, another preferred embodiment of the carbon monoxide selective oxidation catalyst of the present invention is characterized by containing the ruthenium or a mixture of ruthenium and platinum in a proportion of 0.01 to 10% by weight.
[0011]
Yet another preferred embodiment of the carbon monoxide selective oxidation catalyst of the present invention is characterized in that the reformed gas is a reformed gas used in a polymer electrolyte fuel cell.
[0012]
[Action]
Although the details of the reason why the selective oxidation catalyst of the present invention exhibits the excellent selective oxidation property of carbon monoxide (CO) are not necessarily clear, at present, it is presumed as follows.
[0013]
That is, in the present invention, by using an α-alumina support , the catalytic metal ruthenium (Ru) or Ru and platinum (Pt) are made to exist in the vicinity of the outermost surface of the support.
Thus, by localizing the catalytic metal on the surface of the support, the temperature at which CO oxidation occurs can be shifted to the low temperature side, and the selectivity for other reactions can be improved. It seems that the concentration of CO in the gas can be reduced and the consumption of hydrogen can be prevented.
[0014]
Further, in the present invention, α-alumina is preferably used as a carrier , and this α-alumina can realize the above-mentioned surface localization of the catalytic metal. In addition to this, α-alumina is used instead of γ-alumina and silica. By using it, the influence of water vapor contained in the reaction gas can be reduced.
In general, when water vapor is mixed into the gas, water vapor adsorption occurs, and the temperature at which CO oxidation occurs is shifted to the high temperature side. By using α-alumina, the reaction temperature due to the adsorption is shifted to the high temperature side. Can be avoided. As a result, it is considered that the selectivity of CO oxidation can be improved, the CO concentration in the reformed gas after the reaction can be reduced, and the consumption of hydrogen can be prevented.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the carbon monoxide selective oxidation catalyst of the present invention will be described in detail.
As described above, the carbon monoxide selective oxidation catalyst of the present invention is a catalyst that selectively oxidizes CO in the reformed gas with oxygen gas.
Here, the reformed gas generally refers to a gas obtained by steam reforming a hydrocarbon such as methane or propane, an alcohol such as methanol or naphtha, and typically, the methanol reformed gas is mainly composed of hydrogen gas. And carbon dioxide (CO 2 ), methane (CH 4 ), water (H 2 O) and CO.
Of these, what is effective as an application target of the present invention is a reformed gas after the shift reaction, and has a CO concentration of about 1% by volume.
[0016]
Next, the oxygen gas is not particularly limited as long as it exists in excess of the reaction equivalent with CO, but typically, oxygen of 1.1 to 5 times the reaction equivalent with CO is present. It is preferable.
If it is less than 1.1 times, unoxidized CO remains, and if it exceeds 5 times, the consumption of hydrogen may increase, which is not preferable.
[0017]
Further, the carbon monoxide selective oxidation catalyst of the present invention comprises Ru or Ru and Pt supported on an α alumina support.
Here, Ru has excellent oxidation catalyst performance and is responsible for selective oxidation of CO by oxygen, but Pt having oxidation catalyst performance can also be mixed.
The supported amount of Ru is 0.01 to 10% by weight, preferably 0.02 to 0.5% by weight, based on the total catalyst obtained. On the other hand, the supported amount of the mixture of Ru and Pt is also 0.01 to 10% by weight, preferably 0.02 to 5% by weight, based on the whole catalyst.
If the supported amount of Ru is less than 0.02% by weight, the oxidation activity of CO may not be sufficient, and if it exceeds 0.5% by weight, Ru may not be used effectively.
On the other hand, if the supported amount of the mixture of Ru and Pt is less than 0.02% by weight, the oxidation activity of CO may not be sufficient, and if it exceeds 0.5% by weight, Ru and Pt may not be used effectively. .
[0018]
Furthermore, in the selective oxidation catalyst of the present invention, it is preferable that the particle diameter of the supported Ru or Pt is 200 mm or less, desirably 5 to 200 mm.
When the particle diameter exceeds 200 mm, the oxidation activity of CO may not be sufficient, which is not preferable.
[0019]
Also, as the α-alumina carrier, within 100μm Ru or Ru-Pt mixture The carrier outer surface, as long as the support preferably may be present within 20 [mu] m, especially limited not name.
When Ru or the like cannot be supported within 100 μm from the outer surface of the support, the Ru concentration on the catalyst surface becomes thin and the desired effect may not be obtained.
[0020]
Furthermore, in the selective oxidation catalyst of the present invention, α-alumina can be suitably used as a support, because α-alumina easily realizes the above localization, and as described above, This is because the influence of the can be reduced.
Note that γ-alumina transitions to α-alumina if kept at a temperature of 1000 ° C. or higher. However, if the temperature is kept at that temperature, the catalytic metals Ru and Pt cause sintering, and sufficient activity cannot be obtained. It is not suitable for use alone in the catalyst of the invention.
However, it is possible to use α-alumina in combination with a porous carrier that satisfies the above characteristics.
[0021]
