JP4184884B2 - Steelmaking material for desulfurization and refining of steel - Google Patents

Steelmaking material for desulfurization and refining of steel Download PDF

Info

Publication number
JP4184884B2
JP4184884B2 JP2003200823A JP2003200823A JP4184884B2 JP 4184884 B2 JP4184884 B2 JP 4184884B2 JP 2003200823 A JP2003200823 A JP 2003200823A JP 2003200823 A JP2003200823 A JP 2003200823A JP 4184884 B2 JP4184884 B2 JP 4184884B2
Authority
JP
Japan
Prior art keywords
mgo
waste refractory
weight
refining
refractory material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003200823A
Other languages
Japanese (ja)
Other versions
JP2005042137A (en
Inventor
義数 丸野
幹根 岸
昭彦 渋谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP2003200823A priority Critical patent/JP4184884B2/en
Publication of JP2005042137A publication Critical patent/JP2005042137A/en
Application granted granted Critical
Publication of JP4184884B2 publication Critical patent/JP4184884B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は鋼の脱硫精錬用造滓材に関する。例えば取鍋精錬炉を用いて溶鋼の脱硫を行なう場合、一般に生石灰と、還元剤としてカーボンや金属Al等を添加する。本発明は、このような鋼の脱硫精錬(以下、単に精錬という)時に添加した生石灰の滓化を促す造滓材に関する。
【0002】
【従来の技術】
従来、前記のような造滓材として一般に、蛍石が使用されている(例えば特許文献1〜4参照)。しかし、蛍石を使用すると、添加した生石灰の滓化を促すことができるものの、精錬時に炉壁の溶損が激しく、また生成する滓化物を埋立処分したり、路盤材等として利用する場合に、フッ素の溶出による土壌汚染の危惧がある。
【0003】
【特許文献1】
特開平6−157084号公報
【特許文献2】
特開平7−102310号公報
【特許文献3】
特開平8−134528号公報
【特許文献4】
特開平10−102119号公報
【0004】
【発明が解決しようとする課題】
本発明が解決しようとする課題は、鋼の精錬時に添加した生石灰の滓化を、蛍石を使用することなく促すことができる造滓材であって、精錬時における炉壁の溶損を抑え、また生成する滓化物を埋立処分したり、路盤材等として利用する場合に、フッ素の溶出による土壌汚染の危惧がない造滓材を提供する処にある。
【0005】
【課題を解決するための手段】
前記の課題を解決する本発明は、鋼の脱硫精錬時に添加した生石灰の滓化を促す造滓材であって、60〜90重量%のアルミ灰、5〜20重量%のMgO−CaO系廃耐火材、合計で5〜20重量%のMgO−C系廃耐火材及びMgO−Al−C系廃耐火材から成り、且つAl を30〜60重量%、金属Alを10〜25重量%、MgOを5〜25重量%、CaOを2〜15重量%及びその他の成分を30重量%以下(合計100重量%)の割合で含有することを特徴とする鋼の脱硫精錬用造滓材に係る。
【0006】
本発明に係る鋼の精錬用造滓材は、鋼の精錬時に添加した生石灰の滓化を促す造滓材であり、通常は例えば取鍋精錬炉を用いて溶鋼の脱硫を行なうときに添加した生石灰の滓化を促す造滓材である。
