JP2001182924A - Method of operating melting furnace - Google Patents

Method of operating melting furnace

Info

Publication number
JP2001182924A
JP2001182924A JP37201199A JP37201199A JP2001182924A JP 2001182924 A JP2001182924 A JP 2001182924A JP 37201199 A JP37201199 A JP 37201199A JP 37201199 A JP37201199 A JP 37201199A JP 2001182924 A JP2001182924 A JP 2001182924A
Authority
JP
Japan
Prior art keywords
melting furnace
melting point
melting
slag
viscosity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP37201199A
Other languages
Japanese (ja)
Inventor
Masahiro Sudo
雅弘 須藤
Sunao Nakamura
直 中村
Yuichi Yamakawa
裕一 山川
Tsuneo Matsudaira
恒夫 松平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP37201199A priority Critical patent/JP2001182924A/en
Publication of JP2001182924A publication Critical patent/JP2001182924A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To dissolve a problem that a work to determine a melting point and viscosity from a phase diagram, especially three component phase diagrams, needs knowledge to read a phase diagram and takes long for skill, and therefore, a mistake in reading often occurs, a trouble sometimes occurs to operation of a melting furnace and momentary countermeasure against the situation of the melting furnace is difficult to take. SOLUTION: A method of operating a melting furnace comprises a composition analyzing process for melting furnace discharge slag; a process to determine the melting point of discharge slag from a phase diagram regarding four components of SiO2, CaO, MgO, and Al2O3; a process wherein viscosity of discharge slag is obtained at the melting point determined at the process to determine the melting point; and a process from the melting point and viscosity determined at the processes, a proper melting furnace temperature and a component adjuster addition amount are determined, and control of the melting furnace temperature to a proper value and control of the component adjuster addition amount to a proper value are executed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は廃棄物ガス化溶融
炉、灰溶融炉、電気炉などの溶融炉の運転方法に関す
る。
The present invention relates to a method for operating a melting furnace such as a waste gasification melting furnace, an ash melting furnace, and an electric furnace.

【0002】[0002]

【従来の技術】近年、廃棄物の焼却に伴って発生するダ
イオキシン類による環境汚染の防止や、資源リサイクル
の必要性が叫ばれるようになっている。これにともなっ
て、廃棄物をガス化・溶融する技術、あるいは灰の減容
化・利材化を目的とした灰溶融炉などの開発が進められ
ている。ガス化溶融炉は、廃棄物をガス化することによ
って高温の燃焼ガスを発生させ、廃棄物を溶融して減容
化し、さらにダイオキシン類を分解して無害化させるこ
とができると言う特徴を有している。また、灰溶融炉は
焼却灰や飛灰を溶融することにより減容化し、得られた
スラグは路盤材などの利材化が可能である。さらに、灰
溶融炉から排出された溶融飛灰は重金属類を高濃度に含
むため、山元還元が期待されている。
2. Description of the Related Art In recent years, the necessity of preventing environmental pollution due to dioxins generated by incineration of waste and recycling resources has been called out. Along with this, the development of technologies for gasifying and melting waste, or ash melting furnaces for the purpose of reducing the volume and use of ash has been promoted. Gasification and melting furnaces have the characteristics of generating high-temperature combustion gas by gasifying waste, melting waste to reduce volume, and decomposing dioxins to make them harmless. are doing. The ash melting furnace reduces the volume by melting incineration ash and fly ash, and the obtained slag can be used as roadbed material. Furthermore, since the molten fly ash discharged from the ash melting furnace contains heavy metals in a high concentration, reduction of yamamoto is expected.

【0003】[0003]

【発明が解決しようとする課題】上記溶融炉の運転につ
いては、たとえば特開平5−64736号公報におい
て、予め測定した被溶融物(廃棄物、石灰石、コークス
など)の量と組成から、添加する成分調整剤(石灰石、珪
砂など)の量を計算および、状態図により求める方法が
提案されている。また、特開平11−076993号公
報において、運転時に排出されたスラグの組成を蛍光X
線分析装置により求めて、その分析結果に基づいて、成
分調整剤の投入量を加減する溶融スラグの品質管理方法
が提案されている。
The operation of the above-mentioned melting furnace is described, for example, in Japanese Patent Application Laid-Open No. 5-64736, based on the amount and composition of the material to be melted (waste, limestone, coke, etc.) measured in advance. A method has been proposed in which the amount of a component regulator (limestone, quartz sand, etc.) is calculated and obtained from a phase diagram. Also, in Japanese Patent Application Laid-Open No. H11-0766993, the composition of slag discharged during operation is determined by fluorescent X
There has been proposed a quality control method for molten slag in which the amount of a component adjuster is adjusted based on the analysis result obtained by a line analyzer.