The selective oxidation catalyst of the present invention has the above-described configuration and excellent CO selective oxidation properties. Typically, however, about 1 vol% CO coexisting in the reformed gas is typically oxidized to about 100 ppm. Remove.
The use conditions are not particularly limited, but a remarkable effect can be obtained if the space velocity (SV) is 30,000 / hr or less and the catalyst temperature is 80 to 180 ° C.
[0022]
The catalyst form is granular or pellet.
[0023]
【Example】
EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention further in detail, this invention is not limited to these Examples.
In the following, “%” means “% by weight” unless otherwise specified.
[0024]
[Performance evaluation]
In the following examples and comparative examples, the performance of the obtained catalyst was evaluated by the following method.
(Catalyst metal support particle size)
The catalyst was pulverized and the supported metal was directly observed with a transmission electron microscope to confirm the particle size.
(Localization of catalyst metal support surface)
The catalyst was divided almost in half, and the cross section was observed with EPMA to confirm the loading width.
[0025]
(Example 1)
About 0.2% of Ru was supported on α-alumina having an average particle size of about 2 mm to obtain the selective oxidation catalyst of this example. In this catalyst, Ru was present at a depth of 50 μm from the outer surface of α-alumina. In addition, the average particle size of the supported Ru particles was 100 mm.
When a test gas in which oxygen was added in an amount of 2.5% by volume to a reformed gas containing 1% by volume of carbon monoxide was passed through this selective oxidation catalyst at SV30000 / hr, the temperature of the catalyst layer was 100 ° C. to 160 ° C. In the range of ° C., the CO concentration became 100 ppm or less.
[0026]
(Comparative Example 1)
About 0.2% of Ru was supported on γ-alumina having an average particle size of about 2 mm to obtain the catalyst of this example. Ru was present at a depth of 500 μm from the outer surface of γ-alumina, and the average particle size of Ru was 80 mm.
When a test gas in which oxygen was added by 2.5 volume% to a reformed gas containing 1 volume% carbon monoxide was passed through this catalyst at SV30000 / hr, the temperature of the catalyst layer was 100 ° C. to 160 ° C. In the range, the CO concentration was 5000 ppm.
[0027]
(Example 2)
A selective oxidation catalyst of this example was obtained by supporting about 0.2% of Ru on α-alumina having an average particle diameter of about 2 mm. Ru was present at a depth of 50 μm from the outer surface of α-alumina, and the average particle size of Ru was 100 mm.
When a test gas in which 0.1 volume% of oxygen was introduced into a reformed gas containing 0.1 volume% carbon monoxide was passed through this selective oxidation catalyst at SV20000 / hr, the temperature of the catalyst layer was 100 ° C. In the range of ˜150 ° C., the CO concentration became 50 ppm or less.
[0028]
(Comparative Example 2)
About 0.2% of Ru was supported on γ-alumina having an average particle size of about 2 mm to obtain the catalyst of this example. Ru was present at a depth of 500 μm from the outer surface of γ-alumina, and the average particle size of Ru was 80 mm.
When a test gas in which 0.1 volume% of oxygen was introduced into a reformed gas containing 0.1 volume% carbon monoxide was passed through this catalyst at SV20000 / hr, the temperature of the catalyst layer was 100 ° C. to 160 ° C. In the range of ° C., the CO concentration was 100 ppm or more.
[0029]
(Example 3)
About 0.2% of Ru: Pt (weight ratio 4: 1) was supported on α-alumina having an average particle diameter of about 2 mm to obtain the selective oxidation catalyst of this example. Ru and Pt were present at a depth of 100 μm from the outer surface of the α alumina, and the average particle size of the supported particles of Ru and Pt was 80 mm.
When a test gas in which oxygen was added in an amount of 2.5% by volume to a reformed gas containing 1% by volume of carbon monoxide was passed through this selective oxidation catalyst at SV30000 / hr, the temperature of the catalyst layer was 100 ° C. to 150 ° C. In the range of ° C., the CO concentration was 50 ppm or less, and particularly around 110 ° C., it was 20 ppm or less.
[0030]
As mentioned above, although this invention was demonstrated in detail by the preferred embodiment, this invention is not limited to these Examples, A various deformation | transformation implementation is possible within the range of this indication.
For example, the use of the selective oxidation catalyst of the present invention is not limited to the reformed gas supplied to the polymer electrolyte fuel cell, and can be used to reduce CO in other reformed gases, It can also be applied to various processes such as ammonia synthesis that require high-purity hydrogen gas.
[0031]
【The invention's effect】
As described above, according to the present invention, ruthenium or the like is appropriately supported on an α-alumina carrier and treated under oxygen-excess conditions, so that carbon monoxide in the reformed gas is selectively oxidized. Therefore, it is possible to provide a carbon monoxide selective oxidation catalyst that can be reduced and realize good fuel utilization efficiency and power generation efficiency.
For example, by using the catalyst of the present invention, if carbon monoxide present in about 1% by volume in the reformed gas is reacted at about 150 ° C. in the presence of an excess amount of oxygen, the carbon monoxide concentration is reduced to 0.1. It can be reduced to a volume% or less.