【0007】
本発明に係る鋼の精錬用造滓材は、アルミ灰、MgO−CaO系廃耐火材、MgO−C系廃耐火材及びMgO−Al−C系廃耐火材から成るものである。アルミ灰は、アルミ精錬時に発生するアルミドロスを精製した残灰、金属Alの切削、研削及び研磨等の加工時に発生する粉粒体等である。またMgO−CaO系廃耐火材、MgO−C系廃耐火材及びMgO−Al−C系廃耐火材は、炉の構築材料として使用したかかる耐火材の廃材(使用済み廃材)、例えば使用済み耐火レンガ、かかる耐火材の製造乃至加工時に発生する不良品等である。これらの廃耐火材のうちで、MgO−C系耐火材及びMgO−Al−C系耐火材は炉の構築材料として併用されることが多く、したがってこれらの廃材は結果として混合物の形で発生することが多い。通常、かかる混合物は、MgO−C系廃耐火材/MgO−Al−C系廃耐火材=1/3〜3/1(重量比)の割合から成っているが、1/2〜2/1(重量比)の割合から成っていることが多い。アルミ灰や以上のような廃耐火材はその処分に困っており、その有効利用手段が模索されているのが実情であるが、本発明ではこれらを鋼の精錬用造滓材として活用する。
【0008】
本発明に係る鋼の精錬用造滓材は、アルミ灰を60〜90重量%、MgO−CaO系廃耐火材を5〜20重量%、MgO−C系廃耐火材及びMgO−Al−C系廃耐火材を合計で5〜20重量%含有して成るものである。かかる重量割合の範囲内において、生石灰の滓化促進、炉壁の溶損抑制、更には溶鋼の脱硫を充分に図ることができる。これらをより充分に図るためには、アルミ灰を60〜80重量%、MgO−CaO系廃耐火材を10〜15重量%、MgO−C系廃耐火材及びMgO−Al−C系廃耐火材を合計で10〜15重量%含有して成るものとするのが好ましい。
【0009】
本発明に係る鋼の精錬用造滓材は、前記のような重量割合の、アルミ灰、MgO−CaO系廃耐火材、MgO−C系廃耐火材及びMgO−Al−C系廃耐火材から成るものであり、その形態としては、これらを混合前及び/又は混合後に破砕又は粉砕した混合物から成るものとすることもできるが、取扱いの便宜上、これらの粉末をブリケットマシーンやプレスマシーン等で乾式成形したものが好ましい。
【0010】
それぞれに相応のバラツキはあるが、一般に、アルミ灰は、Alを40〜70重量%、金属Alを15〜30重量%、MgOを5〜10重量%、CaOを0.5〜1重量%及びその他の成分を20〜45重量%含有しており、またMgO−CaO系廃耐火材は、Alを0.5〜3重量%、MgOを35〜50重量%、CaOを35〜50重量%及びその他の成分を3〜15重量%含有していて、更にMgO−C系廃耐火材及びMgO−Al−C系廃耐火材の混合物は、Alを35〜45重量%、MgOを35〜50重量%、CaOを5〜15重量%及びその他の成分を5〜15重量%含有している。したがって、これらを前記のような重量割合で混合したものは、以上の数値に基づいて算出されるAl、金属Al、MgO、CaO及びその他の成分を含有するものとなるが、なかでも本発明に係る鋼の精錬用造滓材としては、Alを30〜60重量%、金属Alを10〜25重量%、MgOを5〜25重量%、CaOを2〜15重量%及びその他の成分を30重量%以下(合計100重量%)の割合で含有するものを用いる
【0011】
【実施例】
試験区分1
表1に記載の組成を有するアルミ灰、MgO−CaO系廃耐火材(廃耐火材A)、MgO−C系廃耐火材/MgO−Al−C系廃耐火材=1/1(重量比)の混合物(廃耐火材B)及び蛍石を用いて、表2に記載の組成を有する各例の造滓材を調製した。各例の造滓材は、アルミ灰、廃耐火材A、廃耐火材B及び蛍石を粉砕し、その粉砕物を表2に記載の配合比となるよう混合した後、その混合物を粒子径0.5〜3mmの顆粒状に乾式成形することにより調製した。表1に記載の組成を有する生石灰を粉砕し、分級した粒子径1〜3mmの生石灰粒7gと造滓材3gとを混合し、その混合物をアルミナ板上に載せ、雰囲気温度を1370℃に維持した電気炉内に30分間静置した後、取り出して、生石灰粒の滓化(溶融)状態を目視にて観察すると共に、未溶融の生石灰粒の残量を求めた。結果を表3にまとめて示した。
【0012】
【表1】

