JP5515870B2 - Blast furnace slag fine aggregate - Google Patents

Blast furnace slag fine aggregate Download PDF

Info

Publication number
JP5515870B2
JP5515870B2 JP2010048980A JP2010048980A JP5515870B2 JP 5515870 B2 JP5515870 B2 JP 5515870B2 JP 2010048980 A JP2010048980 A JP 2010048980A JP 2010048980 A JP2010048980 A JP 2010048980A JP 5515870 B2 JP5515870 B2 JP 5515870B2
Authority
JP
Japan
Prior art keywords
blast furnace
mass
furnace slag
sio
fine aggregate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010048980A
Other languages
Japanese (ja)
Other versions
JP2011184218A (en
Inventor
直樹 平井
敏隆 湯木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2010048980A priority Critical patent/JP5515870B2/en
Publication of JP2011184218A publication Critical patent/JP2011184218A/en
Application granted granted Critical
Publication of JP5515870B2 publication Critical patent/JP5515870B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B2400/00Treatment of slags originating from iron or steel processes
    • C21B2400/02Physical or chemical treatment of slags
    • C21B2400/022Methods of cooling or quenching molten slag
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Description

本発明は、固結し難い高炉スラグ質細骨材に関する。   The present invention relates to a blast furnace slag fine aggregate which is difficult to consolidate.

高炉水砕スラグは、高炉から出滓した溶融スラグに高圧水を噴射し急冷凝固して、直接砂状に製造される。高炉水砕スラグの用途としては、微粉砕してセメント原料にしたり、製造されたままの粒度で土木工事用材や、また粒度・粒形調整をしてコンクリート用細骨材に利用される。粒度・粒形調整は、製造された高炉水砕スラグを磨砕する等によって行われる。   Granulated blast furnace slag is produced directly into sand by injecting high-pressure water into molten slag discharged from the blast furnace and rapidly solidifying it. Blast furnace granulated slag can be used as a raw material for cement by finely pulverizing, as well as for civil engineering materials with as-manufactured granularity, and fine aggregate for concrete by adjusting the particle size and particle shape. The particle size and particle shape are adjusted by grinding the produced blast furnace granulated slag.

高炉水砕スラグをコンクリート用細骨材に利用する際には、長期間野積みされることがあり、その際に固結するという問題がある。特に磨砕を行った場合には固結し易い。高炉水砕スラグの固結の原因は、その潜在水硬性にあって、セメント原料向けには必要な特性である。したがって、セメント原料用に製造された高炉スラグをコンクリート用細骨材にも利用する場合には固結防止対策が必要となる。固結防止技術については、従来から多数提案されてきたが、最も広く利用されているのは、固結防止剤を製造後の高炉水砕スラグに添加する方法(例えば、特許文献1参照)である。   When granulated blast furnace slag is used for fine aggregate for concrete, it may be piled up for a long period of time, and there is a problem of solidification. It is easy to consolidate especially when grinding. The cause of consolidation of granulated blast furnace slag is its latent hydraulic property, which is a necessary characteristic for cement raw materials. Therefore, when blast furnace slag manufactured for cement raw materials is also used for fine aggregate for concrete, measures to prevent caking are necessary. Many anti-caking technologies have been proposed in the past, but the most widely used is the method of adding an anti-caking agent to the granulated blast furnace slag (for example, see Patent Document 1). is there.

ところで、高炉水砕スラグをコンクリート用細骨材に利用するには、更に既存の細骨材と同等程度の品質が要求される場合がある。具体的には、天然砂と同程度の密度や粒度分布等である。一般に、高炉から出滓した直後に水砕される高炉スラグは、密度が低く粒度が細かい。そこで、出滓後一旦鍋で受け、高炉から離れた場所に運んで、スラグ温度が低下したところで水砕を行うことによって、コンクリート用細骨材向けの密度が高く粒度分布の粗い水砕スラグを製造する方法もある。これは炉外方式とも呼ばれ、例えば特許文献2には、炉外方式による粗粒化技術が開示されている。この炉外方式による高炉水砕スラグは、細骨材としての品質は十分であるが、やはり固結の問題があった。   By the way, in order to use granulated blast furnace slag as a fine aggregate for concrete, a quality equivalent to that of an existing fine aggregate may be required. Specifically, it has the same density and particle size distribution as natural sand. In general, blast furnace slag that is granulated immediately after being discharged from the blast furnace has a low density and a fine particle size. Therefore, once the rice is taken out, it is received in a pan and transported away from the blast furnace. There is also a manufacturing method. This is also called an out-of-furnace system. For example, Patent Document 2 discloses a coarsening technique using an out-of-furnace system. Although the granulated blast furnace slag by the out-of-furnace method has sufficient quality as a fine aggregate, it still has a problem of consolidation.

上記の課題に対し、例えば特許文献3では、出滓後鍋で受けた高炉スラグに石炭灰を溶融して水砕する方法が開示されている。当該技術によれば、石炭灰を添加して溶融スラグの粘度を下げることでスラグの気孔率を低減するとともに、ガラス化率を80%未満にすることによって固結を抑制できるとしている。   For example, Patent Document 3 discloses a method for melting coal ash in a blast furnace slag received in a pan after pouring and water granulating the above problem. According to this technology, the coal ash is added to lower the viscosity of the molten slag to reduce the porosity of the slag and to reduce the vitrification rate to less than 80%, thereby suppressing consolidation.

