JP3226768B2 - Slag reforming method - Google Patents

Slag reforming method

Info

Publication number
JP3226768B2
JP3226768B2 JP27509495A JP27509495A JP3226768B2 JP 3226768 B2 JP3226768 B2 JP 3226768B2 JP 27509495 A JP27509495 A JP 27509495A JP 27509495 A JP27509495 A JP 27509495A JP 3226768 B2 JP3226768 B2 JP 3226768B2
Authority
JP
Japan
Prior art keywords
slag
industrial waste
added
molten steel
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP27509495A
Other languages
Japanese (ja)
Other versions
JPH0995726A (en
Inventor
靖雄 木ノ本
博美 石井
安夫 山上
浩志 寺島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP27509495A priority Critical patent/JP3226768B2/en
Publication of JPH0995726A publication Critical patent/JPH0995726A/en
Application granted granted Critical
Publication of JP3226768B2 publication Critical patent/JP3226768B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、スラグの改質方法
に関するものであり、特に産業廃棄物を利用して高清浄
度鋼の製造コストを低減する方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for reforming slag, and more particularly to a method for reducing the production cost of high cleanliness steel using industrial waste.

【0002】[0002]

【従来の技術】一般にスラグ改質技術は高清浄度鋼ある
いは低硫鋼の製造の一手法として利用される。これは溶
鋼攪拌時のスラグによる介在物吸収分離やスラグ脱硫に
よる溶鋼の低硫化等を利用したもので、いづれの場合に
も取鍋スラグは酸素ポテンシアルが充分に低く、かつ所
望のスラグ組成に制御する必要がある。この様なスラグ
組成を制御する手段として取鍋精錬法(LF法)が知ら
れている。これは加熱・攪拌機能を持つ設備にて、造滓
材やスラグ還元材を添加しスラグ制御を行うものである
が、専用の設備が必要でまた耐火物や電極また電力等の
コストが高くなる点が課題である。
2. Description of the Related Art Generally, slag reforming technology is used as one method for producing high cleanliness steel or low sulfur steel. This utilizes absorption separation of inclusions by slag during molten steel stirring and low sulfurization of molten steel by slag desulfurization.In either case, ladle slag has a sufficiently low oxygen potential and controls the desired slag composition. There is a need to. As a means for controlling such slag composition, a ladle refining method (LF method) is known. This is a facility that has a heating and stirring function, and adds slag forming material and slag reducing material to control slag. However, special equipment is required and the cost of refractories, electrodes, power, etc. increases The point is the challenge.

【0003】また、製鋼炉から取鍋への出鋼作業の段階
で造滓材やスラグ還元材を添加し、スラグ組成を制御す
る方法も広く行われている(特公昭62−39205)
が、取鍋精錬法に較べスラグの還元効率や滓化性に課題
があり、これらを解決するためにスラグを最低融点組成
近傍に制御する方法(特開平6−330138)や、ス
ラグ還元材とガス発生物質の混合成形物を利用してスラ
グ内攪拌を行う方法(特公平2−19168)等が提案
されている。
[0003] In addition, a method of adding a slag-making material or a slag-reducing material at the stage of tapping work from a steelmaking furnace to a ladle to control the slag composition has been widely performed (Japanese Patent Publication No. Sho 62-39205).
However, compared to the ladle refining method, there are problems in the reduction efficiency and slagging property of slag, and in order to solve these problems, a method of controlling slag near the minimum melting point composition (Japanese Patent Laid-Open No. 6-330138), A method of stirring in a slag using a mixed molded product of a gas generating substance (Japanese Patent Publication No. 2-19168) has been proposed.

【0004】前者は極めて狭い組成にスラグを制御する
必要があり、さらにスラグの粘性を低下させる余り鋳造
条件によってはスラグ巻き込みによる鋳片品質の悪化を
誘発させる危険性がある。また、後者では特殊なスラグ
改質材を使用するため製造コストが高くなる等の課題が
あり、広範なスラグ組成制御を可能にする安価かつ高効
率なスラグ改質方法の発明が期待されていた。
In the former, it is necessary to control the slag to an extremely narrow composition, and there is a risk that the slag entrainment may cause deterioration of the slab quality depending on the casting conditions, which may lower the viscosity of the slag. Further, in the latter case, there is a problem that the production cost is increased due to the use of a special slag reforming material, and the invention of a low-cost and high-efficiency slag reforming method capable of controlling a wide range of slag composition has been expected. .

