JP2020032343A - Method for suppressing elution of boron in boron-including material, and method for production of treatment material for boron elution suppression - Google Patents
Method for suppressing elution of boron in boron-including material, and method for production of treatment material for boron elution suppression Download PDFInfo
- Publication number
- JP2020032343A JP2020032343A JP2018160164A JP2018160164A JP2020032343A JP 2020032343 A JP2020032343 A JP 2020032343A JP 2018160164 A JP2018160164 A JP 2018160164A JP 2018160164 A JP2018160164 A JP 2018160164A JP 2020032343 A JP2020032343 A JP 2020032343A
- Authority
- JP
- Japan
- Prior art keywords
- boron
- elution
- containing substance
- cooling
- suppressing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 title claims abstract description 162
- 229910052796 boron Inorganic materials 0.000 title claims abstract description 162
- 238000010828 elution Methods 0.000 title claims abstract description 71
- 238000000034 method Methods 0.000 title claims abstract description 56
- 239000000463 material Substances 0.000 title claims abstract description 32
- 230000001629 suppression Effects 0.000 title claims description 15
- 238000004519 manufacturing process Methods 0.000 title claims description 7
- 238000001816 cooling Methods 0.000 claims abstract description 65
- 239000007791 liquid phase Substances 0.000 claims abstract description 15
- 239000000126 substance Substances 0.000 claims description 82
- 239000002893 slag Substances 0.000 claims description 32
- 229910000831 Steel Inorganic materials 0.000 claims description 7
- 239000010959 steel Substances 0.000 claims description 7
- 239000004566 building material Substances 0.000 claims description 5
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 16
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 15
- 239000000203 mixture Substances 0.000 description 8
- 238000009628 steelmaking Methods 0.000 description 8
- 238000005469 granulation Methods 0.000 description 7
- 230000003179 granulation Effects 0.000 description 7
- 229910052742 iron Inorganic materials 0.000 description 7
- 239000010883 coal ash Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 230000007613 environmental effect Effects 0.000 description 4
- 239000011521 glass Substances 0.000 description 4
- 239000000395 magnesium oxide Substances 0.000 description 4
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- 230000002411 adverse Effects 0.000 description 3
- 239000002956 ash Substances 0.000 description 3
- 239000006227 byproduct Substances 0.000 description 3
- 229910002804 graphite Inorganic materials 0.000 description 3
- 239000010439 graphite Substances 0.000 description 3
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 239000012071 phase Substances 0.000 description 3
- 239000002689 soil Substances 0.000 description 3
- ODINCKMPIJJUCX-UHFFFAOYSA-N Calcium oxide Chemical compound [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 2
- 229910004298 SiO 2 Inorganic materials 0.000 description 2
- 230000001276 controlling effect Effects 0.000 description 2
- 229910001385 heavy metal Inorganic materials 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 229910001021 Ferroalloy Inorganic materials 0.000 description 1
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 1
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 238000003723 Smelting Methods 0.000 description 1
- 238000007605 air drying Methods 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 1
- 238000005422 blasting Methods 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 1
- 239000000292 calcium oxide Substances 0.000 description 1
- BRPQOXSCLDDYGP-UHFFFAOYSA-N calcium oxide Chemical compound [O-2].[Ca+2] BRPQOXSCLDDYGP-UHFFFAOYSA-N 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000007922 dissolution test Methods 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 231100000614 poison Toxicity 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 229910052711 selenium Inorganic materials 0.000 description 1
- 239000011669 selenium Substances 0.000 description 1
- 239000010801 sewage sludge Substances 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 239000003440 toxic substance Substances 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Landscapes
- Processing Of Solid Wastes (AREA)
- Curing Cements, Concrete, And Artificial Stone (AREA)
Abstract
Description
本発明は、ホウ素含有物質のホウ素溶出抑制方法、および、ホウ素溶出抑制処理材の製造方法に関する。 The present invention relates to a method for suppressing boron elution of a boron-containing substance, and a method for producing a material for suppressing boron elution.
工業の発展に伴い、各種の産業において生成される産業副産物が増加している。
最近では、地球環境保全という観点から、産業副産物が有効利用されている。例えば、製鉄所から発生する高炉スラグ、製鋼スラグ(転炉スラグ、電気炉スラグ)などの鉄鋼スラグ、火力発電所から発生する石炭灰、廃棄物や下水汚泥の焼却灰などを高温で溶融させて得られる溶融スラグ;等の産業副産物は、冷却され固化されて、適正な粒度調整が施された後、路盤材、地盤材などの土木建築資材として再利用されている。
With the development of industry, industrial by-products generated in various industries are increasing.
Recently, industrial by-products have been effectively used from the viewpoint of global environmental protection. For example, blast furnace slag generated from ironworks, steel slag such as steelmaking slag (converter slag, electric furnace slag), coal ash generated from thermal power plants, and incineration ash of waste and sewage sludge are melted at high temperatures. The obtained industrial by-products such as molten slag are cooled and solidified, and after being appropriately adjusted in particle size, are reused as civil engineering and building materials such as roadbed materials and ground materials.