Claims (3)

改質ガス中の一酸化炭素を酸素ガスによって選択的に酸化する触媒であって、ルテニウム又はルテニウムと白金をαアルミナ粒状又はペレット状担体に担持して成り、そのルテニウム又はルテニウムと白金が上記αアルミナ粒状又はペレット状担体の外表面から100μm以内の深さに局在しており、このルテニウム又はルテニウムと白金の粒子径が200Å以下であることを特徴とする一酸化炭素の選択酸化触媒。Carbon monoxide in the reformed gas to a catalyst to selectively oxidize by oxygen gas, formed by supporting a ruthenium or ruthenium and platinum α-alumina granular or pellet-like carrier is, its ruthenium or ruthenium and platinum the A selective oxidation catalyst for carbon monoxide , which is localized at a depth of 100 μm or less from the outer surface of an α-alumina granular or pellet-like support, and the particle diameter of the ruthenium or ruthenium and platinum is 200 mm or less . 上記ルテニウム又はルテニウムと白金の混合物を0.01〜10重量%の割合で含有することを特徴とする請求項に記載の選択酸化触媒。2. The selective oxidation catalyst according to claim 1 , comprising the ruthenium or a mixture of ruthenium and platinum in a proportion of 0.01 to 10% by weight. 上記改質ガスが固体高分子型燃料電池に用いられる改質ガスであることを特徴とする請求項1又は2に記載の選択酸化触媒。The selective oxidation catalyst according to claim 1 or 2 , wherein the reformed gas is a reformed gas used in a polymer electrolyte fuel cell.
JP18990799A 1999-07-05 1999-07-05 Selective oxidation catalyst for carbon monoxide in reformed gas Expired - Lifetime JP3746401B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18990799A JP3746401B2 (en) 1999-07-05 1999-07-05 Selective oxidation catalyst for carbon monoxide in reformed gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18990799A JP3746401B2 (en) 1999-07-05 1999-07-05 Selective oxidation catalyst for carbon monoxide in reformed gas

Publications (2)

Publication Number Publication Date
JP2001017861A JP2001017861A (en) 2001-01-23
JP3746401B2 true JP3746401B2 (en) 2006-02-15

Family

ID=16249209

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18990799A Expired - Lifetime JP3746401B2 (en) 1999-07-05 1999-07-05 Selective oxidation catalyst for carbon monoxide in reformed gas

Country Status (1)

Country Link
JP (1) JP3746401B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011005461A (en) * 2009-06-29 2011-01-13 National Institute Of Advanced Industrial Science & Technology Catalyst for selectively oxidizing carbon monoxide