【0004】しかし、状態図、特に3成分系状態図から
融点、粘度を求める作業は、状態図を読む知識を必要と
され、また時間を要する。そのため、読み間違いも多
く、時には溶融炉の運転に支障をきたすとか、溶融炉の
状況が悪化した場合の瞬時の対応が困難といった問題点
がある。
However, the operation of obtaining the melting point and viscosity from a phase diagram, particularly a three-component system phase diagram, requires knowledge of reading the phase diagram and also requires time. For this reason, there are many reading errors, which sometimes hinder the operation of the melting furnace, and there is a problem that it is difficult to instantaneously cope with the deterioration of the state of the melting furnace.

【0005】本発明は、以上の問題点を解決し、安定し
た溶融炉の運転方法を提供することを目的とする。
An object of the present invention is to solve the above problems and to provide a stable method of operating a melting furnace.

【0006】[0006]

【課題を解決するための手段】上記の課題は次の発明に
より解決される。溶融炉排出スラグの組成分析工程と、
該組成分析工程における排出スラグの組成分析結果に基
づき、SiO2,CaO,MgO,Al2O3の4成分についての状態図か
ら排出スラグの融点を求める工程と、該融点を求める工
程で求めた融点における排出スラグの粘度を求める工程
と、これら工程で求められた融点と粘度から適正な溶融
炉温度と成分調整剤添加量を求め、適正な溶融炉温度の
制御と成分調整剤添加量の制御を行う工程とを含むこと
を特徴とする溶融炉の運転方法。
The above object is achieved by the following invention. A composition analysis step of the slag discharged from the melting furnace,
Based on the composition analysis result of the discharged slag in the composition analysis step, the melting point of the discharged slag was obtained from the phase diagram of the four components of SiO 2 , CaO, MgO, and Al 2 O 3 , and the melting point was obtained. The process of determining the viscosity of the discharged slag at the melting point, and the appropriate melting furnace temperature and the amount of the component regulator added from the melting point and the viscosity determined in these processes, and controlling the appropriate melting furnace temperature and the amount of the component regulator added. And a step of operating the melting furnace.

【0007】[0007]

【発明の実施の形態】ガス化溶融炉や灰溶融炉から排出
されるスラグの成分は、SiO2,CaO,MgO,Al2O3の4成分で
ほぼ90%以上を占めている。このため、スラグの融点
や粘度は、これら4成分の状態図を基にして求めれば十
分である。この4成分の状態図は、1成分を固定した3
成分系状態図として表されている。本発明に係る溶融炉
の運転方法は、排出されたスラグの組成をもとに3成分
系状態図から融点、粘度を自動的に読み取り、最適なス
ラグの成分調整および溶融炉内温度管理を行うことを特
徴としており、炉況の変化に対し迅速にかつ正確に対応
することができる。
DETAILED DESCRIPTION OF THE INVENTION The components of slag discharged from a gasification melting furnace or an ash melting furnace are approximately 90% or more of four components of SiO 2 , CaO, MgO and Al 2 O 3 . Therefore, it is sufficient to determine the melting point and viscosity of the slag based on the phase diagram of these four components. The phase diagram of the four components is 3 with one component fixed.
It is represented as a component system phase diagram. According to the method for operating a melting furnace according to the present invention, the melting point and the viscosity are automatically read from a ternary phase diagram based on the composition of the discharged slag, and the optimum slag component adjustment and temperature control in the melting furnace are performed. This makes it possible to respond quickly and accurately to changes in the furnace conditions.