【0005】[0005]

【発明が解決しようとする課題】本発明は、この様な状
況を鑑みてなされたものであり、高清浄度鋼を得るため
のスラグ改質を実施するに際して、工業的に入手容易な
産業廃棄物を使用して、広範囲なスラグ組成制御を可能
にする安価かつ高効率なスラグの改質方法を提供するも
のである。
SUMMARY OF THE INVENTION The present invention has been made in view of such a situation, and is intended for industrially easily available industrial waste in carrying out slag reforming for obtaining high cleanliness steel. An object of the present invention is to provide an inexpensive and highly efficient slag reforming method capable of controlling a wide range of slag composition by using a material.

【0006】[0006]

【課題を解決するための手段】本発明は、溶鋼取鍋にて
スラグ改質を実施するに際して、アルミニウムの精錬段
階で発生する金属Al,Al23 およびAlNをその
主な成分とする物質いわゆる産業廃棄物を、下記(1)
式で規定される添加量の範囲で、かつ出鋼中にいわゆる
未脱酸の取鍋内溶鋼(脱酸材を添加してない)に添加す
ることを特徴とするスラグの改質方法にある。 1.0≦(産業廃棄物の添加量)×T〔N〕/(全出鋼
量)≦6.0 但し、 T〔N〕:添加する産業廃棄物が含有する全窒素含有率
(重量%) (産業廃棄物の添加量)の単位はkg、(全出鋼量)の
単位はtである。
SUMMARY OF THE INVENTION The present invention relates to a material containing, as a main component, metals Al, Al 2 O 3 and AlN generated in the refining stage of aluminum when slag is reformed in a molten steel ladle. The so-called industrial waste is described in (1) below.
A slag reforming method characterized by being added to a so-called undeoxidized ladle molten steel (without adding a deoxidizing material) within a range of an addition amount defined by a formula and during tapping. . 1.0 ≦ (addition amount of industrial waste) × T [N] / (total steel output) ≦ 6.0 where T [N]: total nitrogen content (% by weight) contained in the added industrial waste The unit of (amount of added industrial waste) is kg, and the unit of (total steel output) is t.

【0007】[0007]

【作用】本発明は上述の如く構成されるが、要は特許請
求の範囲で規定した産業廃棄物中のNを用いて、取鍋ス
ラグ改質においてスラグフォーミングを発生させ、これ
を制御することにより取鍋スラグに選択的に攪拌動力を
与え、スラグ還元効率の向上と滓化促進を達成しつつ、
産業廃棄物中のNの溶鋼中への残留を極力防止する方法
であり、また特に、産業廃棄物を用いて安価にその目的
を達成する方法である。
The present invention is constructed as described above. The point is that slag forming is generated and controlled in ladle slag reforming using N in industrial waste as defined in the claims. By selectively agitating power to the ladle slag by, while improving the slag reduction efficiency and promoting slagging,
This is a method for preventing N in industrial waste from remaining in molten steel as much as possible, and in particular, a method for achieving its purpose at low cost using industrial waste.

【0008】以下に、本発明について詳細に説明する。
本発明者らは、Al精錬段階で発生する産業廃棄物を利
用するに際して、溶鋼中のN歩留りについて調査を行っ
た。図1は、転炉精錬を行った全出鋼量280tのチャ
ージに対し、当該の産業廃棄物を出鋼中に添加して、そ
のときの吹止CとRH処理前[N]の関係を調査した結
果である。水準1は当該の産業廃棄物(Al:24%,
Al23 :55%、T[N]:3.6%)を、出鋼量
60tの時点で450kg添加した後にAl;70kg
を添加した場合であり、水準2としては出鋼量60tの
時点でAl;70kgを添加した後に同様の産業廃棄物
を450kg添加した場合である。
Hereinafter, the present invention will be described in detail.
The present inventors investigated the yield of N in molten steel when using industrial waste generated in the Al refining stage. Fig. 1 shows the relationship between the blow-off C and the [N] before the RH treatment at that time when the industrial waste was added to the tapping for the total tapping amount of 280t that was subjected to converter refining. It is the result of the investigation. Level 1 is the industrial waste (Al: 24%,
(Al 2 O 3 : 55%, T [N]: 3.6%) was added at an amount of 450 t at the time of tapping of 60 t, and then Al: 70 kg
The level 2 is a case in which Al; 70 kg was added at the time of a tapping amount of 60 t, and then 450 kg of the same industrial waste was added.