特開昭54−130496号公報Japanese Patent Laid-Open No. 54-130596 特開2001−240437号公報Japanese Patent Laid-Open No. 2001-240437 特開2006−315907号公報JP 2006-315907 A

本発明は、高炉スラグをコンクリート用細骨材に利用するにあたって、固結し難い高炉水砕スラグ及びその製造方法を提供しようとするものである。特に、スラグの化学成分を調整することによる、潜在水硬性を示さない高炉水砕スラグを提供する。   The present invention intends to provide a granulated blast furnace slag that is difficult to consolidate and a method for producing the same when the blast furnace slag is used for fine aggregate for concrete. In particular, a blast furnace granulated slag that does not exhibit latent hydraulic properties by adjusting the chemical components of the slag is provided.

前記の課題を解決するために本発明では、以下の高炉スラグ質細骨材が提供される。
(1)高炉スラグを改質してなる高炉スラグ質細骨材であって、化学成分CaO、SiOの含有質量%比率が、CaO/SiO<1であり、Alを13質量%以上含有し、ガラス化率が80%以上であり、
可燃成分を除いた化学成分中に占めるSiO 及びAl の含有質量%の合計が80%以上、且つ、含有質量%の比率がSiO /Al =4.5〜1.5の物質を、溶融高炉スラグ100質量部に対して10〜30質量部溶融添加して化学成分を調整してなり、
且つ、前記化学成分調整のために添加する物質が、粘土質物質と珪酸質物質からなることを特徴とする高炉スラグ質細骨材。(2)添加する粘土質物質と珪酸質物質の合計100質量%のうち、粘土質物質が50〜80質量%であることを特徴とする(1)に記載の高炉スラグ質細骨材。(3)前記高炉スラグ質細骨材の化学成分の含有質量%比率が、CaO−SiO −Al 三成分系相図において、(CaO:SiO :Al )=(39:43:18)、(37:40:23)、(34:48:18)の組成で囲まれる範囲内にあることを特徴とする(1)又は(2)に記載の高炉スラグ質細骨材。
In order to solve the above-mentioned problems, the present invention provides the following blast furnace slag fine aggregate.
(1) A blast furnace slag fine aggregate obtained by modifying blast furnace slag, wherein the content percentage by mass of the chemical components CaO and SiO 2 is CaO / SiO 2 <1, and 13 masses of Al 2 O 3 % by weight or more state, and are vitrification of 80% or more,
The total content of SiO 2 and Al 2 O 3 in the chemical components excluding the combustible components is 80% or more, and the ratio of the content mass% is SiO 2 / Al 2 O 3 = 4.5 to 1. 5 to 10 to 30 parts by mass of the molten blast furnace slag 100 parts by mass to add and adjust chemical components,
The blast furnace slag fine aggregate is characterized in that the substance added for adjusting the chemical composition comprises a clayey substance and a siliceous substance . (2) The blast furnace slag fine aggregate as set forth in (1), wherein the clayey material is 50 to 80% by mass in a total of 100% by mass of the added clayey material and siliceous material. (3) In the CaO—SiO 2 —Al 2 O 3 ternary phase diagram, the content percentage by mass of the chemical component of the blast furnace slag fine aggregate is (CaO: SiO 2 : Al 2 O 3 ) = (39 : 43: 18), (37:40:23), and (34:48:18). The blast furnace slag fine bone according to (1) or (2) Wood.

本発明によれば、固結防止剤等による固結防止対策が不要となって細骨材の製造後管理が容易となると共に、高炉水砕スラグの利用性が向上する。   According to the present invention, it is not necessary to take an anti-caking measure by using an anti-caking agent and the post-manufacturing management of the fine aggregate is facilitated, and the utilization of granulated blast furnace slag is improved.

スラグの化学成分を示すCaO−SiO−Al三成分系相図である。Is a CaO-SiO 2 -Al 2 O 3 ternary phase diagram showing the chemical composition of the slag.

本発明の高炉スラグ質細骨材は、化学成分CaO、SiOの含有質量%比率がCaO/SiO<1であり、Alを13質量%以上含有し、ガラス化率が80%以上である。発明者らは、水硬性と難固結性という相反する性質を同時に満足することは困難と考え、細骨材用途において特に必要とはされない水硬性を低減した固結し難い高炉スラグの開発を目指した。通常、高炉スラグの化学成分CaO、SiOの含有質量%比率は、CaO/SiO=1.2〜1.3で操業されている。この成分のとき、高炉水砕スラグは十分な潜在水硬性を発現する。また、JIS A6206には、セメント原料用として((CaO%)+(MgO%)+(Al%))/(SiO%)≧1.6が規定されている。そこで、先ず化学成分の固結性に及ぼす影響を調査したところ、CaO/SiO<1であるときには、殆ど自身で硬化する性質がなくなることが分かった。 Blast-furnace slag quality fine aggregate of the present invention, chemical components CaO, content wt% ratio of SiO 2 is CaO / SiO 2 <1, the Al 2 O 3 containing 13 wt% or more, vitrification of 80% That's it. The inventors consider that it is difficult to satisfy the conflicting properties of hydraulic properties and hard-setting properties at the same time, and develop blast furnace slag that is hard to set and has reduced hydraulic properties, which is not particularly necessary for fine aggregate applications. Aimed. Usually, the content mass% ratio of the chemical components CaO and SiO 2 of the blast furnace slag is operated at CaO / SiO 2 = 1.2 to 1.3. When this component is used, the ground granulated blast furnace slag exhibits sufficient latent hydraulic properties. In JIS A6206, ((CaO%) + (MgO%) + (Al 2 O 3 %)) / (SiO 2 %) ≧ 1.6 is defined for cement raw materials. Therefore, first, it was investigated the effect on caking of the chemical components, when a CaO / SiO 2 <1 were found to the property of curing in most itself disappears.

