JPWO2004000458A1 - Selective oxidation catalyst for carbon monoxide in reformed gas - Google Patents

Selective oxidation catalyst for carbon monoxide in reformed gas Download PDF

Info

Publication number
JPWO2004000458A1
JPWO2004000458A1 JP2004515455A JP2004515455A JPWO2004000458A1 JP WO2004000458 A1 JPWO2004000458 A1 JP WO2004000458A1 JP 2004515455 A JP2004515455 A JP 2004515455A JP 2004515455 A JP2004515455 A JP 2004515455A JP WO2004000458 A1 JPWO2004000458 A1 JP WO2004000458A1
Authority
JP
Japan
Prior art keywords
alumina
carbon monoxide
selective oxidation
oxidation catalyst
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004515455A
Other languages
Japanese (ja)
Inventor
勝 香川
勝 香川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tanaka Kikinzoku Kogyo KK
Original Assignee
Tanaka Kikinzoku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tanaka Kikinzoku Kogyo KK filed Critical Tanaka Kikinzoku Kogyo KK
Publication of JPWO2004000458A1 publication Critical patent/JPWO2004000458A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/58Platinum group metals with alkali- or alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • B01J37/0248Coatings comprising impregnated particles
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • C01B3/56Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with solids; Regeneration of used solids
    • C01B3/58Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with solids; Regeneration of used solids including a catalytic reaction
    • C01B3/583Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with solids; Regeneration of used solids including a catalytic reaction the reaction being the selective oxidation of carbon monoxide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0662Treatment of gaseous reactants or gaseous residues, e.g. cleaning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • B01J21/04Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/42Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • B01J23/462Ruthenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/393Metal or metal oxide crystallite size
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0435Catalytic purification
    • C01B2203/044Selective oxidation of carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/047Composition of the impurity the impurity being carbon monoxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Sustainable Energy (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

改質ガス中の一酸化炭素を酸素ガスによって選択的に酸化する触媒である。一方の一酸化炭素選択酸化触媒は、ルテニウム及び/又は白金を、αアルミナを含有するアルミナ担体に担持して成り、且つこのアルミナ担体中に含まれるナトリウムがNa2O換算で0.07%未満である。他方の一酸化炭素選択酸化触媒は、ルテニウム及び/又は白金をαアルミナを含有するアルミナ担体に担持し、更に、このアルミナ担体を、マグネシウムを含有する支持体に支持して成り、ルテニウム及び/又は白金を担持したアルミナ担体中に含まれるマグネシウムが、MgO換算で0.04%未満である。It is a catalyst that selectively oxidizes carbon monoxide in the reformed gas with oxygen gas. One carbon monoxide selective oxidation catalyst comprises ruthenium and / or platinum supported on an alumina carrier containing α-alumina, and sodium contained in the alumina carrier is less than 0.07% in terms of Na 2 O. . The other carbon monoxide selective oxidation catalyst comprises ruthenium and / or platinum supported on an alumina support containing α-alumina, and further supported on a support containing magnesium, and ruthenium and / or Magnesium contained in the alumina carrier carrying platinum is less than 0.04% in terms of MgO.

Description

本発明は、改質ガス中の一酸化炭素を選択的に酸化する触媒に係り、更に詳細には、低温で作動する燃料電池、特に固体高分子型燃料電池に用いられる改質ガス中の一酸化炭素を選択酸化する触媒に関する。
本発明の触媒によれば、改質ガス中の一酸化炭素が選択的に酸化されるので、かかる燃料電池を低温においても効果的に作動させることができる。
The present invention relates to a catalyst that selectively oxidizes carbon monoxide in a reformed gas. More specifically, the present invention relates to a catalyst in a reformed gas used in a fuel cell operating at a low temperature, particularly a polymer electrolyte fuel cell. The present invention relates to a catalyst that selectively oxidizes carbon oxide.
According to the catalyst of the present invention, carbon monoxide in the reformed gas is selectively oxidized, so that the fuel cell can be effectively operated even at a low temperature.

