JP4942954B2 - Method for processing fluorine-containing steelmaking slag - Google Patents

Method for processing fluorine-containing steelmaking slag Download PDF

Info

Publication number
JP4942954B2
JP4942954B2 JP2005203337A JP2005203337A JP4942954B2 JP 4942954 B2 JP4942954 B2 JP 4942954B2 JP 2005203337 A JP2005203337 A JP 2005203337A JP 2005203337 A JP2005203337 A JP 2005203337A JP 4942954 B2 JP4942954 B2 JP 4942954B2
Authority
JP
Japan
Prior art keywords
fluorine
slag
blast furnace
steelmaking slag
containing steelmaking
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005203337A
Other languages
Japanese (ja)
Other versions
JP2007022818A (en
Inventor
敏行 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2005203337A priority Critical patent/JP4942954B2/en
Publication of JP2007022818A publication Critical patent/JP2007022818A/en
Application granted granted Critical
Publication of JP4942954B2 publication Critical patent/JP4942954B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B5/00Treatment of  metallurgical  slag ; Artificial stone from molten  metallurgical  slag 
    • C04B5/06Ingredients, other than water, added to the molten slag or to the granulating medium or before remelting; Treatment with gases or gas generating compounds, e.g. to obtain porous slag

Description

本発明は、フッ素含有製鋼スラグを処理してフッ素の溶出を抑制するための方法に関する。 The present invention relates to a method for treating fluorine-containing steelmaking slag to suppress fluorine elution.

製鋼プロセスから排出されるスラグの中には、脱燐剤や脱硫剤の添加が原因でフッ素を含有するものがあり、中には土壌環境基準で規定されている環境庁告示46号試験(サンプルを2mm以下に粉砕して水中で6時間振盪し、その水中に溶出したフッ素濃度を計る方法)で測定されたフッ素濃度が基準濃度以上になるものもあり、これらをそのまま土壌に戻すことができない。
このため、フッ素の溶出を抑制する方法が多く提案されている。
Some slag discharged from the steelmaking process contains fluorine due to the addition of dephosphorization and desulfurization agents. In some cases, the fluorine concentration measured by crushing to 2 mm or less, shaking in water for 6 hours, and measuring the fluorine concentration eluted in the water) exceeds the reference concentration, and these cannot be returned to the soil as they are .
For this reason, many methods for suppressing elution of fluorine have been proposed.

例えば、フッ素含有スラグとアルミナ含有スラグを事前に混合し、この混合スラグを水中に浸し、その水中にCaイオンとAlイオンが溶出して、CaO−Al23 −H2 Oの化合物が生成する際に、フッ素イオンが、生成した化合物に取り込まれ、フッ素が化合物中に安定に固定されることにより、フッ素の溶出を抑制する方法がある( 例えば、非特許文献1参照) 。 For example, fluorine-containing slag and alumina-containing slag are mixed in advance, and the mixed slag is immersed in water, and Ca ions and Al ions are eluted in the water to form a compound of CaO—Al 2 O 3 —H 2 O. In this case, there is a method in which fluorine ions are taken into the generated compound and fluorine is stably fixed in the compound to suppress elution of fluorine (for example, see Non-Patent Document 1).

「日本鉄鋼協会講演大会予稿 CAMP−ISIJ」Vol.12、1999年、p.148“Procedure of the Japan Iron and Steel Institute Lecture Meeting CAMP-ISIJ” Vol. 12, 1999, p. 148

しかしながら、前記した方法を工業的レベルで活用しようとすると、前記両スラグのフッ素及びアルミナの含有量は種々変化するために、溶出するイオンバランスを適正に保つための両スラグの事前配合が事実上難しいという問題が生じていた。
また、大量の両スラグを均一に混合することが極めて難しいため、フッ素含有スラグの偏在を完全に無くすには無理があり、部分的にフッ素溶出基準を超える溶出が起こる可能性が懸念されることから、有効なものではなかった。
However, if the above-described method is used at an industrial level, the contents of fluorine and alumina in both slags vary, so it is practically necessary to pre-blend both slags in order to maintain the proper ion balance. There was a difficult problem.
In addition, since it is extremely difficult to uniformly mix a large amount of both slags, it is impossible to completely eliminate the uneven distribution of fluorine-containing slag, and there is a concern that elution that partially exceeds the fluorine elution standard may occur. Therefore, it was not effective.

本発明はかかる事情に鑑みてなされたもので、製鉄所内の設備を用いて安価で、かつ、確実にフッ素含有製鋼スラグを処理して、フッ素の溶出抑制を工業的レベルで実行可能なものとするフッ素含有製鋼スラグの処理方法を提供することを目的とする。 The present invention has been made in view of such circumstances, and is inexpensive and reliably processing fluorine-containing steelmaking slag using equipment in an ironworks, and can suppress fluorine elution at an industrial level. An object of the present invention is to provide a method for treating fluorine-containing steelmaking slag.