【0009】図1に示した如く、脱酸材であるAlの先
行添加を行った場合は、RH処理前[N]の値は高いも
のとなっている。すなわち、当該の産業廃棄物からのN
の歩留りを抑制するためには、当該の産業廃棄物を脱酸
材を添加していない状態で添加すれば良いことがわかっ
た。さらに本発明者らは、脱酸材を添加していない状態
で、当該の産業廃棄物を添加した場合における添加量の
上限値を決定すべく試験を行った。
As shown in FIG. 1, when Al, which is a deoxidizer, is added in advance, the value of [N] before the RH treatment is high. That is, N from the industrial waste concerned
In order to suppress the yield, it was found that the industrial waste should be added without adding the deoxidizing agent. Furthermore, the present inventors conducted a test to determine the upper limit of the amount of addition of the industrial waste in a state where the deoxidizing agent was not added.

【0010】図2は、出鋼前C:0.10〜0.12
%、出鋼量280tのチャージについて、当該の産業廃
棄物の添加量とRH処理前Nの関係を調査した結果であ
る。各水準は、使用した産業廃棄物の成分に対し、水準
1はAl:35%,Al23 :45%,T[N]:
2.1%のものを、水準2はAl:24%,Al2
3 :55%,T[N]:3.6%のものを、水準3はA
l:12%,Al23:67%,T[N]:5.1%
のものをそれぞれ使用した。図2に示す如く、いづれの
水準においても、産業廃棄物の添加量が(産業廃棄物の
添加量)×T[N]/(全出鋼量)≦6.0の範囲を超
過して添加した場合には、添加後の溶鋼中のNが増加す
ることがわかった。
FIG. 2 shows that before tapping C: 0.10 to 0.12.
% And a result of investigating the relationship between the added amount of the industrial waste and the N before the RH treatment for a charge with a steel output of 280 t. Each level is based on the composition of the industrial waste used. Level 1 is Al: 35%, Al 2 O 3 : 45%, T [N]:
2.1%, Level 2 is Al: 24%, Al 2 O
3 : 55%, T [N]: 3.6%, level 3 is A
l: 12%, Al 2 O 3: 67%, T [N]: 5.1%
Were used. As shown in FIG. 2, at any level, the amount of industrial waste added exceeds the range of (the amount of industrial waste added) × T [N] / (total steel output) ≦ 6.0. In this case, it was found that N in the molten steel after addition increased.

【0011】次に上述のNの溶鋼中の挙動について説明
する。本発明者らの調査によればAl精錬段階で発生す
る産業廃棄物中のNはその殆どがAlNであった。その
ため金属Al粒やAl23 粒の表面近傍に存在するA
lNは、溶鋼の脱酸の進行に先立って未脱酸溶鋼と接触
し、酸素原子と優先的に反応するため急速にAl23
とN原子を生成し、この時生成したN原子は局部的な濃
度増加のため、容易にN2 ガスとして溶鋼中を浮上分離
し溶鋼中のNを増加させる原因にはならない。
Next, the behavior of N in molten steel will be described. According to the investigation by the present inventors, most of N in industrial waste generated in the Al refining stage was AlN. Therefore, A existing in the vicinity of the surface of metal Al particles or Al 2 O 3 particles
1N comes into contact with undeoxidized molten steel prior to the progress of deoxidation of the molten steel and reacts preferentially with oxygen atoms, so that Al 2 O 3
And N atoms are generated. At this time, since the generated N atoms locally increase in concentration, they do not easily cause floating separation in the molten steel as N 2 gas to increase N in the molten steel.

【0012】一方、当該の産業廃棄物を脱酸材を添加し
た後に添加した場合や、未脱酸の溶鋼に過剰に添加した
場合では、溶鋼中のAlおよびNの両者の濃度が上昇
し、局部的な平衡でAlNの分解が支配されるため、気
泡生成に充分なN濃度の増加には至らず、溶鋼中に拡散
溶解するN原子が増加するものと推察した。以上のよう
に本発明者等は当該物質の物性を詳細に調査し、溶鋼中
での溶解機構を解明することにより、実機操業の添加量
について溶鋼中へのNの歩留りを抑制する上限値を規定
しえたのである。
On the other hand, when the industrial waste is added after adding the deoxidizing material or when excessively added to undeoxidized molten steel, the concentrations of both Al and N in the molten steel increase, Since the decomposition of AlN was dominated by local equilibrium, it was presumed that the N concentration sufficient for bubble generation did not increase, and that the N atoms diffused and dissolved in the molten steel increased. As described above, the present inventors have investigated the physical properties of the substance in detail and elucidated the melting mechanism in molten steel, thereby setting the upper limit for suppressing the yield of N in molten steel with respect to the amount of addition in the actual operation. I could specify it.