また、セメント原料向けの高炉スラグは、水砕による急冷でガラス化率を100%近くにすることによって、潜在水硬性が高められている。本発明の固結し難い高炉スラグのためには、ガラス化率を下げることも有効と思われたが、ガラス化率が低いことは結晶化率が高いことであり、その際には水砕したスラグの含水分のpHが上がり易く、固結を誘発することを知見した。そこで、本発明ではガラス化率が高いことが好ましい。ガラス化率が80%以上であれば固結に影響することはなかった。   In addition, blast furnace slag for cement raw materials has improved latent hydraulic properties by making the vitrification rate close to 100% by rapid cooling by water granulation. For the blast furnace slag which is difficult to consolidate in the present invention, it was considered effective to lower the vitrification rate, but the low vitrification rate means that the crystallization rate is high, and in that case, the water granulation It was found that the pH of the water content of the slag was easily increased and induced caking. Therefore, in the present invention, it is preferable that the vitrification rate is high. If the vitrification rate was 80% or more, the caking was not affected.

固結性の判断については、高炉スラグ細骨材の固結が夏期(6月〜9月)に起こることから、細骨材を30℃定温養生して3カ月以上固結塊が観察されなければ難固結性とすることができる。一般には、養生温度を更に高くして短期間で試験をする場合が多い。本発明では、これらの方法では正確な判断が難しいと考え、特開2009−168802号公報による方法から求められる相対的な固結時間を用いた。一般的な高炉スラグ細骨材を基準として、当該方法で測定される固結時間が、30〜40日以上であれば難固結性と判断した。   Regarding the judgment of consolidation, since the consolidation of blast furnace slag fine aggregate occurs in the summer (June to September), the aggregate should be observed for 3 months or more after constant temperature curing at 30 ° C. It can be hard to set. In general, the curing temperature is further raised and the test is often performed in a short period of time. In the present invention, it is considered that accurate determination is difficult with these methods, and the relative setting time obtained from the method according to Japanese Patent Application Laid-Open No. 2009-168802 was used. On the basis of a general blast furnace slag fine aggregate, if the consolidation time measured by the method is 30 to 40 days or more, it was judged to be hardly consolidated.

本発明の高炉スラグ質細骨材のCaO、SiO以外の成分については、できる限り改質前の含有量から変化させない。特に、第三成分であるAlは13質量%以上の含有とする。Al含有量が13質量%未満になると溶融スラグの粘性が急激に高くなり、水砕による細骨材の製造が困難となる。 Components other than CaO and SiO 2 in the blast furnace slag fine aggregate of the present invention are not changed from the content before modification as much as possible. In particular, the third component, Al 2 O 3, is contained in an amount of 13% by mass or more. When the Al 2 O 3 content is less than 13% by mass, the viscosity of the molten slag is rapidly increased, and it becomes difficult to produce fine aggregates by water granulation.

本発明の高炉スラグ質細骨材は、更に好ましくは、化学成分の含有質量%比率が、CaO−SiO−Al三成分系相図において、(CaO:SiO:Al)=(39:43:18)、(37:40:23)、(34:48:18)の3組成で囲まれる範囲内とする。図1にCaO−SiO−Al三成分系相図を示す。本発明の高炉スラグ質細骨材は、通常の高炉スラグに成分調整材を添加溶融して製造するため、成分調整材が十分溶融する必要がある。図1に示す通常の高炉スラグの組成に何等かの成分調整材を添加して、CaO/SiO<1の組成にする場合に、できるだけ融点を低くすることが好ましい。また、融点が低下することでガラス化率を高くし易い。鋭意検討した結果、図1において、(CaO:SiO:Al)が、(39:43:18)、(37:40:23)、(34:48:18)の組成で囲まれる範囲が好ましいことが分かった。該範囲内は、融点が約1300℃以下であり、高炉スラグ組成近傍において最も融点が低い領域である。当該範囲外の周辺組成についても検討したところ、当該領域外の組成においても、固結し難いスラグができたものの、融点が高くなるために、製造歩留まりが低下した。 In the blast furnace slag fine aggregate of the present invention, more preferably, the content percentage by mass of the chemical component is (CaO: SiO 2 : Al 2 O 3) in the CaO—SiO 2 —Al 2 O 3 ternary phase diagram. ) = (39:43:18), (37:40:23), and (34:48:18). FIG. 1 shows a CaO—SiO 2 —Al 2 O 3 ternary phase diagram. Since the blast furnace slag fine aggregate of the present invention is produced by adding and melting a component adjusting material to normal blast furnace slag, the component adjusting material needs to be sufficiently melted. When adding any component adjusting material to the composition of the normal blast furnace slag shown in FIG. 1 to obtain a composition of CaO / SiO 2 <1, it is preferable to make the melting point as low as possible. Moreover, it is easy to make vitrification rate high because melting | fusing point falls. As a result of intensive studies, in FIG. 1, (CaO: SiO 2 : Al 2 O 3 ) is surrounded by the composition of (39:43:18), (37:40:23), and (34:48:18). A range was found to be preferred. Within this range, the melting point is about 1300 ° C. or less, and is the lowest melting point in the vicinity of the blast furnace slag composition. When the peripheral composition outside the range was also examined, a slag that was hard to consolidate was formed even in the composition outside the range, but the melting point was high, so that the production yield was lowered.