Figure 0004184884
【0013】
【表2】
Figure 0004184884
【0014】
【表3】
Figure 0004184884
【0015】
表3において、
◎:ほぼ全体が滓化(溶融)している
○:ほぼ1/2以上が滓化(溶融)している
△:ほぼ1/2以上が未滓化(未溶融)のまま残っている
×:ほぼ全体が未滓化(未溶融)のまま残っている
【0016】
試験区分2
試験区分1に記載の生石灰粒/試験区分1に記載の実施例2の造滓材=7/3(重量比)の割合で混合し、その混合物を直径10cm×高さ2cmの短寸な円柱状にプレスマシーンで乾式成形した。この円柱状成形物をMgO−C耐火材板上に載せ、雰囲気温度1400℃に維持した電気炉内に30分間静置した後、取り出して、その滓化(溶融)状態及びMgO−C耐火材板の溶損状態を目視にて観察したところ、円柱状成形物は全体として広がることなく泡状に滓化(溶融)しており、MgO−C耐火材板の溶損は殆ど認められなかった。
【0017】
別に、試験区分1に記載の生石灰粒/試験区分1に記載の比較例6の造滓材=7/3(重量比)の割合で混合し、その混合物から前記と同様に円柱状成形物を乾式成形した。この円柱状成形物を前記と同様に処理したところ、円柱状成形物はMgO−C耐火材板上に広がって滓化(溶融)しており、MgO−C耐火材板の溶損が明らかに認められた。
【0018】
試験区分3
80t取鍋精錬炉を用いた0.25%C構造用鋼の精錬時に、いずれも試験区分1に記載したものを用いて、表4に記載の割合で生石灰粒や造滓材等を添加した。精錬前及び精錬後における鋼中のS%、精錬後に取鍋精錬炉のスラグラインへ吹付けた補修材の使用量を求め、結果を表4にまとめて示した。
【0019】
【表4】
Figure 0004184884
【0020】
表4の結果から、蛍石を使用しない実施例2の造滓材は、蛍石を使用した比較例6の造滓材と比べて、充分な脱硫能を有し、また炉壁の溶損を抑えていることが明らかである。
【0021】
【発明の効果】
既に明らかなように、以上説明した本発明には、鋼の精錬時に添加した生石灰の滓化を、蛍石を使用することなく、アルミ灰や廃耐火材を活用して促すことができ、したがって充分な精錬能を有しつつ、蛍石を使用することに起因する炉壁の溶損を抑え、また土壌汚染の危惧を未然に防止できるという効果がある。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a steelmaking material for desulfurizing and refining steel. For example, when desulfurization of molten steel is performed using a ladle refining furnace, generally quick lime and carbon, metal Al or the like are added as a reducing agent. The present invention relates to a steelmaking material that promotes hatching of quicklime added during desulfurization refining (hereinafter simply referred to as refining) of such steel.
[0002]
[Prior art]
Conventionally, fluorite is generally used as the above-mentioned slagging material (for example, see Patent Documents 1 to 4). However, although fluorite can be used to promote the hatching of the added quicklime, the melting of the furnace wall is severe during refining, and the hatched product that is produced is disposed of in landfills or used as roadbed materials. There is a risk of soil contamination due to elution of fluorine.
[0003]
[Patent Document 1]
JP-A-6-157084 [Patent Document 2]
JP-A-7-102310 [Patent Document 3]
JP-A-8-134528 [Patent Document 4]
Japanese Patent Laid-Open No. 10-102119
[Problems to be solved by the invention]
The problem to be solved by the present invention is a slag-forming material that can accelerate the hatching of quicklime added during steel refining without using fluorite, and suppresses the melting of the furnace wall during refining. In addition, when the generated hatching is disposed of in landfills or used as a roadbed material, etc., it is a place to provide a fossil material that is free from fear of soil contamination due to elution of fluorine.
[0005]
[Means for Solving the Problems]
The present invention that solves the above-mentioned problems is a slag-forming material that promotes hatching of quicklime added at the time of desulfurization refining of steel, comprising 60 to 90% by weight of aluminum ash and 5 to 20% by weight of MgO-CaO-based waste refractory material, a total of Ri consists 5 to 20 wt% of MgO-C-based waste refractory material and MgO-Al 2 O 3 -C based waste refractory material, and the Al 2 O 3 30 to 60 wt%, the metal Al 10-25 wt%, the MgO 5 to 25 wt%, the desulfurization of steel, characterized that you in a proportion of 2 to 15% by weight and other ingredients 30 wt% or less CaO (total 100 wt%) Related to smelting materials.
[0006]
The steel smelting material for refining steel according to the present invention is a smelting material that promotes the hatching of quick lime added during steel refining, and is usually added when desulfurizing molten steel using a ladle refining furnace, for example. It is a fossil material that promotes hatching of quicklime.
[0007]