ところで、周辺の環境に悪影響を及ぼす成分として、代表的には、カドミウム、水銀、クロム、鉛などの重金属類が例示できる。これら重金属類以外にも、フッ素、セレン、ヒ素、ホウ素なども、環境に悪影響を与える成分として、環境への排出(溶出)が厳しく規制されている。例えば、ホウ素の場合、土壌を構成する土木建築資材からの溶出量(環境庁告示第46号に規定される溶出試験による溶出量)を1mg/L以下とするように規制されている。 By the way, representative examples of components that have an adverse effect on the surrounding environment include heavy metals such as cadmium, mercury, chromium, and lead. In addition to these heavy metals, fluorine, selenium, arsenic, boron, and the like are also strictly regulated as components that adversely affect the environment (discharge (elution) to the environment). For example, in the case of boron, the amount of elution from civil engineering and building materials constituting soil (the amount of elution by an elution test specified in the Environment Agency Notification No. 46) is regulated to 1 mg / L or less.
環境に悪影響を及ぼす成分の溶出抑制方法は、各種提案されている。
例えば、特許文献1には、「…ホウ素を含有する土壌又は焼却灰に酸化マグネシウム…を添加、混合し、固化不溶化処理を行うことにより、土壌又は焼却灰中の…ホウ素を封じ込める」技術が開示されている([0006])。この技術によれば、「…ホウ素が固定されて溶出せず、…環境負荷低減が図れる」とされている([0023])。
Various methods for suppressing elution of components that have an adverse effect on the environment have been proposed.
For example, Patent Literature 1 discloses a technique of “... containing boron in soil or incinerated ash by adding and mixing magnesium oxide to boron-containing soil or incinerated ash and performing solidification and insolubilization treatment”. ([0006]). According to this technique, "... the boron is fixed and does not elute, so that the environmental load can be reduced" ([0023]).
特許文献2には、火力発電所等から排出される石炭灰について、「石炭灰を所定期間加湿養生する」技術が開示されている([請求項1])。これにより、「石炭灰をそのまま埋め立て処分する場合に比べて、埋め立て地からのホウ素の溶出を大幅に抑制することができる」とされている([0012])。 Patent Literature 2 discloses a technique of “humidifying and curing coal ash for a predetermined period” for coal ash discharged from a thermal power plant or the like ([Claim 1]). Accordingly, it is described that "elution of boron from landfills can be significantly suppressed as compared with the case where coal ash is landfilled as it is" ([0012]).
特許文献3には、「Al2O3含有量が3%以上であって、かつ、Fe2O3とAl2O3含有量の総量が15%以上である」製鋼スラグを含有する有害物質低減材が開示されている([請求項1])。この製鋼スラグのブレーン比表面積については、「3,000cm2/g未満では有害物質の低減効果が十分でない」と記載されている([0027])。 Toxic substances Patent Document 3, the "Al 2 O 3 content be 3% or more, and the total amount of Fe 2 O 3 and Al 2 O 3 content of 15% or more" containing steelmaking slag A reducing material is disclosed ([Claim 1]). As for the brane specific surface area of this steelmaking slag, it is described that "the effect of reducing harmful substances is not sufficient if the slag is less than 3,000 cm 2 / g" ([0027]).
特許文献4には、ホウ素含有物質のホウ素溶出抑制方法として、「…ホウ素含有物質に、製鋼スラグを水と共に混合して混合物とし、…混合物を、所定期間、風乾および/または養生する」ことが開示されている([請求項1])。この製鋼スラグについては、酸化カルシウム(CaO)、酸化ケイ素(SiO2)等の含有量から計算される指標が特定の条件を満足することが、「ホウ素の溶出抑制効果の向上という観点から、望ましい」とされている([0028]、[0029])。 Patent Literature 4 discloses a method for suppressing boron elution of a boron-containing substance, "... mixing steel-making slag with water together with a boron-containing substance to form a mixture, and then air-drying and / or curing the mixture for a predetermined period". It has been disclosed ([Claim 1]). With respect to this steelmaking slag, it is desirable that an index calculated from the content of calcium oxide (CaO), silicon oxide (SiO 2 ), and the like satisfies specific conditions, from the viewpoint of improving the effect of suppressing boron elution. ([0028], [0029]).
特許文献1に記載された技術は、ホウ素含有物質に、高価な酸化マグネシウムをホウ素溶出抑制材として添加する技術であるため、コスト高であり、添加作業も煩雑である。なお、酸化マグネシウムを添加したホウ素含有物質は、硬化し塊状化する場合があり、再利用しにくいという問題もある。
特許文献2に記載された技術は、ホウ素含有物質を所定期間加湿養生することを要しており、ホウ素の溶出量が多いホウ素含有物質については、長期間の加湿養生が必要となることから、煩雑であり、生産性も劣る。
特許文献3および4に記載された技術は、ホウ素含有物質に、ホウ素溶出抑制材として、所定の製鋼スラグを添加混合したり、その後に養生したりする技術であるため、煩雑である。また、得られた混合物は、用いたホウ素含有物質よりも質量および容積が大幅に増加するため、再利用しにくいという問題もある。
なお、特許文献3に記載された技術においては、製鋼スラグの比表面積を上げるために粉砕作業を要する場合があり、この場合、更に煩雑となる。
The technique described in Patent Document 1 is a technique in which expensive magnesium oxide is added to a boron-containing substance as a boron elution suppressing material, so that the cost is high and the adding operation is complicated. In addition, the boron-containing substance to which magnesium oxide is added sometimes hardens and agglomerates, and also has a problem that it is difficult to reuse.
