JP5442944B2 - Injection material and injection method - Google Patents

Injection material and injection method Download PDF

Info

Publication number
JP5442944B2
JP5442944B2 JP2007230836A JP2007230836A JP5442944B2 JP 5442944 B2 JP5442944 B2 JP 5442944B2 JP 2007230836 A JP2007230836 A JP 2007230836A JP 2007230836 A JP2007230836 A JP 2007230836A JP 5442944 B2 JP5442944 B2 JP 5442944B2
Authority
JP
Japan
Prior art keywords
parts
mass
cement
blast furnace
gypsum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007230836A
Other languages
Japanese (ja)
Other versions
JP2009062444A (en
Inventor
一行 水島
勇 平野
秀弘 田中
克明 入内島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP2007230836A priority Critical patent/JP5442944B2/en
Publication of JP2009062444A publication Critical patent/JP2009062444A/en
Application granted granted Critical
Publication of JP5442944B2 publication Critical patent/JP5442944B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/70Grouts, e.g. injection mixtures for cables for prestressed concrete
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Soil Conditioners And Soil-Stabilizing Materials (AREA)

Description

本発明は、各種土木工事におけるトンネル工事、地盤改良工事や止水工事で用いられる地盤注入材に関する。   The present invention relates to a ground injection material used in tunnel construction, ground improvement construction and water stop construction in various civil engineering works.

従来、セメントを用いた注入工法で、地盤の補強や止水効果を得るため、微粉スラグを主成分とした注入材やセメントとカルシウムアルミネ−ト等を含む急硬材を用いた注入材が用いられている(特許文献1、2、3、4参照)。   Conventionally, in order to obtain ground reinforcement and water-stopping effect with cement-injection method, injection material mainly composed of fine powder slag or injection material using rapid hardening material including cement and calcium aluminate has been used. (See Patent Documents 1, 2, 3, and 4).

しかしながら、微粉スラグを使用した注入材は凝結が非常に遅く、注入したミルクが地下水に流され、または、所定の注入位置から流れて逸脱するおそれがあった。   However, the injecting material using fine powder slag has a very slow setting, and the infused milk may flow into the ground water or flow away from a predetermined pouring position.

カルシウムアルミネートを使用した注入材は、セメントミルクと急硬材スラリーを別々に混練りし、注入直前に混合するので、ミキサやポンプが各2台必要であり、施工性が煩雑という課題があった。施工性を簡便にすべく、セメントと急硬材を混合し同時練りした場合、硬化時間の制御が難しく、ミキサやポンプを固めてしまうトラブルが発生するおそれがあった。地盤が細砂、シルト、あるいは粘土の場合は浸透性が小さく、注入が不可能となるおそれがあった。   The injection material using calcium aluminate kneads cement milk and quick-hardening material slurry separately and mixes them just before injection, so two mixers and two pumps are required, and there is a problem that workability is complicated. It was. When cement and a rapid hardening material are mixed and kneaded at the same time to simplify the workability, it is difficult to control the setting time, and there is a possibility that a trouble that hardens the mixer and the pump may occur. When the ground is fine sand, silt, or clay, the permeability is small, and there is a possibility that it cannot be injected.

また、注入の際、ポンプ圧送性の向上や、地盤中への浸透性を増す目的で水量を増す場合があるが、その結果、硬化が遅れ、強度が低くなる等のおそれがあった。   In addition, during the injection, the amount of water may be increased for the purpose of improving pumpability and increasing the permeability into the ground. As a result, there is a risk that curing will be delayed and the strength may be lowered.

微粒子セメント、微粒子スラグ、アルミノケイ酸カルシウム、石膏、凝結調整剤、及び減水剤を含有する注入材が提案されている(特許文献5参照)。しかしながら、減水剤の使用量は、セメント100質量部に対して0.01〜10質量部であり、本発明の使用量とは異なる。   An injection material containing fine particle cement, fine particle slag, calcium aluminosilicate, gypsum, a setting modifier, and a water reducing agent has been proposed (see Patent Document 5). However, the usage-amount of a water reducing agent is 0.01-10 mass parts with respect to 100 mass parts of cement, and differs from the usage-amount of this invention.

特開平6−33057号公報JP-A-6-33057 特公昭57−10058号公報Japanese Patent Publication No.57-10058 特開2004−149685号公報Japanese Patent Application Laid-Open No. 2004-149685 特開2006−016543号公報JP 2006-016543 A 特開2002−88364号公報JP 2002-88364 A

本発明者は、上記課題を解決すべく種々検討した結果、特定の材料を使用することにより、従来、問題の多かったセメントと急硬材の同時混練り、即ち、1ショット方式での注入を可能となるという知見を得て本発明を完成するに至った。   As a result of various studies to solve the above-mentioned problems, the present inventor used a specific material, so that conventionally problematic cement and quick-hardening material were simultaneously kneaded, that is, injection by a one-shot method. The inventor has obtained the knowledge that it is possible to complete the present invention.