本発明の高炉スラグ質細骨材は、例えば、可燃成分を除いた化学成分中に占めるSiO及びAlの含有質量%の合計が80%以上、且つ含有質量%の比率がSiO/Al=4.5〜1.5の物質を、高炉スラグ100質量部に対して10〜30質量部溶融添加して化学成分を調整することによって製造することができる。前記の考えに従い、本発明の成分調整添加材の主成分はSiO及びAlからなる。該成分(SiO及びAl)の含有質量%の合計は可燃分を除いて80%以上である。該成分の含有質量%が80%未満の場合、SiO、Al以外の成分が添加されると、CaO−SiO−Al三成分系の組成制御はできても、その他の成分の影響で融点制御が困難となるので好ましくない。なお、可燃成分は三成分系の組成制御に影響が無く、また、可燃成分は高炉スラグの温度を維持するための熱源としても有効である。このため、SiO及びAl)の含有質量%の合計は可燃分を除いて80%以上であればよい。また、含有質量%の比率はSiO/Al=4.5〜1.5であることが好ましい。該範囲にあれば、高炉スラグに徐々に添加していくと、融点が次第に低下して、前記(CaO:SiO:Al)の組成範囲に容易に制御することが可能である。SiO/Al=4.5〜1.5以外の組成であると、融点が殆ど低下しないか又は高くなるため、水砕が困難で、歩留まりが低下する可能性がある。また、成分調整材は、高炉スラグ100質量部に対して10〜30質量部を溶融添加することが好ましい。溶融添加とは、溶融状態の高炉スラグに成分調整材を添加し、成分調整材を溶融させて高炉スラグ中に添加することである。該成分条件を満足する物質(成分調整材)を添加して、前記(CaO:SiO:Al)の組成範囲にするには、少なくとも10質量部が必要である。そして、30質量部を越えると、前記(CaO:SiO:Al)の組成範囲を逸脱し、融点が高くなって製造が困難で、歩留まりが低下する可能性がある。 In the blast furnace slag fine aggregate of the present invention, for example, the total content of SiO 2 and Al 2 O 3 in the chemical components excluding combustible components is 80% or more, and the ratio of the content mass% is SiO 2. / Al 2 O 3 = 4.5 to 1.5 can be produced by adjusting the chemical component by adding 10 to 30 parts by mass with respect to 100 parts by mass of the blast furnace slag. In accordance with the above idea, the main component of the component-adjusting additive of the present invention is composed of SiO 2 and Al 2 O 3 . The sum of the mass% of the components (SiO 2 and Al 2 O 3 ) is 80% or more excluding combustible components. When the component mass% is less than 80%, when components other than SiO 2 and Al 2 O 3 are added, the composition of the CaO—SiO 2 —Al 2 O 3 ternary system can be controlled. It is not preferable because the melting point control becomes difficult due to the influence of the above components. The combustible component does not affect the composition control of the ternary system, and the combustible component is also effective as a heat source for maintaining the temperature of the blast furnace slag. Therefore, the total content by mass% of SiO 2 and Al 2 O 3) may be at least 80% with the exception of the combustibles. Further, it is preferable that the ratio of the content by mass% is SiO 2 / Al 2 O 3 = 4.5~1.5. If it is in this range, when it is gradually added to the blast furnace slag, the melting point gradually decreases, and the composition range of (CaO: SiO 2 : Al 2 O 3 ) can be easily controlled. When the composition is other than SiO 2 / Al 2 O 3 = 4.5 to 1.5, the melting point hardly decreases or increases, so that granulation is difficult and the yield may be decreased. Moreover, it is preferable that 10-30 mass parts is melt-added with respect to 100 mass parts of blast furnace slag as a component adjustment material. Melting addition means adding a component adjusting material to the molten blast furnace slag, melting the component adjusting material, and adding it to the blast furnace slag. In order to add a substance (component adjusting material) that satisfies the component conditions to the composition range of (CaO: SiO 2 : Al 2 O 3 ), at least 10 parts by mass is required. If it exceeds 30 parts by mass, it deviates from the composition range of (CaO: SiO 2 : Al 2 O 3 ), the melting point becomes high, the production is difficult, and the yield may be lowered.

本発明では、上記のような化学成分調整のために添加する物質として、石炭灰を用いることが好ましい。石炭灰の化学組成は、本発明の成分調整材に必要な化学成分の範囲にあり、また、可燃成分として炭素を含むため、高炉スラグの温度を維持するための熱源としても有効である。   In the present invention, it is preferable to use coal ash as a substance to be added for adjusting the chemical components as described above. The chemical composition of the coal ash is in the range of chemical components necessary for the component-adjusting material of the present invention, and since carbon is included as a combustible component, it is also effective as a heat source for maintaining the temperature of the blast furnace slag.