従来、燃料電池用の燃料ガスとしては、コスト面を考慮して、メタンやプロパンなどの天然ガスの炭化水素、メタノール等のアルコール又はナフサ等を水蒸気改質して得られる改質ガスが広く用いられている。かかる改質ガスには、水素や二酸化炭素など以外にも一酸化炭素が含まれており、シフト反応で処理した後であっても、約1vol%の一酸化炭素が含まれていることが知られている。
かかる副生一酸化炭素は、溶融炭酸塩型などの高温作動型燃料電池では、燃料としても利用されるが、燐酸型や固体高分子型の低温作動型燃料電池では、電極触媒である白金系触媒に対して触媒毒作用を呈し、特に燐酸型燃料電池よりも低温で運転される固体高分子型燃料電池においては、改質ガス中に共存する一酸化炭素による触媒被毒が著しく、発電効率の低下という問題が生じた。
そして、このような問題に対し、従来は、種々の白金族金属を用いたアルミナ触媒が提案されていた。
しかしながら、かかる白金族金属を用いたアルミナ触媒にあっては、酸素による酸化反応の選択性や活性が低いため、改質ガスの主成分であり燃料ガスとなる水素が同時に酸化浪費されてしまい、燃料利用効率の低下を引き起こすという問題点があった。
また、固体高分子型燃料電池においては、改質ガスを用いながら要求される発電効率を得るには、共存する一酸化炭素を当初の約1vol%からその1/100程度以下に低減した後に供給する必要があるが、上記従来の白金−アルミナ系触媒では、一酸化炭素の酸化低減が十分でなく、残留する一酸化炭素により発電効率の劣化を招いていた。
更に、本発明者らがアルミナを担体とする一酸化炭素選択酸化触媒につき検討加えたところ、アルミナ担体に特定元素の酸化物などが一定量以上含まれると、かかる選択酸化触媒の活性が著しく減じられることを知見した。
Conventionally, as a fuel gas for a fuel cell, in view of cost, a reformed gas obtained by steam reforming a natural gas hydrocarbon such as methane or propane, an alcohol such as methanol or naphtha is widely used. It has been. Such reformed gas contains carbon monoxide in addition to hydrogen, carbon dioxide, etc., and is known to contain about 1 vol% carbon monoxide even after being processed by a shift reaction. It has been.
Such by-product carbon monoxide is also used as a fuel in a high temperature operation type fuel cell such as a molten carbonate type, but in a phosphoric acid type or solid polymer type low temperature operation type fuel cell, a platinum-based electrode catalyst is used. Catalytic poisoning to the catalyst, especially in polymer electrolyte fuel cells that are operated at lower temperatures than phosphoric acid fuel cells, the catalyst poisoning due to carbon monoxide coexisting in the reformed gas is significant, and power generation efficiency There was a problem of decline.
For such problems, conventionally, alumina catalysts using various platinum group metals have been proposed.
However, in the alumina catalyst using such a platinum group metal, since the selectivity and activity of the oxidation reaction with oxygen is low, hydrogen that is the main component of the reformed gas and the fuel gas is wasted and oxidized at the same time. There was a problem of causing a decrease in fuel utilization efficiency.
In the polymer electrolyte fuel cell, in order to obtain the required power generation efficiency using the reformed gas, the coexisting carbon monoxide is reduced to about 1/100 or less from the initial about 1 vol%, and then supplied. However, in the conventional platinum-alumina-based catalyst, the carbon monoxide is not sufficiently reduced in oxidation, and the remaining carbon monoxide causes deterioration in power generation efficiency.
Furthermore, the present inventors have studied and added a carbon monoxide selective oxidation catalyst using alumina as a carrier. If the alumina carrier contains a certain amount or more of an oxide of a specific element, the activity of the selective oxidation catalyst is remarkably reduced. I found out that