即ち、本発明は、セメント、高炉スラグ、アルミノケイ酸カルシウムガラス、石膏、凝結調整剤、及び減水
剤を以下の割合で含有してなる1ショット方式用注入材であり、
(1)セメントと高炉スラグの割合が、セメント3〜30質量部:高炉スラグ97〜70
質量部
(2)石膏の使用量が、アルミノケイ酸カルシウムガラス100質量部に対して、50〜
200質量部
(3)セメントと高炉スラグの合計とアルミノケイ酸カルシウムガラスと石膏の合計の割
合が、セメントと高炉スラグの合計90〜99質量部:アルミノケイ酸カルシウムガラス
と石膏の合計10〜1質量部
(4)有機酸100質量部と炭酸塩50
〜1000質量部を含有してなる凝結調整剤の使用量が、セメント、高炉スラグ、アルミノケイ酸カルシウムガラス
、及び石膏の合計100質量部に対して0.05〜2質量部
(5)減水剤の使用量が、セメント100質量部に対して12〜30質量部
減水剤がメラミンスルホン酸ホルマリン縮合物塩系である該1ショット方式用注入材であり、平均粒子径が10μm以下である該1ショット方式用注入材であり、セメント、高炉スラグ、アルミノケイ酸カルシウムガラス、石膏、凝結調整剤、減水剤、
及び水を以下の割合で予め混合し、注入してなる1ショット方式注入工法であり、
(1)セメントと高炉スラグの割合が、セメント3〜30質量部:高炉スラグ97〜70
質量部
(2)石膏の使用量が、アルミノケイ酸カルシウムガラス100質量部に対して、50〜
200質量部
(3)セメントと高炉スラグの合計とアルミノケイ酸カルシウムガラスと石膏の合計の割
合が、セメントと高炉スラグの合計90〜99質量部:アルミノケイ酸カルシウムガラス
と石膏の合計10〜1質量部
(4)有機酸100質量部と炭酸塩50
〜1000質量部を含有してなる凝結調整剤の使用量が、セメント、高炉スラグ、アルミノケイ酸カルシウムガラス
、及び石膏の合計100質量部に対して0.05〜2質量部
(5)減水剤の使用量が、セメント100質量部に対して12〜30質量部
(6)水の使用量が、セメント、高炉スラグ、アルミノケイ酸カルシウムガラス、及び石
膏の合計100質量部に対して100〜1000質量部
減水剤がメラミンスルホン酸ホルマリン縮合物塩系である該1ショット方式注入工法であり、平均粒子径が10μm以下である該1ショット方式注入工法である。
That is, the present invention is an injection material for a one-shot method comprising cement, blast furnace slag, calcium aluminosilicate glass, gypsum, a setting modifier, and a water reducing agent in the following proportions:
(1) The ratio of cement to blast furnace slag is 3 to 30 parts by mass of cement: blast furnace slag 97 to 70
Part (2) The amount of gypsum used is 50 to 100 parts by mass of calcium aluminosilicate glass.
200 parts by mass (3) The total proportion of cement and blast furnace slag and the total of calcium aluminosilicate glass and gypsum is 90 to 99 parts by mass of cement and blast furnace slag: 10 to 1 parts by mass of calcium aluminosilicate glass and gypsum (4) 100 parts by mass of organic acid and 50 carbonates
The amount of the setting regulator comprising ~ 1000 parts by mass is 0.05 to 2 parts by mass (5) of the water reducing agent with respect to 100 parts by mass in total of cement, blast furnace slag, calcium aluminosilicate glass, and gypsum. The amount used is 12-30 parts by mass with respect to 100 parts by mass of cement.
Water reducing agent is the one-shot method for injecting material is a melamine sulfonic acid formalin condensate salt, an the one-shot method for injecting material average particle diameter of 10μm or less, cement, blast furnace slag, calcium aluminosilicate glass , Gypsum, setting agent, water reducing agent,
And a one-shot injection method in which water is premixed and injected at the following ratio:
(1) The ratio of cement to blast furnace slag is 3 to 30 parts by mass of cement: blast furnace slag 97 to 70
Part (2) The amount of gypsum used is 50 to 100 parts by mass of calcium aluminosilicate glass.
200 parts by mass (3) The total proportion of cement and blast furnace slag and the total of calcium aluminosilicate glass and gypsum is 90 to 99 parts by mass of cement and blast furnace slag: 10 to 1 parts by mass of calcium aluminosilicate glass and gypsum (4) 100 parts by mass of organic acid and 50 carbonates
The amount of the setting regulator comprising ~ 1000 parts by mass is 0.05 to 2 parts by mass (5) of the water reducing agent with respect to 100 parts by mass in total of cement, blast furnace slag, calcium aluminosilicate glass, and gypsum. The amount used is 12 to 30 parts by mass with respect to 100 parts by mass of cement. (6) The amount of water used is 100 to 1000 parts by mass with respect to a total of 100 parts by mass of cement, blast furnace slag, calcium aluminosilicate glass, and gypsum.
Water reducing agent is the one shot method grouting melamine sulfonic acid formalin condensate salt, an average particle size of the one-shot method grouting is 10μm or less.

本発明の注入用セメント組成物を用いることにより、1ショットでの注入が可能という効果が得られる。   By using the cement composition for injection of the present invention, an effect that injection by one shot is possible is obtained.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明で使用するセメントは、普通、早強、及び超早強等の各種ポルトランドセメントを粉砕または分級により、好ましくは平均粒子径20μm以下の超微粒子セメントにしたものである。より好ましくは10μm以下であり、最も好ましくは7μm以下である。20μmを超えると、注入時の浸透性が低下することに加え、初期の強度発現性の向上を十分示さない場合がある。   The cement used in the present invention is obtained by pulverizing or classifying various Portland cements such as normal strength, early strength, and ultra-early strength, preferably into ultrafine cement having an average particle size of 20 μm or less. More preferably, it is 10 micrometers or less, Most preferably, it is 7 micrometers or less. If it exceeds 20 μm, the permeability at the time of injection may be lowered and the initial strength development may not be sufficiently improved.

本発明で使用する高炉スラグは、鉄鋼製造の過程で高炉から排出される溶融状態のスラグを水等で急冷してガラス質にし、粉砕して微粉末化したもので、潜在水硬性を有しており、アルカリの刺激作用により硬化する性質を持つものである。これ以外の、例えば、都市ゴミや下水汚泥等を溶融したスラグ、脱燐スラグ、徐冷スラグ等も使用することができる。   The blast furnace slag used in the present invention is obtained by quenching molten slag discharged from the blast furnace in the process of steel production with water or the like into glass, pulverizing it into fine powder, and having latent hydraulic properties. It has the property of being cured by the stimulating action of alkali. Other than this, for example, slag obtained by melting municipal waste or sewage sludge, dephosphorization slag, slow-cooled slag, and the like can be used.

高炉スラグの組成は、CaO含有率35〜50%、Al含有率10〜25%、及びSiO含有率31〜40%が好ましく、CaO含有率40〜50%、Al含有率11〜20%、及びSiO含有率35〜39%がより好ましい。高炉スラグは、MgO、TiO、Fe、NaO、KO等の不純物が含まれているが、本発明の効果を阻害しない範囲であれば許容されるものである。 The composition of blast furnace slag, CaO content of 35 to 50% Al 2 O 3 content of 10% to 25%, and SiO 2 content of 31 to 40% are preferred, CaO content of 40 to 50% Al 2 O 3 containing A rate of 11 to 20% and a SiO 2 content of 35 to 39% are more preferable. The blast furnace slag contains impurities such as MgO, TiO 2 , Fe 2 O 3 , Na 2 O, and K 2 O, but is acceptable as long as the effects of the present invention are not impaired.

高炉スラグを含有することで高い注入性と長期強度の発現性が付与される。高炉スラグの粉末度は、好ましくは平均粒子径10μm以下、より好ましくは7μm以下である。10μmを超えると、注入時の浸透性が低下することに加え、短・長期の強度発現性の向上を十分に示さない場合がある。   By containing blast furnace slag, high injectability and long-term strength are imparted. The fineness of the blast furnace slag is preferably an average particle size of 10 μm or less, more preferably 7 μm or less. If it exceeds 10 μm, in addition to the decrease in permeability during injection, there may be cases where the improvement in short- and long-term strength development is not sufficiently exhibited.