The technique described in Patent Literature 2 requires humidifying curing of a boron-containing substance for a predetermined period, and for a boron-containing substance having a high boron elution amount, long-term humidifying curing is required. It is complicated and productivity is poor.
The techniques described in Patent Literatures 3 and 4 are complicated because they are techniques of adding and mixing a predetermined steelmaking slag as a boron elution inhibitor to a boron-containing substance, and then curing the slag. Further, the obtained mixture has a problem that it is difficult to reuse the mixture because the mass and the volume thereof are significantly increased as compared with the boron-containing substance used.
In addition, in the technique described in Patent Literature 3, a pulverizing operation may be required to increase the specific surface area of the steelmaking slag, and in this case, the operation becomes more complicated.
本発明は、以上の点を鑑みてなされたものであり、簡便な手法により、ホウ素含有物質のホウ素溶出を抑制することを目的とする。 The present invention has been made in view of the above points, and has as its object to suppress the elution of boron from a boron-containing substance by a simple method.
本発明者らは、鋭意検討した結果、ホウ素含有物質の冷却速度を制御することにより、ホウ素含有物質のホウ素溶出量を低減できることを見出し、本発明を完成させた。 Means for Solving the Problems As a result of intensive studies, the present inventors have found that controlling the cooling rate of a boron-containing substance can reduce the amount of boron eluted from the boron-containing substance, and have completed the present invention.
すなわち、本発明は、以下の[1]〜[4]を提供する。
[1]ホウ素含有物質からホウ素が溶出することを抑制する、ホウ素含有物質のホウ素溶出抑制方法であって、液相を有する温度状態にある上記ホウ素含有物質を冷却し、上記ホウ素含有物質を冷却するときの冷却速度(単位:℃/min)をZ、0.1℃/min以上20℃/min以下の範囲の冷却速度(単位:℃/min)をA、上記冷却速度Aで冷却した後の上記ホウ素含有物質のホウ素溶出量(単位:mg/L)をBとしたときに、下記式(1)を満たす、ホウ素含有物質のホウ素溶出抑制方法。
Z≧A×B3 ・・・(1)
ただし、上記冷却速度ZおよびAは、上記ホウ素含有物質を、液相を有する温度から900℃まで冷却する際の温度変化の時間割合を表す。
[2]上記ホウ素含有物質が、鉄鋼プロセスにおいて発生するスラグである、上記[1]に記載のホウ素含有物質のホウ素溶出抑制方法。
[3]ホウ素含有物質を、上記[1]または[2]に記載の方法によって処理することにより、ホウ素溶出が抑制されたホウ素溶出抑制処理材を得る、ホウ素溶出抑制処理材の製造方法。
[4]上記ホウ素溶出抑制処理材が土木建築資材である、上記[3]に記載のホウ素溶出抑制処理材の製造方法。
That is, the present invention provides the following [1] to [4].
[1] A method for suppressing the elution of boron from a boron-containing substance, the method comprising suppressing boron elution of the boron-containing substance, wherein the boron-containing substance in a temperature state having a liquid phase is cooled, and the boron-containing substance is cooled. After cooling at the cooling rate (unit: ° C / min) Z, cooling rate (unit: ° C / min) in the range of 0.1 ° C / min or more and 20 ° C / min or less, and A method for suppressing boron elution of a boron-containing substance, wherein B is the boron elution amount (unit: mg / L) of the above-mentioned boron-containing substance.
Z ≧ A × B 3 (1)
Here, the cooling rates Z and A represent the time ratio of the temperature change when the boron-containing substance is cooled from a temperature having a liquid phase to 900 ° C.
[2] The method according to [1], wherein the boron-containing substance is slag generated in a steel process.
[3] A method for producing a boron-elution-suppressed material, comprising treating the boron-containing substance by the method according to the above [1] or [2] to obtain a boron-elution-suppressed material with suppressed boron elution.
[4] The method for producing a boron elution suppression material according to [3], wherein the boron elution suppression treatment material is a civil engineering building material.
本発明によれば、簡便な手法により、ホウ素含有物質のホウ素溶出を抑制できる。 According to the present invention, the elution of boron from a boron-containing substance can be suppressed by a simple method.
[ホウ素含有物質のホウ素溶出抑制方法]
本発明のホウ素含有物質のホウ素溶出抑制方法(以下、単に「本発明の抑制方法」ともいう)は、概略的には、溶出成分としてホウ素を含有するホウ素含有物質からホウ素が溶出することを抑制する、ホウ素含有物質のホウ素溶出抑制方法である。
[Method of suppressing boron elution of boron-containing substance]
The method for suppressing boron elution of a boron-containing substance of the present invention (hereinafter, also simply referred to as the “inhibition method of the present invention”) is a method for roughly suppressing the elution of boron from a boron-containing substance containing boron as an elution component. This is a method for suppressing boron elution of a boron-containing substance.
より詳細には、本発明の抑制方法は、液相を有する温度状態にあるホウ素含有物質を冷却する。
そして、ホウ素含有物質を冷却するときの冷却速度(単位:℃/min)をZ、0.1℃/min以上20℃/min以下の範囲の冷却速度(単位:℃/min)をA、冷却速度Aで冷却した後のホウ素含有物質のホウ素溶出量(単位:mg/L)をBとしたときに、下記式(1)を満たすようにする。
Z≧A×B3 ・・・(1)
ただし、冷却速度Zおよび冷却速度Aは、いずれも、ホウ素含有物質を液相を有する温度から900℃まで冷却する際の温度変化の時間割合を表す。
More specifically, the suppression method of the present invention cools a boron-containing substance in a temperature state having a liquid phase.