本発明は、このような従来技術の有する課題に鑑みてなされたものであり、その目的とするところは、改質ガス中の一酸化炭素を選択的に酸化して低減し、良好な燃料利用効率や発電効率を実現し得る一酸化炭素選択酸化触媒を提供することにある。
本発明者らは、上記目的を達成すべく鋭意検討を重ねた結果、ルテニウムや白金を、特定不純物含有量を適切に制御したアルミナ担体に担持することにより、酸素ガスが一酸化炭素に対して過剰に存在する条件下で、優れた一酸化炭素の選択的酸化を行うことを見出し、本発明を完成するに至った。
即ち、本発明の一酸化炭素選択酸化触媒は、改質ガス中の一酸化炭素を酸素ガスによって選択的に酸化する触媒であって、
ルテニウム及び/又は白金をαアルミナを含有するアルミナ担体に担持して成り、且つこのアルミナ担体中に含まれるナトリウムがNaO換算で0.07%未満であることを特徴とする。
更に、本発明の更に他の一酸化炭素選択酸化触媒は、改質ガス中の一酸化炭素を酸素ガスによって選択的に酸化する触媒であって、
ルテニウム及び/又は白金をαアルミナを含有するアルミナ担体に担持し、更に、このアルミナ担体をマグネシウムを含有する支持体に支持して成り、
上記ルテニウム及び/又は白金を担持したアルミナ担体中に含まれるマグネシウムが、MgO換算で0.04%未満であることを特徴とする。
更にまた、本発明の更に他の一酸化炭素選択酸化触媒の好適形態は、上記ルテニウム及び/又は白金を担持したアルミナ担体中にナトリウムが含まれ、そのナトリウム含有量がNaO換算で0.07%未満であることを特徴とする
本発明の選択酸化触媒が、一酸化炭素(CO)の優れた選択酸化性を発揮する理由の詳細は必ずしも明らかではないが、現時点では以下のように推察される。
即ち、本発明では、αアルミナを含有する担体を用いることにより、触媒金属であるルテニウム(Ru)と白金(Pt)が該担体の最表面近傍に存在するようにした。
このように、触媒金属を担体表面に局在化させることによって、COの酸化が起こる温度を低温側にシフトさせることができ、他の反応に対する選択性を向上でき、これにより、反応後の改質ガス中のCO濃度を低減させ、且つ水素の消費を防ぐことができるものと思われる。
一般に、ガス中に水蒸気が混入することにより水蒸気吸着が起こり、COの酸化が起こる温度が高温側にシフトされるが、αアルミナを用いることにより、その吸着による反応温度の高温側へのシフトを回避できる。この結果、CO酸化の選択性を向上させることができ、反応後の改質ガス中のCO濃度を低減させ、水素の消費を防ぐことができるものと考えられる。
更に、本発明のCO選択酸化触媒では、極めて高純度のαアルミナを担体に用いることにより、高いCO酸化活性を発現し得るため、αアルミナにRu及び/又はPtなどの触媒活性貴金属種以外の金属、例えばナトリウムや、その金属酸化物が含有されると、反応ガスの吸着形態が変化して活性が大きく阻害されると考えられる。
なお、本発明のCO選択酸化触媒では、いわゆるハニカム形状の支持体を用いることも可能であるが、かかるハニカム状支持体に由来するマグネシウムなども触媒活性を低減する原因物質となるため、これらのαアルミナへの混入量を一定値以下に制御することが望ましい。
以下、本発明の一酸化炭素選択酸化触媒について詳細に説明する。なお、本明細書において、「%」は特記しない限り質量百分率を示すものとする。
上述の如く、本発明の一酸化炭素選択酸化触媒は、改質ガス中のCOを酸素ガスによって選択的に酸化する触媒である。
ここで、改質ガスとは、一般にメタンやプロパン等の炭化水素、メタノール等のアルコール又はナフサ等を水蒸気改質して得られるガスをいい、代表的に、メタノール改質ガスは水素ガスを主成分とし、二酸化炭素(CO)、メタン(CH)、水(HO)及びCOを含む。
なお、本発明の適用対象として効果的なものは、これらのうちでもシフト反応後の改質ガスであって、CO濃度が1vol%程度のものである。
次に、酸素ガスは、COとの反応当量よりも過剰に存在すれば特に限定されるものではないが、代表的には、COとの反応当量の1.1〜5倍の酸素を存在させることが好ましい。
1.1倍未満では、酸化されないCOが残留し、5倍を超えると、水素の消費量が増大することがあり、好ましくない。
また、本発明の選択酸化触媒は、RuとPtを0.01〜10%の割合で含有することが好ましい。即ち、RuとPtの混合物の担持量は、得られる触媒全体の0.01〜10%とすることが好ましく、望ましくは0.02〜0.5%とすることがよい。
上記混合物の担持量が0.02%未満では、COの酸化活性が十分でないことがあり、0.5%を超えると、Ru、Ptが有効に利用されないことがある。
更に、本発明の選択酸化触媒では、担持されているRu及びPtの少なくとも一方の粒子径が200Å以下、望ましくは5〜200Åであることが好ましい。
粒子径が200Åを超えると、COの酸化活性が十分でなくなることがあり、好ましくない。
また、本発明の選択酸化触媒においては、アルミナ担体を用いるが、αアルミナを含有し、Ru、Pt、Ru−Pt混合物を、当該担体を構成するアルミナ粒子表面から100μm以内、好ましくは20μm以内に存在させることができるアルミナ担体であれば、形状は限定されるものではない。
Ru等をアルミナ粒子表面から100μm以内に担持できない場合は、触媒表面のRu濃度が薄くなり、所期の効果が得られないことがある。
本発明の選択酸化触媒においては、αアルミナを担体として好適に使用できるが、この理由は、αアルミナは微細な孔を持たないので上述の局在化を容易に実現するからであり、また、上述のように水蒸気の影響を低減できるからである。
なお、αアルミナを単独で用いてもよいが、その他の結晶系のアルミナと併用することも可能である。
また、γアルミナは、1000℃以上の温度で保持すればαアルミナに転移するが、その温度に保つと触媒金属であるRuやPtがシンタリングを起こし、十分な活性が得られなくなるので、本発明の触媒に単独で用いるのには適していない。但し、触媒活性種であるRu、Ptなどを担持する前にγ,θ,ηなどのアルミナを熱処理しαアルミナに相転換させた後担体して用いることや、上述の特性を満足する様々な結晶系の高純度なアルミナとαアルミナを併用することは可能である。
なお、本発明の選択酸化触媒においては、上記アルミナ担体がαアルミナを極めて高濃度で含有することが好ましく、ナトリウム(Na)やマグネシウム(Mg)などの不純物が一定量以上含まれると触媒活性を阻害することがある。
例えば、アルミナ担体中のNaの含有量については、NaO換算で0.07%未満に制御することを要する。
また、本発明の選択酸化触媒は、粒状やペレット状とすることが可能で、更には、ハニカム状の支持体を用いることが可能であり、例えば、コージェライト製や金属製などのハニカム状の一体構造型支持体にコートして用いることも可能である。
但し、上述したαアルミナの高濃度ないし高純度を担保して高活性を発現させるべく、コージェライトに由来するマグネシウム(Mg)上記アルミナ担体中の含有量は、それぞれMgOで0.04%未満に制御されていることを要する。
本発明の選択酸化触媒は、上述のような構成を有し、優れたCO選択酸化性を有するが、代表的には、改質ガス中に共存する1vol%程度のCOを100ppm程度に酸化除去する。
なお、使用条件も特に限定されるものではないが、空間速度(SV)を30,000h−1以下、触媒温度を100〜200℃とすれば、顕著な効果が得られる。
The present invention has been made in view of such problems of the prior art, and an object of the present invention is to selectively oxidize and reduce carbon monoxide in the reformed gas, and to make good use of fuel. The object is to provide a carbon monoxide selective oxidation catalyst capable of realizing efficiency and power generation efficiency.
As a result of intensive studies to achieve the above object, the present inventors have supported ruthenium and platinum on an alumina carrier whose content of specific impurities is appropriately controlled, so that oxygen gas can be reduced relative to carbon monoxide. The inventors have found that excellent selective oxidation of carbon monoxide is performed under an excessively existing condition, and the present invention has been completed.
That is, the carbon monoxide selective oxidation catalyst of the present invention is a catalyst that selectively oxidizes carbon monoxide in the reformed gas with oxygen gas,
Ruthenium and / or platinum is supported on an alumina support containing α-alumina, and sodium contained in the alumina support is less than 0.07% in terms of Na 2 O.
Furthermore, another carbon monoxide selective oxidation catalyst of the present invention is a catalyst that selectively oxidizes carbon monoxide in the reformed gas with oxygen gas,
Ruthenium and / or platinum is supported on an alumina carrier containing α-alumina, and further this alumina carrier is supported on a support containing magnesium,
Magnesium contained in the alumina carrier supporting ruthenium and / or platinum is less than 0.04% in terms of MgO.
Furthermore, in another preferred form of the carbon monoxide selective oxidation catalyst of the present invention, sodium is contained in the above-mentioned ruthenium and / or platinum-supported alumina support, and the sodium content is 0.002 in terms of Na 2 O. The reason why the selective oxidation catalyst of the present invention exhibits the excellent selective oxidation property of carbon monoxide (CO), which is characterized by being less than 07%, is not necessarily clear, but at present, it is presumed as follows: Is done.
That is, in the present invention, by using a support containing α-alumina, the catalytic metals ruthenium (Ru) and platinum (Pt) are made to be present in the vicinity of the outermost surface of the support.
Thus, by localizing the catalytic metal on the surface of the support, the temperature at which CO oxidation occurs can be shifted to the low temperature side, and the selectivity for other reactions can be improved. It seems that the concentration of CO in the gas can be reduced and the consumption of hydrogen can be prevented.