【0013】さらに本発明者等は当該物質が含有するN
を利用したスラグ改質方法の開発を行った。出鋼前C:
0.15〜0.20%、出鋼量280tのチャージにつ
いて、当該の産業廃棄物の添加量とRH処理前スラグ中
(%T.Fe+MnO)の関係を調査した。この時のス
ラグ改質の処理手順については図4に示した如く行い、
出鋼時のAl添加はRH処理前[Al]値が0.020
〜0.030%になるように調整した。各水準は、使用
した産業廃棄物の成分に対応し、水準1はAl:35
%,Al23 :45%,T[N]:2.1%のもの
を、水準2はAl:24%,Al23 :55%,T
[N]:3.6%のものを、水準3はAl:12%,A
23 :67%,T[N]:5.1%のものをそれぞ
れ使用した。
Further, the present inventors have determined that the N
We have developed a slag reforming method using slag. Before tapping C:
For a charge of 0.15 to 0.20% and a tapping amount of 280 t, the relationship between the amount of the industrial waste and the slag (% T.Fe + MnO) before the RH treatment was investigated. The slag reforming procedure at this time is performed as shown in FIG.
[Al] value before RH treatment was 0.020 for Al addition during tapping.
It was adjusted to be 0.030%. Each level corresponds to the components of the industrial waste used, and level 1 is Al: 35
%, Al 2 O 3 : 45%, T [N]: 2.1%, and Level 2 was Al: 24%, Al 2 O 3 : 55%, T
[N]: 3.6%, Level 3 is Al: 12%, A
l 2 O 3 : 67%, T [N]: 5.1%, respectively.

【0014】結果を図3に示す。図3に示した如く、
1.0≦(産業廃棄物の添加量)×T[N]/(全出鋼
量)の範囲の添加量で当該の産業廃棄物を添加した場合
には、いづれの水準においても、RH処理前のスラグ中
(%T.Fe+MnO)≦1.5%であり、スラグ改質
が効率良く行われることを確認した。なお、図4は産業
廃棄物の添加量とRH処理前スラグ中(%T.Fe+M
nO)の関係の調査におけるスラグ改質の処理手順を示
した図である。
FIG. 3 shows the results. As shown in FIG.
When the industrial waste is added in an amount of 1.0 ≦ (industrial waste addition amount) × T [N] / (total steel output), RH treatment is performed at any level. In the previous slag, (% T.Fe + MnO) ≦ 1.5%, and it was confirmed that the slag modification was performed efficiently. 4 shows the amount of industrial waste added and the slag before RH treatment (% T.Fe + M
FIG. 3 is a diagram showing a processing procedure of slag reforming in the investigation of the relationship of (nO).

【0015】このスラグ改質におけるNの作用について
以下に説明する。当該物質が含有したAlNの一部、特
にAl23 粒中に包含されたものは、スラグ面に到達
しスラグ中で分解する。この時、AlNはスラグ中のF
eO,MnO等と接触することによりAl23 とN原
子とを生成する。この反応は発熱反応であり滓化反応を
促進する。また生成したN原子は、スラグ層内にN2
ス気泡を生成しスラグ層内の内部攪拌の増大、およびス
ラグ層の体積膨張等の物理現象を引き起こす。従って、
スラグ上に添加したスラグ改質材は速やかに浸潤し、効
率良くスラグ中の低級酸化物を還元できる。以上の結果
より、当該物質の含有するNを利用してスラグ改質を高
効率に行うための下限値を規定した。
The function of N in the slag reforming will be described below. Part of the AlN contained in the substance, particularly those contained in Al 2 O 3 grains, reaches the slag surface and decomposes in the slag. At this time, AlN is F in the slag.
By contacting with eO, MnO, etc., Al 2 O 3 and N atoms are generated. This reaction is exothermic and promotes the slagging reaction. In addition, the generated N atoms generate N 2 gas bubbles in the slag layer, causing physical phenomena such as an increase in internal stirring in the slag layer and a volume expansion of the slag layer. Therefore,
The slag modifier added to the slag quickly infiltrates and can efficiently reduce lower oxides in the slag. From the above results, the lower limit value for performing the slag reforming with high efficiency using the N contained in the substance was specified.