The cooling rate (unit: ° C / min) when cooling the boron-containing material is Z, and the cooling rate (unit: ° C / min) in the range of 0.1 ° C / min to 20 ° C / min is A. When the boron elution amount (unit: mg / L) of the boron-containing substance after cooling at the speed A is B, the following formula (1) is satisfied.
Z ≧ A × B 3 (1)
However, each of the cooling rate Z and the cooling rate A represents a time ratio of a temperature change when the boron-containing substance is cooled from a temperature having a liquid phase to 900 ° C.
後出の[実施例]において実証されるように、上記式(1)を満たすことにより、ホウ素含有物質のホウ素溶出量は低減する。
本発明者らが鋭意調査した結果、ホウ素は主にホウ素含有物質中のガラス相領域に濃化していることが明らかとなった。また、ホウ素含有物質の冷却速度を上げることによって、組織内のガラス相の比率が増大し、ガラス相内のホウ素濃度が相対的に低下することにより、ホウ素溶出量が抑制されることが分かった。
こうして、冷却速度を調整するだけの簡便な手法により、ホウ素含有物質のホウ素溶出を抑制でき、環境基準を満たすようにすることができる。
なお、ホウ素溶出量は、環境庁告示第46号に規定される溶出試験により測定する。
As will be demonstrated in the following [Example], the amount of boron eluted by the boron-containing substance is reduced by satisfying the above expression (1).
As a result of intensive studies by the present inventors, it has been found that boron is concentrated mainly in the glass phase region in the boron-containing material. In addition, it was found that by increasing the cooling rate of the boron-containing substance, the ratio of the glass phase in the tissue was increased, and the boron concentration in the glass phase was relatively reduced, so that the boron elution amount was suppressed. .
In this manner, the elution of boron from the boron-containing substance can be suppressed by a simple method that merely adjusts the cooling rate, and the environmental standards can be satisfied.
The boron elution amount is measured by an elution test specified in the Environment Agency Notification No. 46.
ホウ素含有物質としては、特に限定されないが、例えば、鉄鋼プロセスにおいて発生するスラグが好適に挙げられる。
このようなスラグであるホウ素含有物質について、各成分の含有量は特に限定されないが、例えば、SiO2:22.0〜40.0質量%、Al2O3:2.0〜20.0質量%、CaO:25.0〜45.0質量%、MgO:2.0〜18.0質量%、Fe:3.0質量%以下、MnO:1.0〜18.0質量%が好ましい。
The boron-containing substance is not particularly limited, but preferably includes, for example, slag generated in a steel process.
With respect to the boron-containing substance that is such a slag, the content of each component is not particularly limited. For example, SiO 2 : 22.0 to 40.0% by mass, Al 2 O 3 : 2.0 to 20.0% by mass %, CaO: 25.0 to 45.0% by mass, MgO: 2.0 to 18.0% by mass, Fe: 3.0% by mass or less, and MnO: 1.0 to 18.0% by mass are preferable.
このようなスラグは、製銑プロセス、製鋼工程の各種精錬プロセス、および、各種の合金鉄の製錬プロセス毎に、概ね一定した組成である。
各プロセスの操業温度において溶融状態で排出され、その後、冷却されて凝固したスラグが、破砕、分級等の工程を経て、スラグ製品となる。
各スラグ製品は、その用途に応じて満たすべき環境基準が定められている場合がある。その場合、各スラグ製品は、必要に応じて採取した代表サンプルを用いて各種の溶出試験が行なわれ、各成分の溶出量が管理される。
上述したように、各プロセスから発生したスラグの組成は、概ね一定している。このため、各プロセスから発生したスラグから製造したスラグ製品またはその原料における各成分の溶出量も、概ね一定した値となる。
したがって、1月毎などの所定の頻度で、0.1℃/min以上20℃/min以下の範囲の冷却側度Aで冷却して採取したサンプルについて、ホウ素溶出量Bを測定すればよい。
Such a slag has a substantially constant composition in each of the ironmaking processes, various refining processes of the steelmaking process, and the various smelting processes of ferroalloys.
The slag discharged in a molten state at the operating temperature of each process, and then cooled and solidified is converted into a slag product through steps such as crushing and classification.
In each slag product, an environmental standard to be satisfied may be determined depending on its use. In this case, each slag product is subjected to various dissolution tests using a representative sample collected as necessary, and the dissolution amount of each component is controlled.
As described above, the composition of slag generated from each process is substantially constant. For this reason, the elution amount of each component in the slag product manufactured from the slag generated from each process or its raw material also has a substantially constant value.
Therefore, the boron elution amount B may be measured for a sample collected by cooling at a predetermined cooling frequency A of 0.1 ° C./min to 20 ° C./min at a predetermined frequency such as every month.