In general, when water vapor is mixed into the gas, water vapor adsorption occurs, and the temperature at which CO oxidation occurs is shifted to the high temperature side. By using α-alumina, the reaction temperature due to the adsorption is shifted to the high temperature side. Can be avoided. As a result, it is considered that the selectivity of CO oxidation can be improved, the CO concentration in the reformed gas after the reaction can be reduced, and the consumption of hydrogen can be prevented.
Furthermore, in the CO selective oxidation catalyst of the present invention, by using highly pure α-alumina as a support, high CO oxidation activity can be expressed. If a metal such as sodium or a metal oxide thereof is contained, it is considered that the adsorption form of the reaction gas changes and the activity is greatly inhibited.
In the CO selective oxidation catalyst of the present invention, it is possible to use a so-called honeycomb-shaped support. However, magnesium or the like derived from such a honeycomb-shaped support is a causative substance that reduces the catalytic activity. It is desirable to control the amount of alpha alumina mixed to a certain value or less.
Hereinafter, the carbon monoxide selective oxidation catalyst of the present invention will be described in detail. In the present specification, “%” indicates a mass percentage unless otherwise specified.
As described above, the carbon monoxide selective oxidation catalyst of the present invention is a catalyst that selectively oxidizes CO in the reformed gas with oxygen gas.
Here, the reformed gas generally refers to a gas obtained by steam reforming a hydrocarbon such as methane or propane, an alcohol such as methanol or naphtha, and the methanol reformed gas typically includes hydrogen gas. As components, carbon dioxide (CO 2 ), methane (CH 4 ), water (H 2 O) and CO are included.
Of these, what is effective as an application object of the present invention is a reformed gas after the shift reaction, and has a CO concentration of about 1 vol%.
Next, the oxygen gas is not particularly limited as long as it exists in excess of the reaction equivalent with CO, but typically, oxygen of 1.1 to 5 times the reaction equivalent with CO is present. It is preferable.
If it is less than 1.1 times, unoxidized CO remains, and if it exceeds 5 times, the consumption of hydrogen may increase, which is not preferable.
The selective oxidation catalyst of the present invention preferably contains Ru and Pt in a proportion of 0.01 to 10%. That is, the supported amount of the mixture of Ru and Pt is preferably 0.01 to 10% of the total obtained catalyst, and desirably 0.02 to 0.5%.
If the amount of the mixture supported is less than 0.02%, the CO oxidation activity may not be sufficient, and if it exceeds 0.5%, Ru and Pt may not be used effectively.
Furthermore, in the selective oxidation catalyst of the present invention, it is preferable that the particle diameter of at least one of Ru and Pt supported is 200 mm or less, desirably 5 to 200 mm.
When the particle diameter exceeds 200 mm, the oxidation activity of CO may not be sufficient, which is not preferable.
In the selective oxidation catalyst of the present invention, an alumina carrier is used. However, α alumina is contained, and the Ru, Pt, Ru-Pt mixture is within 100 μm, preferably within 20 μm from the surface of the alumina particles constituting the carrier. The shape is not limited as long as it is an alumina carrier that can be present.
If Ru or the like cannot be supported within 100 μm from the alumina particle surface, the Ru concentration on the catalyst surface becomes thin and the desired effect may not be obtained.
In the selective oxidation catalyst of the present invention, α-alumina can be suitably used as a support, because α-alumina does not have fine pores, so that the above localization can be easily realized. This is because the influence of water vapor can be reduced as described above.
Note that α-alumina may be used alone, but may be used in combination with other crystalline alumina.
In addition, γ-alumina transitions to α-alumina if kept at a temperature of 1000 ° C. or higher. However, if the temperature is kept at that temperature, the catalytic metals Ru and Pt cause sintering, and sufficient activity cannot be obtained. It is not suitable for use alone in the catalyst of the invention. However, before supporting catalytically active species such as Ru and Pt, alumina such as γ, θ, and η is heat-treated and phase-converted to α-alumina and used as a support, and various types of materials satisfying the above-mentioned characteristics. It is possible to use crystalline high-purity alumina and α-alumina in combination.
In the selective oxidation catalyst of the present invention, the alumina support preferably contains α-alumina at a very high concentration. When an impurity such as sodium (Na) or magnesium (Mg) is contained in a certain amount or more, the catalytic activity is increased. May interfere.
For example, the content of Na in the alumina carrier needs to be controlled to less than 0.07% in terms of Na 2 O.
Further, the selective oxidation catalyst of the present invention can be in the form of particles or pellets, and further, a honeycomb-shaped support can be used. For example, a honeycomb-shaped support made of cordierite or metal can be used. It is also possible to coat and use a monolithic support.
However, in order to secure high concentration or high purity of the above-mentioned α-alumina and to exhibit high activity, magnesium (Mg) derived from cordierite, the content in the alumina carrier is less than 0.04% in MgO, respectively. It needs to be controlled.
The selective oxidation catalyst of the present invention has the above-described configuration and excellent CO selective oxidation properties. Typically, about 1 vol% CO coexisting in the reformed gas is oxidized and removed to about 100 ppm. To do.
The use conditions are not particularly limited, but a remarkable effect can be obtained if the space velocity (SV) is 30,000 h −1 or less and the catalyst temperature is 100 to 200 ° C.