【0008】本発明の全体工程を、図1のフロー図で説
明する。先ず、工程の溶融炉排出スラグの組成分析工
程において、簡易蛍光X線分析装置などの分析装置を用
いて、スラグの組成分析が行われる。次に、工程で
は、前工程で得られた分析結果から融点を自動的に求め
る。さらに、工程では、得られた融点(温度)における
スラグの粘度を自動的に求める。
The overall process of the present invention will be described with reference to the flowchart of FIG. First, in the composition analysis step of the slag discharged from the melting furnace, the composition analysis of the slag is performed using an analyzer such as a simple X-ray fluorescence analyzer. Next, in the process, the melting point is automatically obtained from the analysis result obtained in the previous process. Further, in the step, the viscosity of the slag at the obtained melting point (temperature) is automatically determined.

【0009】、工程では、ともに3成分系状態図を
利用している。3成分系状態図には、図7・8に示すよ
うに100℃単位でその組成の物質の融点が示されてい
るものと、図2〜4に示すように温度ごとの粘度を示す
ものがある。これらの状態図を元に表計算ソフトのシー
ト上に融点または粘度を入力したデータベースを作成す
る。先ず、融点についてのデータベースは、状態図の正
三角形内部を格子状に区切り、それぞれのセルに状態図
から読み取れる融点を示す温度を数値化し、入力したも
のである。図5に、そのデータベースの様子を示す。同
様に、粘度についても、温度をパラメータにして、セル
ごとに粘度を数値化し、入力したものである。
In the process, a three-component phase diagram is used. In the three-component phase diagram, those showing the melting point of the substance of the composition in units of 100 ° C. as shown in FIGS. 7 and 8 and those showing the viscosity at each temperature as shown in FIGS. is there. Based on these phase diagrams, a database in which melting points or viscosities are input is created on a sheet of spreadsheet software. First, the melting point database is obtained by dividing the inside of the equilateral triangle of the phase diagram into a lattice shape, digitizing the temperature indicating the melting point that can be read from the phase diagram into each cell, and inputting it. FIG. 5 shows the state of the database. Similarly, regarding the viscosity, the viscosity is quantified for each cell using the temperature as a parameter, and is input.

【0010】3成分の組成をパソコンに入力するだけ
で、状態図上の点を自動的に求めるソフトと上記データ
ベースを組み合わせ、スラグの融点、粘度を求めること
ができる。
The melting point and viscosity of slag can be determined by combining the above database with software for automatically determining points on a phase diagram simply by inputting the composition of the three components to a personal computer.

【0011】ここで、3成分系自動プロットソフトにつ
いて以下に詳細を記す。SiO2,CaO,MgO,Al2O3系の状態図
(図6)を例として用いる。
The details of the three-component automatic plotting software will be described below. The phase diagram of SiO 2 , CaO, MgO and Al 2 O 3 system (FIG. 6) is used as an example.

【0012】3成分系状態図は、正三角形の頂点に各成
分の100%の組成を置き、頂点からおろした垂線を10等分
し、下方から10%ずつ区切る。その目盛りは通常、図の
ように辺に記してある。つまり、SiO2:30%、CaO:50
%、Al2O3:20%の組成であれば図中の点に位置する。こ
のように、3本の軸がある図中の点をX、Y座標に記す
手法として以下の方法を取った。 SiO2の組成割合はY=“SiO2の組成割合”上の点であ
る。 CaOの組成割合はY=−31/2X+2(100−“Ca
Oの組成割合”)上の点である。 Al2O3 の組成割合はY=31/2X−2דAl2O3の組成
割合“上の点である。したがって、求める組成は上記
〜で示す直線の交点である。
In the three-component phase diagram, a composition of 100% of each component is placed at the apex of an equilateral triangle, and the perpendicular drawn from the apex is divided into 10 equal parts, and 10% is divided from below. The scale is usually marked on the side as shown. That is, SiO 2 : 30%, CaO: 50
% And Al 2 O 3 : 20%, they are located at points in the figure. As described above, the following method was used as a method for writing points in the figure having three axes on the X and Y coordinates. The composition ratio of SiO 2 is Y = a point on the "composition ratio of SiO 2". The composition ratio of CaO is Y = −31 / 2X + 2 (100− “Ca
The composition ratio of Al 2 O 3 is the upper point. The composition ratio of Al 2 O 3 is Y = 3 1/2 X−2 × “the composition ratio of Al 2 O 3 ”. These are the intersections of the straight lines indicated by.