セメントと高炉スラグの割合は、セメント3〜30質量部:高炉スラグ97〜70質量部が好ましく、セメント5〜25:高炉スラグ95〜75質量部質量部がより好ましい。セメントの使用量が3質量部未満では短期強度が小さい場合があり、30質量部を超えると注入材を懸濁液としたときの粘度が大きくなり、浸透性が低下する場合がある。   The ratio of cement to blast furnace slag is preferably 3 to 30 parts by mass of cement: 97 to 70 parts by mass of blast furnace slag, and more preferably 95 to 75 parts by mass of cement 5 to 25: blast furnace slag. If the amount of cement used is less than 3 parts by mass, the short-term strength may be small. If it exceeds 30 parts by mass, the viscosity when the injection material is used as a suspension may increase, and the permeability may decrease.

本発明で使用するアルミノケイ酸カルシウム(以下、CASという)は、カルシア原料、アルミナ原料、及びシリカ原料を電気炉や高周波炉などで加熱溶融したものであり、石膏との併用により主として短期強度の発現に寄与するものである。   Calcium aluminosilicate (hereinafter referred to as CAS) used in the present invention is obtained by heating and melting a calcia raw material, an alumina raw material, and a silica raw material in an electric furnace, a high-frequency furnace, or the like. It contributes to.

CASの組成は、CaO含有率20〜60%、Al含有率20〜70%、及びSiO含有率5〜30%が好ましく、CaO含有率30〜55%、Al含有率30〜60%、及びSiO含有率10〜20%がより好ましい。この範囲外では短期強度が小さくなる場合がある。 The composition of CAS is preferably CaO content 20 to 60%, Al 2 O 3 content 20 to 70%, and SiO 2 content 5 to 30%, CaO content 30 to 55%, Al 2 O 3 content. 30% to 60%, and SiO 2 content of 10-20% is more preferable. Outside this range, the short-term strength may be small.

CASは、石灰石等のカルシア原料、アルミナ、ボーキサイト、長石、及び粘土等のアルミナ原料、並びに、ケイ石、ケイ砂、石英、及びケイ藻土等のシリカ原料等を所定の割合で配合した後、ロータリーキルン等で焼成、又は、電気炉や高周波炉等で溶融することにより製造する。   CAS is a mixture of calcia raw materials such as limestone, alumina raw materials such as alumina, bauxite, feldspar, and clay, and silica raw materials such as quartzite, quartz sand, quartz, and diatomaceous earth at a predetermined ratio. Manufactured by firing in a rotary kiln or the like, or melting in an electric furnace or high-frequency furnace.

CASとしては、2CaO・Al・SiOやCaO・Al・2SiO等の結晶性化合物を使用することも可能であるが、短期強度が大きい点で、溶融物を急冷して得られるガラス質のものが好ましい。 As CAS, crystalline compounds such as 2CaO · Al 2 O 3 · SiO 2 and CaO · Al 2 O 3 · 2SiO 2 can be used, but the melt is rapidly cooled because of its high short-term strength. The glassy thing obtained by these is preferable.

CASのガラス化率は、CASを1,000℃で2時間加熱後、5℃/分の冷却速度で徐冷し、粉末X線回折法により結晶鉱物のメインピークの面積Sを求め、CASの結晶のメインピークSから、X(%)=100×(1−S/S)として求められるものである。CASのガラス化率は、短期強度の点で、50%以上が好ましく、80%以上がより好ましく、90%以上が最も好ましい。50%未満では短期強度が小さい場合がある。 The vitrification rate of CAS is as follows: CAS is heated at 1,000 ° C. for 2 hours, then slowly cooled at a cooling rate of 5 ° C./minute, and the area S 0 of the main peak of the crystalline mineral is determined by powder X-ray diffraction method. From the main peak S of the crystal, X (%) = 100 × (1−S / S 0 ). The vitrification rate of CAS is preferably 50% or more, more preferably 80% or more, and most preferably 90% or more in terms of short-term strength. If it is less than 50%, the short-term strength may be small.

CASの粉末度は、好ましくは平均粒子径10μm以下、より好ましくは7μm以下である。10μmを超えると、注入時の浸透性が低下し、短期の強度発現性の向上が不良な場合がある。   The fineness of CAS is preferably 10 μm or less, more preferably 7 μm or less, with an average particle size of 10 μm or less. If it exceeds 10 μm, the permeability at the time of injection may be reduced, and the improvement in short-term strength development may be poor.

本発明で使用する石膏としては、無水石膏、半水石膏、及び二水石膏が挙げられる。さらに天然石膏や、リン酸副生石膏、排脱石膏、及びフッ酸副生石膏等の化学石膏、又はこれらを熱処理して得られる石膏等が挙げられる。これらの中では、強度発現性が大きい点で無水石膏が好ましい。   Examples of the gypsum used in the present invention include anhydrous gypsum, hemihydrate gypsum, and dihydrate gypsum. Furthermore, natural gypsum, chemical gypsum such as phosphoric acid byproduct gypsum, waste gypsum, and hydrofluoric acid byproduct gypsum, or gypsum obtained by heat-treating these can be mentioned. Among these, anhydrous gypsum is preferable in terms of high strength development.

石膏の粉末度は、平均粒子径10μm以下、好ましくは7μm以下である。10μmを超えると注入時の浸透性が低下する場合がある。   The fineness of gypsum has an average particle size of 10 μm or less, preferably 7 μm or less. If it exceeds 10 μm, the permeability during injection may decrease.

石膏の使用量は、CAS100質量部に対して、50〜200質量部が好ましく、70〜150質量部がより好ましい。50質量部未満では短期強度が小さい場合があり、200部を超えると浸透性が低下する場合がある。   The amount of gypsum used is preferably 50 to 200 parts by mass and more preferably 70 to 150 parts by mass with respect to 100 parts by mass of CAS. If it is less than 50 parts by mass, the short-term strength may be small, and if it exceeds 200 parts, the permeability may decrease.

セメントと高炉スラグの合計とCASと石膏の合計(以下急硬材という)の割合は、セメントと高炉スラグの合計90〜99質量部:アルミノケイ酸カルシウムガラスと石膏の合計10〜1質量部が好ましく、セメントと高炉スラグの合計が97〜92質量部:アルミノケイ酸カルシウムガラスと石膏の合計3〜8質量部がより好ましい。アルミノケイ酸カルシウムガラスと石膏の合計が1質量部未満では短期強度の発現が不良の場合があり、アルミノケイ酸カルシウムガラスと石膏の合計が10質量部を超えると硬化時間の制御が難しく、ミキサやポンプを固めてしまい、浸透性が悪くなる場合がある。   The ratio of the sum of cement and blast furnace slag and the sum of CAS and gypsum (hereinafter referred to as “quick hardwood”) is preferably 90 to 99 parts by mass of cement and blast furnace slag: 10 to 1 parts by mass of calcium aluminosilicate glass and gypsum. The total of cement and blast furnace slag is 97 to 92 parts by mass: The total of 3 to 8 parts by mass of calcium aluminosilicate glass and gypsum is more preferable. If the total amount of calcium aluminosilicate glass and gypsum is less than 1 part by mass, the expression of short-term strength may be poor. If the total amount of calcium aluminosilicate glass and gypsum exceeds 10 parts by mass, it is difficult to control the setting time, and a mixer or pump May harden and deteriorate the permeability.

本発明では、所要の硬化時間が得られるように、凝結調整剤を使用する。   In the present invention, a setting modifier is used so that a required curing time can be obtained.

本発明で使用する凝結調整剤としては、アルミン酸ナトリウムやアルミン酸カリウム等のアルミン酸塩、炭酸ナトリウムや炭酸カリウム等の炭酸塩、水酸化ナトリウムや水酸化カリウム等の水酸化物、硫酸アルミニウム、硫酸鉄、及びミョウバン等の硫酸塩、ケイ酸ナトリウムやケイ酸カリウム等のケイ酸塩、リン酸ナトリウム、リン酸カルシウム、及びリン酸マグネシウム等のリン酸塩、並びに、ホウ酸リチウムやホウ酸ナトリウム等のホウ酸塩等の無機塩、クエン酸、グルコン酸、酒石酸、及びリンゴ酸又はこれらのナトリウム塩、カリウム塩及びカルシウム塩等の有機酸、並びに、糖等が挙げられ、これらのうちの一種又は二種以上を併用することが可能である。これらの中では、所要の硬化時間を確保する上で、炭酸塩と有機酸を併用することが好ましい。塩としては、ナトリウム塩、カリウム塩が好ましい。   As the setting regulator used in the present invention, aluminate such as sodium aluminate and potassium aluminate, carbonate such as sodium carbonate and potassium carbonate, hydroxide such as sodium hydroxide and potassium hydroxide, aluminum sulfate, Sulfates such as iron sulfate and alum, silicates such as sodium silicate and potassium silicate, phosphates such as sodium phosphate, calcium phosphate and magnesium phosphate, and lithium borate and sodium borate Examples thereof include inorganic salts such as borates, citric acid, gluconic acid, tartaric acid, malic acid or organic acids such as sodium salts, potassium salts and calcium salts thereof, and sugars. More than one species can be used in combination. Among these, it is preferable to use a carbonate and an organic acid in combination in order to secure a required curing time. As the salt, sodium salt and potassium salt are preferable.

炭酸塩と有機酸を併用した場合、炭酸塩の使用量は、有機酸100質量部に対して50〜1000質量部が好ましく、100〜500質量部がより好ましい。50質量部未満では短期強度の発現性が不良な場合があり、1000部を超えると所定の遅延を得るのが難しい場合がある。   When carbonate and an organic acid are used in combination, the amount of carbonate used is preferably 50 to 1000 parts by mass, more preferably 100 to 500 parts by mass with respect to 100 parts by mass of the organic acid. If the amount is less than 50 parts by mass, the short-term strength may be poorly expressed, and if it exceeds 1000 parts, it may be difficult to obtain a predetermined delay.

凝結調整剤の使用量は、硬化時間に応じて調整するため特に限定されるものではないが、セメントと高炉スラグと急硬材の合計100質量部に対して0.05〜2質量部が好ましく、0.1〜1質量部がより好ましい。0.05質量部未満では硬化時間が確保しにくい場合があり、2質量部を超えると硬化時間が異常に長くなり、不均一な固化状態となる場合がある。   Although the usage-amount of a setting regulator is not specifically limited in order to adjust according to hardening time, 0.05-2 mass parts is preferable with respect to a total of 100 mass parts of cement, a blast furnace slag, and a quick-hardening material. 0.1 to 1 part by mass is more preferable. If it is less than 0.05 parts by mass, it may be difficult to ensure the curing time, and if it exceeds 2 parts by mass, the curing time may become abnormally long, resulting in a non-uniform solidified state.

本発明における注入材の最大粒径は、20μm以下が好ましく、10μm以下がより好ましく、7μm以下が最も好ましい。20μmを超えると地盤の地質によっては微細な間隙への注入が困難になる場合がある。   The maximum particle size of the injection material in the present invention is preferably 20 μm or less, more preferably 10 μm or less, and most preferably 7 μm or less. If it exceeds 20 μm, injection into fine gaps may be difficult depending on the geology of the ground.

本注入材の粒度の調製方法は、特に限定されるものではないが、各材料を別々にボ−ルミル等の粉砕機で粉砕し、分級により20μm以下のものを集め、その後混合する方法や、各材料を混合した後に粉砕し、分級により20μm以下のものを集める方法のいずれも使用可能である。しかしながら、各材料を混合した後に粉砕し、分級すると、各材料の密度差により混合比が変わるおそれがある。本注入材の粒度の調製方法は、各材料を別々に粉砕後、分級し、その後混合する方法が好ましい。   The method for preparing the particle size of the injection material is not particularly limited, but each material is separately pulverized by a pulverizer such as a ball mill, and those having a size of 20 μm or less are collected by classification, and then mixed. Any method can be used in which each material is mixed and then pulverized and collected by classification to collect materials of 20 μm or less. However, when the materials are mixed and then pulverized and classified, the mixing ratio may change due to the difference in density of the materials. The method for adjusting the particle size of the injection material is preferably a method in which each material is separately pulverized, classified, and then mixed.

地盤中への浸透性を向上させるため、減水剤を使用する。   A water reducing agent is used to improve the permeability into the ground.

本発明で使用する減水剤としては、ナフタレンスルホン酸ホルマリン縮合物塩系、リグニンスルホン酸塩系、メラミンスルホン酸ホルマリン縮合物塩系、ポリカルボン酸塩系、及びポリエ−テル系の高性能減水剤が挙げられる。これらの中では、注入材の懸濁液の粘度が小さい点で、メラミンスルホン酸ホルマリン縮合物塩系が好ましい。   Water reducing agents used in the present invention include naphthalenesulfonic acid formalin condensate salt-based, lignin sulfonate-based, melamine sulfonic acid formalin condensate-based salt, polycarboxylate-based, and polyether-based high-performance water reducing agents. Is mentioned. Among these, a melamine sulfonic acid formalin condensate salt system is preferable in that the viscosity of the suspension of the injection material is small.