本発明では、粘土質物質と珪酸質物質からなる物質を化学成分調整のために用いることも可能である。粘土質物質の主成分は、SiO及びAlからなり、例えば、カオリナイト、ハロサイト、アロフェン等が利用できる。珪酸質物質の主成分はSiOであり、例えば、珪砂、石英ダスト、シリカフューム等が利用できる。そして、各々単独の使用では、前記(CaO:SiO:Al)の組成範囲に制御することは難しいため、本発明の成分調整材に必要な化学成分の範囲になるよう、両物質を混合調整する。より好ましくは、添加する粘土質物質と珪酸質物質の合計100質量%の内、粘土質物質は50〜80質量%である。50質量%未満であると、SiO成分の増加によって均一に溶解させ難くなり、安定した固結防止が困難となる。80質量%を越えると、融点が低下する添加量範囲が狭くなって制御が困難となる。本発明では、粘土質物質と珪酸質物質を混合して添加することを推奨するが、最初に珪酸質物質を溶融添加し、後に粘土質物質を溶融添加することも可能である。この方法では、より効果的に融点を低下させながら添加することが可能で、均一に溶解させることができる。 In the present invention, it is also possible to use a substance composed of a clayey substance and a siliceous substance for chemical component adjustment. The main component of the clay material is composed of SiO 2 and Al 2 O 3 , and for example, kaolinite, halosite, allophane, and the like can be used. The main component of the siliceous substance is SiO 2 , and for example, silica sand, quartz dust, silica fume and the like can be used. And since it is difficult to control the composition range of the above (CaO: SiO 2 : Al 2 O 3 ) by using each of them individually, both substances should be in the range of chemical components necessary for the component adjusting material of the present invention. Adjust the mixing. More preferably, of the total 100 mass% of the clayey material and siliceous material to be added, the clayey material is 50 to 80 mass%. If it is less than 50% by mass, it becomes difficult to dissolve uniformly due to an increase in the SiO 2 component, and it becomes difficult to prevent stable consolidation. If it exceeds 80% by mass, the addition amount range in which the melting point is lowered becomes narrow and control becomes difficult. In the present invention, it is recommended to add a mixture of a siliceous material and a siliceous material, but it is also possible to first melt and add the siliceous material, and then melt and add the clayey material. In this method, it is possible to add more effectively while lowering the melting point, and it is possible to dissolve evenly.

本発明の高炉スラグ質細骨材の製造は、従来の技術を利用することができる。高炉から出滓した溶融スラグを鍋で受け、溶融したスラグに成分調整材の粉末を吹き込んで溶解する。水砕するスラグ温度は、成分調整材が十分溶解していれば特に限定しないが、図1から明らかなように、1350℃以上で溶解しておけば十分である。溶解が不十分であると、固結防止効果が安定しない。   The conventional technology can be used to manufacture the blast furnace slag fine aggregate of the present invention. The molten slag extracted from the blast furnace is received in a pan, and the powder of the component adjusting material is blown into the molten slag and melted. The slag temperature for water granulation is not particularly limited as long as the component adjusting material is sufficiently dissolved, but as is clear from FIG. If the dissolution is insufficient, the anti-caking effect is not stable.

表1、2に、参考例及び実施例(表1)及び比較例(表2)のスラグの添加物質の有無、3成分含有質量比率と、ガラス化率及び固結時間を示す。添加物質の各化学成分含有量は、石炭灰がSiO2(59質量%)、Al2O3(26質量%)、C(9質量%)、粘土がSiO2(47質量%)、Al2O3(40質量%)、珪砂がSiO2(93質量%)、Al2O3(4質量%)である。添加物質の添加量は、No.1(石炭灰)が20質量部、No.2,3(石炭灰)が15質量部、No.4(石炭灰)が18質量部、No.5(石炭灰)が17質量部、No.6(粘土:珪砂=80:20)が18質量部、No.7(粘土:珪砂=70:30)が20質量部、No.8(粘土:珪砂=70:30)が17質量部、No.9(粘土:珪砂=50:50)が25質量部である。 Tables 1 and 2 show the presence / absence of slag additives in the Reference Examples, Examples (Table 1) and Comparative Examples (Table 2), the three-component mass ratio, the vitrification rate, and the consolidation time. The chemical content of each additive substance is as follows: coal ash is SiO 2 (59% by mass), Al 2 O 3 (26% by mass), C (9% by mass), clay is SiO 2 (47% by mass), Al 2 O 3 (40% by mass), silica sand is SiO 2 (93% by mass), and Al 2 O 3 (4% by mass). No. 1 (coal ash) is 20 parts by mass, No. 2, 3 (coal ash) is 15 parts by mass, No. 4 (coal ash) is 18 parts by mass, No. 5 (coal) Ashes) is 17 parts by mass, No. 6 (clay: silica sand = 80: 20) is 18 parts by mass, No. 7 (clay: silica sand = 70: 30) is 20 parts by mass, No. 8 (clay: silica sand = 70 : 30) is 17 parts by mass, and No. 9 (clay: silica sand = 50: 50) is 25 parts by mass.