【0016】なお、アルミニウムの精錬過程で発生する
いわゆるアルミドロスは、その精錬工程段階で異なるA
l含有率の物が発生するが、金属Alの含有率が高い物
については、再精錬を行って金属Alの回収が実施され
るため、産業廃棄物としては、金属Al含有率:5〜5
0(重量%)、Al23 含有率:20〜70(重量
%)、AlN含有率:5〜20(重量%)の物が発生
し、また金属Al含有率の低下に伴いAl23 やAl
Nの含有率が増加する。
The so-called aluminum dross generated during the refining process of aluminum is different from A in the refining process.
Although a product with a l content is generated, a product with a high content of metal Al is subjected to refining to recover the metal Al. Therefore, as an industrial waste, the metal Al content: 5 to 5
0 (% by weight), Al 2 O 3 content: 20 to 70 (% by weight), AlN content: 5 to 20 (% by weight), and Al 2 O with a decrease in the metal Al content. 3 or Al
N content increases.

【0017】本発明の実施に際しては以下の理由によ
り、金属Al含有率:20〜40(重量%)、Al2
3 含有率:25〜50(重量%)のものの使用を推奨す
る。金属Al含有率が高い場合、あるいはAl23
有率が低い場合、当該物質は速やかに溶解するため、A
lNの分解は溶鋼中で進行する比率が高まり、スラグ攪
拌力が低下する場合がある。このため、本発明を単独で
利用し、他のスラグ攪拌手段を併用しない場合において
は、上記範囲を推奨する。金属Al含有率が高い場合、
あるいはAl23 含有率が低い場合、当該物質は粉体
の比率が高くなり、添加条件によっては作業環境や添加
歩留りが悪化する場合がある。このため、集塵条件等に
よっては上記範囲を推奨する。
In the practice of the present invention, the metal Al content: 20 to 40 (% by weight), Al 2 O
( 3) Content: 25 to 50% by weight is recommended. When the metal Al content is high or the Al 2 O 3 content is low, the substance dissolves quickly,
The rate at which the decomposition of 1N proceeds in the molten steel increases, and the slag stirring force may decrease. Therefore, when the present invention is used alone and other slag stirring means is not used, the above range is recommended. When the metal Al content is high,
Alternatively, when the content of Al 2 O 3 is low, the ratio of the powder of the substance becomes high, and depending on the addition conditions, the working environment and the addition yield may be deteriorated. Therefore, the above range is recommended depending on the dust collection conditions.

【0018】本発明は、出鋼後にスラグ中に添加するス
ラグ還元材の種類を何ら限定するものではなく、溶鋼取
鍋にてスラグ改質を実施するに際して、少なくともアル
ミニウムの精錬段階で発生する金属Al,Al23
よびAlNをその主な成分とする物質いわゆる産業廃棄
物を、前述の(1)式で規定される添加量の範囲で、か
つ出鋼中にいわゆる未脱酸の取鍋溶鋼(脱酸材を添加し
てない)に添加する限りにおいて、前記課題を解決でき
る。
The present invention does not limit the kind of the slag reducing agent added to the slag after tapping at all. When the slag is reformed in the molten steel ladle, at least the metal generated in the refining stage of aluminum is used. A so-called industrial waste containing Al, Al 2 O 3 and AlN as its main components is subjected to a so-called undeoxidized ladle within the range of the addition amount defined by the above formula (1) and during tapping. The above problem can be solved as long as it is added to molten steel (to which no deoxidizing agent is added).

【0019】[0019]

【実施例】以下、本発明の効果を従来法と対比して表1
に示す。例は全てJIS−S10C相当の鋼種である。
EXAMPLES The effects of the present invention are compared with those of the conventional method in Table 1 below.
Shown in All examples are steel grades equivalent to JIS-S10C.