図1は、CO選択酸化触媒の触媒性能のNa混入率依存性を示すグラフ、図2は、Mgを含有するCO選択酸化触媒の触媒性能を示すグラフである。  FIG. 1 is a graph showing the dependence of the catalytic performance of the CO selective oxidation catalyst on the Na mixing rate, and FIG. 2 is a graph showing the catalytic performance of the CO selective oxidation catalyst containing Mg.

以下、本発明を実施例及び比較例により更に詳細に説明するが、本発明はこれら実施例に限定されるものではない。
[性能評価]
以下の実施例及び比較例において、得られた触媒の性能は下記の手法で評価した。
(評価条件等)
評価装置;固定床流通型
SV;50000h−1
CO濃度;1vol%
/CO;2.0、1.5又は1.0(容量比)
水素濃度;40%
水蒸気濃度;約30%
二酸化炭素濃度;20%
メタン濃度;2%
反応温度;100〜250℃
(触媒金属の担持粒子径)
触媒を粉砕して、透過型電子顕微鏡により担持金属を直接観察して、その粒径を確認した。
(触媒金属の担体表面局在化)
触媒をほぼ半分に割り、その断面をEPMAにより観察して担持幅を確認した。
また触媒の表面をXPSにより観察し、アルミナ表面の貴金属濃度を確認した。
EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention further in detail, this invention is not limited to these Examples.
[Performance evaluation]
In the following examples and comparative examples, the performance of the obtained catalyst was evaluated by the following method.
(Evaluation conditions, etc.)
Evaluation device; fixed bed flow type SV; 50000h -1
CO concentration: 1 vol%
O 2 / CO; 2.0, 1.5 or 1.0 (volume ratio)
Hydrogen concentration: 40%
Water vapor concentration: about 30%
Carbon dioxide concentration; 20%
Methane concentration; 2%
Reaction temperature: 100-250 ° C
(Catalyst metal support particle size)
The catalyst was pulverized and the supported metal was directly observed with a transmission electron microscope to confirm the particle size.
(Localization of catalyst metal support surface)
The catalyst was divided almost in half, and the cross section was observed with EPMA to confirm the loading width.
Further, the surface of the catalyst was observed by XPS to confirm the noble metal concentration on the alumina surface.

