JP7244803B2 - Method for modifying boron-containing slag, method for manufacturing civil engineering and construction materials using the same, and modified slag - Google Patents

Method for modifying boron-containing slag, method for manufacturing civil engineering and construction materials using the same, and modified slag Download PDF

Info

Publication number
JP7244803B2
JP7244803B2 JP2020168889A JP2020168889A JP7244803B2 JP 7244803 B2 JP7244803 B2 JP 7244803B2 JP 2020168889 A JP2020168889 A JP 2020168889A JP 2020168889 A JP2020168889 A JP 2020168889A JP 7244803 B2 JP7244803 B2 JP 7244803B2
Authority
JP
Japan
Prior art keywords
slag
boron
reforming
calculated
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020168889A
Other languages
Japanese (ja)
Other versions
JP2022061112A (en
Inventor
裕介 加藤
陽太郎 井上
克美 山田
聖司 細原
圭児 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2020168889A priority Critical patent/JP7244803B2/en
Publication of JP2022061112A publication Critical patent/JP2022061112A/en
Application granted granted Critical
Publication of JP7244803B2 publication Critical patent/JP7244803B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Description

本発明は、ホウ素含有スラグの改質方法及びこれを利用した土木建築用資材の製造方法、並びに改質スラグに関する。 TECHNICAL FIELD The present invention relates to a method for modifying boron-containing slag, a method for producing civil engineering and construction materials using the same, and a modified slag.

工業の発展にともない、各種産業において発生する産業副産物の量も増加の一途を辿っている。近年、地球環境保全の観点から、このような産業副産物の有効利用が行われている。例えば、製鉄所から発生する高炉スラグや製鋼スラグなどの鉄鋼スラグ、火力発電所から発生する石炭灰、及び廃棄物や下水汚泥の焼却灰等を高温で溶融し冷却・固化した溶融スラグ等は、適正な粒度調整を施された後、路盤材や地盤改良材などの土木建築用資材として再利用されている。 With the development of industry, the amount of industrial by-products generated in various industries is steadily increasing. In recent years, effective utilization of such industrial by-products has been carried out from the viewpoint of global environment conservation. For example, steel slag such as blast furnace slag and steelmaking slag generated from steel plants, coal ash generated from thermal power plants, and molten slag obtained by melting, cooling, and solidifying waste and sewage sludge incineration ash at high temperatures, After proper grain size adjustment, it is reused as a civil engineering and construction material such as roadbed material and soil improvement material.

産業副産物を再利用する際には、これに含まれる有害物質の環境中への排出を抑制する必要がある。代表的な有害物質としては、カドミウム、水銀、クロム及び鉛等の重金属類が例示できるが、これら重金属類以外に、例えば、フッ素、セレン、ヒ素及びホウ素等についても、環境に悪影響を与える成分として、環境への排出(溶出)が厳しく規制されている。 When reusing industrial by-products, it is necessary to suppress the emission of harmful substances contained therein into the environment. Typical harmful substances include heavy metals such as cadmium, mercury, chromium and lead. In addition to these heavy metals, for example, fluorine, selenium, arsenic and boron are also harmful to the environment. , the emission (elution) into the environment is strictly regulated.

このような環境に悪影響を及ぼす成分のうち、ホウ素の溶出を抑制する方法としては、例えば、ホウ素が含まれる焼却灰に、酸化マグネシウムを粉末状又はスラリー状で添加、混合する方法(特許文献1)、及び火力発電所等から排出される石炭灰を所定期間加湿養生する方法(特許文献2)等が知られている。 Among the components that adversely affect the environment, methods for suppressing the elution of boron include, for example, a method of adding and mixing magnesium oxide in the form of powder or slurry to incineration ash containing boron (Patent Document 1 ), and a method of humidifying and curing coal ash discharged from a thermal power plant for a predetermined period (Patent Document 2).

特開2004-298741号公報Japanese Patent Application Laid-Open No. 2004-298741 特開2007-90155号公報JP 2007-90155 A

しかし、特許文献1に記載された方法では、ホウ素の溶出抑制材として使用される酸化マグネシウムが高価であること、及び溶出抑制材を添加した混合物(最終生成物)が硬化して比較的高強度の塊状体となるため、これを資材とするための粒度調整に手間がかかることが問題となる。また、特許文献2に記載された方法では、ホウ素の溶出を抑制するために長期間の加湿養生が必要であり、特に、溶出量が多い石炭灰については、所期の溶出量とするためにより長期間の加湿養生を必要とするため、生産性が低いことが問題となる。 However, in the method described in Patent Document 1, the magnesium oxide used as the boron elution inhibitor is expensive, and the mixture (final product) to which the elution inhibitor is added hardens and has a relatively high strength. Since it becomes a lump of this, there is a problem that it takes time and effort to adjust the particle size for using this as a material. In addition, in the method described in Patent Document 2, long-term humidification curing is required in order to suppress the elution of boron. Low productivity is a problem because it requires long-term moisturizing and curing.

これに加えて、ホウ素含有物質からのホウ素の溶出を判定する方法としては、特許文献1にも記載されている、環境庁告示第46号に規定される方法が知られているが、試料の作成、試料液の調製、溶出処理及び検液の作成を経て分析を行う必要があり、判定に時間及び手間がかかっていた。このため、ホウ素の溶出を予め判定することなく、全てのホウ素含有物質に対して溶出抑制処理が行われることも多かった。この場合、溶出するホウ素が少量で、本来は溶出抑制処理を行う必要のないホウ素含有物質にまで該処理が行われてしまうため、不経済であった。 In addition to this, as a method for determining the elution of boron from a boron-containing substance, the method specified in the Environment Agency Notification No. 46, which is also described in Patent Document 1, is known. Preparation, sample solution preparation, dissolution treatment, and test solution preparation were required before analysis, which required time and effort for determination. Therefore, in many cases, all boron-containing substances are subjected to elution suppression treatment without determining the elution of boron in advance. In this case, the amount of eluted boron is small, and even the boron-containing substance, which originally does not need to be subjected to the elution suppression treatment, is subjected to the treatment, which is uneconomical.

そこで、本発明は、前述の問題点を解決し、産業副産物のうち、ホウ素含有スラグからのホウ素の溶出を、簡便かつ経済的に抑制できる方法を提供することを目的とする。 SUMMARY OF THE INVENTION Accordingly, it is an object of the present invention to solve the aforementioned problems and to provide a method for simply and economically suppressing the elution of boron from the boron-containing slag, which is one of the industrial by-products.

本発明者は、前記課題を解決するために種々の検討を行ったところ、ホウ素含有スラグの組成から、平衡計算を利用して、固液共存状態にあるホウ素含有スラグにおける液相中のホウ素濃度を算出し、該ホウ素濃度が所定の閾値以下であるか否かによって、該ホウ素含有スラグからのホウ素溶出量が環境基準を満たすか否かを判定できることを見出した。そして前記ホウ素濃度が所定の閾値以下になるよう改質材を添加してから高速で冷却すれば、ホウ素溶出量が環境基準を満たすスラグに改質できることを知見し、本発明を完成するに至った。 As a result of various studies in order to solve the above problems, the present inventors found that from the composition of the boron-containing slag, using equilibrium calculations, the boron concentration in the liquid phase in the boron-containing slag in a solid-liquid coexistence state was calculated, and it was found that whether or not the amount of eluted boron from the boron-containing slag satisfies the environmental standards can be determined depending on whether or not the boron concentration is equal to or lower than a predetermined threshold. Then, by adding a modifier so that the boron concentration becomes a predetermined threshold value or less and then cooling at high speed, the slag can be modified so that the boron elution amount satisfies the environmental standards, and the present invention has been completed. rice field.