The steel smelting material for refining steel according to the present invention comprises aluminum ash, MgO—CaO waste refractory material, MgO—C waste refractory material and MgO—Al 2 O 3 —C waste refractory material. The aluminum ash is a residual ash obtained by refining aluminum dross generated at the time of aluminum refining, a granular material generated at the time of processing such as cutting, grinding and polishing of metal Al. In addition, MgO-CaO-based waste refractory material, MgO-C-based waste refractory material and MgO-Al 2 O 3 -C-based waste refractory material are waste materials (used waste materials) of such refractory materials used as furnace construction materials, for example, Used refractory bricks, defective products generated during the manufacture or processing of such refractory materials. Of these waste refractories, MgO-C refractories and MgO-Al 2 O 3 -C refractories are often used together as furnace building materials, so that these waste materials result in a mixture form. Often occurs. Usually, such a mixture consists of MgO—C waste refractory / MgO—Al 2 O 3 —C waste refractory = 1/3 to 3/1 (weight ratio). It often consists of a ratio of 2/1 (weight ratio). Aluminum ash and waste refractory materials such as those described above are difficult to dispose of, and it is a fact that effective utilization means are being sought. However, in the present invention, these are utilized as steelmaking materials for steel refining.
[0008]
The steel smelting material for steel refining according to the present invention comprises 60 to 90% by weight of aluminum ash, 5 to 20% by weight of MgO—CaO waste refractory, MgO—C waste refractory and MgO—Al 2 O 3. -It contains 5 to 20 wt% of C-based waste refractory materials in total. Within this weight ratio range, quick lime hatching, suppression of furnace wall erosion, and desulfurization of molten steel can be sufficiently achieved. In order to achieve these sufficiently, aluminum ash is 60 to 80% by weight, MgO—CaO-based waste refractory material is 10 to 15% by weight, MgO—C-based waste refractory material and MgO—Al 2 O 3 —C system. The waste refractory material is preferably contained in a total amount of 10 to 15% by weight.
[0009]
The steel smelting material for smelting steel according to the present invention comprises aluminum ash, MgO—CaO-based waste refractory material, MgO—C-based waste refractory material and MgO—Al 2 O 3 —C-based waste in the above-mentioned weight ratio. It is made of a refractory material, and the form thereof may be a mixture obtained by pulverizing or pulverizing the mixture before and / or after mixing. However, for the convenience of handling, these powders are used in briquette machines or press machines. What was dry-molded with etc. is preferable.
[0010]
In general, aluminum ash is 40 to 70% by weight of Al 2 O 3 , 15 to 30% by weight of metal Al, 5 to 10% by weight of MgO, and 0.5 to 1 of CaO. The MgO-CaO waste refractory material contains 0.5 to 3% by weight of Al 2 O 3 , 35 to 50% by weight of MgO, and CaO. The mixture of 35 to 50% by weight and 3 to 15% by weight of other components, and the mixture of MgO—C waste refractory and MgO—Al 2 O 3 —C waste refractory includes Al 2 O 3 . It contains 35 to 45% by weight, 35 to 50% by weight of MgO, 5 to 15% by weight of CaO and 5 to 15% by weight of other components. Therefore, what mixed these in the weight ratio as described above contains Al 2 O 3 , metal Al, MgO, CaO and other components calculated based on the above numerical values. As the steel refining steel for steel refining according to the present invention , Al 2 O 3 is 30 to 60% by weight, metal Al is 10 to 25% by weight, MgO is 5 to 25% by weight, CaO is 2 to 15% by weight and What contains other components in the ratio of 30 weight% or less (total of 100 weight%) is used .
[0011]
【Example】
Test category 1