本発明は前記課題を解決するためになされたものであり、その手段1は、フッ素含有製鋼スラグと石炭灰を高炉から排出された溶融状態の高炉滓に同時に添加して溶融し、これを冷却固化して、フッ素濃度が2.5質量%以下のフッ素含有高炉滓とすることを特徴とするフッ素含有製鋼スラグの処理方法である。
また、手段2は、前記手段1において、前記フッ素含有製鋼スラグは、粒度が0.2mm以下であることを特徴とするフッ素含有製鋼スラグの処理方法である。
更に、手段3は、前記手段1又は2において、前記フッ素含有製鋼スラグと前記石炭灰を造粒し、20mm以下の造粒物として、前記溶融状態の高炉滓に添加することを特徴とするフッ素含有製鋼スラグの処理方法である。
The present invention has been made in order to solve the above-mentioned problems. The means 1 is to simultaneously add and melt fluorine-containing steelmaking slag and coal ash to the molten blast furnace slag discharged from the blast furnace and cool it. It is a method for treating fluorine-containing steelmaking slag, which is solidified to obtain a fluorine-containing blast furnace furnace having a fluorine concentration of 2.5% by mass or less.
Means 2 is the processing method of fluorine-containing steelmaking slag according to the means 1, wherein the fluorine-containing steelmaking slag has a particle size of 0.2 mm or less.
Furthermore, means 3 is the fluorine characterized in that in the means 1 or 2, the fluorine-containing steelmaking slag and the coal ash are granulated and added to the molten blast furnace as a granulated product of 20 mm or less. It is a processing method of containing steelmaking slag.

本発明のフッ素含有製鋼スラグの処理方法は、フッ素含有製鋼スラグと石炭灰を、溶融状態の高炉滓に同時に添加して溶解し、フッ素が溶出しない鉱物組成に転換して、フッ素含有製鋼スラグからのフッ素の溶出を確実に抑制することができる状態で高炉滓に含有させるので、高炉滓としての用途及び使用量を制限することなく、フッ素含有製鋼スラグを多量に処理することが可能となり、この分野にもたらす効果は極めて大きい。 The method for treating fluorine-containing steelmaking slag according to the present invention comprises adding fluorine-containing steelmaking slag and coal ash to a molten blast furnace smelt at the same time, and converting to a mineral composition that does not elute fluorine. Fluorine-containing steelmaking slag can be processed in large quantities without restricting the use and amount of use as a blast furnace so that the elution of fluorine can be reliably suppressed. The effect on the field is extremely large.

続いて、添付した図面を参照しつつ、本発明を具体化した実施の形態につき説明し、本発明の理解に供する。
ここで、図1は冷却固化後の高炉滓中のフッ素濃度と環境庁告示46号試験における水中でのフッ素溶出量との関係を示す説明図、図2は本発明の一実施の形態に係るフッ素含有製鋼スラグの処理方法を適用する高炉滓処理設備の平面図である。
Next, embodiments of the present invention will be described with reference to the accompanying drawings for understanding of the present invention.
Here, FIG. 1 is an explanatory diagram showing the relationship between the fluorine concentration in the blast furnace after cooling and solidification and the fluorine elution amount in water in the Environmental Agency Notification No. 46 test, and FIG. 2 relates to one embodiment of the present invention. It is a top view of the blast furnace slag processing equipment to which the processing method of fluorine-containing steelmaking slag is applied.

図2に示すように、本発明の一実施の形態に係るフッ素含有製鋼スラグの処理方法は、高炉10から排出された溶融状態の高炉滓( 以下、溶融高炉滓とも言う) に、フッ素含有製鋼スラグ(以下、製鋼スラグ又は製鋼滓ともいう)と石炭灰を同時に添加して溶解し、これを冷却して固化し、フッ素濃度が2.5質量%以下のフッ素含有高炉滓として、このフッ素含有高炉滓からのフッ素の溶出を抑制する方法である。
まず、一実施の形態に係るフッ素含有製鋼スラグの処理方法を適用する高炉滓処理設備11について説明した後、製鋼スラグ中のフッ素の処理方法について説明する。
As shown in FIG. 2, the method for treating fluorine-containing steelmaking slag according to one embodiment of the present invention is applied to a molten blast furnace slag discharged from the blast furnace 10 (hereinafter also referred to as a molten blast furnace slag). Slag (hereinafter also referred to as steel slag or steel slag) and coal ash are added and dissolved simultaneously, and this is cooled and solidified to form a fluorine-containing blast furnace slag having a fluorine concentration of 2.5% by mass or less. This is a method for suppressing the elution of fluorine from the blast furnace.
First, after explaining the blast furnace slag treatment equipment 11 to which the treatment method for fluorine-containing steelmaking slag according to one embodiment is applied, the treatment method for fluorine in the steelmaking slag will be explained.