Figure 0005515870
Figure 0005515870
Figure 0005515870
Figure 0005515870

参考例及び実施例や比較例に示すスラグは、以下の方法で製造した。高炉から排出する溶融スラグ約40tをスラグ鍋に受け、粉体吹き込み処理場に移送した。スラグ温度は約1380℃である。粉体吹き込みランスを溶融スラグに浸漬し、搬送ガスに酸素を用いて、添加物質粉体(成分調整材)を約200kg/minの速度で約40分間吹き込んだ。添加物質中の炭素含有量が5質量%未満の場合は、微粉炭を混合して炭素含有量を5質量%以上20質量%未満にして添加した。添加量は、粉体ホッパ残量を監視しつつ吹き込み時間で調整した。処理終了後のスラグ温度は約1300℃である。その後、炉外方式の水砕処理場に移動して、通常の水砕処理を行った。粉体吹き込みを行わない場合は、溶融スラグを受けた鍋を、そのまま炉外方式の水砕処理場に移送して水砕処理を行った。 The slag shown in the reference examples, examples and comparative examples was produced by the following method. About 40 t of molten slag discharged from the blast furnace was received in a slag pan and transferred to a powder blowing treatment plant. The slag temperature is about 1380 ° C. The powder blowing lance was immersed in the molten slag, and oxygen was used as the carrier gas, and the additive substance powder (component adjusting material) was blown at a rate of about 200 kg / min for about 40 minutes. When the carbon content in the additive substance was less than 5% by mass, pulverized coal was mixed to add the carbon content to 5% by mass or more and less than 20% by mass. The addition amount was adjusted by the blowing time while monitoring the remaining amount of the powder hopper. The slag temperature after the treatment is about 1300 ° C. Then, it moved to the water-crushing treatment plant of the out-of-furnace system, and performed normal water-granulation treatment. When powder blowing was not performed, the pan that received the molten slag was directly transferred to an outside furnace type water granulation treatment plant and subjected to water granulation treatment.

ガラス化率の制御は、添加物質を溶融させた後、水砕するまでの時間を調整することによって行った。ガラス化率を高める場合はできるだけ速やかに水砕を行う。通常の溶融高炉スラグを炉外方式によって水砕した場合、ガラス化率を炉前方式並に高くすることは困難であった。一方、本発明で用いるスラグは、通常の高炉スラグよりSiO成分が多いことから、ガラス化し易い傾向にあり、炉外方式の場合でも炉前方式並のガラス化率にすることが可能である。一方で、ガラス化率を低くする場合には、水砕までの待機時間を長くした。ガラス化率は、X線回折を用いたガラス相と結晶相の含有比率測定によって求めた。 The vitrification rate was controlled by adjusting the time until the material was melted after the additive material was melted. When increasing the vitrification rate, perform water granulation as soon as possible. When normal molten blast furnace slag was granulated by an out-of-furnace system, it was difficult to increase the vitrification rate as high as that in the furnace-front system. On the other hand, the slag used in the present invention tends to vitrify because there are more SiO 2 components than ordinary blast furnace slag, and even in the case of an out-of-furnace system, it is possible to achieve a vitrification rate comparable to that in the furnace-front system. . On the other hand, when lowering the vitrification rate, the standby time until water granulation was increased. The vitrification rate was determined by measuring the content ratio between the glass phase and the crystal phase using X-ray diffraction.

参考例及び実施例や比較例に示す固結時間は、特開2009−168802号公報による方法を用いて測定した。先ず、製造した水砕スラグを110℃で2時間乾燥した後、100μm以下に微粉砕した。次いで、微粉末10gに純水1mLを加えてよく混合した後、一軸圧縮成形機を用いて、直径20mm長さ約18mmの円柱試験体を作成した。各試験体をビニール袋に密閉し、30℃養生槽で養生した。適時試料を養生槽から取り出して、超音波伝播時間を測定した。固結が進行すると伝播時間が低下していく。成形直後の伝播時間を最大値とし、これ以上低下が見られなくなった時の伝播時間を最低値として、これらの対数の中間値に至るまでの養生時間を固結時間とした。成形直後の伝播時間がどの試料も等しいことは自明であるが、これ以上低下が見られない最低値も同じ値になることを経験的に知見しているので、この養生時間は最大6カ月として、6カ月以内に最低値に収束しない場合は、伝播時間の変化を外挿して中間値に至るまでの養生時間を固結時間と推定することにした。 The consolidation time shown in the Reference Examples, Examples and Comparative Examples was measured using a method according to Japanese Patent Application Laid-Open No. 2009-168802. First, the produced granulated slag was dried at 110 ° C. for 2 hours, and then finely pulverized to 100 μm or less. Next, after adding 1 mL of pure water to 10 g of fine powder and mixing well, a cylindrical test body having a diameter of 20 mm and a length of about 18 mm was prepared using a uniaxial compression molding machine. Each specimen was sealed in a plastic bag and cured in a 30 ° C. curing tank. The sample was taken out from the curing tank in a timely manner, and the ultrasonic propagation time was measured. As consolidation progresses, the propagation time decreases. The propagation time immediately after molding was set as the maximum value, the propagation time when no further decrease was observed was set as the minimum value, and the curing time until reaching the intermediate value of these logarithms was set as the consolidation time. It is obvious that the propagation time immediately after molding is the same for all samples, but since it is empirically found that the minimum value where no further decrease is seen is the same value, this curing time is set to a maximum of 6 months When it did not converge to the minimum value within 6 months, it was decided to extrapolate the change in propagation time and estimate the curing time to reach the intermediate value as the consolidation time.

図1は、表1のスラグを3成分相図上に示したものである。添加処理前の高炉スラグをBF、添加物として用いた石炭灰や粘土を、各々FA、CLで表す。そして参考例及び本発明の実施例を●印で、比較例を*印で、請求項2の組成範囲を太線三角枠で表した。 FIG. 1 shows the slag of Table 1 on a three-component phase diagram. Blast furnace slag before the addition treatment is represented by BF, and coal ash and clay used as additives are represented by FA and CL, respectively. The reference examples and the examples of the present invention are indicated by ●, the comparative examples are indicated by *, and the composition range of claim 2 is indicated by a thick triangular frame.

参考例1〜5は、石炭灰の添加率を変えた高炉スラグ質細骨材である。化学成分CaO、SiOの含有質量%比率はCaO/SiO<1であり、図1の太線三角枠内の3成分含有比率とした。また、ガラス化率は80%以上であった。固結時間を測定したところ、参考例2、3は数十日であった。参考例1、2については、6カ月内に伝播時間が最低値に収束しなかったので、上記の方法で推定したが、非常に長期間固結しないと思われる。 Reference Examples 1 to 5 are blast furnace slag fine aggregates with different coal ash addition rates. The content ratio by mass of the chemical components CaO and SiO 2 is CaO / SiO 2 <1, and the three component content ratios in the thick triangular frame in FIG. Moreover, the vitrification rate was 80% or more. When the consolidation time was measured, Reference Examples 2 and 3 were several tens of days. In Reference Examples 1 and 2, since the propagation time did not converge to the minimum value within 6 months, it was estimated by the above method, but it seems that it does not solidify for a very long time.

実施例6〜9は、粘土と珪砂の混合比率と添加率を変えた高炉スラグ質細骨材である。粘土の混合率は50〜80質量%とし、その混合物を溶融高炉スラグに17〜25質量%添加した。固結時間は、数十日〜200日以上であった。   Examples 6 to 9 are blast furnace slag fine aggregates in which the mixing ratio and addition ratio of clay and silica sand are changed. The mixing ratio of the clay was 50 to 80% by mass, and the mixture was added to the molten blast furnace slag at 17 to 25% by mass. The consolidation time was several tens of days to 200 days or more.

比較例1は、炉前方式の高炉水砕スラグ細骨材である。化学成分CaO、SiOの含有質量%比率がCaO/SiO=1.24と高く、ガラス化率も高いため、非常に固結し易い。比較例2は、炉外方式の高炉水砕スラグ細骨材である。ガラス化率は低いものの、逆に結晶が多いことによってアルカリ刺激が高められ、非常に固結し易い。 Comparative example 1 is a blast furnace granulated slag fine aggregate of the furnace type. Since the content percentage by mass of the chemical components CaO and SiO 2 is as high as CaO / SiO 2 = 1.24 and the vitrification rate is also high, it is very easy to consolidate. Comparative Example 2 is an out-of-furnace blast furnace granulated slag fine aggregate. Although the vitrification rate is low, on the contrary, there are many crystals, so that the alkali stimulus is increased and it is very easy to consolidate.

比較例3は、石炭灰を14質量%添加してCaO/SiO=0.99<1としたが、ガラス化率が比較例2と同程度のため、アルカリ刺激が生じて固結時間はあまり長くならなかった。また、比較例4は、石炭灰を8.5質量%添加した例であるが、添加量が不足してCaO/SiO<1とならず、ガラス化率も低いことからアルカリ刺激が生じて、固結時間はあまり長くなっていない。 In Comparative Example 3, 14% by mass of coal ash was added to make CaO / SiO 2 = 0.99 <1, but because the vitrification rate was about the same as Comparative Example 2, alkali stimulation occurred and the consolidation time was It didn't get too long. Further, Comparative Example 4 is an example in which the addition of coal ash 8.5 wt%, not built added amount is insufficient CaO / SiO 2 <1 and, occurs alkali stimulus that vitrification rate is low The consolidation time is not so long.

比較例5〜7は、粘土と珪砂の混合物を添加した例である。添加率が5〜9質量%であるため、CaO/SiO<1にはならず、ガラス化率を80%以上にした場合も固結時間はあまり長くできなかった。 Comparative Examples 5 to 7 are examples in which a mixture of clay and silica sand was added. Since the addition rate was 5 to 9% by mass, CaO / SiO 2 <1 was not satisfied, and the consolidation time could not be made too long when the vitrification rate was 80% or more.

Claims (3)

高炉スラグを改質してなる高炉スラグ質細骨材であって、化学成分CaO、SiOの含有質量%比率がCaO/SiO<1であり、Alを13質量%以上含有し、ガラス化率が80%以上であり、
可燃成分を除いた化学成分中に占めるSiO 及びAl の含有質量%の合計が80%以上、且つ、含有質量%の比率がSiO /Al =4.5〜1.5の物質を、溶融高炉スラグ100質量部に対して10〜30質量部溶融添加して化学成分を調整してなり、
且つ、前記化学成分調整のために添加する物質が、粘土質物質と珪酸質物質からなることを特徴とする高炉スラグ質細骨材。
A blast furnace slag fine aggregate obtained by modifying blast furnace slag, wherein the content ratio by mass of the chemical components CaO and SiO 2 is CaO / SiO 2 <1, and Al 2 O 3 is contained by 13 mass% or more. state, and are vitrification of 80% or more,
The total content of SiO 2 and Al 2 O 3 in the chemical components excluding the combustible components is 80% or more, and the ratio of the content mass% is SiO 2 / Al 2 O 3 = 4.5 to 1. 5 to 10 to 30 parts by mass of the molten blast furnace slag 100 parts by mass to add and adjust chemical components,
The blast furnace slag fine aggregate is characterized in that the substance added for adjusting the chemical composition comprises a clayey substance and a siliceous substance .
添加する粘土質物質と珪酸質物質の合計100質量%の内、粘土質物質が50〜80質量%であることを特徴とする請求項1に記載の高炉スラグ質細骨材。  2. The blast furnace slag fine aggregate according to claim 1, wherein the clay material is 50 to 80 mass% in a total of 100 mass% of the clay material and the siliceous material to be added. 前記高炉スラグ質細骨材の化学成分の含有質量%比率が、CaO−SiO  The content percentage by mass of the chemical component of the blast furnace slag fine aggregate is CaO-SiO. 2 −Al-Al 2 O 3 三成分系相図において、(CaO:SiOIn the ternary phase diagram, (CaO: SiO 2 :Al: Al 2 O 3 )=(39:43:18)、(37:40:23)、(34:48:18)の組成で囲まれる範囲内にあることを特徴とする請求項1又は2に記載の高炉スラグ質細骨材。) = (39:43:18), (37:40:23), (34:48:18) The range of the blast furnace slag quality according to claim 1 or 2, Fine aggregate.
JP2010048980A 2010-03-05 2010-03-05 Blast furnace slag fine aggregate Active JP5515870B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010048980A JP5515870B2 (en) 2010-03-05 2010-03-05 Blast furnace slag fine aggregate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010048980A JP5515870B2 (en) 2010-03-05 2010-03-05 Blast furnace slag fine aggregate

Publications (2)

Publication Number Publication Date
JP2011184218A JP2011184218A (en) 2011-09-22
JP5515870B2 true JP5515870B2 (en) 2014-06-11

Family

ID=44790959

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010048980A Active JP5515870B2 (en) 2010-03-05 2010-03-05 Blast furnace slag fine aggregate

Country Status (1)

Country Link
JP (1) JP5515870B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5991223B2 (en) * 2013-02-14 2016-09-14 新日鐵住金株式会社 Method for estimating the amount of quick-expanding quicklime in steelmaking slag

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58204850A (en) * 1982-05-20 1983-11-29 鉄研工業株式会社 Manufacture of blast furnace water granulated slag which is neutral to water
JP2000233952A (en) * 1999-02-10 2000-08-29 Nippon Steel Corp Production of blast-furnace granulated slag
JP4901795B2 (en) * 2008-03-31 2012-03-21 新日本製鐵株式会社 Method of dissolving fly ash in molten slag

Also Published As

Publication number Publication date
JP2011184218A (en) 2011-09-22

Similar Documents

Publication Publication Date Title
KR101137717B1 (en) Concrete composition making method with milling stone
JP4533190B2 (en) Injection material
JP6316626B2 (en) Civil engineering materials and methods for producing the same
EA023830B1 (en) Method for producing an agglomerate made of fine material containing metal oxide for use as a blast furnace feed material
JP6033787B2 (en) Super fast-hardening clinker, cement composition using the same, and method for producing the same
JP5442944B2 (en) Injection material and injection method
Liu et al. Performance of glass-ceramic-based lightweight aggregates manufactured from waste glass and muck
JP4033894B2 (en) Modified sulfur-containing binder and method for producing modified sulfur-containing material
JP2006255609A (en) Method for manufacturing sintered product and sintered product
JP5515870B2 (en) Blast furnace slag fine aggregate
GB2441999A (en) A concrete building block containing crushed glass
JP2013256428A (en) Geopolymer composition and method for producing the same
Thakur et al. Assessment of the properties of cement & mortar using GGBS
JP2007223841A (en) Method for producing artificial aggregate using waste slag as main raw material
JP6292257B2 (en) Hydrated solidified product using desulfurized slag
CN110316987B (en) Baking-free natural curing slow-release artificial aggregate and preparation method thereof
JP2014001122A (en) Fired product
JP6853438B2 (en) Method for Producing Highly Active Copper Slag Fine Powder, Highly Active Copper Slag Fine Powder and Cement Composition
JP2013028518A (en) Artificial stone made of expansion-controlled iron and steel slag hydration-solidified body, and method for producing the same
JP3624033B2 (en) Artificial lightweight aggregate
JP6180156B2 (en) Super-fast hardened clinker pulverized product, cement composition using the same, and production method thereof
TWI616421B (en) Modifier basic oxygen furnace slag (bofs) mixture
JP7244803B2 (en) Method for modifying boron-containing slag, method for manufacturing civil engineering and construction materials using the same, and modified slag
KR100797297B1 (en) Slag as substitute for aggregate of concrete and concrete composition comprising the slag and having a superior durability
JP2019151527A (en) Method of manufacturing lightweight aggregate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130308

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130319

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130516

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140304

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140317

R151 Written notification of patent or utility model registration

Ref document number: 5515870

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350