【0020】[0020]

【表1】 [Table 1]

【0021】発明例1は、転炉精錬を行った成分C:
0.06%、温度1648℃の溶鋼の出鋼中に、当該の
産業廃棄物(Al:35%,Al23 :45%,T
[N]:2.1%)を1.8kg/t−S,Al;0.
7kg/t−S,FeSi;3.0kg/t−S,Fe
Mn;5.0kg/t−S,CaO;4.0kg/t−
Sを記載の順に続けて添加し、出鋼後のスラグ上にA
l;0.45kg/t−Sをスラグ還元材として添加
し、RH工程にて成分調整を行い連続鋳造した場合であ
る。表1に示したように、[N]:28ppmであり当
該の産業廃棄物の添加の影響はなく、またRH処理前の
スラグ中の酸素ポテンシアルも充分低下させることがで
きた。連続鋳造後の鋳片の分析結果ではT[O]:11
ppmであった。
Inventive Example 1 is a component C which was subjected to converter refining:
During the tapping of molten steel at 0.06% at a temperature of 1648 ° C., the relevant industrial waste (Al: 35%, Al 2 O 3 : 45%, T
[N]: 2.1%) was 1.8 kg / t-S, Al;
7 kg / t-S, FeSi; 3.0 kg / t-S, Fe
Mn: 5.0 kg / t-S, CaO: 4.0 kg / t-
S was added continuously in the order described, and A was added on the slag after tapping.
l: 0.45 kg / t-S was added as a slag reducing material, the components were adjusted in the RH process, and continuous casting was performed. As shown in Table 1, [N] was 28 ppm, and there was no effect of the addition of the industrial waste, and the oxygen potential in the slag before the RH treatment could be sufficiently reduced. According to the analysis result of the slab after continuous casting, T [O]: 11
ppm.

【0022】発明例2は、転炉精錬を行った成分C:
0.08%、温度1631℃の溶鋼の出鋼中に、当該の
産業廃棄物(Al:35%,Al23 :45%,T
[N]:2.1%)を1.8kg/t−S、Al;0.
7kg/t−S,FeSi;3.0kg/t−S,Fe
Mn;5.0kg/t−S,CaO;2.5kg/t−
Sを記載の順に続けて添加し、出鋼後のスラグ上にA
l;0.45kg/t−Sをスラグ還元材として添加
し、RH工程にて成分調整を行い連続鋳造した場合であ
る。表1に示したように、[N]:19ppmであり当
該の産業廃棄物の添加の影響は無く、またRH処理前の
スラグ中の酸素ポテンシアルも充分低下させることがで
きた。連続鋳造後の鋳片の分析結果ではT[O]:9p
pmであった。
Inventive Example 2 is a component C which was subjected to converter refining:
During the tapping of molten steel at 0.08% and a temperature of 1631 ° C., the relevant industrial waste (Al: 35%, Al 2 O 3 : 45%, T
[N]: 2.1%), 1.8 kg / t-S, Al;
7 kg / t-S, FeSi; 3.0 kg / t-S, Fe
Mn: 5.0 kg / t-S, CaO: 2.5 kg / t-
S was added continuously in the order described, and A was added on the slag after tapping.
l: 0.45 kg / t-S was added as a slag reducing material, the components were adjusted in the RH process, and continuous casting was performed. As shown in Table 1, [N] was 19 ppm, which was not affected by the addition of the industrial waste, and the oxygen potential in the slag before the RH treatment was sufficiently reduced. According to the analysis result of the slab after continuous casting, T [O]: 9p
pm.

【0023】比較例1は、転炉精錬を行った成分C:
0.07%、温度1640℃の溶鋼の出鋼中に、Al;
0.6kg/t−S、当該の産業廃棄物(Al:24
%,Al23 :55%,T[N]:3.6%)を2.
5kg/t−S,FeSi;3.0kg/t−S,Fe
Mn;5.0kg/t−S,CaO;4.5kg/t−
Sを記載の順に続けて添加し、出鋼後のスラグ上にA
l;0.45kg/t−Sをスラグ還元材として添加し
た場合である。表1に示したように、RH処理前の段階
で[N]:61ppmであり、当該鋼種の所望の範囲を
超過しているため、鋼種の変更を行った。
In Comparative Example 1, component C was subjected to converter refining:
0.07% Al in the tapping of molten steel at a temperature of 1640 ° C;
0.6 kg / t-S, the relevant industrial waste (Al: 24
%, Al 2 O 3 : 55%, T [N]: 3.6%).
5 kg / t-S, FeSi; 3.0 kg / t-S, Fe
Mn: 5.0 kg / t-S, CaO: 4.5 kg / t-
S was added continuously in the order described, and A was added on the slag after tapping.
l: 0.45 kg / t-S was added as a slag reducing material. As shown in Table 1, at the stage before the RH treatment, [N] was 61 ppm, which exceeded the desired range of the steel type, so the steel type was changed.