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2001236090A1 (en) * 2000-03-03 2001-09-12 Idemitsu Kosan Co. Ltd. Method of preparation of catalyst for use in removing co in hydrogen containing gas
JP4620230B2 (en) * 2000-08-31 2011-01-26 出光興産株式会社 Carbon monoxide removal catalyst in hydrogen-containing gas and method for removing carbon monoxide in hydrogen-containing gas using the catalyst
JP5164297B2 (en) * 2000-05-24 2013-03-21 出光興産株式会社 CO oxidation catalyst and method for producing hydrogen-containing gas
KR100453466B1 (en) * 2002-01-28 2004-10-20 한국과학기술연구원 Catalyst for selective oxidation of carbon monoxide
WO2004000458A1 (en) * 2002-06-24 2003-12-31 Tanaka Kikinzoku Kogyo K.K. Catalysts for selective oxidation of carbon monoxide in reformed gas
WO2004000457A1 (en) * 2002-06-24 2003-12-31 Tanaka Kikinzoku Kogyo K.K. Catalyst for selective oxidation of carbon monoxide in reformed gas
US20050096211A1 (en) * 2003-10-31 2005-05-05 Hiroshi Takeda Catalyst for the conversion of carbon monoxide
WO2006114831A1 (en) * 2005-04-06 2006-11-02 Mitsubishi Heavy Industries, Ltd. Catalyst for exhaust gas treatment capable of carrying out reduction treatment of so3, method for production thereof, and method for treating exhaust gas using the catalyst
US8080224B2 (en) 2006-05-05 2011-12-20 Sud-Chemie Inc. Catalyst for the conversion of carbon monoxide
JP4890194B2 (en) * 2006-10-23 2012-03-07 日揮触媒化成株式会社 Method for producing carbon monoxide removal catalyst
JPWO2008075761A1 (en) * 2006-12-20 2010-04-15 新日本石油株式会社 Catalyst for reducing carbon monoxide concentration
JP4772659B2 (en) * 2006-12-26 2011-09-14 日揮触媒化成株式会社 Catalyst for removing carbon monoxide and method for producing the same
JP5013919B2 (en) * 2007-03-28 2012-08-29 Jx日鉱日石エネルギー株式会社 Hydrocarbon production catalyst and its preparation
JP5204633B2 (en) * 2007-12-17 2013-06-05 Jx日鉱日石エネルギー株式会社 Catalyst for selectively oxidizing carbon monoxide, method for reducing carbon monoxide concentration, and fuel cell system
JP5322733B2 (en) 2009-03-31 2013-10-23 Jx日鉱日石エネルギー株式会社 Method for producing catalyst for selective oxidation reaction of carbon monoxide
JP6709494B2 (en) * 2018-11-20 2020-06-17 株式会社フルヤ金属 Supported catalyst
JP2021195316A (en) * 2020-06-10 2021-12-27 三菱パワー株式会社 Co2 methanation reaction device having co selective oxidation catalyst and removal method of co in gas

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011005461A (en) * 2009-06-29 2011-01-13 National Institute Of Advanced Industrial Science & Technology Catalyst for selectively oxidizing carbon monoxide

Also Published As

Publication number Publication date
JP2001017861A (en) 2001-01-23

Similar Documents

Publication Publication Date Title
JP3746401B2 (en) Selective oxidation catalyst for carbon monoxide in reformed gas
EP1138383B1 (en) Method for oxidising carbon monoxide contained in hydrogen
TWI294413B (en) Method for converting co and hydrogen into methane and water
US7279142B2 (en) Hydrogen refining apparatus
JP4824332B2 (en) Carbon monoxide removal catalyst
JP2001212458A (en) Catalyst for selectively oxidizing carbon monoxide in reforming gas
JPH08295503A (en) Method for removing co in gaseous hydrogen
JP3574469B2 (en) Method for oxidizing CO to CO2 and method for producing hydrogen-containing gas for fuel cell
JP4083556B2 (en) Selective oxidation catalyst for carbon monoxide in reformed gas
JPH0748101A (en) Production of hydrogen-containing gas for fuel cell
KR100858943B1 (en) Catalyst for selective oxidation of carbon monoxide in reformed gas
US7029640B2 (en) Process for selective oxidation of carbon monoxide in a hydrogen containing stream
US6548034B2 (en) Process for reducing concentration of carbon monoxide in hydrogen-containing gas
JPWO2004000458A1 (en) Selective oxidation catalyst for carbon monoxide in reformed gas
US20040156771A1 (en) Method of reducing carbon monoxide concentration
JP3788718B2 (en) CO selective oxidation catalyst and method for reducing CO concentration in methanol reformed gas
KR100460433B1 (en) Catalyst for Purifying Reformate Gas and Process for Selectively Removing Carbon Monoxide Contained in Hydrogen-enriched Reformate Gas Using the Same
JPH07309603A (en) Production of hydrogen-containing gas for fuel cell
JP5086599B2 (en) Method for producing hydrogen-containing gas
KR20050042413A (en) A catalysts for the selective co oxidation in a hydrogen-rich stream and manufacturing method thereof
JP2005034778A (en) Monolithic catalyst
JP2001302205A (en) Method for reducing carbon monoxide in hydrogen- containing gas, and catalyst
JP4705375B2 (en) Method for stabilizing and activating CO removal catalyst
JP2006314870A (en) Shift catalyst
JP2001180907A (en) Catalyst and method of reducing carbon monoxide in gas containing hydrogen

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20031226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040901

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041101

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051111

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051122

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3746401

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081202

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111202

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111202

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111202

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111202

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111202

Year of fee payment: 6

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141202

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term