減水剤の使用量は、セメント100質量部に対して、固形分概算で12〜30質量部以下が好ましく、14〜20部がより好ましい。12質量部未満では低水比の場合は浸透性が悪くなる場合があり、30部を超えると注入材の懸濁液の粘度が上がり、浸透性が悪くなる場合がある。   The amount of the water reducing agent used is preferably 12 to 30 parts by mass or less, more preferably 14 to 20 parts by mass based on 100 parts by mass of cement. If it is less than 12 parts by mass, the permeability may be deteriorated in the case of a low water ratio, and if it exceeds 30 parts, the viscosity of the suspension of the injection material may be increased and the permeability may be deteriorated.

注入材を懸濁液とする場合の水の使用量はポンプで圧送できれば特に限定されるものではないが、セメント、高炉スラグ及び急硬材の合計100質量部に対して、100〜1000質量部が好ましく、200〜500質量部がより好ましい。100質量部未満では懸濁液の粘度が高くなり、浸透性が小さくなる場合があり、1000質量部を超えると硬化しない場合がある。   The amount of water used when the injection material is used as a suspension is not particularly limited as long as it can be pumped by a pump, but is 100 to 1000 parts by mass with respect to a total of 100 parts by mass of cement, blast furnace slag and rapid hardening material. Is preferable, and 200-500 mass parts is more preferable. If the amount is less than 100 parts by mass, the viscosity of the suspension increases and the permeability may be reduced. If the amount exceeds 1000 parts by mass, the suspension may not be cured.

注入材の練り混ぜ方法や注入方法は、特に限定されるものではない。注入管の種類により、単管ロット工法、単管ストレーナー工法、二重管単相工法、二重管複相工法、二重管ダブルパッカ−工法等、現在使用されている工法に適用可能である。   The mixing method and the injection method of the injection material are not particularly limited. Depending on the type of injection pipe, it can be applied to currently used construction methods such as single pipe lot construction method, single pipe strainer construction method, double pipe single phase construction method, double pipe double phase construction method, double pipe double packer construction method.

懸濁液を地盤内に注入する方法の違いにより、1ショット方式、1.5ショット方式、2ショット方式に適用可能である。1ショット方式とは、セメントと高炉スラグからなる主材と急硬材を所定の配合比率で薬液ミキサにより予め撹拌混合し、主材と急硬材を混合した1材状態の懸濁液を圧送して地盤に注入する方式である。1.5ショット方式は、主材と急硬材をポンプで個別に注入管に送り、注入管の頭部で2材を混合し、混合した懸濁液を注入管の先端から吐出して地盤に注入する方式である。2ショット方式とは、1.5ショット方式と同様に、主材と急硬材をポンプで個別に注入管に送り、注入管の先端から吐出される瞬間に2材を混合する方式である。本発明は、1材状態のゲル化時間を確保でき、ミキサやポンプを固めないので、1ショット方式に適用できる。1ショット方式の場合、セメントミルクと急硬材スラリーを予め混合するので、ミキサやポンプが1台で済み、施工性が簡便という利点を有する。   Depending on the method of injecting the suspension into the ground, it can be applied to the 1-shot system, 1.5-shot system, and 2-shot system. In the one-shot system, the main material consisting of cement and blast furnace slag and the hardened material are agitated and mixed in advance by a chemical mixer at a predetermined blending ratio, and the suspension in a single material state in which the main material and the hardened material are mixed is pumped Then, it is a method to inject into the ground. In the 1.5 shot system, the main material and the hardened material are individually pumped to the injection tube, the two materials are mixed at the head of the injection tube, and the mixed suspension is discharged from the tip of the injection tube. This is the method of injecting. The two-shot method is a method in which the main material and the quick-hardening material are individually sent to the injection tube by a pump and the two materials are mixed at the moment of being discharged from the tip of the injection tube, as in the 1.5-shot method. The present invention can be applied to the one-shot method because it can ensure the gelation time in one material state and does not harden the mixer or pump. In the case of the one-shot method, cement milk and quick-hardening material slurry are mixed in advance, so that only one mixer or pump is required and the workability is simple.

以下実験例により本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail with reference to experimental examples.

実験例1
セメント、高炉スラグ、CAS、石膏を分級、粉砕した。その後、セメント20質量部と高炉スラグ80質量部からなる主材95質量部と、CAS100質量部と石膏100質量部からなる急硬材5質量部を混合し、表1に示す平均粒子径の注入材を作製した。注入材100質量部に対して、凝結調整剤0.7質量部と水400質量部、セメント100質量部に対して減水剤16質量部を混合し、懸濁液を作製した。
懸濁液を作製後、模擬砂層を用い、浸透長さの測定を行った。結果を表1に示した。
Experimental example 1
Cement, blast furnace slag, CAS and gypsum were classified and pulverized. Then, 95 parts by mass of the main material consisting of 20 parts by mass of cement and 80 parts by mass of blast furnace slag, 5 parts by mass of hardened material consisting of 100 parts by mass of CAS and 100 parts by mass of gypsum were mixed, and the average particle diameter injection shown in Table 1 was performed. A material was prepared. A suspension was prepared by mixing 0.7 parts by mass of a setting modifier and 400 parts by mass of water with 100 parts by mass of the injection material and 16 parts by mass of a water reducing agent with respect to 100 parts by mass of cement.
After the suspension was prepared, the penetration length was measured using a simulated sand layer. The results are shown in Table 1.