なお、工業的に排出されるスラグは、冷却ヤードに放置され自然冷却された後に、適宜処理される。このような処理をすると、冷却速度Aの範囲で冷却される。
例えば、冷却ヤードの数か所にあらかじめ熱電対を設置する、または、サーモビュア等で排出スラグの表面を測定する。これにより、工業的に排出されるスラグであるホウ素含有物質の冷却速度Aを測定できる。
そして、冷却速度Aが0.1℃/min以上20℃/min以下の範囲であったホウ素含有物質を用いて、冷却速度Aで冷却した後のホウ素含有物質のホウ素溶出量を測定することができる。
In addition, the slag industrially discharged is left in a cooling yard, naturally cooled, and then appropriately treated. By performing such processing, cooling is performed within the range of the cooling rate A.
For example, a thermocouple is installed in advance at several places in the cooling yard, or the surface of the discharged slag is measured using a thermoviewer or the like. Thereby, the cooling rate A of the boron-containing substance, which is industrially discharged slag, can be measured.
Then, using a boron-containing substance having a cooling rate A in the range of 0.1 ° C./min or more and 20 ° C./min or less, the amount of boron eluted from the boron-containing substance after cooling at the cooling rate A can be measured. it can.
本発明の抑制方法においては、液相を有する温度状態(例えば、1200℃以上)にあるホウ素含有物質を、上記式(1)を満たすように冷却することにより、このホウ素含有物質のホウ素溶出量を低減する。
液相を有する温度状態のホウ素含有物質とは、具体的には、例えば、高炉、転炉または電気炉から排出された鉄鋼スラグ、溶融炉から排出された溶融スラグである。
In the suppression method of the present invention, the boron-eluting amount of the boron-containing substance is cooled by cooling the boron-containing substance in a temperature state having a liquid phase (for example, 1200 ° C. or higher) so as to satisfy the above formula (1). To reduce.
The boron-containing substance in a temperature state having a liquid phase is, for example, a steel slag discharged from a blast furnace, a converter or an electric furnace, and a molten slag discharged from a melting furnace.
液相を有する温度状態のホウ素含有物質(本段落において単に「ホウ素含有物質」という)を冷却する方法としては、特に限定されず、例えば、ホウ素含有物質を鉄板上に所定の厚さで放流して冷却する鉄板冷却法、水流を用いてホウ素含有物質を急冷却する水砕法、空気流を用いてホウ素含有物質を急冷却する風砕法などがあり、所望の冷却速度に応じて適宜選択できる。 The method for cooling the boron-containing substance in a temperature state having a liquid phase (hereinafter, simply referred to as “boron-containing substance” in this paragraph) is not particularly limited. For example, the boron-containing substance is discharged at a predetermined thickness onto an iron plate. There are a steel plate cooling method in which the boron-containing substance is rapidly cooled using a water flow, a granulation method in which the boron-containing substance is rapidly cooled using an air flow, and an air-blasting method in which the boron-containing substance is rapidly cooled using an air flow.
[ホウ素溶出抑制処理材およびその製造方法]
ホウ素含有物質を、上述した本発明の抑制方法によって処理する(すなわち、上記式(1)を満たすように、液相を有する温度状態にあるホウ素含有物質を冷却する)ことにより、ホウ素溶出が抑制されたホウ素溶出抑制処理材が得られる。
得られたホウ素溶出抑制処理材は、例えば、必要に応じて粒度調整が施された後、路盤材、地盤材などの土木建築資材として好適に用いられる。
[Boron elution suppression treatment material and method for producing the same]
By treating the boron-containing substance by the above-described suppression method of the present invention (that is, cooling the boron-containing substance in a temperature state having a liquid phase so as to satisfy the above formula (1)), boron elution is suppressed. The obtained boron elution suppressing treatment material is obtained.
The obtained boron elution suppressing material is suitably used as a civil engineering and building material such as a roadbed material and a ground material, for example, after being subjected to particle size adjustment as required.
以下に、実施例を挙げて本発明を具体的に説明する。ただし、本発明はこれらに限定されない。 Hereinafter, the present invention will be described specifically with reference to examples. However, the present invention is not limited to these.
鉄鋼プロセスにおいて発生する3種のスラグを、それぞれ、ホウ素含有物質α、βおよびγとして用いた。いずれも、通常1500℃の高温で排出される。各ホウ素含有物質の成分組成を下記表1に示す。ただし、各ホウ素含有物質は、下記表1に示す成分以外の成分も含有する。このため、各ホウ素含有物質において、下記表1に示す成分組成の含有量の合計は100質量%ではない。 Three types of slag generated in the steel process were used as boron-containing substances α, β, and γ, respectively. Both are discharged at a high temperature of usually 1500 ° C. The composition of each boron-containing substance is shown in Table 1 below. However, each boron-containing substance also contains components other than the components shown in Table 1 below. Therefore, in each boron-containing substance, the sum of the contents of the component compositions shown in Table 1 below is not 100% by mass.