図2に示すように、高炉滓処理設備11は、高炉10の出銑口12から排出される溶銑及び溶融高炉滓を流す大樋13と、この大樋13に接続された滓樋14とを有している。この大樋13の途中には、大樋13の上側を仕切るスキンマー15が設けられ、また大樋13と滓樋14との接続部分には、滓樋14の下側を仕切るスキンマー16が設けられ、大樋13の下側を流れる溶銑を大樋13の下流側へ、大樋13の上側を流れる溶融高炉滓を滓樋14へとそれぞれ送っている。
滓樋14の下流側は、溶融高炉滓に含まれる溶銑を分離する流銑鍋17に接続され、この溶融高炉滓が、流銑鍋17から水砕設備18、又は放流ピット(徐冷ピットの一例)19へ送られる。なお、水砕設備18又は放流ピット19への溶融高炉滓の供給は、各場所へ供給の切替えが可能な切替樋(水砕及び放流樋)20を介して行われる。
As shown in FIG. 2, the blast furnace slag processing equipment 11 includes a slag 13 that flows hot metal and molten blast furnace slag discharged from the tapping port 12 of the blast furnace 10, and a slag 14 connected to the slag 13. ing. A skinmer 15 for partitioning the upper side of the large collar 13 is provided in the middle of the large collar 13, and a skinmer 16 for partitioning the lower side of the collar 14 is provided at a connecting portion between the large collar 13 and the collar 14. The molten iron flowing below the large rod 13 is sent to the downstream side of the large rod 13, and the molten blast furnace rod flowing above the large rod 13 is sent to the rod 14.
The downstream side of the culvert 14 is connected to a ladle pan 17 that separates the molten iron contained in the molten blast furnace basin, and this molten blast furnace trough is connected to the granulation equipment 18 or the discharge pit (of the slow cooling pit). Example) sent to 19. In addition, the supply of the molten blast furnace dredging to the granulating facility 18 or the discharge pit 19 is performed via a switching dredger (a granulated and discharged dredging) 20 capable of switching the supply to each place.

まず、上記した高炉10から排出された溶融高炉滓に、フッ素含有製鋼スラグと石炭灰を同時に添加する。
フッ素含有製鋼スラグと石炭灰の同時添加は、大樋13(A点)、滓樋14(B点)、及び流銑鍋17(C点)のいずれか1箇所又は複数箇所で行うことが好ましい。なお、フッ素含有製鋼スラグと石炭灰の同時添加は、上記のA点〜C点に限らず、高炉10から高炉滓の水砕設備18又は高炉滓の放流ピット19に至るまでの経路の1箇所又は複数箇所で添加することができる。
First, fluorine-containing steelmaking slag and coal ash are simultaneously added to the molten blast furnace slag discharged from the blast furnace 10 described above.
The simultaneous addition of fluorine-containing steelmaking slag and coal ash is preferably performed at any one or a plurality of locations in the large bowl 13 (point A), the bowl 14 (point B), and the fluted pan 17 (point C). In addition, simultaneous addition of fluorine-containing steelmaking slag and coal ash is not limited to the above points A to C, but one place on the path from the blast furnace 10 to the granulation equipment 18 of the blast furnace slag or the discharge pit 19 of the blast furnace slag Or it can add in multiple places.

添加するフッ素含有製鋼スラグとしては、例えば、溶銑脱燐スラグ、溶銑脱硫スラグ、転炉スラグ、及び溶鋼脱硫スラグのいずれか1又は2以上がある。溶銑脱燐スラグは、溶銑にCaF2 を含む脱燐剤を添加して脱燐処理した後に発生するスラグであり、溶銑脱硫スラグは、同じく溶銑にCaF2 を含む脱硫剤を添加して脱硫処理した後に発生するスラグであり、転炉スラグは、転炉吹錬で脱燐を促進するためにCaF2 を炉内に添加した後に発生するスラグであり、溶鋼脱硫スラグは、転炉から出鋼した後の溶鋼にCaF2 を含む脱硫剤を添加して脱硫処理した後に発生するスラグである。
ここで、フッ素含有製鋼スラグ(フッ素含有溶銑脱燐滓及びフッ素含有溶鋼脱硫滓)と石炭灰の化学成分の一例を表1に示す。なお、フッ素含有製鋼スラグと石炭灰を同時添加する溶融高炉滓(添加前溶融高炉滓)の化学成分の一例を表2に示す。
Examples of the fluorine-containing steelmaking slag to be added include one or more of hot metal dephosphorization slag, hot metal desulfurization slag, converter slag, and molten steel desulfurization slag. Hot metal dephosphorization slag is slag generated after adding dephosphorization agent containing CaF 2 to hot metal and dephosphorization treatment. Hot metal desulfurization slag is also desulfurization treatment by adding desulfurization agent containing CaF 2 to hot metal The converter slag is generated after adding CaF 2 to the furnace to promote dephosphorization by converter blowing, and the molten steel desulfurization slag is discharged from the converter. This is slag generated after desulfurization treatment by adding a desulfurization agent containing CaF 2 to the molten steel after being processed.
Here, Table 1 shows an example of the chemical components of fluorine-containing steelmaking slag (fluorine-containing molten steel dephosphorization and fluorine-containing molten steel desulfurization) and coal ash. In addition, Table 2 shows an example of chemical components of a molten blast furnace slag (melting blast furnace slag before addition) in which fluorine-containing steel slag and coal ash are added simultaneously.