<使用材料>
セメント:普通ポルトランドセメント分級品
高炉スラグ:CaO42%、Al13%、SiO34%、その他11%の組成の高炉水砕スラグ微粉砕品
CAS:CaO 45%、Al 40%、及びSiO 15%の組成のガラス質、ガラス化率95%
石膏:天然無水石膏微粉砕品
減水剤 :メラミンスルホン酸ホルマリン縮合物塩系、粉末状
凝結調整剤:クエン酸100質量部と炭酸カリウム300質量部からなる混合物
砂:豊浦硅砂(旧豊浦標準砂)
水:水道水
<Materials used>
Cement: Ordinary Portland cement-classified blast furnace slag: Fine granulated blast furnace slag with a composition of CaO 42%, Al 2 O 3 13%, SiO 2 34%, and other 11% CAS: CaO 45%, Al 2 O 3 40% , And SiO 2 of 15% composition, vitrification rate 95%
Gypsum: Natural anhydrous gypsum finely pulverized water reducing agent: Melamine sulfonic acid formalin condensate salt system, powdery coagulation regulator: Mixture consisting of 100 parts by mass of citric acid and 300 parts by mass of potassium carbonate Sand: Toyoura sand (former Toyoura standard sand)
Water: tap water

<測定方法>
平均粒子径:レーザー回折法により平均粒径を測定。機種は、LA−920(堀場製作所)を使用した。
浸透長さ:直径5cmの土木学会基準ビニル袋に豊浦硅砂を20cmになるように充填し、作製した懸濁液200mlを上部面より静かに注ぎ入れ、自然浸透させた。2時間後、模擬砂層への浸透長さを測定した。
20cmまでの時間:浸透長さの測定において、懸濁液を上部面に注入してから、懸濁液が模擬砂層20cmに浸透するまでの時間を測定した。
<Measurement method>
Average particle diameter: The average particle diameter is measured by a laser diffraction method. The model used was LA-920 (Horiba Seisakusho).
Penetration length: A civil engineering society standard vinyl bag with a diameter of 5 cm was filled with Toyoura cinnabar so as to be 20 cm, and 200 ml of the prepared suspension was poured gently from the upper surface to allow natural penetration. After 2 hours, the penetration length into the simulated sand layer was measured.
Time to 20 cm: In the measurement of the penetration length, the time from the injection of the suspension into the upper surface until the suspension penetrates into the simulated sand layer 20 cm was measured.

Figure 0005442944
Figure 0005442944

表1より、注入材の平均粒子径が小さいほど、高い浸透性が得られることが判った。   From Table 1, it was found that the smaller the average particle diameter of the injection material, the higher the permeability.

実験例2
表2に示すセメントと高炉スラグからなる主材を使用し、平均粒子径5μmの注入材を作製したこと以外は、実験例1と同様に懸濁液を作製し、試験を実施した。結果を表2に示した。
Experimental example 2
A suspension was prepared and tested in the same manner as in Experimental Example 1 except that a main material composed of cement and blast furnace slag shown in Table 2 was used and an injection material having an average particle diameter of 5 μm was prepared. The results are shown in Table 2.

<測定方法>
ゲル化時間 :懸濁液をカップに入れてから、懸濁液を入れたカップを傾けても懸濁液が流れなくなるまでの時間。
硬化時間:浸透長さの測定において、懸濁液が砂に浸透してから、ビニル袋の周囲を指触し、砂に浸透した懸濁液が凹まない状態までの時間。
短期強度:硬化時間の測定において、硬化してから24時間後の圧縮強度を測定。供試体寸法は4×4×16cm。圧縮強度の測定はJIS R 5201に準じた。
<Measurement method>
Gelation time: The time from when the suspension is put into the cup until the suspension stops flowing even if the cup containing the suspension is tilted.
Curing time: The time from the penetration of the suspension into the sand until the touch of the vinyl bag and the suspension that has penetrated the sand does not dent in the penetration length measurement.
Short-term strength: Measures compressive strength 24 hours after curing in measurement of curing time. The specimen size is 4 × 4 × 16 cm. The measurement of compressive strength conformed to JIS R 5201.

Figure 0005442944
Figure 0005442944

表2より、セメントと高炉スラグの割合が適量な場合、高い浸透性と短期強度発現性が得られることが判った。1材状態のゲル化時間を確保できるので、一定の作業時間を有することができ、浸透後は速やかに硬化することが判った。   From Table 2, it was found that when the ratio of cement and blast furnace slag is appropriate, high permeability and short-term strength development can be obtained. It was found that the gelation time in one material state can be ensured, so that it can have a certain working time and harden quickly after penetration.

実験例3
CAS100質量部と石膏100質量部からなる急硬材を、主材と急硬材の合計100質量部中、表3に示す質量部使用し、平均粒子径5μmの注入材を作製したこと以外は、実験例1と同様に懸濁液を作製し、試験を実施した。結果を表3に示した。
Experimental example 3
Except for using a hard part consisting of 100 parts by weight of CAS and 100 parts by weight of gypsum, using the parts by weight shown in Table 3 in a total of 100 parts by weight of the main material and the quick hard part, and producing an injection material having an average particle diameter of 5 μm A suspension was prepared in the same manner as in Experimental Example 1, and the test was performed. The results are shown in Table 3.

Figure 0005442944
Figure 0005442944

表3より、急硬材が適量な場合、高い浸透性と短期強度発現性が得られることが判った。1材状態のゲル化時間を確保できるので、一定の作業時間を有することができ、浸透後は速やかに硬化することが判った。   From Table 3, it was found that high penetration and short-term strength development can be obtained when an appropriate amount of rapid hardening material is used. It was found that the gelation time in one material state can be ensured, so that it can have a certain working time and harden quickly after penetration.

実験例4
主材と急硬材の合計100質量部に対して表4に示す凝結調整剤を使用し、平均粒子径5μmの注入材を作製したこと以外は、実験例1と同様に懸濁液を作製し、試験を実施した。結果を表4に示した。
Experimental Example 4
A suspension was prepared in the same manner as in Experimental Example 1, except that the setting modifier shown in Table 4 was used for a total of 100 parts by mass of the main material and the hardened material, and an injection material having an average particle diameter of 5 μm was prepared. The test was conducted. The results are shown in Table 4.

Figure 0005442944
Figure 0005442944

表4より、凝結調整剤が適量な場合、高い浸透性が得られることが判った。1材状態のゲル化時間を確保できるので、一定の作業時間を有することができ、浸透後は速やかに硬化することが判った。   From Table 4, it was found that high penetrability can be obtained when the setting modifier is in an appropriate amount. It was found that the gelation time in one material state can be ensured, so that it can have a certain working time and harden quickly after penetration.

実験例5
CAS100質量部と表5に示す石膏からなる急硬材を使用し、平均粒子径5μmの注入材を作製したこと以外は、実験例1と同様に懸濁液を作製し、試験を実施した。結果を表5に示した。
Experimental Example 5
A suspension was prepared and tested in the same manner as in Experimental Example 1 except that a rapid hardening material composed of 100 parts by mass of CAS and gypsum shown in Table 5 was used and an injection material having an average particle diameter of 5 μm was prepared. The results are shown in Table 5.

Figure 0005442944
Figure 0005442944

表5より、石膏が適量な場合、高い浸透性と短期強度発現性が得られることが判った。   From Table 5, it was found that when the amount of gypsum is appropriate, high permeability and short-term strength development can be obtained.