ホウ素含有物質α、βおよびγのそれぞれ100gを、黒鉛るつぼに入れ、電気炉内に保持することにより液相を有する温度状態(1200℃)にした。次いで、1200℃から900℃まで、所定の冷却速度Aで冷却した。その後、黒鉛るつぼを、電気炉から取り出し、水冷した。黒鉛るつぼから各ホウ素含有物質を取り出し、2mm以下に粉砕したうえで、環境庁告示第46号に規定される溶出試験によりホウ素溶出量Bを測定した。
下記表1に示すように、ホウ素含有物質αは、3℃/minの冷却速度Aで冷却した後のホウ素溶出量Bが11.7mg/Lであった。
ホウ素含有物質βは、0.1℃/minの冷却速度Aで冷却した後のホウ素溶出量Bが9.1mg/Lであった。
ホウ素含有物質γは、20℃/minの冷却速度Aで冷却した後のホウ素溶出量Bが1.2mg/Lであった。
100 g of each of the boron-containing substances α, β, and γ were placed in a graphite crucible, and kept in an electric furnace to a temperature state having a liquid phase (1200 ° C.). Next, cooling was performed at a predetermined cooling rate A from 1200 ° C. to 900 ° C. Thereafter, the graphite crucible was taken out of the electric furnace and cooled with water. Each boron-containing substance was taken out of the graphite crucible, pulverized to 2 mm or less, and the amount B of boron eluted was measured by an elution test prescribed in the Environment Agency Notification No. 46.
As shown in Table 1 below, the boron-eluting amount B of the boron-containing substance α after cooling at a cooling rate A of 3 ° C./min was 11.7 mg / L.
The boron-eluting amount B of the boron-containing substance β after cooling at a cooling rate A of 0.1 ° C./min was 9.1 mg / L.
The boron-containing substance γ had a boron elution amount B of 1.2 mg / L after cooling at a cooling rate A of 20 ° C./min.
次いで、各ホウ素含有物質10kgを、るつぼ内に収容し、小型溶解炉を用いて再溶解させた後、下記表2に示す冷却速度Z(単位:℃/min)で冷却した。冷却速度Zは、各ホウ素含有物質を、液相を有する温度(再溶解した温度)から900℃まで冷却する際の温度変化の時間割合である。
冷却方法としては、るつぼ内で冷却速度を制御して各ホウ素含有物質を徐冷する方法(るつぼ内)、再溶解させた各ホウ素含有物質を、厚さ20mmの鉄板上に放流して冷却する方法(鉄板)、または、再溶解させた各ホウ素含有物質を、水流を用いた水砕法によって冷却する方法(水砕)を用いた。それぞれの冷却方法において、冷却速度Zは、次のように温度を測定することにより求めた。
Next, 10 kg of each boron-containing substance was accommodated in a crucible and redissolved using a small melting furnace, and then cooled at a cooling rate Z (unit: ° C / min) shown in Table 2 below. The cooling rate Z is a time ratio of a temperature change when each boron-containing substance is cooled from a temperature having a liquid phase (remelted temperature) to 900 ° C.
As a cooling method, a method of controlling each cooling rate in the crucible to gradually cool each boron-containing substance (in the crucible), and discharging each re-dissolved boron-containing substance onto an iron plate having a thickness of 20 mm for cooling. A method (iron plate) or a method of cooling each re-dissolved boron-containing substance by a water granulation method using a water flow (water granulation) was used. In each cooling method, the cooling rate Z was determined by measuring the temperature as follows.
(るつぼ内)
るつぼ内で冷却した場合、るつぼ内のホウ素含有物質における高さ方向中間位置であって、かつ、るつぼ水平方向の中央位置の温度を、熱電対で測定した。るつぼ内の温度が、ホウ素含有物質が再溶解した温度から900℃に低下するまでの時間の温度変化を求めた。これは、結晶−ガラス間の変態は、概ね900℃以上で生じるため、液相を有する温度状態から900℃までの冷却速度をいかに確保するかが重要となるからである。
(In the crucible)
When cooled in the crucible, the temperature at the middle position in the height direction of the boron-containing material in the crucible and at the center position in the horizontal direction of the crucible was measured with a thermocouple. The temperature change during the time until the temperature in the crucible was reduced from the temperature at which the boron-containing material was re-dissolved to 900 ° C. was determined. This is because the transformation between the crystal and the glass generally occurs at 900 ° C. or higher, and it is important how to secure a cooling rate from a temperature state having a liquid phase to 900 ° C.
(鉄板)
鉄板上で冷却した場合は、あらかじめ熱電対を、鉄板に対して一定の間隔で種々の高さ方向に設置し、鉄板上に放流したホウ素含有物質の温度を測定した。ホウ素含有物質が再溶解した温度から900℃に低下するまでの時間の温度変化を、各高さ位置において求め、その平均値から冷却速度Zを求めた。
(Iron plate)
In the case of cooling on an iron plate, thermocouples were previously placed at various intervals in the height direction with respect to the iron plate, and the temperature of the boron-containing substance discharged on the iron plate was measured. The temperature change during the time from the temperature at which the boron-containing material was re-dissolved until the temperature dropped to 900 ° C. was determined at each height position, and the cooling rate Z was determined from the average value.
(水砕)
水砕法で冷却した場合は、まず、再溶解させたホウ素含有物質を水流に流し入れてから水槽に流れ込むまでの時間を測定した。次いで、水槽内に堆積したホウ素含有物質の水砕中に熱電対を入れて温度を測定した。再溶解した温度と水槽内の水砕中の温度との差分、および、ホウ素含有物質を水流に流し入れてから水槽に流れ込むまでの時間から、冷却速度Zを求めた。
(Water granulation)
In the case of cooling by the water granulation method, first, the time from flowing the re-dissolved boron-containing substance into the water stream to flowing into the water tank was measured. Next, a thermocouple was inserted during the granulation of the boron-containing substance deposited in the water tank, and the temperature was measured. The cooling rate Z was determined from the difference between the re-dissolved temperature and the temperature during water granulation in the water tank, and the time from flowing the boron-containing substance into the water stream until flowing into the water tank.
冷却速度Zで冷却した後の各ホウ素含有物質を2mm以下に粉砕し、環境庁告示第46号に規定される溶出試験により、ホウ素溶出量を測定した。結果を下記表2に示す。ホウ素溶出量が1.0mg/L以下であれば、ホウ素含有物質からホウ素が溶出することを抑制できたものと評価し、下記表2の「ホウ素溶出抑制」の欄に「○」を記載した。一方、ホウ素溶出量が1.0mg/L超であった場合には、下記表2の「ホウ素溶出抑制」の欄には「×」を記載した。 Each boron-containing substance after cooling at the cooling rate Z was pulverized to 2 mm or less, and the amount of boron eluted was measured by an elution test prescribed by the Environment Agency Notification No. 46. The results are shown in Table 2 below. When the boron elution amount was 1.0 mg / L or less, it was evaluated that the elution of boron from the boron-containing substance could be suppressed, and "O" was described in the column of "Boron elution suppression" in Table 2 below. . On the other hand, when the boron elution amount was more than 1.0 mg / L, "x" was described in the column of "Boron elution suppression" in Table 2 below.
上記表1〜2に示す結果に基づき、ホウ素溶出抑制の試験結果を図1にプロットした。
図1は、ホウ素溶出抑制の試験結果をプロットしたグラフである。図1のグラフにおいて、横軸が冷却速度Zを示し、縦軸が冷却速度Zで冷却した後のホウ素溶出量を示す。
図1のグラフには、ホウ素溶出抑制の試験結果(「○」または「×」)をプロットしている。ただし、ホウ素含有物質βの「○」は「◇」に、ホウ素含有物質γの「○」は「△」に置き換えて、プロットしている。
さらに図1のグラフには、ホウ素含有物質α、βおよびγについて、Z=A×B3の式で表される線分を記載した。
図1のグラフに示すように、Z=A×B3の式で表される線分は、「×」と「○」(「◇」、「△」)との境界に配置されている。
Based on the results shown in Tables 1 and 2, the test results of boron elution suppression are plotted in FIG.
FIG. 1 is a graph in which test results of boron elution suppression are plotted. In the graph of FIG. 1, the horizontal axis indicates the cooling rate Z, and the vertical axis indicates the boron elution amount after cooling at the cooling rate Z.
The graph of FIG. 1 plots the test results (“O” or “X”) for suppressing boron elution. However, the plot is made by replacing “○” of the boron-containing substance β with “◇” and replacing “○” of the boron-containing substance γ with “△”.
Further, in the graph of FIG. 1, for the boron-containing substances α, β, and γ, the line segments represented by the equation of Z = A × B 3 are described.
As shown in the graph of FIG. 1, the line segment represented by the equation of Z = A × B 3 is arranged at the boundary between “×” and “と” (“Δ”, “Δ”).
上記表1〜2および図1のグラフから、下記式(1)を満たす場合には、ホウ素溶出量が1.0mg/L以下となり、ホウ素の溶出を抑制できたことが分かった。
これに対して、下記式(1)を満たさない場合、ホウ素溶出量は1.0mg/L超となり、ホウ素溶出の抑制が不十分であった。
Z≧A×B3 ・・・(1)
こうして、簡便な手法により、ホウ素含有物質のホウ素溶出を抑制できた。
From the above Tables 1 and 2 and the graph of FIG. 1, it was found that when the following formula (1) was satisfied, the boron elution amount was 1.0 mg / L or less, and boron elution could be suppressed.
In contrast, when the following formula (1) was not satisfied, the boron elution amount was more than 1.0 mg / L, and the suppression of boron elution was insufficient.
Z ≧ A × B 3 (1)
Thus, the elution of boron from the boron-containing substance could be suppressed by a simple method.
Claims (4)
液相を有する温度状態にある前記ホウ素含有物質を冷却し、
前記ホウ素含有物質を冷却するときの冷却速度(単位:℃/min)をZ、0.1℃/min以上20℃/min以下の範囲の冷却速度(単位:℃/min)をA、前記冷却速度Aで冷却した後の前記ホウ素含有物質のホウ素溶出量(単位:mg/L)をBとしたときに、下記式(1)を満たす、ホウ素含有物質のホウ素溶出抑制方法。
Z≧A×B3 ・・・(1)
ただし、前記冷却速度ZおよびAは、前記ホウ素含有物質を、液相を有する温度から900℃まで冷却する際の温度変化の時間割合を表す。 A method for suppressing boron elution from a boron-containing substance, a method for suppressing boron elution of a boron-containing substance,
Cooling the boron-containing material in a temperature state having a liquid phase,
The cooling rate (unit: ° C / min) when cooling the boron-containing substance is Z, and the cooling rate (unit: ° C / min) in the range of 0.1 ° C / min to 20 ° C / min is A. A method for suppressing boron elution of a boron-containing substance, wherein the following equation (1) is satisfied, where B is the boron elution amount (unit: mg / L) of the boron-containing substance after cooling at a speed A.
Z ≧ A × B 3 (1)
Here, the cooling rates Z and A represent a time ratio of a temperature change when the boron-containing substance is cooled from a temperature having a liquid phase to 900 ° C.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018160164A JP6996453B2 (en) | 2018-08-29 | 2018-08-29 | A method for suppressing boron elution of a boron-containing substance and a method for producing a material for suppressing boron elution. |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018160164A JP6996453B2 (en) | 2018-08-29 | 2018-08-29 | A method for suppressing boron elution of a boron-containing substance and a method for producing a material for suppressing boron elution. |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2020032343A true JP2020032343A (en) | 2020-03-05 |
JP6996453B2 JP6996453B2 (en) | 2022-01-17 |
Family
ID=69669019
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018160164A Active JP6996453B2 (en) | 2018-08-29 | 2018-08-29 | A method for suppressing boron elution of a boron-containing substance and a method for producing a material for suppressing boron elution. |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6996453B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2022061112A (en) * | 2020-10-06 | 2022-04-18 | Jfeスチール株式会社 | Modification method for boron-containing slag and method for manufacture of civil engineering-construction material with use thereof, and modified slag |
JP2022122769A (en) * | 2021-02-10 | 2022-08-23 | Jfeスチール株式会社 | Treatment method for slag containing boron and manganese and manufacturing method for civil engineering and construction material |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006334502A (en) * | 2005-06-01 | 2006-12-14 | Sanbic:Kk | Method and apparatus for decontaminating contaminated soil |
JP2013150952A (en) * | 2012-01-25 | 2013-08-08 | Ube Industries Ltd | Insolubilizing method |
JP2013234098A (en) * | 2012-05-10 | 2013-11-21 | Jfe Steel Corp | Method for cooling stainless steel slag |
-
2018
- 2018-08-29 JP JP2018160164A patent/JP6996453B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006334502A (en) * | 2005-06-01 | 2006-12-14 | Sanbic:Kk | Method and apparatus for decontaminating contaminated soil |
JP2013150952A (en) * | 2012-01-25 | 2013-08-08 | Ube Industries Ltd | Insolubilizing method |
JP2013234098A (en) * | 2012-05-10 | 2013-11-21 | Jfe Steel Corp | Method for cooling stainless steel slag |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2022061112A (en) * | 2020-10-06 | 2022-04-18 | Jfeスチール株式会社 | Modification method for boron-containing slag and method for manufacture of civil engineering-construction material with use thereof, and modified slag |
JP7244803B2 (en) | 2020-10-06 | 2023-03-23 | Jfeスチール株式会社 | Method for modifying boron-containing slag, method for manufacturing civil engineering and construction materials using the same, and modified slag |
JP2022122769A (en) * | 2021-02-10 | 2022-08-23 | Jfeスチール株式会社 | Treatment method for slag containing boron and manganese and manufacturing method for civil engineering and construction material |
Also Published As
Publication number | Publication date |
---|---|
JP6996453B2 (en) | 2022-01-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2020032343A (en) | Method for suppressing elution of boron in boron-including material, and method for production of treatment material for boron elution suppression | |
JP5232327B2 (en) | Method for packaging radioactive waste in synthetic rock form | |
KR20150106661A (en) | Manufacturing method of Fe-Si from Fe-Ni slag | |
JP5191861B2 (en) | Manufacturing method of slag for cement raw material | |
JP2005306654A (en) | Reforming method for steelmaking slag and reformed steelmaking slag | |
JP2005132721A (en) | Method for manufacturing stabilizer for steelmaking slag containing fluorine | |
JP7232403B2 (en) | Method for determining boron elution from boron-containing substances, method for suppressing boron elution from boron-containing substances using the same, method for producing materials for civil engineering and construction using the same, and slag | |
JP6888592B2 (en) | A method for suppressing boron elution of a boron-containing substance and a method for producing a material for suppressing boron elution. | |
JP2015124095A (en) | Manufacturing method of slug | |
JP2010120987A (en) | Solidifying agent | |
JP7300092B2 (en) | A method for treating slag containing boron and manganese and a method for producing materials for civil engineering and construction. | |
JP2000319047A (en) | Reforming treatment of stainless steel refining slag | |
JP4514415B2 (en) | Method for producing heavy metal elution inhibitor | |
JP4427370B2 (en) | Method for reforming slag of chromium ore smelting reduction furnace | |
JP2009228042A (en) | Material and method for removing slag | |
JP7531274B2 (en) | How to treat by-products | |
JP4942954B2 (en) | Method for processing fluorine-containing steelmaking slag | |
JP5136980B2 (en) | Method for producing hot metal dephosphorization slag | |
Lu et al. | Novel method for improving iron recovery from electric arc furnace slag: On-site hot modification | |
JP7244803B2 (en) | Method for modifying boron-containing slag, method for manufacturing civil engineering and construction materials using the same, and modified slag | |
JP7531273B2 (en) | How to treat by-products | |
Botha et al. | Effect of silica concentration on degree of sintering of chromite-silica ladle well filler sand based on South African raw materials | |
JP2005126732A (en) | Smelting-reduction method for material containing metallic oxide, and smelting-reduction apparatus | |
JP7303989B2 (en) | Method for modifying boron-containing substance and method for producing civil engineering and construction material | |
JPH08104553A (en) | Reforming method of stainless steel slag |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20200324 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20201007 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20201013 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20201126 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20210413 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20210604 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20211116 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20211129 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6996453 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |