JP2004204313A - Lf treating method without adding fluorite - Google Patents

Lf treating method without adding fluorite Download PDF

Info

Publication number
JP2004204313A
JP2004204313A JP2002376127A JP2002376127A JP2004204313A JP 2004204313 A JP2004204313 A JP 2004204313A JP 2002376127 A JP2002376127 A JP 2002376127A JP 2002376127 A JP2002376127 A JP 2002376127A JP 2004204313 A JP2004204313 A JP 2004204313A
Authority
JP
Japan
Prior art keywords
slag
sio
composition
fluorite
calcium aluminate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002376127A
Other languages
Japanese (ja)
Other versions
JP3827010B2 (en
Inventor
Akihiro Noaki
明弘 野秋
Takeshi Nakamura
毅 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Topy Industries Ltd
Original Assignee
Topy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Topy Industries Ltd filed Critical Topy Industries Ltd
Priority to JP2002376127A priority Critical patent/JP3827010B2/en
Publication of JP2004204313A publication Critical patent/JP2004204313A/en
Application granted granted Critical
Publication of JP3827010B2 publication Critical patent/JP3827010B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)
  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an LF (ladle furnace) treating method dissolving such problems as to delay the progresses of deoxidation and desulfurization, extend treating time, lower inclusion absorbing performance of slag and increase inclusion in a steel and generation of clogging to a CC nozzle, in the case of non-adding fluorite. <P>SOLUTION: The slag at the initial stage of the LF treatment is made to become a composition range having low fused point by mixing a complex slag-making agent selecting the composition containing CaO, Al<SB>2</SB>O<SB>3</SB>, Al, SiO<SB>2</SB>and MgO into a ladle during tapping from an electric furnace so as to sufficiently become fused state by forming the slag with the molten steel. Successively, lime, calcium aluminate and deoxidizing agent are added so that the slag keeps in the fused state and high fluidity state and thus, the LF treatment having the same state as the time using the fluorite can be obtained. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明が属する技術分野】
この発明は、溶鋼の二次精錬工程である取鍋精錬炉(以下LF)処理方法に係り、詳記すれば、ホタル石無添加でホタル石使用時と同等の処理ができるLF処理方法に関する。
【0002】
【従来の技術】
従来、LF処理では、図1に示すように、(1)電気炉出鋼中に取鍋内へ造滓剤(製鋼用生石灰(以下生石灰))にホタル石、アルミ灰、SiC等を混合しブリケット化したもの)を添加し、(2)LF処理初期に取鍋内へ脱酸剤(アルミ、アルミ灰、SiC、ホタル石等を混合しブリケット化したもの)を添加し、(3)生石灰添加量やスラグの状態に応じて更にホタル石を添加していた。
【0003】
ホタル石を添加する目的は、生石灰滓化促進(低融点化による溶融促進)とスラグ流動性促進(スラグ・メタル反応促進)であり、添加の結果、溶鋼脱硫と脱酸が促進され、処理時間が短縮すると共に、スラグの介在物吸収能力が向上し、清浄度の向上と連続鋳造(以下CC)工程におけるノズル閉塞トラブル防止が達せられる。
【0004】
しかしながら、ホタル石はフッ素を多量(35〜40重量%程度)に含有している。このため製鋼スラグへフッ素が混入し、製鋼スラグを土木用資材や土壌改質材としてリサイクルする場合、周辺土壌へフッ素が溶出する。フッ素は、人の健康保護の観点から、環境基本法の水質環境基準および土壌環境基準において0.8mg/リットル以下と定められており、製鋼スラグがリサイクルされる状況で、これらの基準を超える汚染を引き起こさないことが求められる。そればかりか、取鍋内へホタル石を添加すると、取鍋耐火物の溶損が助長される問題も生じる。
【0005】
上記基準を厳守するためには、(1)ごく少量の添加でも、スラグ組成によっては基準値を超えてしまうことと、(2)スラグ中へフッ素固定剤を添加する方法もあるが長期安定性が未確認であること、から現状ではホタル石を無添加にする必要がある。
【0006】
しかして、ホタル石を無添加とした場合、(a)生石灰の滓化が困難となる、(b)スラグの流動性が確保できない、(c)そのため脱酸、脱硫の進行が遅れ、処理時間が延長する、(d)スラグの介在物吸収能力が低下し、鋼中介在物、CCノズル閉塞の発生が増加する、等の問題が生じる。
【0007】
カルシウムアルミネート系脱硫剤については、従来から公知である(例えば特許文献1参照)が、該特許文献は、カルシウムアルミネート自体の融点低下のための成分変更に関する内容が開示されているにすぎず、LF処理法自体の内容は開示されていない。
【0008】
【特許文献1】
特開2002−60832号公報
【0009】
【発明が解決しようとする課題】
【0010】