Figure 0004942954
Figure 0004942954

Figure 0004942954
Figure 0004942954

前記したように、高炉10から排出された溶融高炉滓に、前記した位置(A点〜C点のいずれか1 箇所又は複数箇所)で、フッ素含有製鋼スラグと石炭灰を同時に添加し、その後冷却固化した高炉滓からのフッ素溶出量を環境基準値である0.8mg/L(リットル)以下に低減する。ここで、フッ素の溶出量を低減するメカニズムについて説明する。
フッ素含有製鋼スラグと石炭灰を同時にCaO−SiO2 −Al23 が主成分の溶融高炉滓に添加すると、溶融高炉滓中のCaOとSiO2 が、フッ素含有製鋼スラグ中のフッ素及び石炭灰中のわずかなフッ素と反応して、3CaO・2SiO2 ・CaF2 (鉱物相名:カスピダイン)の形態を示す安定鉱物相を生成する。
この鉱物相は、極めて安定で分解しにくいため、この鉱物相構造の中に取り込まれたフッ素は容易に分解せず、溶出しない。即ち、製造したフッ素含有高炉滓を水中にどんなに晒しても、フッ素の溶出量は極めて低い値に抑えられると解される。
As described above, fluorine-containing steelmaking slag and coal ash are simultaneously added to the molten blast furnace slag discharged from the blast furnace 10 at the above-described position (any one or a plurality of points A to C), and then cooled. The amount of fluorine elution from the solidified blast furnace slag is reduced to an environmental standard value of 0.8 mg / L (liter) or less. Here, a mechanism for reducing the elution amount of fluorine will be described.
When fluorine-containing steelmaking slag and coal ash are simultaneously added to the molten blast furnace slag containing CaO-SiO 2 —Al 2 O 3 as the main components, CaO and SiO 2 in the molten blast furnace slag become fluorine and coal ash in the fluorine-containing steelmaking slag. It reacts with a small fluorine in, 3CaO · 2SiO 2 · CaF 2 ( mineral phases name: Kasupidain) to produce a stable mineral phases showing the embodiment.
Since this mineral phase is extremely stable and difficult to decompose, fluorine incorporated into this mineral phase structure does not easily decompose and does not elute. In other words, it can be understood that the amount of fluorine elution can be suppressed to a very low value, no matter how much the produced fluorine-containing blast furnace is exposed to water.

なお、溶融高炉滓に添加する際に石炭灰を同時添加する方法は、製鋼スラグが40質量%以上60質量%以下のCaOを含み、その融点が添加する溶融高炉滓の温度より高いため、溶融高炉滓にフッ素含有製鋼スラグのみを添加しても容易に溶解せず未溶解が残ることを解決するために着想した方法である。これにより、石炭灰の主成分であるSiO2 とAl23 がフッ素含有製鋼スラグの主成分であるCaOと混ざり合い、添加物の融点を下げて添加物を溶融高炉滓に容易に溶解できる。 In addition, the method of adding coal ash simultaneously when adding to the molten blast furnace slag is because the steelmaking slag contains 40 mass% or more and 60 mass% or less of CaO, and its melting point is higher than the temperature of the molten blast furnace slag to be added. This method was conceived to solve the problem that even if only fluorine-containing steel slag is added to the blast furnace soot, it does not dissolve easily and remains undissolved. Thereby, SiO 2 and Al 2 O 3 which are main components of coal ash are mixed with CaO which is a main component of fluorine-containing steelmaking slag, and the melting point of the additive can be lowered to easily dissolve the additive in the molten blast furnace. .

ここで、表1記載の2種類のフッ素含有製鋼スラグと石炭灰を使って、フッ素含有製鋼スラグと石炭灰を同時に添加して溶解し、冷却して固化した後の新規化合物の生成によって、フッ素溶出挙動がどの程度低減するかを確認するための基礎実験を行った結果について説明する。
実験は、高炉10から排出した表2に示す化学成分を有した高炉滓を小型の坩堝にて300g溶解し、そこにフッ素含有製鋼スラグと石炭灰の重量比率を種々振らせ、溶融高炉滓の重量に対して30質量%である90gに揃えて両者を同時に添加した後、添加物溶解後の製鋼スラグを冷却し固化してフッ素含有量の異なる高炉滓を製造し、この各冷却高炉滓のフッ素溶出量を前記環境庁告示46号試験に準じて測定した。この結果を図1に示す。
Here, by using two types of fluorine-containing steelmaking slag and coal ash listed in Table 1, fluorine-containing steelmaking slag and coal ash are simultaneously added and dissolved, and after cooling and solidification, fluorine is produced. The results of a basic experiment for confirming how much the elution behavior is reduced will be described.
In the experiment, 300 g of the blast furnace slag having the chemical components shown in Table 2 discharged from the blast furnace 10 was melted in a small crucible, and various weight ratios of fluorine-containing steelmaking slag and coal ash were added to the molten blast furnace slag. After adding both at the same time to 90 g which is 30% by mass with respect to the weight, the steelmaking slag after melting the additive is cooled and solidified to produce blast furnace potatoes having different fluorine contents. The fluorine elution amount was measured according to the Environmental Agency Notification No. 46 test. The result is shown in FIG.

図1から明らかなように、含有フッ素濃度が2.5質量%以下の高炉滓は、フッ素溶出量が前記基準濃度である0.8mg/L以下を満足する。
なお、高炉滓中のフッ素濃度とは、該高炉滓に含まれるあらゆる形態のフッ素の総量(トータルフッ素量)である。
As is apparent from FIG. 1, the blast furnace furnace having a fluorine concentration of 2.5% by mass or less satisfies the reference concentration of 0.8 mg / L or less.
The fluorine concentration in the blast furnace slag is the total amount (total fluorine amount) of all forms of fluorine contained in the blast furnace slag.

ここで、溶融高炉滓へのフッ素含有製鋼スラグと石炭灰の同時添加の総量は、溶融高炉滓の30質量%以下であることが好ましい。これは、フッ素含有製鋼スラグと石炭灰の同時添加の総量が溶融高炉滓の30質量%を超える場合、添加量が多くなり過ぎて溶融高炉滓の熱が奪われ、上記メカニズムが進行する前に溶融高炉滓の温度が低下して添加物が溶解できずに未溶解のまま残ることもあり、添加物中のフッ素の一部が前記した安定鉱物相に取り込まれないため、冷却固化した後の高炉滓から前記基準濃度以上のフッ素が溶出してしまうことも考えられるためである。 Here, the total amount of simultaneous addition of fluorine-containing steelmaking slag and coal ash to the molten blast furnace slag is preferably 30% by mass or less of the molten blast furnace slag. This is because when the total amount of fluorine-containing steelmaking slag and coal ash added simultaneously exceeds 30% by mass of the molten blast furnace slag, the added amount becomes too large and the heat of the molten blast furnace slag is deprived, before the above mechanism proceeds. Since the temperature of the molten blast furnace iron is lowered and the additive cannot be dissolved and remains undissolved, a part of the fluorine in the additive is not taken into the stable mineral phase. This is because it is considered that fluorine having a reference concentration or more is eluted from the blast furnace soot.

また、高炉滓へのフッ素含有製鋼スラグ及び石炭灰の同時添加の方法としては、例えば、フッ素含有製鋼スラグと石炭灰を溶融高炉滓の上方から同時に落とし込む方法、フッ素含有製鋼スラグと石炭灰の混合粉体を一緒に溶融高炉滓中に吹き込む(インジェクション)方法、又はフッ素含有製鋼スラグと石炭灰を造粒して造粒物とし溶融高炉滓の上方から落とし込む方法があるが、粉体のままで上方投入する場合は発塵があり、これを集塵処理する設備が必要となり不経済になると共に、フッ素含有製鋼スラグと石炭灰が均一に添加できず偏在した形で添加される懸念がある。また、混合粉体を溶融高炉滓に吹き込む方法では、均一添加という点では有利であるが、粉体を吹き込む装置にコストがかかることから、簡易な設備でフッ素含有製鋼スラグと石炭灰の均一添加が可能な造粒添加による方法が好ましい。 In addition, as a method of simultaneous addition of fluorine-containing steelmaking slag and coal ash to the blast furnace slag, for example, a method of dropping fluorine-containing steelmaking slag and coal ash simultaneously from above the molten blast furnace slag, a mixture of fluorine-containing steelmaking slag and coal ash There is a method of injecting the powder together into the molten blast furnace slag (injection), or a method of granulating fluorine-containing steel slag and coal ash into a granulated product and dropping it from above the molten blast furnace slag. When it is introduced upward, dust is generated, and equipment for collecting the dust is required, which is uneconomical, and there is a concern that fluorine-containing steelmaking slag and coal ash cannot be uniformly added and are added in an unevenly distributed form. In addition, the method of blowing the mixed powder into the molten blast furnace is advantageous in terms of uniform addition, but since the apparatus for blowing the powder is costly, uniform addition of fluorine-containing steelmaking slag and coal ash with simple equipment It is preferable to use a granulation addition method.

また、フッ素含有製鋼スラグの粒径は、ロッドミル等の破砕機で破砕して0.2mm以下にすることが好ましい。
これは、粒径が0.2mmを超えると、フッ素含有製鋼スラグと石炭灰の混合粉体のまま溶融高炉滓に吹き込む場合、サイズが大き過ぎて粉体搬送に障害が出やすいし、均一混合もしにくくなる。また、フッ素含有製鋼スラグと石炭灰の混合物を造粒して添加する場合も、フッ素含有製鋼スラグが0.2mm以下の粒子であれば、造粒し易くなって好ましい。
一方、フッ素含有製鋼スラグの粒径の下限値については規定していないが、破砕コストの面から0.05mm程度である。
なお、石炭灰(フライアッシュ)は、通常0.1mm以下の微粉が大半であることから粉砕する必要はない。
The particle size of the fluorine-containing steelmaking slag is preferably 0.2 mm or less by crushing with a crusher such as a rod mill.
This is because if the particle size exceeds 0.2 mm, when the mixed powder of fluorine-containing steelmaking slag and coal ash is blown into the molten blast furnace slag, the size is too large and obstacles to powder conveyance are likely to occur, and uniform mixing If it becomes difficult. Moreover, also when granulating and adding the mixture of fluorine-containing steelmaking slag and coal ash, if a fluorine-containing steelmaking slag is a particle | grain of 0.2 mm or less, it will become easy to granulate and is preferable.
On the other hand, the lower limit of the particle size of the fluorine-containing steelmaking slag is not specified, but is about 0.05 mm from the viewpoint of crushing cost.
In addition, since coal ash (fly ash) usually has most fine powder of 0.1 mm or less, it is not necessary to grind | pulverize.

フッ素含有製鋼スラグと石炭灰の造粒物のサイズは20mm以下にすることが好ましい。即ち、20mmを超えた大きな造粒物では、添加した造粒物が溶融高炉滓中に完全に溶解できずに未溶解分が残り、溶融高炉滓が冷却固化した後に、その部分からフッ素が溶出する場合があるからである。
なお、造粒する方法は、例えば、パンペレタイザー、押出成型、又は混練造粒を同時に行う混練造粒機など、20mm以下の造粒物が製造できる方法であれば、いずれを使用しても構わない。
一方、造粒物の粒径の下限値については規定していないが、溶融高炉滓に添加した際における発塵の面から5mm程度である。
このように、本発明の処理方法で製造した高炉滓は、例えば、セメント用原料、又はコンクリート用骨材(粗骨材又は細骨材)に使用することが好ましい。
The size of the granulated product of fluorine-containing steel slag and coal ash is preferably 20 mm or less. That is, in a large granulated product exceeding 20 mm, the added granulated product cannot be completely dissolved in the molten blast furnace slag, and the undissolved part remains, and after the molten blast furnace slag has cooled and solidified, fluorine is eluted from that part. Because there is a case to do.
Any granulation method may be used as long as it can produce a granulated product of 20 mm or less, such as a pan pelletizer, extrusion molding, or a kneading granulator that performs kneading granulation simultaneously. Absent.
On the other hand, although the lower limit value of the particle size of the granulated product is not specified, it is about 5 mm from the surface of dust generation when added to the molten blast furnace.
Thus, it is preferable to use the blast furnace iron manufactured by the processing method of the present invention as, for example, a raw material for cement or an aggregate for concrete (coarse aggregate or fine aggregate).

以下、本発明の実施例について詳細に説明する。
前記表1に示したフッ素含有溶銑脱燐滓又はフッ素含有溶鋼脱硫滓と石炭灰を、以下に示す表3の条件で添加物と成し、表4の方法で溶融高炉滓に添加して冷却固化した後、高炉滓からのフッ素溶出量を前記環境庁告示46号試験に準じて測定した。
Examples of the present invention will be described in detail below.
Fluorine-containing hot metal dephosphorization slag or fluorine-containing molten steel desulfurization slag and coal ash shown in Table 1 above are made into additives under the conditions shown in Table 3 below, and added to the molten blast furnace slag by the method shown in Table 4 for cooling. After solidification, the amount of fluorine eluted from the blast furnace was measured according to the Environmental Agency Notification No. 46 test.

Figure 0004942954
Figure 0004942954

Figure 0004942954
Figure 0004942954

表3、表4から分かるように、実施例1〜8は、フッ素含有溶鋼脱硫滓又はフッ素含有溶銑脱燐滓を石炭灰と共に、溶融高炉滓へ同時に添加して溶解し、冷却固化した後の高炉滓中のフッ素濃度を2.5質量%以下としているので、高炉滓からのフッ素溶出量が環境基準値の0.8mg/L以下に抑えられている。特に、実施例1〜5は、更に、フッ素含有溶鋼脱硫滓又はフッ素含有溶銑脱燐滓の最大粒径を0.2mmとし、溶融高炉滓への添加物を造粒した場合はその造粒物の最大径を20mmとしたものであり、これにより高炉滓からのフッ素溶出量を0.5mg/Lより低い値に抑えることができた。 As can be seen from Tables 3 and 4, Examples 1 to 8 were obtained by simultaneously adding and melting fluorine-containing molten steel desulfurization slag or fluorine-containing molten iron desulfurization slag together with coal ash to the molten blast furnace slag and cooling and solidifying it. Since the fluorine concentration in the blast furnace soot is 2.5 mass% or less, the fluorine elution amount from the blast furnace soot is suppressed to an environmental standard value of 0.8 mg / L or less. In particular, in Examples 1 to 5, when the maximum particle size of the fluorine-containing molten steel desulfurization iron or fluorine-containing molten iron dephosphorization iron is 0.2 mm, and the additive to the molten blast furnace iron is granulated, the granulated product The maximum diameter was set to 20 mm, and the fluorine elution amount from the blast furnace was able to be suppressed to a value lower than 0.5 mg / L.

なお、実施例6のように、最大粒径が0.2mmを超えた(0.25mm)フッ素含有溶鋼脱硫滓を使用した場合、実施例1〜5と比較してフッ素溶出量が若干高くなった。これは、フッ素含有製鋼スラグの粉体と石炭灰との混合の不均一性に起因するものと推定される。
また、実施例7のように、最大径が20mmを超えた(27mm)造粒物を使用した場合、実施例1〜5と比較してフッ素溶出量が若干高くなった。これは、高炉滓が冷却固化するまでに完全に高炉滓に溶けきれず未溶解分が残ったためであると推定される。
更に、実施例8のように、最大粒径が0.2mmを超えた(0.21mm)フッ素含有溶銑脱燐滓を使用して、最大径が20mmを超えた(25mm)造粒物を製造し使用した場合、実施例1〜5と比較してフッ素溶出量が若干高くなった。
しかし、いずれの場合においても、冷却固化した後の高炉滓中のフッ素濃度を2.5質量%以下としているので、高炉滓からのフッ素溶出量が環境基準値の0.8mg/L以下に抑えられている。
In addition, when the fluorine-containing molten steel desulfurization slag having a maximum particle size exceeding 0.2 mm (0.25 mm) was used as in Example 6, the fluorine elution amount was slightly higher than in Examples 1 to 5. It was. This is presumed to be due to non-uniformity of mixing of the powder of fluorine-containing steelmaking slag and coal ash.
In addition, as in Example 7, when a granulated product having a maximum diameter exceeding 20 mm (27 mm) was used, the fluorine elution amount was slightly higher than in Examples 1-5. It is presumed that this is because the blast furnace slag was not completely dissolved in the blast furnace slag until the blast furnace slag solidified and an undissolved portion remained.
Further, as in Example 8, a granulated product having a maximum diameter exceeding 20 mm (25 mm) is produced using a fluorine-containing hot metal dephosphorizing iron having a maximum particle diameter exceeding 0.2 mm (0.21 mm). When used, the fluorine elution amount was slightly higher than in Examples 1-5.
However, in any case, the fluorine concentration in the blast furnace slag after cooling and solidification is 2.5% by mass or less, so the amount of fluorine leaching from the blast furnace slag is suppressed to 0.8 mg / L or less of the environmental standard value. It has been.

一方、比較例では、冷却固化した後のフッ素濃度が2.5質量%超(2.71質量%)となる大量のフッ素含有製鋼スラグを、溶融高炉滓に添加しているため、製造した高炉滓からのフッ素溶出量が環境基準値より高くなった。
以上のことから、本発明のフッ素含有製鋼スラグの処理方法を使用することで、フッ素による環境への負荷を低減でき、しかもフッ素含有製鋼スラグの処理を低コストで実施できることを確認できた。
On the other hand, in the comparative example, since a large amount of fluorine-containing steelmaking slag having a fluorine concentration after cooling and solidification exceeding 2.5% by mass (2.71% by mass) is added to the molten blast furnace blast furnace, Fluorine elution from soot was higher than the environmental standard value.
From the above, it was confirmed that by using the method for treating a fluorine-containing steelmaking slag according to the present invention, it was possible to reduce the environmental load due to fluorine and to carry out the treatment of the fluorine-containing steelmaking slag at a low cost.

以上、本発明を、一実施の形態を参照して説明してきたが、本発明は何ら上記した実施の形態に記載の構成に限定されるものではなく、特許請求の範囲に記載されている事項の範囲内で考えられるその他の実施の形態や変形例も含むものである。例えば、前記したそれぞれの実施の形態や変形例の一部又は全部を組合せて本発明のフッ素含有製鋼スラグの処理方法を構成する場合も本発明の権利範囲に含まれる。 As described above, the present invention has been described with reference to one embodiment. However, the present invention is not limited to the configuration described in the above embodiment, and is described in the claims. Other embodiments and modifications conceivable within the scope of the above are also included. For example, a case where the processing method for fluorine-containing steel slag of the present invention is configured by combining some or all of the above-described embodiments and modifications is also included in the scope of the right of the present invention.

冷却固化後の高炉滓中のフッ素濃度と環境庁告示46号試験における水中でのフッ素溶出量との関係を示す説明図である。It is explanatory drawing which shows the relationship between the fluorine density | concentration in the blast furnace iron | flour after cooling solidification, and the fluorine elution amount in water in the Environment Agency notification 46 test. 本発明の一実施の形態に係るフッ素含有製鋼スラグの処理方法を適用する高炉滓処理設備の平面図である。It is a top view of the blast furnace slag processing equipment to which the processing method of fluorine-containing steelmaking slag concerning one embodiment of the present invention is applied.

符号の説明Explanation of symbols

10:高炉、11:高炉滓処理設備、12:出銑口、13:大樋、14:滓樋、15、16:スキンマー、17:流銑鍋、18:水砕設備、19:放流ピット(徐冷ピット)、20:切替樋 10: Blast furnace, 11: Blast furnace dredging facility, 12: Outlet, 13: Daegu, 14: Dredging, 15, 16: Skinmer, 17: Floating pan, 18: Granulation facility, 19: Discharge pit Cold pit), 20: Switching 樋

Claims (3)

フッ素含有製鋼スラグと石炭灰を溶融状態の高炉滓に同時に添加して溶解した後、冷却固化して、フッ素濃度が2.5質量%以下の高炉滓とすることを特徴とするフッ素含有製鋼スラグの処理方法。 Fluorine-containing steelmaking slag, wherein fluorine-containing steelmaking slag and coal ash are simultaneously added to a molten blast furnace smelt and then cooled and solidified to obtain a blast furnace slag having a fluorine concentration of 2.5 mass% or less. Processing method. 請求項1記載のフッ素含有製鋼スラグの処理方法において、前記フッ素含有製鋼スラグの粒径が0.2mm以下であることを特徴とするフッ素含有製鋼スラグの処理方法。 The processing method of fluorine-containing steelmaking slag according to claim 1, wherein a particle size of the fluorine-containing steelmaking slag is 0.2 mm or less. 請求項1及び2のいずれか1項に記載のフッ素含有製鋼スラグの処理方法において、前記フッ素含有製鋼スラグと前記石炭灰を造粒し、20mm以下の造粒物として、前記溶融状態の高炉滓に添加することを特徴とするフッ素含有製鋼スラグの処理方法。 The processing method of the fluorine-containing steelmaking slag according to any one of claims 1 and 2, wherein the fluorine-containing steelmaking slag and the coal ash are granulated to obtain a granulated product of 20 mm or less as the granulated product in the molten state. A method for treating fluorine-containing steelmaking slag, characterized by being added to the above.
JP2005203337A 2005-07-12 2005-07-12 Method for processing fluorine-containing steelmaking slag Active JP4942954B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005203337A JP4942954B2 (en) 2005-07-12 2005-07-12 Method for processing fluorine-containing steelmaking slag