平均粒径が2mm程度の高純度αアルミナ(アルミナ濃度99.995%)にRuを約0.2%担持させて本例の選択酸化触媒Aを得た。この触媒において、Ruはαアルミナ粒子外表面から50μmまでの深さに存在していた。また、Ruの粒子径は平均で100Å程度であった。
この選択酸化触媒に、1vol%の一酸化炭素を含む改質ガスに同じく酸素を1.5vol%分投入した試験ガス(O/CO=1.5)をSV=50000h−1で通過させ、触媒温度(中心温度)100℃〜250℃の範囲においてCO濃度を測定した。得られた結果を図1に示す。
About 0.2% of Ru was supported on high-purity α-alumina (alumina concentration: 99.995%) having an average particle diameter of about 2 mm to obtain the selective oxidation catalyst A of this example. In this catalyst, Ru was present at a depth of 50 μm from the outer surface of the α-alumina particles. The average particle size of Ru was about 100 mm.
Through this selective oxidation catalyst, a test gas (O 2 /CO=1.5) in which 1.5 vol% of oxygen was similarly charged into a reformed gas containing 1 vol% of carbon monoxide was passed at SV = 50000 h −1 . The CO concentration was measured in the catalyst temperature (center temperature) range of 100 ° C to 250 ° C. The obtained results are shown in FIG.

上記高純度αアルミナにNaをNaO換算で0.014%の割合で混入した以外は、実施例1と同様の操作を繰り返し、本例の選択酸化触媒を得た。実施例1と同様にCO濃度を測定し、得られた結果を図1に示す。
(比較例1)
上記高純度αアルミナにNaをNaO換算で0.07%の割合で混入した以外は、実施例1と同様の操作を繰り返して本例の選択酸化触媒を得た。実施例1と同様にCO濃度を測定し、得られた結果を図1に示す。
図1より実施例1、2の選択酸化触媒は、優れたCO選択酸化活性を示すことがわかる。特に実施例1の選択酸化触媒においては、低温から高温域までの広い温度域において、COを目標とする濃度まで低減することができた。この一方、比較例1の選択酸化触媒は、CO濃度は供給時と変化無く10000ppmで、150℃〜200℃の範囲でCO濃度は3000ppmと活性は低かった。
本選択酸化触媒に混入したNaは、CO選択酸化反応に関与するガスの吸着、脱離に影響を及ぼし、結果としてCOの除去能の低下を引き起こすものと考えているが、現時点では詳細は不明である。
A selective oxidation catalyst of this example was obtained by repeating the same operation as in Example 1 except that Na was mixed in the high-purity α-alumina at a ratio of 0.014% in terms of Na 2 O. The CO concentration was measured in the same manner as in Example 1, and the results obtained are shown in FIG.
(Comparative Example 1)
A selective oxidation catalyst of this example was obtained by repeating the same operation as in Example 1 except that Na was mixed in the high-purity α-alumina at a rate of 0.07% in terms of Na 2 O. The CO concentration was measured in the same manner as in Example 1, and the results obtained are shown in FIG.
1 that the selective oxidation catalysts of Examples 1 and 2 exhibit excellent CO selective oxidation activity. In particular, in the selective oxidation catalyst of Example 1, CO could be reduced to a target concentration in a wide temperature range from a low temperature to a high temperature range. On the other hand, in the selective oxidation catalyst of Comparative Example 1, the CO concentration was 10000 ppm unchanged from the time of supply, and the CO concentration was 3000 ppm in the range of 150 ° C. to 200 ° C. and the activity was low.
Na mixed in this selective oxidation catalyst is thought to affect the adsorption and desorption of gases involved in the CO selective oxidation reaction, resulting in a decrease in CO removal ability, but details are unknown at this time. It is.

平均粒径が2mm程度の高純度αアルミナ(アルミナ濃度99.995%)にMgをMgO換算で0.02%混入し、更にRuを約0.2%担持させて本例の選択酸化触媒を得た。この選択酸化触媒に、1vol%の一酸化炭素を含む改質ガスに同じく酸素を2.0vol%,1.5vol%,1.0vol%分投入した試験ガス(O/CO=2.0,1.5,1.0)をそれぞれSV=50000h−1で通過させ、触媒温度(中心温度)100℃〜250℃の範囲においてCO濃度を測定し、得られた結果を図2に示す。
(比較例2)
平均粒径が2mm程度の高純度αアルミナ(アルミナ濃度99.995%)にMgをMgO換算で0.04%混入し、更にRuを約0.2%担持させて本例の選択酸化触媒を得た。
この選択酸化触媒を実施例3と同様に試験した。得られた結果を図2に示す。
図2より、O/COにかかわらず、比較例2の選択酸化触媒のCO選択酸化能は実施例3の選択酸化触媒にくらべ大きく低下し、目標とするCO濃度に到達できる温度域が狭くなっていた。
以上、本発明を好適実施例により詳細に説明したが、本発明はこれら実施例に限定されるものではなく、本発明の開示の範囲内において種々の変形実施が可能である。
例えば、本発明の選択酸化触媒の用途は、固体高分子型燃料電池に供給される改質ガスに限定されるものではなく、他の、改質ガス中のCOの低減にも利用可能であり、高純度水素ガスを必要とするアンモニアの合成などの各種プロセスにも適用可能である。
The selective oxidation catalyst of this example is prepared by mixing 0.02% of Mg with high purity α-alumina (alumina concentration: 99.995%) with an average particle size of about 2 mm and supporting 0.2% of Ru. Obtained. A test gas (O 2 /CO=2.0, 2.0 vol%, 1.5 vol%, and 1.0 vol%) of the selective oxidation catalyst in which oxygen is added to a reformed gas containing 1 vol% carbon monoxide. 1.5 and 1.0) are passed at SV = 50000 h −1 , the CO concentration is measured in the catalyst temperature (center temperature) range of 100 ° C. to 250 ° C., and the obtained results are shown in FIG.
(Comparative Example 2)
The selective oxidation catalyst of this example is prepared by mixing 0.04% of Mg with high purity α-alumina (alumina concentration 99.995%) with an average particle diameter of about 2 mm and further supporting about 0.2% of Ru. Obtained.
This selective oxidation catalyst was tested as in Example 3. The obtained results are shown in FIG.
From FIG. 2, regardless of O 2 / CO, the CO selective oxidation ability of the selective oxidation catalyst of Comparative Example 2 is significantly lower than that of the selective oxidation catalyst of Example 3, and the temperature range in which the target CO concentration can be reached is narrow. It was.
As mentioned above, although this invention was demonstrated in detail by the preferred embodiment, this invention is not limited to these Examples, A various deformation | transformation implementation is possible within the range of this indication.
For example, the use of the selective oxidation catalyst of the present invention is not limited to the reformed gas supplied to the polymer electrolyte fuel cell, and can be used to reduce CO in the reformed gas. It can also be applied to various processes such as synthesis of ammonia that requires high-purity hydrogen gas.

以上説明してきたように、本発明によれば、ルテニウムや白金を、特定不純物含有量を適切に制御したアルミナ担体に担持することとしたため、改質ガス中の一酸化炭素を選択的に酸化して低減し、良好な燃料利用効率や発電効率を実現し得る一酸化炭素選択酸化触媒を提供することができる。
例えば、本発明の触媒を用いることにより、改質ガス中に1vol%程度存在する一酸化炭素を過剰量の酸素の存在下150℃程度で反応させれば、一酸化炭素濃度を0.1vol%以下に低減することができる。
As described above, according to the present invention, ruthenium and platinum are supported on an alumina support whose specific impurity content is appropriately controlled, so that carbon monoxide in the reformed gas is selectively oxidized. Therefore, it is possible to provide a carbon monoxide selective oxidation catalyst that can be reduced and realize good fuel utilization efficiency and power generation efficiency.
For example, by using the catalyst of the present invention, if carbon monoxide present in the reformed gas at about 1 vol% is reacted at about 150 ° C. in the presence of excess oxygen, the carbon monoxide concentration is 0.1 vol%. The following can be reduced.

Claims (3)

改質ガス中の一酸化炭素を酸素ガスによって選択的に酸化する触媒であって、
ルテニウム及び/又は白金を、αアルミナを含有するアルミナ担体に担持して成り、且つこのアルミナ担体中に含まれるナトリウムがNaO換算で0.07%未満であることを特徴とする一酸化炭素選択酸化触媒。
A catalyst that selectively oxidizes carbon monoxide in the reformed gas with oxygen gas,
Carbon monoxide comprising ruthenium and / or platinum supported on an alumina support containing α-alumina, and the sodium contained in the alumina support being less than 0.07% in terms of Na 2 O Selective oxidation catalyst.
改質ガス中の一酸化炭素を酸素ガスによって選択的に酸化する触媒であって、
ルテニウム及び/又は白金をαアルミナを含有するアルミナ担体に担持し、更に、このアルミナ担体を、マグネシウムを含有する支持体に支持して成り、
上記ルテニウム及び/又は白金を担持したアルミナ担体中に含まれるマグネシウムが、MgO換算で0.04%未満であることを特徴とする一酸化炭素選択酸化触媒。
A catalyst that selectively oxidizes carbon monoxide in the reformed gas with oxygen gas,
Ruthenium and / or platinum is supported on an alumina support containing α-alumina, and the alumina support is supported on a support containing magnesium,
A carbon monoxide selective oxidation catalyst, wherein magnesium contained in the alumina carrier supporting ruthenium and / or platinum is less than 0.04% in terms of MgO.
上記ルテニウム及び/又は白金を担持したアルミナ担体中にナトリウムが含まれ、そのナトリウム含有量がNaO換算で0.07%未満であることを特徴とする請求項2に記載の一酸化炭素選択酸化触媒。3. The carbon monoxide selection according to claim 2, wherein sodium is contained in the alumina carrier carrying ruthenium and / or platinum, and the sodium content is less than 0.07% in terms of Na 2 O. Oxidation catalyst.
JP2004515455A 2002-06-24 2002-06-24 Selective oxidation catalyst for carbon monoxide in reformed gas Pending JPWO2004000458A1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2002/006278 WO2004000458A1 (en) 2002-06-24 2002-06-24 Catalysts for selective oxidation of carbon monoxide in reformed gas