実験例6
セメント100質量部に対して表6に示す減水剤を使用し、平均粒子径5μmの注入材を作製したこと以外は、実験例1と同様に懸濁液を作製し、試験を実施した。結果を表6に示した。
Experimental Example 6
A suspension was prepared and tested in the same manner as in Experimental Example 1 except that the water reducing agent shown in Table 6 was used with respect to 100 parts by mass of cement and an injection material having an average particle diameter of 5 μm was prepared. The results are shown in Table 6.

Figure 0005442944
Figure 0005442944

表6より、減水剤が適量な場合、高い浸透性が得られることが判った。1材状態のゲル化時間を確保できるので、一定の作業時間を有することができ、浸透後は速やかに硬化することが判った。   From Table 6, it was found that when the water reducing agent is in an appropriate amount, high permeability can be obtained. It was found that the gelation time in one material state can be ensured, so that it can have a certain working time and harden quickly after penetration.

実験例7
クエン酸100質量部と表7に示す炭酸カリウムからなる凝結調整剤を使用し、平均粒子径5μmの注入材を作製したこと以外は、実験例1と同様に懸濁液を作製し、試験を実施した。結果を表7に示した。
Experimental Example 7
A suspension was prepared in the same manner as in Experimental Example 1 except that 100 parts by mass of citric acid and a setting regulator composed of potassium carbonate shown in Table 7 were used, and an injection material having an average particle diameter of 5 μm was prepared. Carried out. The results are shown in Table 7.

Figure 0005442944
Figure 0005442944

表7より、急硬材が適量な場合、高い短期強度発現性が得られることが判った。1材状態のゲル化時間を確保できるので、一定の作業時間を有することができ、浸透後は速やかに硬化することが判った。   From Table 7, it was found that when the hardened material is in an appropriate amount, high short-term strength development can be obtained. It was found that the gelation time in one material state can be ensured, so that it can have a certain working time and harden quickly after penetration.

本発明の注入材は1材状態のゲル化時間を確保できるので、セメントと急硬材の同時混練り、即ち、1ショット方式での注入が可能となる。1材状態のゲル化時間を確保した場合にも、浸透後速やかに硬化し、高い強度発現性か得られる。   Since the injection material of the present invention can secure a gelation time in a single material state, it is possible to simultaneously knead cement and a rapid hardening material, that is, injection by a one-shot method. Even when the gelation time of one material state is ensured, it cures quickly after permeation and high strength developability is obtained.

各種土木工事におけるトンネル工事、地盤改良工事や止水工事で用いられる地盤注入材に本注入材を使用した場合、十分な施工時間が取れ、浸透性に優れているため、注入性が向上し、従来適応困難だった地質の地盤への注入が可能となる。注入後の硬化が速やかで、注入個所の移動が速やかで施工性が大幅に改善される。   When this injection material is used for the ground injection material used in tunnel construction, ground improvement work and water stop construction in various civil engineering works, sufficient construction time is taken and the permeability is excellent, so the injectability is improved. It becomes possible to inject into geological ground that was difficult to adapt. Curing after injection is quick, the movement of the injection point is quick, and the workability is greatly improved.

本発明の注入材を用いることにより、数μm程度の空隙にも浸透し固化することにより、遮水性を向上し、その効果を長期間持続させることができ、長期耐久性に優れた効果が得られる。   By using the injecting material of the present invention, it penetrates into and solidifies into a gap of about several μm, thereby improving the water barrier property and maintaining its effect for a long period of time, and obtaining an effect excellent in long-term durability. It is done.

Claims (6)

セメント、高炉スラグ、アルミノケイ酸カルシウムガラス、石膏、凝結調整剤、及び減水
剤を以下の割合で含有してなる1ショット方式用注入材。
(1)セメントと高炉スラグの割合が、セメント3〜30質量部:高炉スラグ97〜70
質量部
(2)石膏の使用量が、アルミノケイ酸カルシウムガラス100質量部に対して、50〜
200質量部
(3)セメントと高炉スラグの合計とアルミノケイ酸カルシウムガラスと石膏の合計の割
合が、セメントと高炉スラグの合計90〜99質量部:アルミノケイ酸カルシウムガラス
と石膏の合計10〜1質量部
(4)有機酸100質量部と炭酸塩50
〜1000質量部を含有してなる凝結調整剤の使用量が、セメント、高炉スラグ、アルミノケイ酸カルシウムガラス
、及び石膏の合計100質量部に対して0.05〜2質量部
(5)減水剤の使用量が、セメント100質量部に対して12〜30質量部
An injection material for a one-shot system comprising cement, blast furnace slag, calcium aluminosilicate glass, gypsum, a setting regulator, and a water reducing agent in the following proportions.
(1) The ratio of cement to blast furnace slag is 3 to 30 parts by mass of cement: blast furnace slag 97 to 70
Part (2) The amount of gypsum used is 50 to 100 parts by mass of calcium aluminosilicate glass.
200 parts by mass (3) The total proportion of cement and blast furnace slag and the total of calcium aluminosilicate glass and gypsum is 90 to 99 parts by mass of cement and blast furnace slag: 10 to 1 parts by mass of calcium aluminosilicate glass and gypsum (4) 100 parts by mass of organic acid and 50 carbonates
The amount of the setting regulator comprising ~ 1000 parts by mass is 0.05 to 2 parts by mass (5) of the water reducing agent with respect to 100 parts by mass in total of cement, blast furnace slag, calcium aluminosilicate glass, and gypsum. The amount used is 12-30 parts by mass with respect to 100 parts by mass of cement.
減水剤がメラミンスルホン酸ホルマリン縮合物塩系である請求項1に記載の1ショット方式用注入材。The injection material for a one-shot system according to claim 1, wherein the water reducing agent is a melamine sulfonic acid formalin condensate salt system. 平均粒子径が10μm以下である請求項1又は2に記載の1ショット方式用注入材。 The injection material for a one-shot method according to claim 1 or 2, wherein an average particle diameter is 10 µm or less. セメント、高炉スラグ、アルミノケイ酸カルシウムガラス、石膏、凝結調整剤、減水剤、
及び水を以下の割合で予め混合し、注入してなる1ショット方式注入工法。
(1)セメントと高炉スラグの割合が、セメント3〜30質量部:高炉スラグ97〜70
質量部
(2)石膏の使用量が、アルミノケイ酸カルシウムガラス100質量部に対して、50〜
200質量部
(3)セメントと高炉スラグの合計とアルミノケイ酸カルシウムガラスと石膏の合計の割
合が、セメントと高炉スラグの合計90〜99質量部:アルミノケイ酸カルシウムガラス
と石膏の合計10〜1質量部
(4)有機酸100質量部と炭酸塩50
〜1000質量部を含有してなる凝結調整剤の使用量が、セメント、高炉スラグ、アルミノケイ酸カルシウムガラス
、及び石膏の合計100質量部に対して0.05〜2質量部
(5)減水剤の使用量が、セメント100質量部に対して12〜30質量部
(6)水の使用量が、セメント、高炉スラグ、アルミノケイ酸カルシウムガラス、及び石
膏の合計100質量部に対して100〜1000質量部
Cement, blast furnace slag, calcium aluminosilicate glass, gypsum, setting modifier, water reducing agent,
And a one-shot injection method in which water is premixed and injected at the following ratio.
(1) The ratio of cement to blast furnace slag is 3 to 30 parts by mass of cement: blast furnace slag 97 to 70
Part (2) The amount of gypsum used is 50 to 100 parts by mass of calcium aluminosilicate glass.
200 parts by mass (3) The total proportion of cement and blast furnace slag and the total of calcium aluminosilicate glass and gypsum is 90 to 99 parts by mass of cement and blast furnace slag: 10 to 1 parts by mass of calcium aluminosilicate glass and gypsum (4) 100 parts by mass of organic acid and 50 carbonates
The amount of the setting regulator comprising ~ 1000 parts by mass is 0.05 to 2 parts by mass (5) of the water reducing agent with respect to 100 parts by mass in total of cement, blast furnace slag, calcium aluminosilicate glass, and gypsum. The amount used is 12 to 30 parts by mass with respect to 100 parts by mass of cement. (6) The amount of water used is 100 to 1000 parts by mass with respect to a total of 100 parts by mass of cement, blast furnace slag, calcium aluminosilicate glass, and gypsum.
減水剤がメラミンスルホン酸ホルマリン縮合物塩系である請求項4に記載の1ショット方式注入工法。The one-shot injection method according to claim 4, wherein the water reducing agent is a melamine sulfonic acid formalin condensate salt system. 平均粒子径が10μm以下である請求項4又は5に記載の1ショット方式注入工法。 The one-shot injection method according to claim 4 or 5, wherein the average particle diameter is 10 µm or less.
JP2007230836A 2007-09-05 2007-09-05 Injection material and injection method Active JP5442944B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007230836A JP5442944B2 (en) 2007-09-05 2007-09-05 Injection material and injection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007230836A JP5442944B2 (en) 2007-09-05 2007-09-05 Injection material and injection method

Publications (2)

Publication Number Publication Date
JP2009062444A JP2009062444A (en) 2009-03-26
JP5442944B2 true JP5442944B2 (en) 2014-03-19

Family

ID=40557325

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007230836A Active JP5442944B2 (en) 2007-09-05 2007-09-05 Injection material and injection method

Country Status (1)

Country Link
JP (1) JP5442944B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101816936B1 (en) * 2009-09-07 2018-01-09 덴카 주식회사 Hydraulic cement composition for injection into soil, and method for improvement in soil using same
JP5646841B2 (en) * 2009-12-09 2014-12-24 電気化学工業株式会社 Injection material and injection method
WO2011115245A1 (en) * 2010-03-19 2011-09-22 電気化学工業株式会社 Injection material for repairing cracks in concrete, method for manufacturing same, and injection method using same
JP5687869B2 (en) * 2010-08-27 2015-03-25 電気化学工業株式会社 Injection material and injection method
JP5936558B2 (en) * 2011-02-08 2016-06-22 デンカ株式会社 Injection method for injection material for repairing concrete cracks
CN102173709B (en) * 2011-02-11 2012-11-14 广东龙湖科技股份有限公司 Property-adjustable gypsum-based grouting material
CN114105534A (en) * 2021-11-23 2022-03-01 宁波中淳高科股份有限公司 High-strength water-absorbing grouting material for static drilling root-planting pile and preparation method and application thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3498880B2 (en) * 1996-02-02 2004-02-23 電気化学工業株式会社 Hydraulic injection material and injection method
JPH11217253A (en) * 1998-01-28 1999-08-10 Mitsubishi Materials Corp Ultrarapid hardening cement composition
JP4165951B2 (en) * 1999-01-21 2008-10-15 電気化学工業株式会社 Injection material
JP4619502B2 (en) * 2000-09-14 2011-01-26 電気化学工業株式会社 Low hexavalent chromium injection material
JP2004231884A (en) * 2003-01-31 2004-08-19 Taiheiyo Material Kk Injection material

Also Published As

Publication number Publication date
JP2009062444A (en) 2009-03-26

Similar Documents

Publication Publication Date Title
JP4902356B2 (en) Composition for ground improvement material, injection material using the same, and method of using the same
US11001527B2 (en) Composite cement and method of manufacturing composite cement
JP5442944B2 (en) Injection material and injection method
JP4948430B2 (en) Quick hardening cement for seawater resistant cement asphalt mortar and seawater resistant cement asphalt mortar using the same
US20220135476A1 (en) Geosynthsesis binder comprising a calcium- alkaline activator and a silico-aluminous compound
JP5577651B2 (en) Rapid hardening cement
JP6030438B2 (en) Spraying material and spraying method using the same
JP5687869B2 (en) Injection material and injection method
JP3498880B2 (en) Hydraulic injection material and injection method
JP5085497B2 (en) Cement composition for injection
JP2006182822A (en) Highly penetrative grouting material
JP2004210557A (en) Grout composition
JP4535793B2 (en) Ground injection material
JP7442373B2 (en) Fast-setting cement composition
JP4275618B2 (en) Highly permeable ground injection material
JP4157546B2 (en) Quick hardening cement concrete and quick setting cement concrete
JP5785421B2 (en) Cement composition and cavity filling method
JP5646841B2 (en) Injection material and injection method
JP3821496B2 (en) Cement composition for injection material
JP3182156B2 (en) Hydraulic material and hydraulic injection material
JP5930918B2 (en) Filling void filling material and filling method
JP3178727B2 (en) Hydraulic injection material
JP3460165B2 (en) Cement admixture, cement composition, and injection material using the same
US20230192565A1 (en) Activation system, including at least one alkaline metal salt and calcium and/or magnesium carbonate for activating ground granulated blast furnace slag and binder comprising the same for the preparation of mortar or concrete composition
JP4852506B2 (en) Cement additive and cement composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100430

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130308

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131217

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131219

R151 Written notification of patent or utility model registration

Ref document number: 5442944

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250