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005203337A JP4942954B2 (en) 2005-07-12 2005-07-12 Method for processing fluorine-containing steelmaking slag

Publications (2)

Publication Number Publication Date
JP2007022818A JP2007022818A (en) 2007-02-01
JP4942954B2 true JP4942954B2 (en) 2012-05-30

Family

ID=37784079

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005203337A Active JP4942954B2 (en) 2005-07-12 2005-07-12 Method for processing fluorine-containing steelmaking slag

Country Status (1)

Country Link
JP (1) JP4942954B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5089341B2 (en) * 2007-11-05 2012-12-05 株式会社神戸製鋼所 Slag separation method
JP5874695B2 (en) * 2013-08-01 2016-03-02 栗田工業株式会社 Detoxification method for solid waste containing heavy metals
CN113896550B (en) * 2021-11-19 2023-01-24 攀钢集团攀枝花钢铁研究院有限公司 Anti-bonding method for blast furnace slag chute

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60246246A (en) * 1984-05-21 1985-12-05 住友金属工業株式会社 Manufacture of composite slag
JPH10279331A (en) * 1997-03-31 1998-10-20 Yoshizawa Sekkai Kogyo Kk Production of useful material from slag of pig iron making and steel making
JP3674365B2 (en) * 1999-02-26 2005-07-20 住友金属工業株式会社 Method for stabilizing steelmaking slag containing fluorine
JP3606108B2 (en) * 1999-05-27 2005-01-05 住友金属工業株式会社 Stabilization method of steelmaking slag, underground material and its manufacturing method
JP2001072447A (en) * 1999-07-02 2001-03-21 Nkk Corp Method for inhibiting elusion of fluoride from steel- making slag
JP2001131615A (en) * 1999-11-01 2001-05-15 Kawasaki Steel Corp Utilizing method of steelmaking slag
JP4585131B2 (en) * 2000-02-24 2010-11-24 Jfeミネラル株式会社 Method for processing steelmaking slag, method for manufacturing material buried in soil, and method for manufacturing material for harbor civil engineering
JP3782376B2 (en) * 2001-08-10 2006-06-07 Jfeスチール株式会社 Method for suppressing fluorine elution from smelting slag containing fluorine
JP2004210630A (en) * 2002-12-17 2004-07-29 Nippon Steel Corp Method of reforming slag
JP4081427B2 (en) * 2003-11-13 2008-04-23 新日本製鐵株式会社 Blast furnace reforming method
JP2005132721A (en) * 2005-01-25 2005-05-26 Sumitomo Metal Ind Ltd Method for manufacturing stabilizer for steelmaking slag containing fluorine

Also Published As

Publication number Publication date
JP2007022818A (en) 2007-02-01

Similar Documents

Publication Publication Date Title
JP4942954B2 (en) Method for processing fluorine-containing steelmaking slag
JP5347317B2 (en) How to reuse used tundish refractories
JP2002053351A (en) Pollution-free stainless steel slag and method for manufacturing the same
JPH082949A (en) Method for modifying steelmaking slag
JP5440443B2 (en) Recycling method of steelmaking slag
JP2009040650A (en) Treatment method of steel slag
JP2020032343A (en) Method for suppressing elution of boron in boron-including material, and method for production of treatment material for boron elution suppression
JP4427370B2 (en) Method for reforming slag of chromium ore smelting reduction furnace
JP4184884B2 (en) Steelmaking material for desulfurization and refining of steel
JP4204922B2 (en) Roadbed material and method for manufacturing the same
JP6413854B2 (en) Manufacturing method for civil engineering materials for land use
JP2018065724A (en) Method for manufacturing slag
JP2006328453A (en) Method for desiliconizing molten iron
JP5088040B2 (en) Processing method of granulated blast furnace slag
JP2001262217A (en) Method and device for treating reduced slag in electric furnace
JP7216462B2 (en) Slag fine aggregate used for spraying mortar, spraying mortar using the same, and method for producing slag fine aggregate used for spraying mortar
JPH09301748A (en) Production of stable slag
JP2009280427A (en) Pre-mix heavy weight aggregate
JP3644330B2 (en) Treatment method for reducing slag
JP2000313642A (en) Production of rigid water-granulated slag
JPS60231444A (en) Use of highly basic steel slag
JP6870328B2 (en) Slug
JP4034974B2 (en) Blast furnace slag aggregate manufacturing method using fly ash
JP2005146332A (en) Material for modifying blast furnace slag and modifying method therefor
JP2004035278A (en) Process for treating fly ash

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080306

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100506

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110719

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110830

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120221

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120229

R151 Written notification of patent or utility model registration

Ref document number: 4942954

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150309

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150309

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150309

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350