【0024】比較例2は、転炉精錬を行った成分C:
0.08%、温度1647℃の溶鋼の出鋼中に、Al含
有率の高いアルミドロス(Al:60%,Al23
20%,T[N]:1.0%)を2.0kg/t−S,
FeSi;3.0kg/t−S,FeMn;5.0kg
/t−S,CaO;2.0kg/t−Sを記載の順に続
けて添加し、出鋼後のスラグ上にAl;0.45kg/
t−Sをスラグ還元材として添加した場合である。当該
チャージは、RH処理前の段階でスラグ中の(%T.F
e+MnO)の値が高かった。鋳片の分析結果ではT
[O]:28ppmであり所望の清浄性が確保できなか
った。
In Comparative Example 2, the components C were subjected to converter refining:
During the tapping of molten steel at 0.08% at a temperature of 1647 ° C., aluminum dross with a high Al content (Al: 60%, Al 2 O 3 :
20%, T [N]: 1.0%) to 2.0 kg / t-S,
FeSi; 3.0 kg / t-S, FeMn; 5.0 kg
/ T-S, CaO; 2.0 kg / t-S was added continuously in the order described, and Al: 0.45 kg /
This is the case where t-S is added as a slag reducing material. The charge is (% TF) in the slag before the RH treatment.
e + MnO) was high. The analysis result of the slab shows T
[O]: 28 ppm, and the desired cleanliness could not be secured.

【0025】[0025]

【発明の効果】以上説明したように本発明によれば、取
鍋スラグを選択的に攪拌でき、高効率なスラグ改質を安
価に行い溶鋼の清浄性を向上できた。
As described above, according to the present invention, ladle slag can be selectively agitated, and highly efficient slag reforming can be performed at low cost to improve the cleanliness of molten steel.

【図面の簡単な説明】[Brief description of the drawings]

【図1】脱酸材の先行添加を実施して当該の産業廃棄物
を添加した場合と、脱酸材の先行添加を実施せずに当該
の産業廃棄物を添加した場合との、吹止CとRH処理前
[N]の関係を比較して示した図
FIG. 1 shows a case where the industrial waste is added with the prior addition of the deoxidizer and the case where the industrial waste is added without the preceding addition of the deoxidizer. Diagram comparing and showing the relationship between C and [N] before RH processing

【図2】未脱酸溶鋼中に当該の産業廃棄物を添加した場
合の、添加量とRH処理前の[N]の値の関係を示す図
FIG. 2 is a diagram showing the relationship between the amount of addition and the value of [N] before RH treatment when the industrial waste is added to undeoxidized molten steel.

【図3】当該の産業廃棄物の添加量とRH処理前スラグ
中(%T.Fe+MnO)の関係を示す図
FIG. 3 is a graph showing the relationship between the amount of the industrial waste added and the slag (% T. Fe + MnO) before RH treatment.

【図4】当該の産業廃棄物の添加量とRH処理前スラグ
中(%T.Fe+MnO)の関係の調査におけるスラグ
改質の処理手順を示す図
FIG. 4 is a diagram showing a processing procedure of slag reforming in an investigation of the relationship between the amount of the industrial waste added and the slag before RH treatment (% T. Fe + MnO).

───────────────────────────────────────────────────── フロントページの続き (72)発明者 寺島 浩志 北海道室蘭市仲町12番地 新日本製鐵株 式会社 室蘭製鐵所内 (56)参考文献 特開 平6−200317(JP,A) 特開 平6−108137(JP,A) 特開 平6−228626(JP,A) 特開 平4−72009(JP,A) 特開 平4−88117(JP,A) (58)調査した分野(Int.Cl.7,DB名) C21C 7/04 C21C 7/00 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Hiroshi Terashima 12 Nakamachi, Muroran-shi, Hokkaido Nippon Steel Corporation Muroran Works (56) References JP-A-6-200317 (JP, A) JP-A Heihei 6-108137 (JP, A) JP-A-6-228626 (JP, A) JP-A-4-72009 (JP, A) JP-A-4-88117 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) C21C 7/04 C21C 7/00

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 溶鋼取鍋にてスラグ改質を実施するに際
して、アルミニウムの精錬段階で発生する金属Al,A
23 およびAlNをその主な成分とする物質いわゆ
る産業廃棄物を、下記(1)式で規定される添加量の範
囲で、出鋼中に未脱酸の取鍋内溶鋼に添加することを特
徴とするスラグの改質方法。 1.0≦(産業廃棄物の添加量)×T〔N〕/(全出鋼量)≦6.0 ・・・(1) 但し、 T〔N〕:添加する産業廃棄物が含有する全窒素濃度
(%) (産業廃棄物の添加量)の単位はkg、(全出鋼量)の
単位はtである。
When slag is reformed in a molten steel ladle, metals Al and A generated in a refining stage of aluminum are used.
A substance containing l 2 O 3 and AlN as its main components, so-called industrial waste, is added to undeoxidized molten steel in the ladle during tapping in a range of the addition amount defined by the following formula (1) A slag reforming method characterized by the above-mentioned. 1.0 ≦ (the amount of added industrial waste) × T [N] / (total steel output) ≦ 6.0 (1) where T [N] is the total amount of the added industrial waste The unit of nitrogen concentration (%) (the amount of added industrial waste) is kg, and the unit of (total steel output) is t.
JP27509495A 1995-09-29 1995-09-29 Slag reforming method Expired - Fee Related JP3226768B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27509495A JP3226768B2 (en) 1995-09-29 1995-09-29 Slag reforming method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27509495A JP3226768B2 (en) 1995-09-29 1995-09-29 Slag reforming method

Publications (2)

Publication Number Publication Date
JPH0995726A JPH0995726A (en) 1997-04-08
JP3226768B2 true JP3226768B2 (en) 2001-11-05

Family

ID=17550704

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27509495A Expired - Fee Related JP3226768B2 (en) 1995-09-29 1995-09-29 Slag reforming method

Country Status (1)

Country Link
JP (1) JP3226768B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITFI20050086A1 (en) * 2005-05-02 2006-11-03 Perini Fabio Spa ROLL OF MATTRIFIED MATERIALS WITHOUT CENTRAL WINDING SOUL, MACHINES AND METHOD FOR ITS PRODUCTION
CN111349758B (en) * 2020-04-22 2022-08-09 马鞍山钢铁股份有限公司 Method for improving castability of non-oriented silicon steel molten steel of CSP production line

Also Published As

Publication number Publication date
JPH0995726A (en) 1997-04-08

Similar Documents

Publication Publication Date Title
JP3226768B2 (en) Slag reforming method
JPH09157732A (en) Method for desulfurizing and dehydrogenating molten steel with little erosion of refractory
KR20060012266A (en) Method for a direct steel alloying
JP3226769B2 (en) Slag reforming method
JPH10102119A (en) Production of sulfur free-cutting steel resulfurized carbon steel
JP3220233B2 (en) Refining method of ultra-low carbon / ultra low sulfur chromium-containing molten steel
JP3140256B2 (en) Slag reforming method
JP2008111181A (en) Method for smelting aluminum killed steel
JP6443192B2 (en) Slag reforming method using FeSi alloy grains
JP4655573B2 (en) Method for oxidative dephosphorization of chromium-containing hot metal
JPH06306442A (en) Production of extra low sulfur steel
JP3160124B2 (en) Deoxidation method of low silicon aluminum killed steel
JP3099152B2 (en) Raw material blending method and smelting method for chromium-containing molten steel
JP2005200762A (en) Method for desulfurizing molten pig iron
JP2020105544A (en) Molten iron desulfurization method
JP2750048B2 (en) Ladle slag reforming method
JPH09209025A (en) Production of hic resistant steel excellent in low temperature toughness in welded part
JPS63134623A (en) Denitrification method utilizing iron oxide
JP2855333B2 (en) Modification method of molten steel slag
JPS6212301B2 (en)
JP2873729B2 (en) Deoxidation refining method of chromium-containing molten steel
JPH111714A (en) Steelmaking method
JPS6239205B2 (en)
JPH11100608A (en) Method for desiliconizing and desulfurizing molten iron
JP3996536B2 (en) Method of adding Mn in converter

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010807

LAPS Cancellation because of no payment of annual fees