この発明は、この様な点に着目してなされたものであり段落[0002]に記述の(1)〜(3)の全ての工程においてホタル石無添加として、上記(a)〜(d)の問題が生じないようにしたLF処理方法を提供することを目的とする。
【0011】
【課題を解決するための手段】
上記目的に沿う本発明のうち請求項1に記載の発明は、電気炉出鋼中に、取鍋内へ、CaO、AlO、Al、SiO及びMgOを含む、溶鋼で滓化して十分に溶融状態となるように組成を選択した複合造滓剤を混合して、LF処理初期のスラグが低融点の組成領域となるようにし、ついで、生石灰、カルシウムアルミネート及び脱酸剤をスラグが溶融状態で且つ流動性が高い状態に維持するように添加することを特徴とする。
【0012】
前記複合造滓剤の組成は、LF処理初期のスラグが、CaO―AlO―SiO状態図で融点1500℃以下となるように選択するのが良い(請求項2)。
【0013】
複合造滓剤の組成は具体的には、CaO50〜70重量%、AlO10〜20重量%、Al2〜6重量%、SiO3〜10重量%及びMgO5〜10重量%とするのが好ましい(請求項3)。
【0014】
LF処理初期のスラグを低融点の組成領域となるようにするには、ゲーレナイト領域(2CaO・AlO・SiO)になるように前記複合造滓剤を添加するのが良い(請求項4)。
【0015】
LF処理初期のスラグ組成は、具体的には、CaO35〜50重量%、AlO25〜40重量%、SiO15〜35重量%とするのが良い(請求項5)。
【0016】
本発明に使用する脱酸剤としては、CaO、AlO、Al、SiO及びSiを含有するのが好ましい(請求項6)。
【0017】
前記脱酸剤の組成は具体的には、CaO35〜45重量%、AlO2〜20重量%、Al20〜30重量%、SiO2〜5重量%及びSi3〜10重量%とするのが良い(請求項7)。
【0018】
前記カルシウムアルミネートは、融点1400℃以下であり、粒度35mm以下のものを使用するのが良い(請求項8)。
【0019】
前記カルシウムアルミネートは、化合物形態CaO・AlOのプリメルト品が好ましい(請求項9)。
【0020】
前記カルシウムアルミネートの組成は、CaO45〜60重量%、AlO35〜45重量%、及びSiO0〜10重量%を含有するものが好ましい(請求項10)。
【0021】
前記カルシウムアルミネート添加後、生石灰を添加し、流動性が悪化した状態で、カルシウムアルミネートと脱酸剤をスラグが溶融状態且つ流動性が高い状態に維持するように添加するのが、短時間で処理できることから好ましい(請求項11)。
【0022】
LF処理最終スラグ組成は具体的には、CaO45〜60重量%、AlO25〜40重量%、SiO10〜20重量%とするのが好ましい(請求項12)。
【0023】
【発明の実施の形態】
次に、本発明の実施の形態を説明する。
【0024】
ホタル石を無添加とした場合に生じる、(a)生石灰の滓化が困難となる、(b)スラグの流動性が確保できない、(c)そのため脱酸、脱硫の進行が遅れ、処理時間が延長する、(d)スラグの介在物吸収能力が低下し、鋼中介在物、CCノズル閉塞の発生が増加する、問題を解決するため、LF処理初期におけるスラグの低融点組成化、流動性向上による生石灰滓化促進、脱酸・脱硫促進を図った。
【0025】
まず第一に、従来の操業における、生石灰もしくはホタル石を配合した複合造滓剤の代わりとして、ホタル石を含まずCaO、AlO、Al、SiO及びMgOを含み、溶鋼で滓化して十分に溶融状態となるように組成を選択した新たな複合造滓剤を、電気炉出鋼中の取鍋内に添加する。上記組成の各成分量は、LF処理初期のスラグが、CaO―AlO―SiO状態図で融点1500℃以下となるように選択する。
【0026】
複合造滓剤の組成は具体的には、主としてAlO及びSiO源を従来のものより増量し、CaO50〜70重量%、AlO:10〜20重量%、Al:2〜6重量%、SiO:3〜10重量%及びMgO:5〜10重量%とするのが好ましい。
【0027】
上記成分以外に、M−Si(脱酸剤として配合したフェロシリコン合金中のSi分):0〜3重量%、SiC:0〜5重量%、F.C(脱酸剤として配合するコークス粉末等の固定炭素分):0〜5重量%程度配合させても良い。
【0028】
このように複合造滓剤を配合して、LF処理初期のスラグが低融点の組成領域となるようにする。本発明で低融点の組成領域というのは、ゲーレナイト領域(2CaO・AlO・SiO)のことである。
【0029】
具体的には、LF処理初期のスラグ組成が、CaO35〜50重量%、AlO25〜40重量%、SiO15〜35重量%となるようにするのが好ましい。
【0030】
それから、LF処理を開始する。生石灰を300kg以上添加する必要があると判断した場合やスラグの流動性が悪いと判断した場合は、まずカルシウムアルミネートを添加する。ホタル石よりも溶融が遅いカルシウムアルミネートも、処理開始時のような溶融状態(FeOが多く低融点)のスラグに添加することで容易に溶融させることができる。その後、ホタル石を含有しない脱酸剤を必要に応じて添加する。(生石灰添加量が300kg未満の場合で、かつ、スラグの流動性が良好と判断した場合は、カルシウムアルミネートは添加せずに最初からホタル石を含有しない脱酸剤を必要に応じて添加する。)添加量や添加有無は、取鍋内のスラグ量や溶鋼中酸素濃度、脱硫の程度による。
【0031】
その後は、スラグの状態が溶融状態を維持できるように注意しながら生石灰を添加する。流動性が悪化してきた段階で生石灰添加を中断し、滓化不良となる前に、スラグの融点が低下するようにカルシウムアルミネートや脱酸剤を添加する。その後に残りの生石灰を添加する。このような順序で造滓材を添加することによって、常に滓化状態かつ流動性が良好な状態を維持することができ、結果的に処理初期の脱硫が促進されることが実験により判明した。
【0032】
本発明に使用する脱酸剤は、この種の目的に使用されているものはいずれも使用できるが、ホタル石を含まずCaO、AlO、Al、SiO及びSiを含有する脱酸剤を使用するのが好ましい。この脱酸剤は、脱酸後にスラグが低融点でかつ流動性が高い組成となるように、主として、AlO、SiO源を従来のものより増量する。
【0033】
脱酸剤の組成は具体的には、CaO:35〜45重量%、AlO:2〜20重量%、Al:20〜30重量%、SiO:2〜5重量%及びSi:3〜10重量%を含有するのが好ましい。
【0034】
カルシウムアルミネートは、融点1400℃以下、粒度35mm以下で、化合物形態CaO・AlOのプリメルト品が好ましい
【0035】
カルシウムアルミネートの組成は、CaO45〜60重量%、AlO35〜45重量%、及びSiO0〜10重量%を含有するようにするのが良い。
【0036】
LF処理最終スラグを溶融状態且つ流動性が高い状態に維持するためには、その組成が、CaO45〜60重量%、AlO25〜40重量%、SiO10〜20重量%であるのが好ましい。
【0037】
次に、実施例を挙げて本発明を更に説明するが、本発明はこれら実施例に限定されない。
【0038】
【実施例】
実施例1:ホタル石無添加の複合造滓剤の組成の検討
LF処理をホタル石無添加にすると、LF処理負荷は増加することから、LF処理の負荷軽減を考慮して、滓化性、流動性向上及び脱酸力向上の検討を行った。次表1に示す組成A〜Eの複合造滓剤を調整し、投入量及び投入方法は従来と同様にして、電気炉出鋼中に取鍋内へ添加して試験した、出鋼直後のスラグ流動性、LF初期脱硫状況及びCCノズル閉塞発生状況を確認した。尚、比較のため従来使用している複合造滓剤についても同様にして試験した。
【0039】
【表1】

Figure 2004204313
[試験結果]
(試験品A)
(a)滓化性、流動性は、従来品と比較して良好であった。
(b)白煙が大量に発生し、電気炉出鋼口の清掃作業や取鍋のクレーン玉がけ等の作業に支障が生じた。
(c)出鋼後、取鍋内でスラグが大きく膨張した。
(d)複合造滓剤1トンに対し、初期投入生石灰400kg程度までは、ホタル石を添加せずに滓化可能であった。
【0040】
(試験品B:白煙対策)
(a)投入時の反応は、現行品よりも大きく、反応時間も長い。M−Siを無配合としたことで、白煙は軽減されたが現行品よりは大きかった。
(b)滓化性は良好であった。投入直後の流動性は、従来品より良好であった。
(c)出鋼後、取鍋内でスラグが大きく膨張した。
(d)複合造滓剤1トンに対し、初期投入生石灰400kg程度までは、ホタル石を添加せずに滓化可能であった。
【0041】
(試験品C:スラグ膨張対策)
(a)SiCとF,Cを無添加としたことで、スラグ膨張を大幅に軽減できた。
(b)滓化性、流動性は、従来品と同程度であったが、試験品A,Bと比較して悪化した。
【0042】
スラグ膨張対策に効果が確認できたことと、滓化性、流動性等の使用状況は、従来品と同等の結果が得られたことから、試験品Cのセミランニング使用を開始した。
【0043】
セミランニング使用期間中、CCでのノズル閉塞発生やノズル閉塞を予防するためのCa−Siワイヤー添加頻度の増加が問題となった。原因調査の結果、複合造滓剤のM−Al(金属アルミ分)増量が影響している可能性が高いと判断し、再度配合変更を実施した。
【0044】
(試験品D:絞り対策)
(a)絞りの原因は、複合造滓剤中のM−Alと推定し、M−Alを半減した結果、脱酸力不足のため脱酸材使用量が増加し、Ca―Si添加率は低減できなかった。
(b)さらに滓化性、流動性悪く、LF処理時間は延長した。
【0045】
(試験品E:絞り対策及び流動性確保)
上記結果から、最終的に脱酸力を確保した上での絞り対策が必要と判断し、再度SiCを微粉化して配合(出鋼後のスラグ膨張軽減を狙い、微粉化による反応速度向上を図った)した。また、造滓材使用量が予想以上に増加したことに対応し、スラグの流動性向上も考慮した。
(a)SiC及びSiO増により、滓化性、流動性は大幅に向上した。
(b)CCでの絞り発生頻度およびCa―Si添加率は、ホタル石使用時と同等のレベルまで低減した。
(c)図2に従来法と試験品Eとの脱硫状況のグラフを示す。全体的に本発明の試験品Eは、図2に示すように、従来法よりも早い。Al無添加の低硫黄含有鋼([S]≦0.020%)においても、本発明方法においては、処理時間を延長することなく処理できている。脱酸力向上と滓化性向上の効果である。
(d)表2に示すように、従来法と比較して、本発明の試験品Eは、造滓材使用量(特に脱酸剤)を大幅に低減できた。
【0046】
本発明の複合造滓剤の改良のポイントは、スラグの滓化性向上を狙ってAlOを増量し、低融点としたことと、LF処理負荷軽減を目的に、M−Al、M−Si及びSiCを増量して脱酸力を向上させたことにある。本発明の複合造滓剤は、CaO50〜70重量%、AlO:10〜20重量%、Al:2〜6重量%、SiO:3〜10重量%及びMgO:5〜10重量%であれば、本発明品Eと同様の効果を示すことが実験により確認されている。
【0047】
【表2】
Figure 2004204313
尚、造滓剤原単位とは、熔溶鋼1tを造るに要した造滓剤の重量(kg)
実施例2:ホタル石無添加の脱酸剤の検討
表3に記載の配合の試験品a(本発明品)、試験品b及び試験品cを調整し、従来と同様にLF処理をし、脱酸状況、脱硫状況、スラグ滓化状況及び流動性を確認した。尚、比較のため従来使用しているホタル石を含有する脱酸剤についても同様にして試験した。
【0048】
試験品a(本発明品)は、ホタル石分を生石灰に置き換えた以外は、従来品と同じ組成にし、試験品bは、滓化性、流動性機能向上のためAlOの配合を増加させ、試験品cは、スラグ膨張対策のため炭素(C)無配合としたものである。
【0049】
【表3】
Figure 2004204313
[試験結果]
図3に、試験品a〜cと従来品試験時の脱硫推移のグラフを示す。
【0050】
(試験品a:本発明品)
(a)脱酸状況は、スラグの状態から判断して従来品使用の場合と同程度であった。
(b)ホタル石無添加化の影響は特に確認されず、全ての鋼種において従来品と同等に処理可能であった。
(c)試験実施中、CCでのノズル閉塞は確認されなかった。
(d)使用上の問題は全く無く、従来品との切替は可能と判断される。
【0051】
(試験品b)
(a)AlO増量により滓化性やスラグ流動性は良好となったが、脱酸の進行は明らかに従来品より遅かった。通常時と比較して溶鋼中の炭素含有量[C]及び溶鋼中の珪素含有量[Si]の歩留まりが高かったことから、脱酸力向上を目的として添加したSiCが脱酸に寄与していないことが考えられる。
【0052】
(試験品c)
(a)脱酸状況、滓化状況は、ともに良好であったが、脱硫の持続性は、他試験品と比較して若干高い傾向にあった。しかし、Al無添加鋼(鋼中Al濃度が0〜0.050%で、脱酸目的以外にAlを添加しない鋼種)において、CCでノズル閉塞トラブルが頻発し、Ca−Siワイヤーを添加して対応せざるを得ない状況であった。状況から判断して、Al無添加鋼への使用は困難であると判断する。
【0053】
以上、試験品aについてはホタル石含有従来品と遜色ない使用状況であった。特にホタル石無添加の複合造滓剤との併用であれば、一部鋼種(低硫黄含有鋼種)を除きホタル石無添加で処理可能である。脱酸剤の組成は、CaO:35〜45重量%、AlO:2〜20重量%、Al:20〜30重量%、SiO:2〜5重量%及びSi:3〜10重量%であれば、本発明の試験品aと同様の効果を示すことが実験により確認されている。
【0054】
実施例3:ホタル石代替品の検討
低硫黄含有鋼をLF処理する場合の様に生石灰投入量が多いときや、電気炉からLFへの持ち込みスラグが少ない場合の様に、複合造滓剤の滓化が不十分となりやすいときには、滓化促進、流動性向上等のホタル石同様の機能を持った代替品が必要不可欠である。そこで表4に記載の代替品について、投入量及び投入方法はホタル石と同様にして試験した。出鋼直後のスラグ流動性、LF初期脱硫状況及びCCノズル閉塞発生状況を確認した。尚、比較のため従来使用している複合造滓剤についても同様にして試験した。滓化状況(滓化速度、生石灰滓化能力、流動性)、造滓剤(生石灰、脱酸剤、ホタル石代替品)使用量及び脱硫推移を確認した。尚、試験に供した代替品は、(a)フッ素を含有しない、(b)低融点組成である、(c)生石灰滓化促進機能がある、(d)スラグ粘性低下(流動性向上)機能があることを選定条件とした。 試験の評価結果を次表5に、図4に各試験品の脱硫推移のグラフを示す。
【0055】
【表4】
Figure 2004204313
【0056】
【表5】
Figure 2004204313
は従来品より良好、△は従来品と同等、×は従来品より悪い を表す。
【0057】
CaO・SiO(ワラストナイト)
プリメルト品は、溶融はするものの滓化速度は、ホタル石と比較にならないほど遅い。天然鉱物の破砕品に関しては、極めて溶融が遅く、長時間スラグ上に固まりが確認された。いずれもホタル石と同様の使用方法は困難である。
【0058】
CaO・AlO・SiO(低融点組成混合品)
ある程度滓化が進行した状態で投入すれば溶融するが、処理初期のような状態での滓化は極めて遅い。当然脱硫の進行も遅く、処理時間延長となる傾向にあった。
【0059】
CaO・Al(カルシウムアルミネート)
焼成品、プリメルト品のいずれも、滓化性、流動性は、比較的良好な結果が得られた。溶融速度は、焼成品に比べプリメルト品のほうが若干早い傾向にあった。但し、いずれもホタル石と比べれば、完全に溶融して流動性が得られるのに若干時間と温度を要した。処理初期の生石灰投入前に投入することで、比較的短時間で対応が可能である。よって、カルシウムアルミネートによるホタル石の代用は可能である。
【0060】
以上、複合造滓剤、脱酸剤及びカルシウムアルミネート(好ましくはプリメルト品)を使用することによって、ホタル石無添加で、ホタル石使用時と同等のLF処理ができることが確認された。
【0061】
従来法によるスラグでは、平成3年環境庁告示第46号法により1〜20mg/リットル程度のフッ素溶出が確認されたが、本発明によるスラグでは、フッ素溶出ゼロを達成した。
【0062】
従来の操業方法でホタル石不使用にすると、ホタル石使用時の1.5倍程度の処理時間が必要になるが、本発明によれば、スラグ組成コントロールによりスラグの低融点化流動性向上を達成したことにより、ホタル石使用時とほぼ同等の脱酸・脱硫速度を確保することができ、同等の時間での処理が可能となった。
【0063】
LF処理初期の滓化促進とスラグの低融点領域コントロールにより、スラグへの介在物浮上除去の促進、介在物の低融点化が図られ、CCでのノズル閉塞トラブルが解消できた。
【0064】
【発明の効果】
以上述べた如く、本発明によれば、ホタル石無添加でホタル石使用時と同等のLF処理ができるという従来解決できなかった課題を解決したものであるから、極めて画期的な発明である。それと共に、製鋼スラグをリサイクルする場合にも、フッ素溶出基準が土壌環境基準を超える恐れをなくすことができる。
【図面の簡単な説明】
【図1】従来の複合造滓剤、脱酸剤、生石灰及びホタル石の使用時期を示す図である。
【図2】従来の複合造滓剤を使用した場合と本発明の複合造滓剤を使用した場合との脱硫状況を示すグラフである。
【図3】本発明の還元脱酸剤(試験品a)、比較脱酸剤(試験品b及びc)及び従来品との脱硫推移を示すグラフである。
【図4】本発明のカルシウムアルミネートと他のホタル石代替品とを使用した場合の脱硫推移を示すグラフである。
【図5】本発明の複合造滓剤、脱酸剤、生石灰およびカルシウムアルミネートの使用時期を示す図である。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a ladle refining furnace (hereinafter referred to as LF) processing method as a secondary refining process for molten steel, and more particularly, to a LF processing method capable of performing the same processing as when using fluorite without the addition of fluorite.
[0002]
[Prior art]
Conventionally, in the LF treatment, as shown in FIG. 1, (1) fluorite, aluminum ash, SiC, etc. are mixed with a slag-making agent (quick lime for steelmaking (hereinafter, quick lime)) into a ladle during tapping of an electric furnace. (2) Briquette is added to the ladle at the beginning of LF treatment, and (3) Briquette is mixed with aluminum, aluminum ash, SiC, fluorite, etc., and (3) quicklime Fluorite was further added depending on the amount added and the state of the slag.
[0003]
The purpose of adding fluorite is to promote quick lime slag (promotion of melting by lowering the melting point) and slag fluidity (promotion of slag-metal reaction). As a result of the addition, desulfurization and deoxidation of molten steel are promoted, and treatment time is increased. As a result, the ability to absorb inclusions of the slag is improved, thereby improving the cleanliness and preventing the nozzle clogging trouble in the continuous casting (hereinafter, CC) process.
[0004]
However, fluorite contains a large amount of fluorine (about 35 to 40% by weight). For this reason, fluorine is mixed into steelmaking slag, and when steelmaking slag is recycled as a civil engineering material or a soil modifying material, fluorine is eluted into the surrounding soil. From the viewpoint of protecting human health, fluorine is specified as 0.8 mg / liter or less in the water quality environmental standard and the soil environmental standard of the Basic Environmental Law, and in the situation where steelmaking slag is recycled, pollution exceeding these standards is considered. It is required not to cause. In addition, when fluorite is added to the ladle, there is also a problem that the ladle refractory is promoted to be melted.
[0005]
In order to adhere to the above standards, there are (1) even if a very small amount is added, depending on the composition of the slag, and (2) a method of adding a fluorine fixing agent to the slag. However, it is necessary to make fluorite free.
[0006]
However, when fluorite is not added, (a) it becomes difficult to make quicklime slag, (b) the fluidity of slag cannot be ensured, (c) the progress of deoxidation and desulfurization is delayed, and the processing time is reduced. And (d) the inclusion absorption capacity of the slag is reduced, and the inclusions in steel and the occurrence of CC nozzle clogging are increased.
[0007]
Calcium aluminate-based desulfurizing agents are conventionally known (for example, see Patent Literature 1), but this patent literature only discloses the content of a component change for lowering the melting point of calcium aluminate itself. , LF processing itself is not disclosed.
[0008]
[Patent Document 1]
JP, 2002-60832, A
[Problems to be solved by the invention]
[0010]
The present invention has been made in view of such a point, and in all of the steps (1) to (3) described in paragraph [0002], fluorite is not added, and the above (a) to (d) It is an object of the present invention to provide an LF processing method in which the problem described above does not occur.
[0011]
[Means for Solving the Problems]
The invention according to claim 1 of the present invention that meets the above-mentioned object is characterized in that, during the tapping of an electric furnace, slag is formed into a ladle with molten steel containing CaO, Al 2 O 3 , Al, SiO 2 and MgO. A composite slag-making agent having a composition selected so as to be in a sufficiently molten state is mixed so that the slag in the early stage of the LF treatment has a low melting point composition region, and then quicklime, calcium aluminate and a deoxidizing agent are mixed with the slag. Is added so as to maintain a molten state and a high fluidity state.
[0012]
The composition of the composite slag-making agent is preferably selected so that the slag in the initial stage of the LF treatment has a melting point of 1500 ° C. or lower in a CaO—Al 2 O 3 —SiO 2 phase diagram (claim 2).
[0013]
The composition of the composite slag-making agent is, specifically, 50 to 70% by weight of CaO, 10 to 20% by weight of Al2O3, 2 to 6% by weight of Al, 3 to 10% by weight of SiO2 and 5 to 10% by weight of MgO. Is preferable (claim 3).
[0014]
In order to make the slag in the early stage of the LF treatment into a composition region with a low melting point, it is preferable to add the composite slag-making agent so as to be in a gehlenite region (2CaO.Al 2 O 3 .Sio 2 ). 4).
[0015]
LF treatment early slag composition, specifically, CaO35~50 wt%, Al 2 O 3 25 to 40 wt%, amount may be SiO 2 15 to 35 wt% (claim 5).
[0016]
The deoxidizing agent used in the present invention preferably contains CaO, Al 2 O 3 , Al, SiO 2 and Si (Claim 6).
[0017]
Wherein the composition of an acid acceptor Specifically, CaO35~45 wt%, Al 2 O 3 2 to 20 wt%, Al20~30 wt%, to the SiO 2 2 to 5% by weight and Si3~10 wt% Is good (claim 7).
[0018]
The calcium aluminate having a melting point of 1400 ° C. or less and a particle size of 35 mm or less is preferably used (claim 8).
[0019]
The calcium aluminate is preferably a premelt product of the compound form CaO.Al 2 O 3 (Claim 9).
[0020]
The composition of the calcium aluminate, CaO45~60 wt%, Al 2 O 3 35 to 45% by weight, and preferably those containing SiO 2 0 wt% (claim 10).
[0021]
After the calcium aluminate is added, quick lime is added, and the calcium aluminate and the deoxidizer are added in a state where the fluidity is deteriorated so that the slag is maintained in a molten state and a high fluidity state in a short time. (Claim 11).
[0022]
The LF treatment final slag composition Specifically, CaO45~60 wt%, Al 2 O 3 25 to 40 wt%, preferably in a SiO 2 10 to 20% by weight (claim 12).
[0023]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, an embodiment of the present invention will be described.
[0024]
When fluorite is not added, (a) it becomes difficult to make quicklime slag, (b) fluidity of slag cannot be secured, (c) the progress of deoxidation and desulfurization is delayed, and the processing time is reduced. (D) Inclusion in slag decreases, absorption of inclusions in steel increases, and the occurrence of CC nozzle clogging increases. To solve the problem, low melting point composition of slag in the early stage of LF treatment and improvement of fluidity To promote quicklime slag formation, deoxidation and desulfurization.
[0025]
First of all, as a substitute for the complex slag-making agent containing lime or fluorite in the conventional operation, it does not contain fluorite but contains CaO, Al 2 O 3 , Al, SiO 2 and MgO, and is slagged with molten steel. A new composite slag agent, the composition of which has been selected so as to be in a sufficiently molten state, is added to the ladle during tapping in an electric furnace. The amounts of each component in the above composition are selected so that the slag in the initial stage of the LF treatment has a melting point of 1500 ° C. or less in the CaO—Al 2 O 3 —SiO 2 phase diagram.
[0026]
More specifically, the composition of the composite slag-making agent mainly includes an increased amount of the Al 2 O 3 and SiO 2 sources as compared with the conventional ones, 50 to 70% by weight of CaO, 10 to 20% by weight of Al 2 O 3 , and Al: 2 to 2%. It is preferable to be 6% by weight, 3-10% by weight of SiO 2 and 5-10% by weight of MgO.
[0027]
In addition to the above components, M-Si (Si content in a ferrosilicon alloy compounded as a deoxidizing agent): 0 to 3% by weight, SiC: 0 to 5% by weight, C (fixed carbon content of coke powder or the like blended as a deoxidizing agent): about 0 to 5% by weight may be blended.
[0028]
The composite slag is mixed in this manner so that the slag in the early stage of the LF treatment has a low melting point composition region. In the present invention, the composition region having a low melting point is a gehlenite region (2CaO.Al 2 O 3 .Sio 2 ).
[0029]
Specifically, LF processing initial slag composition, CaO35~50 wt%, Al 2 O 3 25 to 40 wt%, preferably used so that a SiO 2 15 to 35 wt%.
[0030]
Then, the LF processing is started. If it is determined that 300 kg or more of quicklime needs to be added or if the slag has poor fluidity, calcium aluminate is added first. Calcium aluminate, which melts slower than fluorite, can be easily melted by adding it to a slag in a molten state (a lot of FeO and a low melting point) at the beginning of the treatment. Thereafter, a deoxidizer containing no fluorite is added as needed. (If the amount of quicklime is less than 300 kg and the fluidity of the slag is judged to be good, a deoxidizer containing no fluorite is added from the beginning without adding calcium aluminate as necessary. )) The amount and the presence or absence of addition depend on the amount of slag in the ladle, the oxygen concentration in the molten steel, and the degree of desulfurization.
[0031]
Thereafter, quick lime is added while paying attention so that the state of the slag can be maintained in a molten state. At a stage where the fluidity has deteriorated, the addition of quicklime is interrupted, and calcium aluminate or a deoxidizing agent is added so that the melting point of the slag is reduced before the slag formation becomes defective. Thereafter, the remaining quicklime is added. Experiments have shown that by adding the slag forming material in such an order, a slagging state and a good fluidity state can always be maintained, and as a result, desulfurization in the early stage of the treatment is promoted.
[0032]
As the deoxidizing agent used in the present invention, any deoxidizing agent used for this purpose can be used. However, the deoxidizing agent containing CaO, Al 2 O 3 , Al, SiO 2 and Si without fluorite is used. Preferably, an agent is used. This deoxidizing agent mainly increases the amount of Al 2 O 3 and SiO 2 sources as compared with the conventional one so that the slag has a low melting point and a high fluidity after deoxidation.
[0033]
The composition of an acid acceptor Specifically, CaO: 35 to 45 wt%, Al 2 O 3: 2~20 wt%, Al: 20 to 30 wt%, SiO 2: 2 to 5 wt% and Si: 3 It preferably contains from 10 to 10% by weight.
[0034]
The calcium aluminate is preferably a pre-melt product having a melting point of 1400 ° C. or less, a particle size of 35 mm or less, and a compound form of CaO.Al 2 O 3.
The composition of the calcium aluminate, CaO45~60 wt%, Al 2 O 3 35 to 45 wt%, and is good to to contain SiO 2 0% by weight.
[0036]
The To maintain LF process final slag in a molten state and highly liquid state, the composition is, CaO45~60 wt%, Al 2 O 3 25 to 40% by weight, SiO 2 10 to 20 wt% Is preferred.
[0037]
Next, the present invention will be further described with reference to examples, but the present invention is not limited to these examples.
[0038]
【Example】
Example 1: Examination of composition of fluorite-free composite slag-making agent When LF treatment is performed without fluorite, the LF treatment load increases. The improvement of fluidity and the improvement of deoxidizing power were studied. The composite slag-making agents having compositions A to E shown in the following Table 1 were prepared, and the amount and method of addition were the same as before, and the test was conducted by adding the material into the ladle during tapping of an electric furnace. The slag fluidity, LF initial desulfurization status, and CC nozzle clogging occurrence status were confirmed. For comparison, the same test was carried out for the conventional composite slag-making agent.
[0039]
[Table 1]
Figure 2004204313
[Test results]
(Test A)
(A) The slagging property and fluidity were better as compared with the conventional product.
(B) A large amount of white smoke was generated, which hindered the work of cleaning the tap hole of the electric furnace and the work of ladle crane dangling.
(C) After tapping, the slag expanded significantly in the ladle.
(D) Up to about 400 kg of initially added quicklime with respect to 1 ton of the composite slag-making agent, slag could be formed without adding fluorite.
[0040]
(Test B: White smoke countermeasures)
(A) The reaction at the time of introduction is larger than that of the current product, and the reaction time is longer. By not including M-Si, white smoke was reduced but was larger than the current product.
(B) The slag property was good. The fluidity immediately after introduction was better than the conventional product.
(C) After tapping, the slag expanded significantly in the ladle.
(D) Up to about 400 kg of initially added quicklime with respect to 1 ton of the composite slag-making agent, slag could be formed without adding fluorite.
[0041]
(Test C: Slag expansion countermeasures)
(A) By not adding SiC and F and C, slag expansion could be greatly reduced.
(B) The slagging property and fluidity were almost the same as those of the conventional product, but deteriorated as compared with the test products A and B.
[0042]
The semi-running use of the test sample C was started because the effect was confirmed as a measure against slag expansion, and the results of use such as slagging property and fluidity were equivalent to those of the conventional product.
[0043]
During the semi-running use period, an increase in the frequency of Ca-Si wire addition for preventing nozzle clogging and nozzle clogging in CC has become a problem. As a result of investigating the cause, it was determined that there was a high possibility that the increase in the amount of M-Al (metal aluminum component) in the composite slag-making agent was affected, and the formulation was changed again.
[0044]
(Test D: Measure against drawing)
(A) The cause of squeezing is presumed to be M-Al in the composite slag-making agent. As a result of halving M-Al, the amount of deoxidizing material used increases due to insufficient deoxidizing power, and the Ca-Si addition rate is reduced. Could not be reduced.
(B) Further, slagging property and fluidity were poor, and the LF treatment time was prolonged.
[0045]
(Specimen E: squeezing measures and ensuring fluidity)
From the above results, it was concluded that it was necessary to take measures against squeezing after securing the deoxidizing power in the end, and the SiC was again pulverized and compounded (to reduce the slag expansion after tapping, and to improve the reaction speed by pulverization). Was). In addition, in response to an increase in the amount of slag material used more than expected, consideration was given to improving the fluidity of slag.
(A) By increasing SiC and SiO 2 , slagging property and fluidity were greatly improved.
(B) The frequency of squeezing and the Ca-Si addition rate in CC were reduced to the same level as when fluorite was used.
(C) FIG. 2 is a graph showing the state of desulfurization between the conventional method and the test sample E. Overall, the test article E of the present invention is faster than the conventional method, as shown in FIG. In the method of the present invention, even low-sulfur-containing steel without addition of Al ([S] ≦ 0.020%) can be processed without prolonging the processing time. This is the effect of improving the deoxidizing power and the slag property.
(D) As shown in Table 2, the test article E of the present invention was able to significantly reduce the amount of slag-making material used (particularly, the deoxidizing agent) as compared with the conventional method.
[0046]
The point of improvement of the composite slag-making agent of the present invention is to increase the amount of Al 2 O 3 to lower the melting point in order to improve slag slagging properties, and to reduce M-Al, M -It is to improve the deoxidizing power by increasing the amount of Si and SiC. Composite slag agent of the present invention, CaO50~70 wt%, Al 2 O 3: 10~20 wt%, Al: 2 to 6 wt%, SiO 2: 3 to 10 wt% and MgO: 5 to 10 wt% It has been confirmed by experiments that the same effect as that of the product E of the present invention is exhibited.
[0047]
[Table 2]
Figure 2004204313
The basic unit of the slag-making agent is the weight (kg) of the slag-making agent required to produce 1 t of molten steel.
Example 2: Examination of a deoxidizer without fluorite The test product a (the product of the present invention), the test product b and the test product c having the composition shown in Table 3 were prepared, and subjected to LF treatment in the same manner as before. Deoxidation status, desulfurization status, slag residue status, and fluidity were confirmed. For comparison, the same test was carried out for a conventionally used deoxidizer containing fluorite.
[0048]
Test product a (the product of the present invention) had the same composition as the conventional product except that the fluorite was replaced with quicklime, and test product b contained Al 2 O 3 in order to improve slagging and fluidity functions. The test sample c was made without carbon (C) to prevent slag expansion.
[0049]
[Table 3]
Figure 2004204313
[Test results]
FIG. 3 shows graphs of the test products a to c and the transition of desulfurization at the time of testing the conventional product.
[0050]
(Test product a: product of the present invention)
(A) The state of deoxidation was about the same as that of the conventional product, judging from the state of the slag.
(B) The effect of no fluorite addition was not particularly confirmed, and all steel types could be treated similarly to conventional products.
(C) No nozzle blockage at CC was observed during the test.
(D) There is no problem in use, and it is determined that switching to the conventional product is possible.
[0051]
(Test product b)
(A) Although the slagging property and the slag fluidity were improved by increasing the amount of Al 2 O 3 , the progress of deoxidation was clearly slower than the conventional product. Since the yield of the carbon content [C] in the molten steel and the silicon content [Si] in the molten steel was higher than usual, the SiC added for the purpose of improving the deoxidizing power contributed to the deoxidation. It is not possible.
[0052]
(Test product c)
(A) Both the deoxidation status and the slagging status were good, but the durability of desulfurization tended to be slightly higher than other test products. However, in Al-free steel (a steel type in which the Al concentration in the steel is 0 to 0.050% and Al is not added for purposes other than deoxidation), nozzle clogging troubles frequently occur at CC, and a Ca-Si wire is added to respond. It was inevitable. Judging from the situation, it is judged that it is difficult to use Al-free steel.
[0053]
As described above, the use condition of the test product a was comparable to that of the conventional product containing fluorite. In particular, if it is used in combination with a composite slag-making agent without fluorite, it can be treated without fluorite except for some steel types (low-sulfur-containing steel type). The composition of the deoxidizing agent, CaO: 35 to 45 wt%, Al 2 O 3: 2~20 wt%, Al: 20 to 30 wt%, SiO 2: 2 to 5 wt% and Si: 3 to 10 wt% It has been confirmed by experiments that the same effect as that of the test sample a of the present invention is exhibited.
[0054]
Example 3: Examination of fluorite substitutes When the amount of quick lime is large as in the case of LF treatment of low sulfur content steel or when the amount of slag brought in from the electric furnace to the LF is small, the use of composite slag forming agents is considered. When slagging is likely to be insufficient, a substitute having the same function as fluorite such as accelerating slagging and improving fluidity is indispensable. Therefore, the substitutes described in Table 4 were tested in the same manner as in the case of fluorite in the amount and method of introduction. Slag fluidity immediately after tapping, LF initial desulfurization status, and CC nozzle blockage occurrence status were confirmed. For comparison, the same test was carried out for the conventional composite slag-making agent. The state of slag formation (slag formation rate, quick lime slag forming ability, fluidity), the amount of slag-forming agent (quick lime, deoxidizing agent, fluorite replacement) and desulfurization transition were confirmed. The substitutes used in the test were (a) no fluorine, (b) low melting point composition, (c) quick lime slag promotion function, and (d) slag viscosity reduction (fluidity improvement) function. Was selected as a selection condition. The evaluation results of the test are shown in Table 5 below, and FIG. 4 is a graph showing the transition of desulfurization of each test sample.
[0055]
[Table 4]
Figure 2004204313
[0056]
[Table 5]
Figure 2004204313
Indicates better than conventional product, Δ indicates equivalent to conventional product, and x indicates worse than conventional product.
[0057]
CaO ・ SiO 3 (Wollastonite)
Although the premelt product melts, the slagging rate is as slow as that of fluorite. For the crushed product of natural minerals, melting was extremely slow, and solidification on slag was confirmed for a long time. In any case, it is difficult to use the same method as fluorite.
[0058]
CaO ・ Al 2 O 3・ SiO 2 (low melting point composition mixture)
If it is charged in a state where slagging has progressed to some extent, it melts, but slagging in a state such as the initial stage of processing is extremely slow. Naturally, the progress of desulfurization was slow, and the processing time tended to be prolonged.
[0059]
CaO.Al 2 O 3 (calcium aluminate)
Both the calcined product and the pre-melt product showed relatively good results in terms of slagging property and fluidity. The melting rate of the pre-melt product tended to be slightly faster than that of the fired product. However, compared to fluorite, it took some time and temperature to completely melt and obtain fluidity. By putting it in before the quick lime feeding in the early stage of the treatment, it is possible to respond in a relatively short time. Therefore, it is possible to substitute fluorite with calcium aluminate.
[0060]
As described above, it was confirmed that the use of the composite slag-making agent, the deoxidizing agent, and the calcium aluminate (preferably, a pre-melt product) can perform the same LF treatment without the addition of fluorite as when using fluorite.
[0061]
In the slag by the conventional method, fluorine elution of about 1 to 20 mg / liter was confirmed by the Environment Agency Notification No. 46 of 1991, but the slag according to the present invention achieved zero fluorine elution.
[0062]
If fluorite is not used in the conventional operation method, a treatment time about 1.5 times longer than when fluorite is used is required. However, according to the present invention, the slag composition is controlled to lower the melting point and improve the fluidity of the slag. By achieving this, it was possible to secure a deoxidation / desulfurization rate almost equal to that when using fluorite, and it was possible to perform treatment in the same time.
[0063]
By promoting the slagging at the beginning of LF treatment and controlling the low melting point region of the slag, the floating removal of inclusions in the slag was promoted, the melting point of the inclusions was reduced, and the nozzle blockage problem in CC was eliminated.
[0064]
【The invention's effect】
As described above, according to the present invention, it is possible to achieve a LF treatment equivalent to that of using fluorite without the use of fluorite, which was a conventionally unresolved problem. . At the same time, when recycling steelmaking slag, it is possible to eliminate the risk that the fluorine elution standard exceeds the soil environmental standard.
[Brief description of the drawings]
BRIEF DESCRIPTION OF DRAWINGS FIG. 1 is a diagram showing the use periods of conventional composite slag-making agents, deoxidizing agents, quicklime and fluorite.
FIG. 2 is a graph showing desulfurization states when a conventional composite slag is used and when a composite slag is used according to the present invention.
FIG. 3 is a graph showing the change in desulfurization of the reduced deoxidizer of the present invention (test product a), the comparative deoxidizers (test products b and c), and the conventional product.
FIG. 4 is a graph showing the transition of desulfurization when the calcium aluminate of the present invention and another fluorite substitute are used.
FIG. 5 is a diagram showing the use time of the composite slag-making agent, deoxidizing agent, quicklime and calcium aluminate of the present invention.

Claims (12)

電気炉出鋼中に、取鍋内へ、CaO、AlO、Al、SiO及びMgOを含む、溶鋼で滓化して十分に溶融状態となるように組成を選択した複合造滓剤を混合して、取鍋精錬炉処理初期のスラグが低融点の組成領域となるようにし、ついで、生石灰、カルシウムアルミネート及び脱酸剤をスラグが溶融状態且つ流動性が高い状態に維持するように添加することを特徴とするホタル石無添加LF処理方法。During the tapping of the electric furnace, a compound slag forming agent containing CaO, Al 2 O 3 , Al, SiO 2 and MgO and having a composition selected so as to form a slag with molten steel and to be in a sufficiently molten state is introduced into the ladle. Mixing so that the slag in the ladle refining furnace process is in a low melting point composition region, and then quick lime, calcium aluminate and a deoxidizing agent so that the slag is maintained in a molten state and a high fluidity state. A LF-free LF treatment method characterized by adding LF. 前記LF処理初期のスラグが、CaO―AlO―SiO状態図で融点1500℃以下となるように、前記複合造滓剤の組成を選択する請求項1記載の処理方法。The LF processing initial slag, such that the melting point of 1500 ° C. or less in CaO-Al 2 O 3 -SiO 2 phase diagram, the processing method according to claim 1, wherein selecting the composition of the composite slag agent. 前記複合造滓剤は、CaO50〜70重量%、AlO10〜20重量%、Al2〜6重量%、SiO3〜10重量%及びMgO5〜10重量%である請求項1又は2記載の処理方法。Said composite slag agents, CaO50~70 wt%, Al 2 O 3 10 to 20 wt%, Al2~6 wt%, according to claim 1 or 2 wherein the SiO 2 3 to 10 wt% and MgO5~10 wt% Processing method. 前記LF処理初期のスラグが、ゲーレナイト領域(2CaO・AlO・SiO)になるように前記複合造滓剤を添加する請求項1〜3のいずれかに記載の処理方法。The LF processing initial slag, the treatment method according to claim 1, adding the composite slag agent so that the gehlenite region (2CaO · Al 2 O 3 · SiO 2). 前記LF処理初期のスラグ組成が、CaO35〜50重量%、AlO25〜40重量%、SiO15〜35重量%である請求項1〜4のいずれかに記載の処理方法。The LF processing initial slag composition, CaO35~50 wt%, Al 2 O 3 25 to 40 wt%, processing method according to claim 1 is a SiO 2 15 to 35 wt%. 前記脱酸剤が、CaO、AlO、Al、SiO及びSiを含有する請求項1〜5のいずれかに記載の処理方法。The treatment method according to claim 1, wherein the deoxidizing agent contains CaO, Al 2 O 3 , Al, SiO 2 and Si. 前記脱酸剤の組成が、CaO35〜45重量%、AlO2〜20重量%、Al20〜30重量%、SiO2〜5重量%及びSi3〜10重量%を含有する請求項6記載の処理方法。The composition of the deoxidizing agent, CaO35~45 wt%, Al 2 O 3 2 to 20 wt%, Al20~30 wt%, according to claim 6 which contains SiO 2 2 to 5% by weight and Si3~10 wt% Processing method. 前記カルシウムアルミネートは、融点1400℃以下であり、粒度35mm以下である請求項1〜7のいずれかに記載の処理方法。The processing method according to claim 1, wherein the calcium aluminate has a melting point of 1400 ° C. or less and a particle size of 35 mm or less. 前記カルシウムアルミネートは、化合物形態CaO・AlOのプリメルト品である請求項1〜8のいずれかに記載の処理方法。The treatment method according to any one of claims 1 to 8, wherein the calcium aluminate is a pre-melt product in a compound form of CaO · Al 2 O 3 . 前記カルシウムアルミネートの組成は、CaO45〜60重量%、AlO35〜45重量%及びSiO0〜10重量%を含有する請求項1〜9のいずれかに記載の処理方法。The composition of the calcium aluminate, CaO45~60 wt%, Al 2 O 3 35~45 processing method according to claim 1 containing wt% and SiO 2 0% by weight. 前記カルシウムアルミネート添加後、生石灰を添加し、流動性が悪化した状態で、カルシウムアルミネートと脱酸剤をスラグが溶融状態且つ流動性が高い状態に維持するように添加する請求項1〜10のいずれかに記載の処理方法。11. The calcium aluminate and a deoxidizing agent are added after the calcium aluminate is added so as to maintain the slag in a molten state and a high fluidity state in a state where the fluidity is deteriorated. The processing method according to any one of the above. 前記LF処理最終スラグ組成が、CaO45〜60重量%、AlO25〜40重量%、SiO10〜20重量%である請求項1〜11のいずれかに記載の処理方法。The LF processing final slag composition, CaO45~60 wt%, Al 2 O 3 25 to 40 wt%, processing method according to any one of claims 1 to 11 is a SiO 2 10 to 20 wt%.
JP2002376127A 2002-12-26 2002-12-26 LF treatment method without fluorite Expired - Lifetime JP3827010B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002376127A JP3827010B2 (en) 2002-12-26 2002-12-26 LF treatment method without fluorite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002376127A JP3827010B2 (en) 2002-12-26 2002-12-26 LF treatment method without fluorite

Publications (2)

Publication Number Publication Date
JP2004204313A true JP2004204313A (en) 2004-07-22
JP3827010B2 JP3827010B2 (en) 2006-09-27

Family

ID=32813667

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002376127A Expired - Lifetime JP3827010B2 (en) 2002-12-26 2002-12-26 LF treatment method without fluorite

Country Status (1)

Country Link
JP (1) JP3827010B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2380996A1 (en) * 2010-04-26 2011-10-26 Plus Trade Ag Wire for treating metal melts in a steel pan
JP2013064188A (en) * 2011-09-20 2013-04-11 Nippon Steel & Sumitomo Metal Corp Method for recycling steelmaking slag as resource
CN103205535A (en) * 2013-04-11 2013-07-17 内蒙古包钢钢联股份有限公司 Method for controlling silicon return for steel with lower silicon content
CN109280740A (en) * 2018-12-14 2019-01-29 山东钢铁股份有限公司 A kind of process of LF refining furnace yellowish-white slag in place
CN110205443A (en) * 2019-06-21 2019-09-06 中天钢铁集团有限公司 A kind of siliceous aluminum killed steel Ultra Low-oxygen smelting process of low-carbon

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111286582A (en) * 2020-03-24 2020-06-16 芜湖新兴铸管有限责任公司 Composite refined pellet, preparation method thereof and steelmaking slagging method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2380996A1 (en) * 2010-04-26 2011-10-26 Plus Trade Ag Wire for treating metal melts in a steel pan
JP2013064188A (en) * 2011-09-20 2013-04-11 Nippon Steel & Sumitomo Metal Corp Method for recycling steelmaking slag as resource
CN103205535A (en) * 2013-04-11 2013-07-17 内蒙古包钢钢联股份有限公司 Method for controlling silicon return for steel with lower silicon content
CN109280740A (en) * 2018-12-14 2019-01-29 山东钢铁股份有限公司 A kind of process of LF refining furnace yellowish-white slag in place
CN110205443A (en) * 2019-06-21 2019-09-06 中天钢铁集团有限公司 A kind of siliceous aluminum killed steel Ultra Low-oxygen smelting process of low-carbon
CN110205443B (en) * 2019-06-21 2021-05-04 中天钢铁集团有限公司 Ultralow-oxygen smelting method for low-carbon silicon-aluminum-containing killed steel

Also Published As

Publication number Publication date
JP3827010B2 (en) 2006-09-27

Similar Documents

Publication Publication Date Title
JP4196997B2 (en) Hot metal processing method
EP0523167A1 (en) Compositions and methods for synthesizing ladle slags, treating ladle slags, and coating refractory linings
JP3503176B2 (en) Hot metal dephosphorizer for injection
JP2010047823A (en) Method for producing clean steel by ladle-refining method
JP5074064B2 (en) Method for producing desulfurizing agent
JP5152442B2 (en) Environmental protection molten steel desulfurization flux
TW201726550A (en) Molten iron dephosphorizing agent, refining agent, and dephosphorization method
JP2004204313A (en) Lf treating method without adding fluorite
JP4150194B2 (en) Desulfurization method by mechanical stirring of hot metal
JP2001032007A (en) Depressant for foaming of iron and steel slag
JP5000677B2 (en) Method for suppressing fluorine elution from electric furnace slag containing fluorine
JP2006009146A (en) Method for refining molten iron
JPH09157732A (en) Method for desulfurizing and dehydrogenating molten steel with little erosion of refractory
JP2011246765A (en) Method of reduction-refining molten steel
JP3636693B2 (en) Electric furnace steelmaking
US2750280A (en) Process for rapidly desulfurizing steel
JP5481899B2 (en) Hot metal desulfurization agent and desulfurization treatment method
JP3769875B2 (en) Desulfurization method and desulfurization agent for iron-based molten alloy
JP2000290718A (en) Composite slag-making material
JP6451363B2 (en) Desulfurization method for molten steel
JP2003105423A (en) Treating method for dephosphorization and desulfurization of molten iron
JP5447554B2 (en) Dephosphorization method for hot metal
JP3728870B2 (en) Desulfurization method and desulfurization agent for iron-based molten alloy
JP2008184684A (en) Method of desulfurizing molten pig iron
JP4255816B2 (en) Method for suppressing fluorine elution in electric furnace slag

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060619

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060626

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060627

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3827010

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100714

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110714

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110714

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120714

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120714

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130714

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term