すなわち、前記課題を解決するための本発明の第1の実施形態は、ホウ素含有スラグの改質方法であって、改質前スラグの組成に基づく平衡計算により、該スラグが固液共存状態にある所定温度Tでの液相中のホウ素濃度である改質前計算ホウ素濃度Cを算出すること、前記改質前計算ホウ素濃度Cが所定の閾値Cを超える改質前スラグに対し、前記所定温度T以上にある状態で、SiOを30質量%以上含有し、前記所定温度Tにて前記スラグの液相に溶解する改質材を添加してこれを改質し、組成に基づく平衡計算により算出される、固液共存状態にある所定温度Tでの液相中の改質後計算ホウ素濃度Cが前記所定の閾値C以下となる改質スラグを調製すること、及び、前記改質スラグを薄層状に流し込み、該薄層の厚み方向中央部における冷却速度が、前記所定温度Tから1000℃まで、10℃/min以上となるように冷却することを含む、ホウ素含有スラグの改質方法である。ただし、前記所定の閾値Cは、0.5質量%~1.0質量%の範囲から選ばれる値であり、前記所定温度Tは、前記改質前スラグの粉末X線回折測定結果から算出した該スラグ中に常温で存在するガラス相の割合に、前記平衡計算で算出される固液共存状態における液相の割合が一致する温度±50℃である。 That is, the first embodiment of the present invention for solving the above problems is a method for modifying boron-containing slag, wherein the slag is in a solid-liquid coexistence state by equilibrium calculation based on the composition of the slag before modification. Calculating the calculated boron concentration C1 before reforming, which is the boron concentration in the liquid phase at a certain predetermined temperature T, and for the slag before reforming, where the calculated boron concentration C1 before reforming exceeds a predetermined threshold value C, At the predetermined temperature T or higher, a modifier that contains 30% by mass or more of SiO 2 and dissolves in the liquid phase of the slag at the predetermined temperature T is added to modify it, and the slag is modified based on the composition. Preparing a modified slag in which the post-reformation calculated boron concentration C2 in the liquid phase at a predetermined temperature T in a solid-liquid coexistence state, calculated by equilibrium calculation, is equal to or less than the predetermined threshold value C, and Pouring the modified slag in a thin layer, and cooling the central portion of the thin layer in the thickness direction at a cooling rate of 10 ° C./min or more from the predetermined temperature T to 1000 ° C. of boron-containing slag. It is a modification method. However, the predetermined threshold value C is a value selected from the range of 0.5% by mass to 1.0% by mass, and the predetermined temperature T is calculated from the powder X-ray diffraction measurement result of the slag before reforming. The temperature is ±50° C. at which the proportion of the liquid phase in the solid-liquid coexistence state calculated by the equilibrium calculation agrees with the proportion of the glass phase present in the slag at room temperature.

また、本発明の第2の実施形態は、土木建築用資材の製造方法であって、前述した第1の実施形態に係るホウ素含有スラグの改質方法により得られた改質スラグを材料として使用することを特徴とする、土木建築用資材の製造方法である。 Further, the second embodiment of the present invention is a method for producing a material for civil engineering and construction, in which the modified slag obtained by the method for modifying boron-containing slag according to the first embodiment is used as a material. A method for manufacturing a material for civil engineering and construction, characterized by:

さらに、本発明の第3の実施形態は、ホウ素の含有量が0.15質量%を超えるホウ素含有スラグと、SiOを30質量%以上含有し、前記スラグの組成に基づく平衡計算により算出される、1100℃~1200℃の範囲内にある所定温度Tにて前記スラグの液相に溶解する改質材とを混合してなる改質スラグであって、前記所定温度Tにおける液相中のホウ素濃度、及びSiO濃度が、それぞれ1.0質量%以下、及び25質量%以上であり、かつ環境庁告示第46号に定める溶出試験によるホウ素溶出量が1mg/L以下であることを特徴とする改質スラグである。 Furthermore, the third embodiment of the present invention contains boron-containing slag with a boron content of more than 0.15% by mass and SiO2 of 30% by mass or more, and is calculated by equilibrium calculation based on the composition of the slag. A modified slag mixed with a modifier that dissolves in the liquid phase of the slag at a predetermined temperature T within the range of 1100 ° C. to 1200 ° C., wherein the liquid phase at the predetermined temperature T The boron concentration and the SiO 2 concentration are 1.0% by mass or less and 25% by mass or more, respectively, and the boron elution amount according to the elution test specified by the Environment Agency Notification No. 46 is 1 mg / L or less. It is a modified slag.

本発明によれば、産業副産物のうち、ホウ素含有スラグからのホウ素の溶出を、簡便かつ経済的に抑制できる方法を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the method which can suppress the elution of the boron from the boron containing slag among industrial byproducts simply and economically can be provided.

以下、本発明の各実施形態を詳細に説明するが、本発明は該各実施形態に限定されるものではない。また、以下に述べる作用機構については推定を含んでおり、その正否は、本発明を制限するものではない。なお、数値範囲の記載(2つの数値を「~」でつないだ記載)については、下限及び上限として記載された数値をも含む意味である。 Hereinafter, each embodiment of the present invention will be described in detail, but the present invention is not limited to each embodiment. In addition, the mechanism of action described below includes presumptions, and its correctness does not limit the present invention. It should be noted that the description of a numerical range (a description in which two numerical values are connected by "-") is meant to include numerical values described as lower and upper limits.

本発明者は、上述の課題を解決するための検討の過程で、ホウ素含有スラグからのホウ素溶出量の多寡が、必ずしも該スラグのホウ素濃度の高低と一致しないこと、及び同じ組成を有するホウ素含有スラグであっても、溶融状態からの冷却速度が異なると、異なるホウ素溶出量を示すことを見出した。そこで、これらの原因を解明すべく、ホウ素含有スラグについて、X線回折(XRD)測定結果に基づくガラス相比率の算出、電子線マイクロアナライザ(EPMA)によるホウ素の偏在状態の確認、及び透過型電子顕微鏡付属の電子エネルギー損失分光(TEM-EELS)装置によるガラス相へのホウ素の分配観察を実施した。その結果、ホウ素含有スラグからのホウ素溶出量の多寡には、ガラス相中のホウ素濃度及びガラス相中のホウ素の安定性が大きく影響することが判明した。
後述する本発明の各実施形態は、この知見に基づくものである。
In the process of studying to solve the above-mentioned problems, the present inventors found that the amount of boron eluted from the boron-containing slag does not necessarily match the level of the boron concentration of the slag, and that the boron-containing slag having the same composition It was found that even slag exhibits different amounts of boron elution when the cooling rate from the molten state is different. Therefore, in order to elucidate these causes, we calculated the glass phase ratio based on the X-ray diffraction (XRD) measurement results, confirmed the uneven distribution of boron with an electron probe microanalyzer (EPMA), and transmitted electron Boron distribution in the glass phase was observed using an electron energy loss spectroscopy (TEM-EELS) device attached to the microscope. As a result, it was found that the concentration of boron in the glass phase and the stability of boron in the glass phase greatly affect the amount of boron eluted from the boron-containing slag.
Each embodiment of the present invention described later is based on this finding.

[ホウ素含有スラグの改質方法]
本発明の第1の実施形態に係るホウ素含有スラグの改質方法(以下、単に「第1実施形態」と記載することがある。)は、改質対象とするホウ素含有スラグ(以下、「改質前スラグ」と記載することがある)の組成に基づく平衡計算により、該スラグが固液共存状態にある所定温度Tでの液相中のホウ素濃度である改質前計算ホウ素濃度Cを算出することを含む。
[Method for reforming boron-containing slag]
The method for modifying boron-containing slag according to the first embodiment of the present invention (hereinafter sometimes simply referred to as "first embodiment") is a boron-containing slag to be modified (hereinafter referred to as "improving By equilibrium calculation based on the composition of the slag before reforming, the calculated boron concentration C1 before reforming, which is the boron concentration in the liquid phase at a predetermined temperature T at which the slag is in a solid-liquid coexistence state, is calculated. Including calculating.

改質前スラグとしては、製鉄所から発生する高炉スラグや製鋼スラグなどの鉄鋼スラグ、及び廃棄物や下水汚泥の焼却灰等を高温で溶融し冷却・固化した溶融スラグ等の各種スラグ等が挙げられる。なお、生成時に溶融状態であるものについては、溶融状態にある間に改質を行ってもよい。 Examples of pre-reformation slag include iron and steel slag such as blast furnace slag and steelmaking slag generated from steelworks, and various types of slag such as molten slag obtained by melting, cooling and solidifying incineration ash of waste and sewage sludge at high temperatures. be done. In addition, for those that are in a molten state at the time of production, they may be reformed while they are in a molten state.

改質前計算ホウ素濃度Cの算出は、改質前スラグの組成に基づいて平衡計算を行い、該スラグが固液共存状態にある所定温度Tにおいて、液相側に存在するホウ素の濃度を求めることで行う。
平衡計算に用いる改質前スラグの組成は、該スラグについて、蛍光X線(XRF)分析等により定量したものを使用できる。また、所定の条件で生成したホウ素含有スラグの分析結果に基づいて、該条件の変化から予想されるホウ素含有スラグの組成を使用してもよい。
平衡計算では、まず、所定温度Tを次のように決定する。すなわち、改質前スラグの組成から、該スラグが固液共存状態にある温度範囲を算出すると共に、該温度範囲内の各温度における液相の割合を算出する。また、前記改質前スラグの粉末X線回折測定結果から、該スラグ中に常温で存在するガラス相の割合を算出する。ここで、本明細書における「常温」とは、特に冷却又は加熱を行わない温度を意味し、概ね5℃~35℃程度の温度のことをいう。そして、前記ガラス相の割合に前記液相の割合が一致する温度を求め、該温度±50℃の範囲内から所定温度Tを決定する。このとき、該所定温度Tを1100℃~1200℃とすることで、平衡計算から算出される液相の割合及びその組成を、改質前スラグ中に常温で存在するガラス相の割合及びその組成により近いものとすることができ、後述する改質材添加の要否を、より高精度で判定できるため好ましい。
次いで、前記所定温度T及び改質前スラグの組成から、該所定温度Tにおいて液相側に存在するホウ素の濃度を算出し、これを改質前計算ホウ素濃度Cとする。
Calculation of the calculated boron concentration before reforming C1 is performed by equilibrium calculation based on the composition of the slag before reforming, and at a predetermined temperature T at which the slag is in a solid-liquid coexistence state, the concentration of boron present on the liquid phase side is calculated. Do it by asking.
The composition of the pre-modification slag used for the equilibrium calculation can be obtained by quantifying the slag by X-ray fluorescence (XRF) analysis or the like. Also, based on the analysis results of boron-containing slag produced under predetermined conditions, the composition of boron-containing slag expected from changes in the conditions may be used.
In the equilibrium calculation, first, the predetermined temperature T is determined as follows. That is, from the composition of the slag before reforming, the temperature range in which the slag is in a solid-liquid coexistence state is calculated, and the ratio of the liquid phase at each temperature within the temperature range is calculated. Also, from the powder X-ray diffraction measurement result of the slag before reforming, the ratio of the glass phase present in the slag at room temperature is calculated. Here, the term "ordinary temperature" as used herein means a temperature at which no cooling or heating is performed, and generally refers to a temperature of about 5°C to 35°C. Then, the temperature at which the ratio of the liquid phase coincides with the ratio of the glass phase is obtained, and the predetermined temperature T is determined within the temperature range of ±50°C. At this time, by setting the predetermined temperature T to 1100° C. to 1200° C., the proportion and composition of the liquid phase calculated from the equilibrium calculation are adjusted to the proportion and composition of the glass phase present in the slag before reforming at room temperature. It is possible to make it closer, and it is preferable because it is possible to determine the necessity of adding a modifier, which will be described later, with higher accuracy.
Next, from the predetermined temperature T and the composition of the slag before reforming, the concentration of boron present in the liquid phase at the predetermined temperature T is calculated, and this is defined as the calculated boron concentration before reforming C1 .

算出された改質前計算ホウ素濃度Cは、実際の改質前スラグ中に常温で存在するガラス相中のホウ素濃度に対応する。そこで、第1実施形態では、上述の知見に基づき、改質前計算ホウ素濃度Cが所定の閾値Cを超える改質前スラグは、ホウ素の溶出量が環境基準を超える虞があると判断し、後述する改質処理を経て再利用ないし最終処分を行うこととする。 The calculated pre-reforming calculated boron concentration C1 corresponds to the boron concentration in the glass phase present at room temperature in the actual pre-reforming slag. Therefore , in the first embodiment, based on the above findings, it is determined that the amount of eluted boron in the slag before reforming exceeds the predetermined threshold value C, and the boron elution amount may exceed the environmental standard. , Reuse or final disposal after undergoing modification treatment to be described later.

ここで、前記所定の閾値Cは、0.5質量%~1.0質量%の範囲から選ばれる値とする。前記閾値Cを1.0質量%以下の値とすることで、ガラス相中に含まれるホウ素の安定性が低い場合でも、改質前スラグから実際に溶出するホウ素の量が環境基準を超えることを効果的に防止できる。前記閾値Cは、0.8質量%以下の値とすることが好ましい。他方、前記閾値を0.5質量%以上の値とすることで、実際に溶出するホウ素の量が環境基準を満たす改質前スラグに対し、不必要な改質処理を実施してしまう可能性を小さくできる。前記閾値Cは、0.6質量%以上の値とすることが好ましい。
前記所定の閾値Cの決定に際しては、改質前スラグ中に常温で存在するガラス相中のホウ素の安定性を考慮して、該スラグから溶出するホウ素の量が環境基準を超えない範囲とすればよい。例えば、改質前スラグが、溶融物を冷却・固化して得られたスラグである場合、急冷により得られたものは、ガラス中のホウ素の安定性が高く溶出しにくいため、前記閾値Cは比較的大きく設定できる。反対に、溶融状態から徐冷により得られた改質前スラグでは、ホウ素が溶出し易いため、前記閾値Cを比較的小さく設定する。溶融状態にある改質前スラグについて閾値Cを設定する場合には、通常の操業条件における冷却速度等を考慮して該閾値Cを設定すればよい。
Here, the predetermined threshold value C is a value selected from the range of 0.5% by mass to 1.0% by mass. By setting the threshold value C to a value of 1.0% by mass or less, even when the stability of boron contained in the glass phase is low, the amount of boron actually eluted from the slag before reforming exceeds the environmental standard. can be effectively prevented. The threshold value C is preferably set to a value of 0.8% by mass or less. On the other hand, by setting the threshold to a value of 0.5% by mass or more, there is a possibility that the slag before reforming, in which the amount of boron actually eluted satisfies the environmental standards, is subjected to unnecessary reforming treatment. can be made smaller. The threshold value C is preferably set to a value of 0.6% by mass or more.
When determining the predetermined threshold value C, considering the stability of boron in the glass phase that exists in the slag before reforming at room temperature, the amount of boron eluted from the slag should be within a range that does not exceed the environmental standard. Just do it. For example, when the slag before modification is a slag obtained by cooling and solidifying a melt, the slag obtained by rapid cooling has high stability of boron in the glass and is difficult to elute, so the threshold value C is Can be set relatively large. On the contrary, in the pre-modification slag obtained by slow cooling from the molten state, boron is easily eluted, so the threshold value C is set relatively small. When setting the threshold value C for the pre-reforming slag in a molten state, the threshold value C may be set in consideration of the cooling rate and the like under normal operating conditions.

第1実施形態は、改質前計算ホウ素濃度Cが所定の閾値Cを超える改質前スラグに対し、前記所定温度T以上にある状態で、SiOを30質量%以上含有し、前記所定温度Tにて前記スラグの液相に溶解する改質材を添加してこれを改質し、組成に基づく平衡計算により算出される、固液共存状態にある前記所定温度Tでの液相中の改質後計算ホウ素濃度Cが、前記所定の閾値C以下となる改質スラグを調製することを含む。これにより、改質前スラグの組成を変更し、所定温度Tにおける液相中の計算ホウ素濃度、すなわち改質後計算ホウ素濃度Cを、閾値C以下とする。
なお、改質材の選定に当たっては、前記所定温度Tにて、添加した改質材が前記スラグの液相中に溶解する質量の割合((溶解した改質材の質量)/(添加した改質材の質量)×100)が10%以上であること目安にできる。実際の操業では、改質材の添加は所定温度T以上で行なわれることが多い。一般的に、高温ほど前記スラグの液相量は多くなり、改質材の前記スラグへの溶解度も高くなるので、実際の操業では、改質材を高い歩留まりで前記スラグに溶解させることができる。
In the first embodiment, 30% by mass or more of SiO2 is contained in the pre-reforming slag in which the pre-reforming calculated boron concentration C1 exceeds a predetermined threshold C, and the pre-reforming slag is at the predetermined temperature T or higher, and the predetermined A modifier that dissolves in the liquid phase of the slag at temperature T is added to modify it, and the liquid phase at the predetermined temperature T in a solid-liquid coexistence state calculated by equilibrium calculation based on the composition and preparing a modified slag in which the post-modification calculated boron concentration C2 is equal to or lower than the predetermined threshold value C. As a result, the composition of the slag before reforming is changed, and the calculated boron concentration in the liquid phase at the predetermined temperature T, that is, the calculated boron concentration after reforming C2 is set to the threshold value C or less.
In selecting the modifier, the ratio of the mass of the added modifier dissolved in the liquid phase of the slag at the predetermined temperature T ((mass of the dissolved modifier) / (added modifier The mass of the material)×100) is 10% or more. In actual operation, the modifier is often added at a predetermined temperature T or higher. Generally, the higher the temperature, the greater the amount of liquid phase in the slag, and the higher the solubility of the modifier in the slag. Therefore, in actual operation, the modifier can be dissolved in the slag with a high yield. .

改質材添加時の改質前スラグの温度は、常温にある改質前スラグを加熱して所定温度T以上としてもよく、溶融状態で生成した改質前スラグを温度調節して所定温度T以上としてもよい。前記所定温度T以上の改質前スラグは、溶融状態又は固液共存状態となり、液相を含むものとなる。この状態における液相の割合は、50質量%以上とすることが、高い流動性を示し、後述する改質材による改質が迅速に進行する点で好ましい。 The temperature of the slag before reforming when the modifier is added may be the predetermined temperature T or higher by heating the slag before reforming at room temperature, or the temperature of the slag before reforming generated in a molten state may be adjusted to the predetermined temperature T. It is good as above. The pre-reforming slag at the predetermined temperature T or higher is in a molten state or in a solid-liquid coexistence state, and contains a liquid phase. The ratio of the liquid phase in this state is preferably 50% by mass or more because high fluidity is exhibited and reforming by a reforming agent described later progresses rapidly.

改質前スラグに添加する改質材としては、SiO含有量が30質量%以上であり、前記改質前スラグの液相に溶解するものを用いる。これにより、改質スラグからのホウ素の溶出を効果的に抑制できる。改質材中のSiO含有量は、50質量%以上であることが好ましく、70質量%以上であることがより好ましい。前述した改質後計算ホウ素濃度Cは、改質スラグ中に常温で存在するガラス相中のホウ素濃度に対応する。そして、ガラス相中のホウ素濃度が低いホウ素含有スラグが、ホウ素の溶出量が十分に少なく、環境基準値ないし自主基準値を満たすものとなる。したがって、改質材の添加によって、これが改質前スラグの液相に溶解してスラグの液相範囲が広がり、改質後計算ホウ素濃度Cが所定の閾値C以下となることで、ガラス相中のホウ素濃度が低下し、改質スラグからのホウ素の溶出が抑制される。
改質材としては、廃ガラスやろう石を用いることができる。一般に、結晶質SiOの融点は1700℃以上であるが、廃ガラス中のSiOを初めとする各成分は結晶化していないため、高温のスラグに添加した際に溶融し、液相中に容易に溶解する。また、ろう石も、Alを10質量%以上含んでいることで、結晶質SiOを主成分とする珪砂よりも融点が低下していると考えられ、これによりスラグの液相に容易に溶解する。
改質材の形状は特に限定されないが、改質を迅速に行う点で、粉末状ないし粒子状とすることが好ましい。また、改質材の添加による改質前スラグの温度低下を抑制するために、改質材は予め加熱しておくことが好ましい。
改質前スラグに改質材を添加した後は、撹拌や流動を行うことが、改質が均一かつ迅速に進行する点で好ましい。
As the modifier to be added to the pre-modification slag, one having a SiO 2 content of 30% by mass or more and being dissolved in the liquid phase of the pre-modification slag is used. Thereby, the elution of boron from the modified slag can be effectively suppressed. The SiO 2 content in the modifier is preferably 50% by mass or more, more preferably 70% by mass or more. The post-modification calculated boron concentration C2 described above corresponds to the boron concentration in the glass phase present in the modified slag at room temperature. Then, the boron-containing slag having a low boron concentration in the glass phase has a sufficiently small boron elution amount and satisfies the environmental standard value or voluntary standard value. Therefore, by adding the modifier, it dissolves in the liquid phase of the slag before modification, widens the liquid phase range of the slag, and the calculated boron concentration C2 after modification becomes equal to or less than the predetermined threshold value C, so that the glass phase The concentration of boron in the slag is lowered, and the elution of boron from the modified slag is suppressed.
As the modifier, waste glass or stone can be used. In general, the melting point of crystalline SiO 2 is 1700 ° C. or higher, but since each component including SiO 2 in waste glass is not crystallized, it melts when it is added to high-temperature slag and enters the liquid phase. Dissolves easily. In addition, it is thought that the melting point of roselite is lower than that of silica sand containing crystalline SiO2 as a main component because it contains Al 2 O 3 in an amount of 10% by mass or more. Dissolves easily.
Although the shape of the modifier is not particularly limited, it is preferably in the form of powder or particles in terms of rapid modification. Moreover, in order to suppress the temperature drop of the slag before reforming due to the addition of the reforming material, it is preferable to heat the reforming material in advance.
After the modifier is added to the slag before modification, it is preferable to stir or flow the slag in order to progress the modification uniformly and rapidly.

なお、前述の平衡計算により算出される改質前計算ホウ素濃度Cが、所定の閾値C以下となった改質前スラグは、改質材を添加することなく、他の試験及び処理を経て再利用又は最終処分を行うことができる。 In addition, the pre-reforming slag in which the pre-reforming calculated boron concentration C 1 calculated by the equilibrium calculation described above is equal to or lower than the predetermined threshold value C is subjected to other tests and treatments without adding a modifier. Can be reused or final disposed of.

第1実施形態は、調製された液相を含む改質スラグを薄層状に流し込み、該薄層の厚み方向中央部における冷却速度が、前記所定温度Tから1000℃まで、10℃/min以上となるように冷却する。
改質スラグを薄層状に流し込むことで、該改質スラグ全体を高速で冷却することができ、生成するガラス相中に含まれるホウ素の安定性が高まるとともに、生産性が向上する。薄層の厚みは、高い冷却速度を得る点で、70mm以下とすることが好ましく、50mm以下とすることがより好ましい。他方、薄層の厚みは、冷却に要する面積を抑える点で、5mm以上とすることが好ましい。
その際には、1000℃までの冷却速度を10℃/min以上とすることで、生成するガラス相中に含まれるホウ素の安定性が高まり、改質スラグからのホウ素の溶出が抑制される。前記冷却速度は、20℃/min以上とすることが好ましく、30℃/min以上とすることがより好ましい。
In the first embodiment, the modified slag containing the prepared liquid phase is poured in a thin layer, and the cooling rate at the center in the thickness direction of the thin layer is 10 ° C./min or more from the predetermined temperature T to 1000 ° C. Cool until
By pouring the modified slag in a thin layer, the entire modified slag can be cooled at a high speed, and the stability of boron contained in the generated glass phase is increased, and the productivity is improved. The thickness of the thin layer is preferably 70 mm or less, more preferably 50 mm or less, in order to obtain a high cooling rate. On the other hand, the thickness of the thin layer is preferably 5 mm or more in order to reduce the area required for cooling.
At that time, by setting the cooling rate to 1000° C. at 10° C./min or more, the stability of boron contained in the generated glass phase is enhanced, and the elution of boron from the modified slag is suppressed. The cooling rate is preferably 20° C./min or higher, more preferably 30° C./min or higher.

第1実施形態は、改質前スラグのホウ素含有量が0.15質量%を超える場合に好適に適用し得る。ホウ素含有量が0.15質量%を超えるスラグは、ホウ素の溶出判定試験において不合格となることが多いが、第1実施形態により、ホウ素の溶出を抑えて環境基準値ないし自主基準値を満たすものとすることができるためである。 The first embodiment can be suitably applied when the boron content of the slag before reforming exceeds 0.15% by mass. Slag with a boron content of more than 0.15% by mass often fails the boron elution determination test, but according to the first embodiment, the elution of boron is suppressed and the environmental standard value or voluntary standard value is satisfied. This is because it can be

[土木建築用資材の製造方法]
本発明の第2の実施形態に係る土木建築資材の製造方法(以下、単に「第2実施形態」と記載することがある。)は、前述した第1実施形態に係るホウ素含有スラグの改質方法により得られた改質スラグを材料として使用することを特徴とする。
[Manufacturing method for civil engineering and construction materials]
A method for producing a civil engineering and construction material according to a second embodiment of the present invention (hereinafter sometimes simply referred to as a “second embodiment”) is a modification of the boron-containing slag according to the first embodiment described above. The modified slag obtained by the method is used as the material.

第2実施形態では、ホウ素溶出が環境基準を満たすホウ素含有物質の粒度を、路盤材や地盤改良材等の土木建築資材の用途に応じて調整することが好ましい。粒度調整の例として、ホウ素含有物質を路盤材に用いる場合に、ホウ素含有物質を40mm以下となるように破砕ないし篩い分けすることが挙げられる。 In the second embodiment, it is preferable to adjust the particle size of the boron-containing substance whose boron elution satisfies the environmental standard according to the use of civil engineering and construction materials such as roadbed materials and soil improvement materials. An example of particle size adjustment is crushing or sieving the boron-containing material to a size of 40 mm or less when the boron-containing material is used as a roadbed material.

[ホウ素含有改質スラグ]
本発明の第3実施形態に係る改質スラグ(以下、単に「第3実施形態」と記載することがある)は、ホウ素が0.15質量%を超えるホウ素含有スラグと、SiOを30質量%以上含有し、前記スラグの組成に基づく平衡計算により算出される、1100℃~1200℃の範囲内にある所定温度Tにて前記スラグの液相に溶解する改質材とを混合してなる改質スラグであって、前記所定温度Tにおける液相中のホウ素濃度、及びSiO濃度が、それぞれ1.0質量%以下、及び25質量%以上であり、かつ環境庁告示第46号に定める溶出試験によるホウ素溶出量が1mg/L以下であることを特徴とする。
[Boron-containing modified slag]
The modified slag according to the third embodiment of the present invention (hereinafter sometimes simply referred to as "third embodiment") is composed of boron-containing slag containing more than 0.15% by mass of boron and 30% by mass of SiO2 % or more and is dissolved in the liquid phase of the slag at a predetermined temperature T within the range of 1100 ° C. to 1200 ° C. calculated by equilibrium calculation based on the composition of the slag. A modified slag having a boron concentration and a SiO 2 concentration in the liquid phase at the predetermined temperature T of 1.0% by mass or less and 25% by mass or more, respectively, and specified in Notification No. 46 of the Environment Agency It is characterized in that the amount of eluted boron is 1 mg/L or less in an elution test.

前述したとおり、ホウ素含有量が0.15質量%を超えるスラグは、ホウ素の溶出量が多く、ホウ素の溶出判定試験において不合格となることが多い。しかし、上述した第1実施形態により改質処理されたものについては、ホウ素の溶出が抑制され、環境基準値ないし自主基準値を満たすものとすることができる。前記改質処理の効用は、ホウ素含有量が0.16質量%以上のスラグにおいてより大きく、0.18質量%以上のスラグにおいてさらに大きく、0.20質量%以上のスラグにおいて顕著に大きく、享受することができる。 As described above, slag with a boron content of more than 0.15% by mass has a large amount of boron elution, and often fails the boron elution determination test. However, the material subjected to the modification treatment according to the above-described first embodiment can suppress the elution of boron and satisfy environmental standard values or voluntary standard values. The effect of the modification treatment is greater in slag with a boron content of 0.16% by mass or more, even greater in slags with a boron content of 0.18% by mass or more, and significantly greater in slags with a boron content of 0.20% by mass or more. can do.

第3実施形態における平衡計算の条件等については、第1実施形態で説明したものを採用できる。第3実施形態に係る改質スラグにおいて、前記所定温度Tにおける液相中のSiO濃度が25質量%以上であれば、ホウ素の溶出量が少ないものとなる。このSiO濃度は、30質量%以上であるとさらに好ましい。 As for the equilibrium calculation conditions and the like in the third embodiment, those described in the first embodiment can be adopted. In the modified slag according to the third embodiment, if the SiO 2 concentration in the liquid phase at the predetermined temperature T is 25% by mass or more, the elution amount of boron is small. More preferably, the SiO 2 concentration is 30% by mass or more.

第3実施形態は、環境庁告示第46号に定める溶出試験によるホウ素溶出量が1mg/L以下である。含有するホウ素の量が多いにもかかわらず、溶出するホウ素の量が少ないことから、第3実施形態は、土木建築用資材等として再利用可能なスラグの範囲を拡大できる点で有用である。前記ホウ素溶出量は、0.9mg/L以下であることが好ましく、0.8mg/L以下であることがより好ましい。 In the third embodiment, the amount of eluted boron is 1 mg/L or less according to the elution test specified in Notification No. 46 of the Environment Agency. Although the amount of boron contained is large, the amount of eluted boron is small, so the third embodiment is useful in that it can expand the range of slag that can be reused as a material for civil engineering and construction. The boron elution amount is preferably 0.9 mg/L or less, more preferably 0.8 mg/L or less.

以下、実施例により本発明をさらに具体的に説明するが、本発明は該実施例に限定されるものではない。 EXAMPLES The present invention will be described in more detail with reference to examples below, but the present invention is not limited to the examples.

[実施例1]
ホウ素含有スラグとして、表1に示す組成を有するスラグを準備した。このスラグは、金属製錬工程で常態的に発生するものである。なお、表1に示すスラグの組成は、普段の操業条件から推定したものである。
[Example 1]
Slag having the composition shown in Table 1 was prepared as the boron-containing slag. This slag is normally generated in the metal smelting process. The composition of slag shown in Table 1 is estimated from normal operating conditions.

Figure 0007244803000001
Figure 0007244803000001

この組成を熱力学平衡計算ソフトウェアFactSage7.2に入力し、前記スラグが固液共存状態にある温度範囲内である1150℃を所定温度Tとして、該温度における液相組成を計算した。FactSage7.2のデータベースには、FToxideを用いた。スラグのホウ素溶出判定の閾値Cは、普段の操業時の冷却速度を考慮して、0.8質量%とした。 This composition was input to the thermodynamic equilibrium calculation software FactSage 7.2, and the liquid phase composition at 1150° C., which is within the temperature range where the slag is in a solid-liquid coexistence state, was set as a predetermined temperature T, and the liquid phase composition at this temperature was calculated. FToxide was used for the database of FactSage 7.2. Considering the cooling rate during normal operation, the threshold value C for slag boron elution determination was set to 0.8% by mass.

算出された改質前計算ホウ素濃度Cは1.4質量%であり、閾値Cを超えるものであった。このスラグのホウ素溶出量を、環境庁告示第46号に定める溶出試験により測定したところ、自主基準値を超えるホウ素の溶出が確認された。なお、自主基準値はそれぞれの用途により公に定められる基準値と同じか、それよりも低く設定できる。公に定められる基準値としては、例えば、環境庁告示第46号によれば1mg/Lである。 The calculated pre-reforming boron concentration C1 was 1.4% by mass, which exceeded the threshold value C. When the amount of boron eluted from this slag was measured by the elution test specified in Notification No. 46 of the Environment Agency, it was confirmed that the elution of boron exceeded the voluntary standard value. Voluntary standard values can be set equal to or lower than the publicly determined standard values for each application. A publicly defined reference value is, for example, 1 mg/L according to Notification No. 46 of the Environment Agency.

次いで、溶融状態にあるスラグ(温度1400℃)に、改質材として廃ガラスを添加し、撹拌して改質スラグを調製した。改質スラグの組成に基づいて、平衡計算により算出された、所定温度T(1150℃)における改質後計算ホウ素濃度Cは0.7質量%であり、閾値C(0.8質量%)以下となった。次いで、厚さ20mmの鉄板上に、改質スラグを厚さ50mmの薄層状に流し込み、1000℃までの冷却速度を30℃/minとして冷却し、凝固させた。凝固したスラグを鉄板上で3時間ほど静置し、完全に凝固した後スラグを採取し、40mm以下となるように破砕した。破砕したスラグからのホウ素溶出量を、環境庁告示第46号に定める溶出試験により測定したところ、自主基準値以下であることが確認された。 Next, waste glass was added as a modifier to the molten slag (at a temperature of 1400° C.) and stirred to prepare a modified slag. Based on the composition of the modified slag, the calculated boron concentration C2 after reforming at a predetermined temperature T (1150 ° C.) calculated by equilibrium calculation is 0.7 mass%, and the threshold value C (0.8 mass%) It became the following. Next, the modified slag was poured into a thin layer of 50 mm thickness on an iron plate of 20 mm thickness, cooled to 1000° C. at a cooling rate of 30° C./min, and solidified. The solidified slag was allowed to stand on an iron plate for about 3 hours, and after it was completely solidified, the slag was collected and crushed to a size of 40 mm or less. When the amount of boron eluted from the crushed slag was measured by the elution test specified in Notification No. 46 of the Environment Agency, it was confirmed that it was below the voluntary standard value.

[実施例2]
改質材として、ろう石と生石灰とを質量比100:8で混合したものを使用した以外は、実施例1と同様にして、実施例2に係るホウ素含有スラグの改質方法を行った。改質スラグからのホウ素溶出量を、環境庁告示第46号に定める溶出試験により測定したところ、自主基準値以下であることが確認された。
[Example 2]
A method for modifying boron-containing slag according to Example 2 was carried out in the same manner as in Example 1, except that a mixture of pyroxene and quicklime at a mass ratio of 100:8 was used as the modifier. When the amount of boron eluted from the modified slag was measured by the elution test specified in Notification No. 46 of the Environment Agency, it was confirmed that it was below the voluntary standard value.

[比較例1]
改質材の添加効果を確認するため、改質材を添加しなかった以外は実施例1と同様にして、比較例1に係るホウ素含有スラグの改質方法を行った。改質スラグからのホウ素溶出量を、環境庁告示第46号に定める溶出試験により測定したところ、自主基準値を超えるホウ素の溶出が確認された。
[Comparative Example 1]
In order to confirm the effect of adding the modifier, the boron-containing slag modification method according to Comparative Example 1 was performed in the same manner as in Example 1, except that the modifier was not added. When the amount of boron eluted from the modified slag was measured by the elution test specified in Notification No. 46 of the Environment Agency, it was confirmed that the elution of boron exceeded the voluntary standard value.

[比較例2]
冷却速度によるホウ素溶出量の変化を確認するため、1250℃から1000℃までの温度範囲における、薄層の厚み方向中央部の冷却速度を5℃/minと遅くした以外は実施例2と同様にして、比較例2に係るホウ素含有スラグの改質方法を行った。改質スラグからのホウ素溶出量を、環境庁告示第46号に定める溶出試験により測定したところ、自主基準値を超えるホウ素の溶出が確認された。
[Comparative Example 2]
In order to confirm the change in the boron elution amount due to the cooling rate, the same procedure as in Example 2 was performed except that the cooling rate of the central part in the thickness direction of the thin layer was slowed to 5 ° C./min in the temperature range from 1250 ° C. to 1000 ° C. Then, the boron-containing slag reforming method according to Comparative Example 2 was performed. When the amount of boron eluted from the modified slag was measured by the elution test specified in Notification No. 46 of the Environment Agency, it was confirmed that the elution of boron exceeded the voluntary standard value.

[比較例3]
改質後計算ホウ素濃度Cを、閾値Cを超える1.1質量%とした以外は実施例1と同様にして、比較例3に係るホウ素含有スラグの改質方法を行った。改質スラグからのホウ素溶出量を、環境庁告示第46号に定める溶出試験により測定したところ、自主基準値を超えるホウ素の溶出が確認された。
[Comparative Example 3]
A boron-containing slag reforming method according to Comparative Example 3 was performed in the same manner as in Example 1, except that the calculated boron concentration C2 after reforming was set to 1.1% by mass, which exceeds the threshold value C. When the amount of boron eluted from the modified slag was measured by the elution test specified in Notification No. 46 of the Environment Agency, it was confirmed that the elution of boron exceeded the voluntary standard value.

各実施例、比較例及び参考例の処理条件及びホウ素溶出量の判定結果を、まとめて表2に示す。 Table 2 summarizes the treatment conditions and the determination results of the boron elution amount in each example, comparative example, and reference example.

Figure 0007244803000002
Figure 0007244803000002

表2から、改質前計算ホウ素濃度Cが所定の閾値Cを超えるホウ素含有スラグに、平衡計算により算出される所定温度Tでの液相中のホウ素濃度が閾値C以下となるように改質材を添加し、1000℃までの冷却速度を10℃/min以上とした実施例によるスラグは、ホウ素溶出量の実測値が自主基準値以下となり、ホウ素の溶出が抑制されたことが判る。これに対し、溶融状態で改質材を添加しなかった比較例1によるスラグは、高速で冷却した場合でもホウ素溶出量が多いままであることが判る。 From Table 2, the boron-containing slag with a calculated boron concentration C 1 before reforming exceeding a predetermined threshold C is modified so that the boron concentration in the liquid phase at a predetermined temperature T calculated by equilibrium calculation is below the threshold C. In the slag of the example in which the material was added and the cooling rate to 1000°C was set to 10°C/min or more, the measured value of the boron elution amount was below the voluntary standard value, indicating that the elution of boron was suppressed. In contrast, the slag according to Comparative Example 1, in which the modifier was not added in the molten state, still retains a large amount of eluted boron even when cooled at a high speed.

また、実施例2と比較例2との対比からは、改質後計算ホウ素濃度Cが閾値C以下となるように改質したスラグであっても、溶融状態から徐冷した場合には、ホウ素溶出量が多くなることが判る。この結果から、第1実施形態において、溶融状態からの冷却速度が遅い改質前スラグについて改質の要否を判定する際には、ガラス相中に含まれるホウ素の安定性が低いことを考慮して、閾値Cを低めに設定する必要があるといえる。 Further, from the comparison between Example 2 and Comparative Example 2, even if the slag is modified so that the calculated boron concentration C2 after modification is equal to or lower than the threshold value C, when it is gradually cooled from the molten state, It can be seen that the boron elution amount increases. From this result, in the first embodiment, when determining the necessity of reforming the slag before reforming, which has a slow cooling rate from the molten state, the stability of boron contained in the glass phase is low. Therefore, it can be said that the threshold value C needs to be set low.

本発明によれば、ホウ素含有スラグからのホウ素の溶出を、簡便かつ経済的に抑制できる方法が提供される。このため、ホウ素の溶出量が環境基準を満たすホウ素含有スラグに対して不要な溶出抑制処理を行わずに済む点、ホウ素の溶出量が環境基準を超えることのみを理由として再利用ができなかったホウ素含有物質の再利用が可能となる点、及び同じ理由により最終処分時に別途処置が必要であったホウ素含有物質について、該処置を省略して簡便に最終処分が可能となる点で、本発明は有用なものである。 ADVANTAGE OF THE INVENTION According to this invention, the method of suppressing the elution of boron from boron-containing slag simply and economically is provided. For this reason, it was not possible to reuse the boron-containing slag because the amount of eluted boron did not need to be subjected to unnecessary elution suppression treatment, and the amount of eluted boron exceeded the environmental standard. The present invention is characterized in that the boron-containing substance can be reused, and that the boron-containing substance, which had to be treated separately at the time of final disposal for the same reason, can be easily finalized by omitting the treatment. is useful.

Claims (6)

ホウ素含有スラグの改質方法であって、
改質前スラグの組成に基づく平衡計算により、該スラグが固液共存状態にある所定温度Tでの液相中のホウ素濃度である改質前計算ホウ素濃度Cを算出すること、
前記改質前計算ホウ素濃度Cが所定の閾値Cを超える改質前スラグに対し、前記所定温度T以上にある状態で、SiOを30質量%以上含有し、前記所定温度Tにて前記スラグの液相に溶解する改質材を添加してこれを改質し、組成に基づく平衡計算により算出される、固液共存状態にある所定温度Tでの液相中の改質後計算ホウ素濃度Cが、前記所定の閾値C以下となる改質スラグを調製すること、及び、
前記改質スラグを薄層状に流し込み、該薄層の厚み方向中央部における冷却速度が、前記所定温度Tから1000℃まで、10℃/min以上となるように冷却すること
を含む、ホウ素含有スラグの改質方法。
ただし、前記所定の閾値Cは、0.5質量%~1.0質量%の範囲から選ばれる値であり、前記所定温度Tは、前記改質前スラグの粉末X線回折測定結果から算出した該スラグ中に常温で存在するガラス相の割合に、前記平衡計算で算出される固液共存状態における液相の割合が一致する温度±50℃である。
A method for reforming a boron-containing slag, comprising:
Calculating the calculated boron concentration before reforming C1, which is the boron concentration in the liquid phase at a predetermined temperature T at which the slag is in a solid-liquid coexistence state, by equilibrium calculation based on the composition of the slag before reforming;
With respect to the pre-reforming slag in which the calculated boron concentration C 1 before reforming exceeds a predetermined threshold value C, 30% by mass or more of SiO 2 is contained at the predetermined temperature T or higher, and at the predetermined temperature T A modifier that dissolves in the liquid phase of the slag is added to modify it, and the calculated boron after modification in the liquid phase at a predetermined temperature T in a solid-liquid coexistence state is calculated by equilibrium calculation based on the composition. Preparing a modified slag whose concentration C2 is equal to or lower than the predetermined threshold value C, and
Boron-containing slag, including pouring the modified slag in a thin layer and cooling the central portion in the thickness direction of the thin layer so that the cooling rate is 10 ° C./min or more from the predetermined temperature T to 1000 ° C. modification method.
However, the predetermined threshold value C is a value selected from the range of 0.5% by mass to 1.0% by mass, and the predetermined temperature T is calculated from the powder X-ray diffraction measurement result of the slag before reforming. The temperature is ±50° C. at which the proportion of the liquid phase in the solid-liquid coexistence state calculated by the equilibrium calculation agrees with the proportion of the glass phase present in the slag at room temperature.
前記所定温度Tが1100℃~1200℃である、請求項1に記載のホウ素含有スラグの改質方法。 The method for reforming boron-containing slag according to claim 1, wherein the predetermined temperature T is 1100°C to 1200°C. 前記改質材が廃ガラスである、請求項1又は請求項2に記載のホウ素含有スラグの改質方法。 The method for reforming boron-containing slag according to claim 1 or 2, wherein the reforming material is waste glass. 前記改質材がろう石を50質量%以上含有する、請求項1又は請求項2に記載のホウ素含有スラグの改質方法。 The method for modifying boron-containing slag according to claim 1 or 2, wherein the modifier contains 50% by mass or more of pyrophyllite. 前記改質前スラグのホウ素含有量が0.15質量%を超える、請求項1~4のいずれか1項に記載のホウ素含有スラグの改質方法。 The method for reforming boron-containing slag according to any one of claims 1 to 4, wherein the boron content of the slag before reforming exceeds 0.15% by mass. 土木建築用資材の製造方法であって、請求項1~5のいずれか1項に記載のホウ素含有スラグの改質方法により得られたスラグを材料として使用することを特徴とする、土木建築用資材の製造方法。 A method for producing a material for civil engineering and construction, characterized in that the slag obtained by the method for modifying boron-containing slag according to any one of claims 1 to 5 is used as a material. How materials are made.
JP2020168889A 2020-10-06 2020-10-06 Method for modifying boron-containing slag, method for manufacturing civil engineering and construction materials using the same, and modified slag Active JP7244803B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020168889A JP7244803B2 (en) 2020-10-06 2020-10-06 Method for modifying boron-containing slag, method for manufacturing civil engineering and construction materials using the same, and modified slag

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020168889A JP7244803B2 (en) 2020-10-06 2020-10-06 Method for modifying boron-containing slag, method for manufacturing civil engineering and construction materials using the same, and modified slag

Publications (2)

Publication Number Publication Date
JP2022061112A JP2022061112A (en) 2022-04-18
JP7244803B2 true JP7244803B2 (en) 2023-03-23

Family

ID=81206608

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020168889A Active JP7244803B2 (en) 2020-10-06 2020-10-06 Method for modifying boron-containing slag, method for manufacturing civil engineering and construction materials using the same, and modified slag

Country Status (1)

Country Link
JP (1) JP7244803B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020032343A (en) 2018-08-29 2020-03-05 Jfeスチール株式会社 Method for suppressing elution of boron in boron-including material, and method for production of treatment material for boron elution suppression
JP2020032345A (en) 2018-08-29 2020-03-05 Jfeスチール株式会社 Method for suppressing elution of boron in boron-including material, and method for production of treatment material for boron elution suppression
JP2020132485A (en) 2019-02-21 2020-08-31 Jfeスチール株式会社 Slug, production method of slug, and civil engineering material
JP2020169957A (en) 2019-04-05 2020-10-15 Jfeスチール株式会社 Method for determining boron elution from boron-containing substance, method for suppressing boron elution from boron-containing substance using the same, method for manufacturing material for civil engineering and construction, and slag

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020032343A (en) 2018-08-29 2020-03-05 Jfeスチール株式会社 Method for suppressing elution of boron in boron-including material, and method for production of treatment material for boron elution suppression
JP2020032345A (en) 2018-08-29 2020-03-05 Jfeスチール株式会社 Method for suppressing elution of boron in boron-including material, and method for production of treatment material for boron elution suppression
JP2020132485A (en) 2019-02-21 2020-08-31 Jfeスチール株式会社 Slug, production method of slug, and civil engineering material
JP2020169957A (en) 2019-04-05 2020-10-15 Jfeスチール株式会社 Method for determining boron elution from boron-containing substance, method for suppressing boron elution from boron-containing substance using the same, method for manufacturing material for civil engineering and construction, and slag

Also Published As

Publication number Publication date
JP2022061112A (en) 2022-04-18

Similar Documents

Publication Publication Date Title
CN103201231B (en) Utilize the rigid bond material of ultrafast petrifying water and the manufacture method thereof of reducing slag powder
Pribulova et al. Cupola furnace slag: its origin, properties and utilization
JP7232403B2 (en) Method for determining boron elution from boron-containing substances, method for suppressing boron elution from boron-containing substances using the same, method for producing materials for civil engineering and construction using the same, and slag
Kriskova et al. Transformation of stainless steel slag toward a reactive cementitious binder
JP6996453B2 (en) A method for suppressing boron elution of a boron-containing substance and a method for producing a material for suppressing boron elution.
JP7244803B2 (en) Method for modifying boron-containing slag, method for manufacturing civil engineering and construction materials using the same, and modified slag
JP2002053351A (en) Pollution-free stainless steel slag and method for manufacturing the same
JP7300092B2 (en) A method for treating slag containing boron and manganese and a method for producing materials for civil engineering and construction.
JP2015124095A (en) Manufacturing method of slug
JP5824719B2 (en) Method for producing solidifying agent
JP6888592B2 (en) A method for suppressing boron elution of a boron-containing substance and a method for producing a material for suppressing boron elution.
JP7303989B2 (en) Method for modifying boron-containing substance and method for producing civil engineering and construction material
US20150159233A1 (en) Method for the treatment of steelwork slag and hydraulic mineral binder
JP4204922B2 (en) Roadbed material and method for manufacturing the same
CN114149268A (en) Lime brick for ladle slag line and processing technology
JP7572624B2 (en) Recycled slag and refining method using recycled slag
JPH10263768A (en) Method for reusing converter slag
JP2003328022A (en) Desulfurizing agent for molten steel and manufacturing method therefor
JPH0471023B2 (en)
JP6835117B2 (en) Steel slag processing method and steel slag recycled product manufacturing method
TWI745186B (en) Method of recycling and reusing discarded refractory material
JP5359669B2 (en) Fluorine elution suppression method from slag
JP5515870B2 (en) Blast furnace slag fine aggregate
Nayak et al. Insights into Non-free Opening of Ladles: Filler Sand Chemistry Modifications for High Mn Steel Billet Casting
EP1980632A1 (en) The agglomeration of metal production dust with geopolymer resin

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220524

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230221

R150 Certificate of patent or registration of utility model

Ref document number: 7244803

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150