Aluminum ash having the composition shown in Table 1, MgO—CaO-based waste refractory material (waste refractory material A), MgO—C-based waste refractory material / MgO—Al 2 O 3 —C-based waste refractory material = 1/1 ( A weight ratio) mixture (waste refractory material B) and fluorite were used to prepare each example of a faux ware having the composition shown in Table 2. In each example, the slagging material was crushed aluminum ash, waste refractory material A, waste refractory material B, and fluorite, and the pulverized product was mixed so as to have the blending ratio shown in Table 2, and then the mixture was reduced in particle size. It was prepared by dry molding into 0.5-3 mm granules. Quick lime having the composition shown in Table 1 is pulverized and mixed with 7 g of quick lime grains having a particle diameter of 1 to 3 mm and 3 g of the slagging material. The mixture is placed on an alumina plate and the ambient temperature is maintained at 1370 ° C. After leaving it in the electric furnace for 30 minutes, it was taken out, and the hatched (molten) state of the quicklime particles was visually observed, and the remaining amount of unmelted quicklime particles was determined. The results are summarized in Table 3.
[0012]
[Table 1]
Figure 0004184884
[0013]
[Table 2]
Figure 0004184884
[0014]
[Table 3]
Figure 0004184884
[0015]
In Table 3,
◎: Almost entirely hatched (melted) ○: Almost 1/2 or more hatched (melted) Δ: Almost 1/2 or more remained unhatched (unmelted) × : Almost the whole remains undehumidified (unmelted). [0016]
Test category 2
Quick lime grains as described in test category 1 / kneading material of Example 2 as described in test category 1 = 7/3 (weight ratio), and the mixture is a short circle having a diameter of 10 cm and a height of 2 cm. It was dry-formed into a pillar shape with a press machine. This columnar molded product was placed on a MgO-C refractory plate, left in an electric furnace maintained at an atmospheric temperature of 1400 ° C. for 30 minutes, and then taken out to show its hatched (molten) state and MgO—C refractory material. When the erosion state of the plate was visually observed, the cylindrical molded product was hatched (melted) without spreading as a whole, and almost no erosion loss of the MgO-C refractory material plate was observed. .
[0017]
Separately, quick lime grains described in Test Category 1 / mixture of Comparative Example 6 described in Test Category 1 at a ratio of 7/3 (weight ratio), and a cylindrical molded product is formed from the mixture in the same manner as described above. Dry-molded. When this cylindrical molded product was processed in the same manner as described above, the cylindrical molded product spread and hatched (melted) on the MgO-C refractory plate, and the MgO-C refractory plate was clearly melted. Admitted.
[0018]
Test category 3
At the time of refining 0.25% C structural steel using an 80t ladle refining furnace, all of those described in Test Category 1 were used, and quick lime grains, slagging materials, etc. were added at the ratios shown in Table 4. . The S% in the steel before and after refining, the amount of repair material sprayed to the slag line of the ladle refining furnace after refining were determined, and the results are summarized in Table 4.
[0019]
[Table 4]
Figure 0004184884
[0020]
From the results shown in Table 4, the slagging material of Example 2 that does not use fluorite has a sufficient desulfurization ability as compared with the slagging material of Comparative Example 6 that uses fluorite, and the melting loss of the furnace wall. It is clear that this is suppressed.
[0021]
【The invention's effect】
As is clear from the above, the present invention described above can promote the hatching of quick lime added during the refining of steel by using aluminum ash and waste refractory material without using fluorite, and therefore While having sufficient refining ability, it has the effect of suppressing the melting damage of the furnace wall caused by the use of fluorite and preventing the fear of soil contamination.