【0013】このようにして、3成分の組成をX、Y座
標に記すことができる。なお、スラグの成分は必ずしも
3成分の合計値が100%になるわけではない。また、MgO
を加えた4成分の合計値が100%になるわけでもない。こ
のような場合は、全量を100%に補正するのであるが、補
正した組成割合を状態図上に書き込んだ場合、3本の直
線が交わらない事がある。例えば、図2および3で示す
ような場合である。このときは、3本の直線からなる三
角形の重心をスラグの組成とする。
In this way, the composition of the three components can be described on the X and Y coordinates. It should be noted that the sum of the three components of the slag component is not always 100%. Also, MgO
It does not mean that the sum of the four components obtained by adding is 100%. In such a case, the total amount is corrected to 100%. However, when the corrected composition ratio is written on a state diagram, three straight lines may not intersect. For example, the case shown in FIGS. In this case, the center of gravity of a triangle formed by three straight lines is used as the composition of the slag.

【0014】、の工程で求めたスラグの融点と実際
の炉内温度がずれた場合、または炉内温度におけるスラ
グの粘度が適正値からずれた場合、最終工程である工
程に移る。すなわち、即座に吹込み空気の酸素濃度をあ
げるなどの処置を施し、炉内の温度調整を行う、および
成分調整剤の添加量を加減するといった操作を行う。従
来は〜までの工程を手動で行っていたが、簡易蛍光
X線分析装置から求めたスラグの組成を自動的に取り込
むことにより、スラグを分析装置にセットするだけで、
上記の自動制御が可能となる。
If the melting point of the slag obtained in the step deviates from the actual furnace temperature, or if the viscosity of the slag at the furnace temperature deviates from an appropriate value, the process proceeds to the final step. That is, operations such as immediately increasing the oxygen concentration of the blown air are performed to adjust the temperature in the furnace, and to adjust the addition amount of the component adjusting agent. Conventionally, the steps up to were manually performed, but by automatically taking in the slag composition obtained from the simple X-ray fluorescence analyzer, simply setting the slag in the analyzer,
The above automatic control becomes possible.

【0015】また、三成分系状態図を運転時に画面に示
すことにより、特開平5−64736号公報で示されて
いる塩基度計算をパソコンで行う手法に比べ、視覚的に
確認できるため、読み間違いが少なくなり信頼性も向上
する。
Also, by displaying the three-component system phase diagram on the screen during operation, it is possible to visually confirm the basicity calculation compared with the method of performing the basicity calculation using a personal computer disclosed in Japanese Patent Laid-Open No. 5-64736. There are fewer mistakes and reliability is improved.

【0016】[0016]

【実施例】(実施例1)ガス化溶融炉の運転時に排出さ
れたスラグの組成を、表1に示す。
EXAMPLES (Example 1) Table 1 shows the composition of slag discharged during operation of the gasification and melting furnace.

【0017】[0017]

【表1】 [Table 1]

【0018】図7は、SiO2-CaO-MgO-Al2O3系の20%-Al2O
3面の液相温度における相関系(Osborn,DeVries,Gee and
Kranerによる)を示す図に、排出されたスラグの組成を
自動プロットしたものである。図7のように融点を求め
ると1350℃であった。また、図2のごとく1450℃におけ
る粘度を求めると13ポアズ、さらに図3のごとく1500℃
における粘度を求めると9ポアズであった。炉内温度は1
470℃であったが、目標粘度である10ポアズ以下とする
ため、酸素濃度を1%増加させ炉内温度を30℃上昇させ
た。この処理によりスラグの排出がスムーズになった。
FIG. 7 shows 20% -Al 2 O of the SiO 2 —CaO—MgO—Al 2 O 3 system.
Correlation system at liquidus temperature on three sides (Osborn, Devries, Gee and
Figure 9 shows an automatic plot of the composition of the discharged slag. The melting point was 1350 ° C. as shown in FIG. Further, the viscosity at 1450 ° C. is calculated as shown in FIG. 2 to be 13 poise, and as shown in FIG.
The viscosity at 9 was found to be 9 poise. Furnace temperature is 1
Although the temperature was 470 ° C., the oxygen concentration was increased by 1% and the furnace temperature was raised by 30 ° C. in order to reduce the viscosity to the target viscosity of 10 poise or less. This treatment made the slag discharge smooth.

【0019】[0019]

【実施例2】ガス化溶融炉の運転時において、溶融処理
すべき廃棄物およびコークスの灰分組成が表2のようで
あった。
Example 2 Table 2 shows the ash composition of waste and coke to be melted during operation of the gasification and melting furnace.

【0020】[0020]

【表2】 [Table 2]

【0021】これを状態図上に図示すると、図8の灰分
組成で示したようになる。しかし、融点、粘度がそれぞ
れ1490℃、70ポアズ(図4)であったため、目標である融
点1450℃以下、粘度10ポアズ以下(図8中○で囲まれた
範囲)となるようにCaCO3を30kg添加し運転を行った。こ
の配合によって、スラグの予想融点は1310℃、粘度は9.
5まで低下した。
This is illustrated on a phase diagram as shown in the ash composition of FIG. However, since the melting point and the viscosity were 1490 ° C. and 70 poise (FIG. 4), respectively, CaCO 3 was used so that the target melting point was 1450 ° C. or less and the viscosity was 10 poise or less (the range enclosed by a circle in FIG. 8). Operation was performed after adding 30 kg. With this formulation, the expected melting point of the slag is 1310 ° C and the viscosity is 9.
Dropped to 5.

【0022】[0022]

【発明の効果】以上のように本発明に係る溶融炉の運転
方法によれば、溶融炉の炉況変化に対し迅速にかつ正確
に対応することができ、溶融炉の運転をより安定化する
効果がある。
As described above, according to the method for operating a melting furnace according to the present invention, it is possible to quickly and accurately respond to a change in the furnace condition of the melting furnace, and to stabilize the operation of the melting furnace. effective.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の全体工程を示すフロー図。FIG. 1 is a flowchart showing the entire process of the present invention.

【図2】CaO-MgO-Al2O3-SiO2系の40%-SiO2面1450℃にお
ける等粘度曲線図。
FIG. 2 is an isoviscosity curve diagram of a CaO—MgO—Al 2 O 3 —SiO 2 system at 1450 ° C. on a 40% -SiO 2 surface.

【図3】CaO-MgO-Al2O3-SiO2系の40%-SiO2面1500℃にお
ける等粘度曲線図。
FIG. 3 is an isoviscosity curve diagram of a CaO—MgO—Al 2 O 3 —SiO 2 system at 1500 ° C. on a 40% -SiO 2 surface.

【図4】CaO-MgO-Al2O3-SiO2系の50%-SiO2面1450℃にお
ける等粘度曲線図。
FIG. 4 is a diagram of an isoviscosity curve of a CaO—MgO—Al 2 O 3 —SiO 2 system at 1450 ° C. on a 50% -SiO 2 surface.

【図5】液相線図のデータベース一例。FIG. 5 is an example of a liquidus diagram database.

【図6】3成分系自動プロットの説明図。FIG. 6 is an explanatory diagram of a three-component system automatic plot.

【図7】実施例1での液相線図。FIG. 7 is a liquidus diagram in Example 1.

【図8】実施例2での液相線図。FIG. 8 is a liquidus diagram in Example 2.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山川 裕一 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 松平 恒夫 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 Fターム(参考) 3K061 AA24 AB02 AB03 AC03 BA10 CA11 DA12 3K062 AA24 AB03 AC03 BA01 CB03 DA01 DA40 DB30  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Yuichi Yamakawa 1-1-2 Marunouchi, Chiyoda-ku, Tokyo Nihon Kokan Co., Ltd. (72) Inventor Tsuneo Matsudaira 1-2-1, Marunouchi, Chiyoda-ku, Tokyo Sun F-term (reference) in Honko Co., Ltd. 3K061 AA24 AB02 AB03 AC03 BA10 CA11 DA12 3K062 AA24 AB03 AC03 BA01 CB03 DA01 DA40 DB30

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 溶融炉排出スラグの組成分析工程と、該
組成分析工程における排出スラグの組成分析結果に基づ
き、SiO2,CaO,MgO,Al2O3の4成分についての状態図から
排出スラグの融点を求める工程と、該融点を求める工程
で求めた融点における排出スラグの粘度を求める工程
と、これら工程で求められた融点と粘度から適正な溶融
炉温度と成分調整剤添加量を求め、適正な溶融炉温度の
制御と成分調整剤添加量の制御を行う工程とを含むこと
を特徴とする溶融炉の運転方法。
1. A process for analyzing the composition of slag discharged from a melting furnace and a result of analyzing the composition of the discharged slag in the composition analysis process, the slag discharged from a phase diagram for four components of SiO 2 , CaO, MgO, and Al 2 O 3 . The step of determining the melting point of the, and the step of determining the viscosity of the discharged slag at the melting point determined in the step of determining the melting point, the appropriate melting furnace temperature and the amount of component modifier added from the melting point and the viscosity determined in these steps, A method for operating a melting furnace, comprising a step of controlling a proper melting furnace temperature and a control amount of a component adjusting agent.
JP37201199A 1999-12-28 1999-12-28 Method of operating melting furnace Pending JP2001182924A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP37201199A JP2001182924A (en) 1999-12-28 1999-12-28 Method of operating melting furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP37201199A JP2001182924A (en) 1999-12-28 1999-12-28 Method of operating melting furnace

Publications (1)

Publication Number Publication Date
JP2001182924A true JP2001182924A (en) 2001-07-06

Family

ID=18499695

Family Applications (1)

Application Number Title Priority Date Filing Date
JP37201199A Pending JP2001182924A (en) 1999-12-28 1999-12-28 Method of operating melting furnace

Country Status (1)

Country Link
JP (1) JP2001182924A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008038492A1 (en) 2006-09-26 2008-04-03 Kobelco Eco-Solutions Co., Ltd. Operating method and operation control apparatus for gasification melting furnace

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008038492A1 (en) 2006-09-26 2008-04-03 Kobelco Eco-Solutions Co., Ltd. Operating method and operation control apparatus for gasification melting furnace
EP2322855A2 (en) 2006-09-26 2011-05-18 Kobelco Eco-Solutions Co., Ltd. Operating method and operation control apparatus for gasification-melting furnace

Similar Documents

Publication Publication Date Title
JP5338056B2 (en) Stainless steel refining method
CN111687168A (en) Method for co-melting waste incineration ash
JP2001182924A (en) Method of operating melting furnace
JP3991562B2 (en) Detoxified stainless slag and its manufacturing method
JP5061545B2 (en) Hot metal dephosphorization method
US4137071A (en) Low cost method of fluidizing cupola slag (A)
JPH02280995A (en) Bond flux for submerged arc welding
JP3675302B2 (en) Detoxification method for stainless steel slag
SU1447621A1 (en) Charge for producing melted welding flux
JP2022550951A (en) Hot metal desulfurization in KR (KANBARA REACTOR) method
JP4421314B2 (en) Determination of slag amount in hot metal refining
JP7244803B2 (en) Method for modifying boron-containing slag, method for manufacturing civil engineering and construction materials using the same, and modified slag
JP5768721B2 (en) Dephosphorization blowing method for hot metal
TWI328044B (en)
CN117887491A (en) Method and device for regulating and controlling quality of gasified coal, electronic equipment and storage medium
CN108267008A (en) A kind of discharged nitrous oxides control method and device
JP3226768B2 (en) Slag reforming method
JP2017145435A (en) Method for desiliconizing molten iron
JP3994808B2 (en) Operation method of fuel injection into blast furnace
JPH10237513A (en) Operation of blast furnace
Emel’yanov et al. Assimilation of Steel Contemporary Extra-Furnace Treatment Technology with the Aim of Reducing Metal Contamination with Nonmetallic Inclusions
JPH0841515A (en) Smelting method restraining erosion of refractory
Zolin et al. Use of Solid Slag Mixtures in a Ladle Furnace Unit
JPS5935973B2 (en) Method for suppressing sulfur oxides in exhaust gas in manganese sintered ore production
CN114561506A (en) Method for desulfurizing KR molten iron with large scrap steel ratio

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040413

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040614

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050308