Publications (1)

Publication Number Publication Date
JPWO2004000458A1 true JPWO2004000458A1 (en) 2005-10-20

Family

ID=29808136

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004515455A Pending JPWO2004000458A1 (en) 2002-06-24 2002-06-24 Selective oxidation catalyst for carbon monoxide in reformed gas

Country Status (3)

Country Link
JP (1) JPWO2004000458A1 (en)
AU (1) AU2002315872A1 (en)
WO (1) WO2004000458A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0704003D0 (en) * 2007-03-01 2007-04-11 Oxford Catalysts Promoted carbide-based fischer-tropsch catalyst, method for its preparation and uses thereof
JP5831934B2 (en) * 2011-11-11 2015-12-09 田中貴金属工業株式会社 Steam reforming catalyst
KR102225041B1 (en) 2012-04-17 2021-03-11 모멘티브 퍼포먼스 머티리얼즈 인크. High activity catalyst for hydrosilylation reactions and methods of making the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0683787B2 (en) * 1990-06-19 1994-10-26 財団法人石油産業活性化センター Catalyst for steam reforming
NL1010140C2 (en) * 1998-09-21 2000-03-22 Stichting Energie Catalysts for the selective oxidation of carbon monoxide in hydrogen-containing gases.
JP3746401B2 (en) * 1999-07-05 2006-02-15 田中貴金属工業株式会社 Selective oxidation catalyst for carbon monoxide in reformed gas
JP2001212458A (en) * 2000-02-04 2001-08-07 Tanaka Kikinzoku Kogyo Kk Catalyst for selectively oxidizing carbon monoxide in reforming gas

Also Published As

Publication number Publication date
WO2004000458A1 (en) 2003-12-31
AU2002315872A1 (en) 2004-01-06

Similar Documents

Publication Publication Date Title
JP3746401B2 (en) Selective oxidation catalyst for carbon monoxide in reformed gas
US7384986B2 (en) Process for the selective methanation of carbonmonoxide (CO) contained in a hydrogen-rich reformate gas
JP2004522672A (en) Suppression of methanation activity by water gas conversion catalyst
CA2629078C (en) Process conditions for pt-re bimetallic water gas shift catalysts
JP4824332B2 (en) Carbon monoxide removal catalyst
JP2001212458A (en) Catalyst for selectively oxidizing carbon monoxide in reforming gas
EP1485202B1 (en) Process for the preferential oxidation of carbon monoxide using a catalyst containing ruthenium and zinc oxide
JPWO2004000458A1 (en) Selective oxidation catalyst for carbon monoxide in reformed gas
US20040156771A1 (en) Method of reducing carbon monoxide concentration
JP4083556B2 (en) Selective oxidation catalyst for carbon monoxide in reformed gas
US7345007B2 (en) Catalyst for selective oxidation of carbon monoxide in reformed gas
JP2006341206A (en) Carbon monoxide selective oxidation catalyst and its manufacturing method
US20040258598A1 (en) Process for selective oxidation of carbon monoxide in a hydrogen containing stream
JPH07315825A (en) Method for oxidizing co into co2 and production of hydrogen-containing gas for fuel cell
JP2007160254A (en) Catalyst for selectively oxidizing carbon monoxide and its manufacturing method
KR20050042413A (en) A catalysts for the selective co oxidation in a hydrogen-rich stream and manufacturing method thereof
JP2005034778A (en) Monolithic catalyst
JP2006314870A (en) Shift catalyst
JP2006167606A (en) Carbon monoxide selective oxidation catalyst
JP2006181482A (en) Carbon monoxide selective oxidation catalyst and its manufacturing method
JP2007007531A (en) Shift reaction catalyst and its manufacturing method
JP2005334751A (en) Carbon monoxide selective oxidation catalyst
JP2014061481A (en) Selective methanation catalyst of carbon monoxide
JP2006181480A (en) Carbon monoxide selective oxidation catalyst
JP2004358323A (en) Catalyst for water gas shift reaction

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080123

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080324

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080324

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080603

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080724

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081113