Claims (4)

鋼の脱硫精錬時に添加した生石灰の滓化を促す造滓材であって、60〜90重量%のアルミ灰、5〜20重量%のMgO−CaO系廃耐火材、合計で5〜20重量%のMgO−C系廃耐火材及びMgO−Al−C系廃耐火材から成り、且つAl を30〜60重量%、金属Alを10〜25重量%、MgOを5〜25重量%、CaOを2〜15重量%及びその他の成分を30重量%以下(合計100重量%)の割合で含有することを特徴とする鋼の脱硫精錬用造滓材。A steelmaking material that promotes hatching of quicklime added during desulfurization refining of steel, 60 to 90% by weight of aluminum ash, 5 to 20% by weight of MgO-CaO-based waste refractory material, 5 to 20% by weight in total Ri from MgO-C-based waste refractory material and MgO-Al 2 O 3 -C based waste refractory material formed, and Al 2 O 3 30 to 60 wt%, the metal Al 10 to 25 wt%, the MgO. 5 to 25 wt%, desulfurization refining slag material of steel which is characterized that you in a proportion of 2 to 15% by weight and other ingredients 30 wt% or less CaO (total 100 wt%). 60〜80重量%のアルミ灰、10〜15重量%のMgO−CaO系廃耐火材、合計で10〜15重量%のMgO−C系廃耐火材及びAl−MgO−C系廃耐火材から成る請求項1記載の鋼の脱硫精錬用造滓材。60-80% by weight of aluminum ash, 10 to 15 wt% of MgO-CaO-based waste refractory material, MgO-C-based waste refractory material 10 to 15 wt% in total and Al 2 O 3 -MgO-C type waste refractory The steelmaking material for desulfurization and refining of steel according to claim 1, comprising the material. MgO−C系廃耐火材/MgO−Al−C系廃耐火材=1/3〜3/1(重量比)の割合で含有する請求項1又は2記載の鋼の脱硫精錬用造滓材。MgO-C-based waste refractory material / MgO-Al 2 O 3 -C based waste refractory material = 1/3 to 3/1 according to claim 1 or 2 forming desulfurizing refining of steel according to a proportion (weight ratio) Firewood. アルミ灰、MgO−CaO系廃耐火材、MgO−C系廃耐火材及びMgO−Al−C系廃耐火材の各粉末の混合物を乾式成形したものから成る請求項1〜3のいずれか一つの項記載の鋼の脱硫精錬用造滓材。Aluminum ash, MgO-CaO-based waste refractory materials, any of claims 1 to 3, a mixture of powders of MgO-C-based waste refractory material and MgO-Al 2 O 3 -C based waste refractory material consists of those dry molding A steelmaking material for desulfurizing and refining steel according to any one of the above items.
JP2003200823A 2003-07-24 2003-07-24 Steelmaking material for desulfurization and refining of steel Expired - Fee Related JP4184884B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003200823A JP4184884B2 (en) 2003-07-24 2003-07-24 Steelmaking material for desulfurization and refining of steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003200823A JP4184884B2 (en) 2003-07-24 2003-07-24 Steelmaking material for desulfurization and refining of steel

Publications (2)

Publication Number Publication Date
JP2005042137A JP2005042137A (en) 2005-02-17
JP4184884B2 true JP4184884B2 (en) 2008-11-19

Family

ID=34261075

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003200823A Expired - Fee Related JP4184884B2 (en) 2003-07-24 2003-07-24 Steelmaking material for desulfurization and refining of steel

Country Status (1)

Country Link
JP (1) JP4184884B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109179464A (en) * 2018-09-05 2019-01-11 中国铝业股份有限公司 A kind of method of Quadratic aluminum dust high-efficiency cleaning resource utilization

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100450972C (en) * 2006-04-27 2009-01-14 武汉科技大学 Fused magnesia-aluminum spinel composite fire-resistant material and producing method thereof
KR100954943B1 (en) 2008-02-28 2010-04-27 현대제철 주식회사 Modifier for Electric furnace by using Waste Refractory, and method for producing the same
CN101942573B (en) * 2010-08-13 2011-09-14 东北大学 Method for preparing magnesium metal and magnesia-alumina spinel from active magnesium oxide and aluminum or aluminum alloy
JP5910069B2 (en) * 2011-12-22 2016-04-27 Jfeスチール株式会社 Desulfurization agent, hot metal desulfurization treatment method using the desulfurization agent, and hot metal desulfurization treatment method using refractory
CN112126736A (en) * 2020-09-15 2020-12-25 中天钢铁集团有限公司 Method for shortening oxygen supply time of variety steel converter

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1503176A (en) * 1975-07-16 1978-03-08 Foseco Int Arc steelmaking
JPS61106706A (en) * 1984-10-29 1986-05-24 Nippon Steel Corp Method for desulfurizing molten steel
JP3607767B2 (en) * 1995-12-05 2005-01-05 新日本製鐵株式会社 Molten steel desulfurization and dehydrogenation method with small refractory melting loss
JP2001323311A (en) * 2000-05-11 2001-11-22 Nippon Steel Corp Method for refining molten iron or molten steel
JP3991562B2 (en) * 2000-08-07 2007-10-17 住友金属工業株式会社 Detoxified stainless slag and its manufacturing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109179464A (en) * 2018-09-05 2019-01-11 中国铝业股份有限公司 A kind of method of Quadratic aluminum dust high-efficiency cleaning resource utilization
CN109179464B (en) * 2018-09-05 2021-01-01 中国铝业股份有限公司 Method for efficiently, cleanly and recycling secondary aluminum ash

Also Published As

Publication number Publication date
JP2005042137A (en) 2005-02-17

Similar Documents

Publication Publication Date Title
CA1287495C (en) Magnesium calcium oxide composite
CN103484595B (en) Production process of magnesian slag pressing agents
US4451293A (en) Slag-forming agent and process for producing the agent
JP4184884B2 (en) Steelmaking material for desulfurization and refining of steel
JP5440443B2 (en) Recycling method of steelmaking slag
RU2660782C1 (en) Briquet made of slag-forming mixture for steel purification
JP2561615B2 (en) Method for producing complex slag refiner for refining used in out-of-furnace refining
KR20170106597A (en) Desulfurizer for molten iron
CN102161491A (en) Preparation method of pre-melted calcium aluminum for steel making
JP5098518B2 (en) Hot phosphorus dephosphorization method
JP4942954B2 (en) Method for processing fluorine-containing steelmaking slag
JPS621446B2 (en)
JP2004204313A (en) Lf treating method without adding fluorite
JP2010196148A (en) Iron raw material and manufacturing method therefor
RU2737837C1 (en) Slag-forming mixture for refining steel and briquettes from slag-forming mixture
RU2007107674A (en) MIXTURE FOR MANUFACTURE OF BRIQUETTES FOR METALLURGICAL PRODUCTION
JPS54155105A (en) Converter repairing method by hot spraying
KR100475696B1 (en) A slag making material made of waste firebrick and its manufacturing process
JPH11335718A (en) Method for utilizing magnesia base waste brick
JP7216462B2 (en) Slag fine aggregate used for spraying mortar, spraying mortar using the same, and method for producing slag fine aggregate used for spraying mortar
CS209895B2 (en) Admixture for liningless cupola furnaces
JP2001262217A (en) Method and device for treating reduced slag in electric furnace
JPH10317040A (en) Mgo(magnesium oxide) briquette for adjusting slag concentration
JP5807370B2 (en) Hot metal desulfurization method
JPH0941014A (en) Flux for refining molten iron and molten steel and its production

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060612

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080522

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080602

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080707

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080901

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080904

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110912

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees