JP2005146332A - Material for modifying blast furnace slag and modifying method therefor - Google Patents

Material for modifying blast furnace slag and modifying method therefor Download PDF

Info

Publication number
JP2005146332A
JP2005146332A JP2003384128A JP2003384128A JP2005146332A JP 2005146332 A JP2005146332 A JP 2005146332A JP 2003384128 A JP2003384128 A JP 2003384128A JP 2003384128 A JP2003384128 A JP 2003384128A JP 2005146332 A JP2005146332 A JP 2005146332A
Authority
JP
Japan
Prior art keywords
blast furnace
furnace slag
modifying
molten
iron oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003384128A
Other languages
Japanese (ja)
Other versions
JP4081427B2 (en
Inventor
Toshiyuki Kaneko
敏行 金子
Keiji Ando
啓司 安藤
Mitsushi Shirakawa
充祉 白川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2003384128A priority Critical patent/JP4081427B2/en
Publication of JP2005146332A publication Critical patent/JP2005146332A/en
Application granted granted Critical
Publication of JP4081427B2 publication Critical patent/JP4081427B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies

Landscapes

  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Manufacture Of Iron (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a material for modifying blast furnace slag, which improves the quality of the blast furnace slag after having been solidified by modifying molten blast furnace slag without operation impediments, and to provide a modifying method therefor. <P>SOLUTION: In the process of adding a modifying material to the molten blast furnace slag, and then cooling and solidifying it into the blast furnace slag, the modifying material is a mixture of coal ash and a substance containing iron oxides. Then, the modifying material inhibits the production of a sintered compact. The modifying method comprises adding 1 to 30 mass% modifying material to the molten blast furnace slag, and then annealing or water-granulating it into the blast furnace slag. Thereby, the blast furnace slag after having been cooled and solidified becomes dense, acquires increased specific gravity, has higher value added, and expands the field of the applications. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、冷却固化した高炉滓を改質するための改質材及び改質方法に関するものである。 The present invention relates to a reforming material and a reforming method for reforming a cooled and solidified blast furnace furnace.

従来より、溶鉱炉から排出された溶融高炉滓は、徐冷して固める徐冷滓あるいは溶融状態の高炉滓に水を掛けて急冷し、水砕にする処理が行われている。
前者の徐冷滓の用途として主に路盤材に利用されていたが、徐冷滓は気孔が多く比重も小さいので、緻密で比重が高くて硬い高炉徐冷滓が求められていた。
また、後者の水砕に関しては、主にセメント原料として利用されていたが、新しい用途として「砂代替」としての硬質水砕の造り込み技術が望まれていた。すなわち、気泡が少なく緻密で比重の高い水砕が求められていた。これらの問題に対し、火力発電所等から排出される産業廃棄物である石炭灰(通称フライアッシュと呼ばれ、SiO2 とAl23 を主成分とする)を溶融高炉滓に添加して改質し、高炉徐冷滓或いは高炉水砕を人工土木用骨材として活用する試みも考えられている。
Conventionally, a molten blast furnace slag discharged from a blast furnace has been subjected to a slow cooling process in which it is gradually cooled and solidified, or a molten blast furnace slag is rapidly cooled by water, and then granulated.
Although the former was used mainly as a roadbed material as a slow cooling rod, since it has many pores and a small specific gravity, a dense, high specific gravity and hard blast furnace slow cooling rod has been demanded.
In addition, the latter water granulation has been mainly used as a raw material for cement, but as a new application, a technique for building in hard water granulation as “sand substitute” has been desired. That is, there has been a demand for water granulation with less bubbles and high density. To solve these problems, coal ash (commonly called fly ash, mainly composed of SiO 2 and Al 2 O 3 ), which is industrial waste discharged from thermal power plants, is added to the molten blast furnace slag. Attempts have also been made to modify and use blast furnace slow cooling or granulated blast furnace as an aggregate for artificial civil engineering.

この例としては、特許文献1、特許文献2に提案されているように、石炭灰単身(粉体)を大樋の溶銑中にインジェクションして、溶銑の熱を利用しながら溶銑の上に浮かんだ溶融高炉滓に石炭灰を溶かし込んで、徐冷滓や水砕を作る方法がある。 As an example of this, as proposed in Patent Document 1 and Patent Document 2, coal ash alone (powder) was injected into the hot metal of the hot metal and floated on the hot metal while using the heat of the hot metal. There is a method of melting the coal ash into the molten blast furnace slag and making slow-cooled slag or water granulation.

特開2001−151540号公報JP 2001-151540 A 特開2001−151546号公報JP 2001-151546 A

しかし、上記特許文献1及び2で提案の方法では、溶融高炉滓に石炭灰単身で添加しているために石炭灰の塊が添加場所の耐火物、例えば樋や鍋に付着成長して、添加操業を著しく阻害し、付着した石炭灰主体の焼結状付着物(以下焼結体とも称す)は溶融高炉滓に全く溶けなくなる問題が生じ、操業上安定した石炭灰の添加が困難で、高炉滓の改質が継続して行えないものであった。また、例え、オペレーターが付着した焼結体を突き落としつつ添加したとしても、高炉滓が冷却固化した後でも突き落とした塊状の焼結体は異物として高炉滓に混じり、赤色或いは黒色を呈して用途側から敬遠されるのに加えて、高炉滓の粉砕工程でこれら塊状焼結体は粉化して粒度調整に支障を来すなど、品質上の課題も生じていた。 However, in the method proposed in Patent Documents 1 and 2 above, since coal ash is added to the molten blast furnace slag alone, the coal ash lump adheres to and grows on the refractory at the location where the ash is added, such as firewood and pan. The operation of the ash furnace is extremely hindered, and the adhering sintered deposit mainly composed of coal ash (hereinafter also referred to as “sintered body”) does not dissolve at all in the molten blast furnace soot. The soot reforming could not be continued. In addition, even if the operator adds the sintered body to which the operator has adhered, the lump-shaped sintered body that has been pushed down even after the blast furnace is cooled and solidified is mixed as a foreign substance in the blast furnace and exhibits a red or black color. In addition to being shunned from the above, quality problems such as pulverization of these massive sintered bodies in the blast furnace pulverization process and hindering the particle size adjustment have occurred.

本発明は上記課題を解決するためになされたものでありその手段1は、溶融高炉滓に改質材を添加した後、冷却固化して高炉滓とするに際して、前記改質材が石炭灰と酸化鉄を含有した酸化鉄含有物との混合粉粒体である高炉滓の改質材である。
更に、手段2は、前記石炭灰に対して前記酸化鉄含有物中のT.Fe量が5〜50質量%に成るように該酸化鉄含有物を配合した手段1記載の高炉滓の改質材である。
また、手段3は、前記酸化鉄含有物が、T.Feを30質量%以上含有するダスト、スラッジ、金属精錬時の廃棄物、及び鉱物のいずれかであることを特徴とする手段1又は2記載の高炉滓の改質材である。
手段4は、溶融高炉滓に対して前記手段1〜3のいずれか1項に記載の改質材を1〜30質量%添加した後、徐冷滓又は水砕して高炉滓とする高炉滓の改質方法である。
手段5は、前記改質材を1カ所、又は複数カ所で前記溶融高炉滓に対し1〜30質量%添加し、かつ、その添加する場所の1ヶ所当たりの添加量が10質量%以下である手段4記載の高炉滓の改質方法である。
The present invention has been made in order to solve the above-mentioned problems, and means 1 includes adding a modifier to the molten blast furnace slag and then cooling and solidifying it to form a blast furnace slag. It is a reformer of a blast furnace soot that is a mixed granular material with an iron oxide-containing material containing iron oxide.
Furthermore, the means 2 is characterized in that T. in the iron oxide-containing material with respect to the coal ash. The blast furnace soot reformer according to means 1, wherein the iron oxide-containing material is blended so that the amount of Fe is 5 to 50% by mass.
Means 3 is that the iron oxide-containing material is T.P. The reformer for blast furnace dredge according to means 1 or 2, which is any one of dust, sludge, metal refining waste, and minerals containing Fe of 30% by mass or more.
Means 4 is a blast furnace slag that is obtained by adding 1 to 30% by mass of the modifier according to any one of the means 1 to 3 with respect to the molten blast furnace slag, and then gradually cooling or granulating the blast furnace slag. This is a modification method.
Means 5 adds 1 to 30% by mass of the modifying material to the molten blast furnace at one place or a plurality of places, and the addition amount per one place of the addition is 10% by mass or less. It is a method for reforming a blast furnace soot described in means 4.

また、前記酸化鉄含有物としては、鉄鉱石粉、製鋼精錬ダスト(溶銑予備処理炉、転炉、電気炉等から発生するダスト)、高炉集塵ダスト(酸化鉄粉とカーボン粉を含有する)、圧延スラッジ、ボーキサイト粉砕ダスト、赤泥(アルミナ精錬時に発生する廃棄物で酸化鉄分を35〜50%含まれる)等があり、そして、粒度は溶解性の点から2mm以下のものが好ましい。もちろん、これらを複数混合して用いてもよい。
また、上記石炭灰の成分としては、その主成分であるSiO2 とAl23 の質量%の和が65%以上のものが望ましい。なぜなら、SiO2 とAl23 のいずれも、高炉滓に溶けて高炉滓の融点を下げる効果が有り、より低い温度で固化するため、固化に至るまでに窒素ガス、亜硫酸ガス等の脱気がより進み、緻密で強固な高炉滓に成るためである。
In addition, as the iron oxide-containing material, iron ore powder, steel refining dust (dust generated from hot metal pretreatment furnace, converter, electric furnace, etc.), blast furnace dust collection dust (containing iron oxide powder and carbon powder), There are rolled sludge, bauxite pulverized dust, red mud (a waste generated during alumina refining and containing 35-50% iron oxide), and the particle size is preferably 2 mm or less from the viewpoint of solubility. Of course, a mixture of these may be used.
As the component of the coal ash, mass% of the sum of SiO 2 and Al 2 O 3 which is a main component is preferable not less than 65%. Because both SiO 2 and Al 2 O 3 have the effect of melting in the blast furnace soot and lowering the melting point of the blast furnace so as to solidify at a lower temperature, degassing of nitrogen gas, sulfurous acid gas, etc. until solidification This is because the blast furnace becomes more dense and strong.

本発明によれば、改質材を操業上のトラブル無く容易に溶融高炉滓に添加可能となると共に溶融高炉滓にスムーズに溶解することから、冷却固化後の高炉滓が緻密となり比重が増大して、高炉滓の付加価値が高まり、用途も拡大する等の効果を有するものであり、この分野にもたらす効果は極めて大きい。 According to the present invention, the reformer can be easily added to the molten blast furnace slag without any operational trouble and can be smoothly dissolved in the molten blast furnace slag, so that the blast furnace slag after cooling and solidification becomes dense and the specific gravity increases. As a result, the added value of the blast furnace is increased and the use is expanded, and the effect brought to this field is extremely large.

以下、本発明の一実施の形態に係る高炉滓の改質材とその改質方法を詳細に説明する。
本発明者らは、石炭灰を単身で溶融高炉滓に添加すると、前記の様に石炭灰の耐火物への付着問題が顕在化し、その形態に成った石炭灰は溶融高炉滓に溶けなくなる原因を調査するために、小型坩堝内の溶融高炉滓に石炭灰を単身添加する実験を行った。
この実験は高炉から排出した高炉滓を小型坩堝にて溶解し、そこに表1に示す成分を有する石炭灰を、溶融高炉滓の6質量%に相当する量添加して、溶解の様子を観察した。その結果、添加された石炭灰は溶融高炉滓にはなかなか溶けず、塊状に成長して坩堝壁に付着するか溶融高炉滓上に浮上したままと成った。
Hereinafter, a blast furnace slag modifier and a reforming method thereof according to an embodiment of the present invention will be described in detail.
When the present inventors add coal ash alone to the molten blast furnace slag, as described above, the problem of adhesion of coal ash to the refractory material becomes obvious, and the cause of the coal ash in that form becoming insoluble in the molten blast furnace slag In order to investigate the above, an experiment was conducted in which coal ash was added alone to the molten blast furnace in a small crucible.
In this experiment, the blast furnace slag discharged from the blast furnace was melted in a small crucible, and coal ash having the components shown in Table 1 was added in an amount corresponding to 6% by mass of the molten blast furnace slag, and the state of melting was observed. did. As a result, the added coal ash did not readily melt in the molten blast furnace slag, but grew in a lump and adhered to the crucible wall or remained floating on the molten blast furnace slag.

Figure 2005146332
Figure 2005146332

本発明者らは、この現象のメカニズムを解明するため、添加した石炭灰の未溶解部(坩堝付着部)を採取し、光学顕微鏡調査及びX線回折調査を行った。
その光学顕微鏡調査から、この未溶解石炭灰は極めて気孔の多い、「断熱煉瓦」状の形態をしており、更に、X線回折調査から、未溶解石炭灰中に(1)Mullite(3Al23 ・2SiO2 :融点は1934℃)及び(2)Cristobalite(SiO2 :融点は1734℃)が存在している事が確認された。即ち、石炭灰が溶融高炉滓に添加されると溶融高炉滓の熱で加熱され、上記(1)、(2)の極めて高融点の結晶体が生成される事が判明した。
In order to elucidate the mechanism of this phenomenon, the present inventors collected an undissolved portion (crucible adhering portion) of the added coal ash, and performed an optical microscope survey and an X-ray diffraction survey.
From the optical microscope investigation, this undissolved coal ash is in the form of “insulated brick” with a lot of pores. Further, from the X-ray diffraction investigation, (1) Mullite (3Al 2 O 3 · 2SiO 2 : melting point 1934 ° C.) and (2) Cristobalite (SiO 2 : melting point 1734 ° C.) were present. That is, it was found that when coal ash is added to the molten blast furnace slag, it is heated by the heat of the molten blast furnace slag and the extremely high melting point crystals of the above (1) and (2) are generated.

これらの高融点結晶体(固体)は、石炭灰の一部溶けた融液をバインダーとして焼結反応を起こして焼結体として成長し、耐火物に付着したり、「断熱煉瓦」状の気孔の多い塊状形態と成るために伝熱律速により上記焼結体の塊が未溶解で残存することが判明した。これら焼結体には上記の極めて融点の高い結晶体が多量に存在するため、この焼結体自身が1500℃程度の溶融高炉滓にはもはや溶けないものに成っている事も判明した。 These high-melting-point crystals (solid) grow as a sintered body by using a melt in which coal ash is partly melted as a binder, grow as a sintered body, adhere to refractories, and form pores in the form of “insulating bricks” It became clear that the above-mentioned sintered body lump remained undissolved due to heat transfer rate control because of its massive shape. Since these sintered bodies contain a large amount of the above-mentioned crystals having a very high melting point, it has also been found that the sintered bodies themselves are no longer soluble in a molten blast furnace at about 1500 ° C.

そこで、本発明者らは、上記(1)、(2)の高融点結晶体が生成しない為の方策を実験、検討を重ねた。この結果、酸化鉄を石炭灰に添加すると該石炭灰が高炉滓にスムーズに溶解し、前記(1)、(2)を含む焼結体の生成が殆ど認められなくなる事を発見した。
これは、酸化鉄を加える事により石炭灰と酸化鉄の混合体と成り、この混合体の成分がSiO2 −Al23 −酸化鉄の3元系酸化物となるため、石炭灰を単身添加した際に生成したSiO2 −Al23 の2元系酸化物に起因する前記(1)、(2)の高融点結晶体の生成とそれらの焼結体の成長が抑制される効果によるものと判明した。すなわち、酸化鉄(例えば、酸化鉄含有物として、表2に示す成分を含む焼結集塵ダスト)を加えた石炭灰を改質材として添加した後に冷却固化した高炉滓には上記焼結体が生成しておらず、添加物が溶融高炉滓に均一に溶解していることが、顕微鏡観察により明らかと成った。
また、上記改質材を粒径1〜10mm程度の粒状に成形して添加しても、粉体と全く同じように問題無く溶融高炉滓に溶解することも確認した。
Therefore, the present inventors have repeated experiments and studies on measures for preventing the high melting point crystals of the above (1) and (2) from being formed. As a result, it was discovered that when iron oxide was added to coal ash, the coal ash was smoothly dissolved in the blast furnace soot and the formation of the sintered body containing the above (1) and (2) was hardly recognized.
By adding iron oxide, it becomes a mixture of coal ash and iron oxide, and the components of this mixture become a ternary oxide of SiO 2 —Al 2 O 3 —iron oxide. The effects of suppressing the formation of the high melting point crystals of the above (1) and (2) and the growth of those sintered bodies due to the SiO 2 —Al 2 O 3 binary oxide formed upon addition It turned out to be due to. That is, the above-mentioned sintered body is contained in a blast furnace furnace that has been cooled and solidified after adding coal ash containing iron oxide (for example, sintered dust collecting dust containing components shown in Table 2 as an iron oxide-containing material) as a modifier. It was revealed by microscopic observation that the additive was not formed and the additive was uniformly dissolved in the molten blast furnace.
Further, it was confirmed that even when the modifying material was added after being formed into granules having a particle diameter of about 1 to 10 mm, it was dissolved in the molten blast furnace without any problem just like the powder.

Figure 2005146332
Figure 2005146332

また、上記改質材を添加した後に、冷却固化した高炉滓は、この改質材を添加しない従来の高炉滓に比較して気泡が極めて少ない緻密で、比重が重くて硬い強固なスラグに成っており、高品質であり、景観材料等の新規用途としての活用が可能であることが判明した。
尚、上記T.Feとは、メタリックなFe分を除いたFe分であり、酸化鉄の形態(FeO、Fe34 、Fe23 )を成しているFe分の総量である。
In addition, the blast furnace slag cooled and solidified after the addition of the above-mentioned reformer becomes a dense slag with a high density and a high specific gravity with a very small number of bubbles compared to a conventional blast furnace slag without the addition of this reformer. It has been found that it is of high quality and can be used for new uses such as landscape materials.
Note that the above T.A. Fe is the Fe content excluding metallic Fe content, and is the total amount of Fe content in the form of iron oxide (FeO, Fe 3 O 4 , Fe 2 O 3 ).

更に、本発明者らは、酸化鉄含有物による効果を発現するための、石炭灰と酸化鉄含有物との配合粉粒体である改質材に具備すべき条件を明らかにするために、前述した小型坩堝を用いて系統的な実験を重ねた。 Furthermore, in order to clarify the conditions that the present inventors should have in the modifier, which is a blended granule of coal ash and iron oxide, to express the effect of the iron oxide-containing material, Systematic experiments were repeated using the small crucible described above.

先ず、石炭灰に配合する酸化鉄含有物中のT.Fe量の割合を種々変更した改質材を用いて焼結体の生成状態を確認する実験を行い図1に示す結果を得た。
尚、この際に改質材に使用した石炭灰は上記表1に示す成分と含有量を有するものであり、更に、酸化鉄としては上記表2に示す成分と含有量を有する焼結集塵ダストで、この改質材を添加する溶融高炉滓の温度は1450℃とした。また、溶融高炉滓に対する改質材の添加量は10質量%とした。
First, T.I. in the iron oxide-containing material to be blended with coal ash. An experiment for confirming the state of formation of the sintered body was performed using modifiers with various ratios of Fe content, and the results shown in FIG. 1 were obtained.
Incidentally, the coal ash used for the modifier at this time has the components and contents shown in Table 1 above, and further, as iron oxide, sintered dust collection dust having the components and contents shown in Table 2 above. Therefore, the temperature of the molten blast furnace to which this modifier was added was 1450 ° C. Further, the amount of the modifier added to the molten blast furnace slag was 10% by mass.

図1からわかるように、石炭灰に対して酸化鉄含有物のT.Feの配合割合が5質量%未満だと、石炭灰の中のSiO2 分とAl23 分から生成される高融点結晶の焼結体の成長を抑制することが出来ず、坩堝壁への付着或いは塊状のまま溶けずに溶融高炉滓の上面に浮上、残留して未溶解として残る石炭灰の割合が多く、操業上、又は高炉滓の品質上好ましくない。一方、配合割合が50質量%を超えると前述した酸化鉄混合による焼結体成長抑制は得られるが、その効果は飽和してしまい、むしろ酸化鉄の過剰混合によるスラグの変色等が生じる。
従って、石炭灰に対する酸化鉄含有物のT.Feの配合割合は5〜50質量%が好ましい。
As can be seen from FIG. 1, the iron oxide containing T.I. When the blending ratio of Fe is less than 5% by mass, the growth of the sintered body of the high melting point crystal generated from the SiO 2 component and the Al 2 O 3 component in the coal ash cannot be suppressed, There is a large proportion of coal ash that remains on the upper surface of the molten blast furnace slag without adhering or lump and remains as undissolved, which is undesirable in terms of operation or blast furnace slag quality. On the other hand, if the blending ratio exceeds 50% by mass, the above-described suppression of the growth of the sintered body by the iron oxide mixing can be obtained, but the effect is saturated, and rather slag discoloration and the like are caused by the excessive mixing of iron oxide.
Therefore, the T.O. The blending ratio of Fe is preferably 5 to 50% by mass.

更に、酸化鉄含有物のT.Fe量が少な過ぎると、多量の改質材を溶融高炉滓に添加する必要も発生することの懸念から、本発明者らは、種々の酸化物含有物を使った実験を重ねた。この結果、酸化物含有物のT.Feが30質量%以上であることが好ましいことが判明した。30%未満では、改質材中の酸化鉄以外の成分が溶融高炉滓に多量混入するために、改質材を高炉滓に添加した際の温度降下が大きくなるし、本来の石炭灰を主成分とする改質材としての効果が十分に得られず、好ましくない。 Further, the T.I. The present inventors repeated experiments using various oxide-containing materials because there is a concern that if the amount of Fe is too small, it is necessary to add a large amount of modifier to the molten blast furnace furnace. As a result, the T.O. It has been found that Fe is preferably 30% by mass or more. If it is less than 30%, components other than iron oxide in the reforming material are mixed in a large amount in the molten blast furnace so that the temperature drop when the modifying material is added to the blast furnace becomes large, and the original coal ash is mainly used. The effect as a modifier as a component cannot be sufficiently obtained, which is not preferable.

また、図2は、溶融高炉滓に対する本発明の改質材の添加比率と冷却固化後の高炉滓の絶乾比重測定値との関係を示す図である。改質材添加比率が1質量%未満だと、冷却固化後の高炉滓の比重の増加が僅かであるが、1質量%を超えると改質材の効果が発現して比重が大幅に増大する。しかし、改質材の添加比率が30質量%を超えると、高炉滓の比重は増大する反面、改質材の顕熱による溶融高炉滓の温度低下が著しく成り、操業に支障をきたす。すなわち、高融点結晶体の生成は無いが、低温の為に溶融高炉滓の耐火物への付着残留傾向が強く成り、操業後の耐火物メンテナンスの負荷が大きく成る。従って、溶融高炉滓に対する本発明の改質材添加比率は1〜30質量%である。
なお、図2の縦軸は、高炉滓を乾燥した後の嵩比重を測定したものであり、絶乾比重が大きく成る程、それと対応して吸水率も低減するメリットが得られる。
Moreover, FIG. 2 is a figure which shows the relationship between the addition ratio of the modifier of this invention with respect to a molten blast furnace slag, and the absolute dry specific gravity measured value of the blast furnace slag after cooling solidification. If the modifier addition ratio is less than 1% by mass, the increase in specific gravity of the blast furnace after cooling and solidification is slight, but if it exceeds 1% by mass, the effect of the modifier is manifested and the specific gravity increases significantly. . However, when the addition ratio of the reforming material exceeds 30% by mass, the specific gravity of the blast furnace iron increases, but the temperature of the molten blast furnace iron is significantly lowered due to the sensible heat of the reforming material, which hinders operation. That is, although there is no generation of a refractory crystal, the tendency to adhere to the refractory of the molten blast furnace becomes strong due to the low temperature, and the load of refractory maintenance after operation increases. Therefore, the modifier addition ratio of the present invention relative to the molten blast furnace is 1 to 30% by mass.
In addition, the vertical axis | shaft of FIG. 2 measured the bulk specific gravity after drying a blast furnace slag, and the merit that water absorption is also correspondingly reduced, so that an absolute dry specific gravity becomes large.

改質材の添加量が多い場合は、一箇所に集中添加するよりも、溶融高炉滓と改質材の接触面積を大きくするために、改質材を溶融高炉滓中に添加する位置を複数カ所とすることが局部温度低下に伴う耐火物への付着を防止すると共に添加した改質材の溶解を加速させる観点から好ましい。その一ヶ所の添加量としては、高炉滓に対して10質量%以下が好ましい。 When there is a large amount of modifier added, in order to increase the contact area between the molten blast furnace slag and the reformer rather than concentrated addition at one location, there are multiple locations where the modifier is added to the molten blast furnace slag. It is preferable from the viewpoint of preventing the adhesion to the refractory due to the local temperature drop and accelerating the dissolution of the added modifier. The addition amount at one place is preferably 10% by mass or less with respect to the blast furnace.

溶融高炉滓への改質材の添加は、高炉の出銑孔から冷却ピットまでに於いて高炉滓が溶融状態に有る場所ならば、どこを利用しても構わない。例えば、出銑孔からスキンマー(溶銑と高炉滓を分離する装置)迄の大樋、分離した後のノロ樋或いは溶融高炉滓中の粒鉄を回収する為の流銑鍋(流銑鉢とも称す)、さらには徐冷滓にする場合はピットへの落ち口やピット内に添加しても構わない。溶融高炉滓を搬送する滓鍋に添加しても構わない。また、これらの場所を複数使用しても構わない。添加方式としては、上方から粉粒状で投入しても良いし、粉体状態でスラグ中に吹き込んでも構わない。
前記実施の形態では酸化鉄含有物として焼結集塵ダストを使用したが、ダスト、スラッジ、金属精錬時の廃棄物、及び鉱物のいずれでもよい。
The addition of the modifying material to the molten blast furnace can be performed anywhere as long as the blast furnace is in a molten state from the outlet hole of the blast furnace to the cooling pit. For example, a large bowl from the tap hole to the skinmer (a device that separates the molten iron and the blast furnace), a nose cake after separation, or a ladle for recovering the granular iron in the molten blast furnace cake (also referred to as a floating bowl) In addition, in the case of gradually cooling, it may be added to the pit or the pit. It may be added to the ladle that transports the molten blast furnace. A plurality of these locations may be used. As an addition method, powder may be added from above or may be blown into slag in a powder state.
In the embodiment, sintered dust collection dust is used as the iron oxide-containing material, but any of dust, sludge, waste during metal refining, and mineral may be used.

更に、改質材中にカーボンを2〜12質量%含むと、焼結集塵ダスト中の酸化鉄とカーボンが反応してCOガス、或いはCO2 ガスに酸化されて発熱する。これが、改質材を添加した箇所での加熱に寄与し、該改質材の溶融を容易にすると共に、発生したガスが溶解反応界面を攪拌して反応を促進するという2次的効果も享受する事が出来るので好ましい。
尚、この知見は小型坩堝でのラボテストのみでなく、実炉試験に於いても全く同様な結果が確認された。
Further, when 2 to 12% by mass of carbon is contained in the reforming material, iron oxide and carbon in the sintered dust collection dust react to be oxidized to CO gas or CO 2 gas to generate heat. This contributes to heating at the location where the modifier is added, facilitates melting of the modifier, and also enjoys the secondary effect that the generated gas promotes the reaction by stirring the dissolution reaction interface. It is preferable because it can be done.
This finding was confirmed not only in a laboratory test using a small crucible but also in an actual furnace test.

以下、本発明の実施例について図3を参照して詳細に説明する。
図3は、溶鉱炉から排出された溶融高炉滓が放流(ドライ)ピット9或いは水砕設備8に到着するまでの流路に、酸化鉄含有物を混合した石炭灰から成る改質材を添加し、徐冷滓又は水砕にした場合の例である。高炉1の下部に設けられた出銑口2から溶銑と共に流れ出る溶融高炉滓に対して、黒丸印で示した位置で改質材を添加した。すなわち、大樋3、スキンマー4で溶銑Pと溶融高炉滓Sを分離した後の滓樋5、溶融高炉滓S中の流銑を回収するための容器である流銑鍋6、水砕設備8及び放流ピット9の直前の水砕・放流樋7、放流樋7のピット落ち口10、そして放流ピット9内のいずれかの場所を、改質材添加量に応じて改質材添加場所とした。そして、この結果を表4〜表6に示す。
Hereinafter, an embodiment of the present invention will be described in detail with reference to FIG.
FIG. 3 shows that a modifier made of coal ash mixed with iron oxide-containing material is added to the flow path until the molten blast furnace slag discharged from the blast furnace reaches the discharge (dry) pit 9 or the granulation facility 8. This is an example of slow cooling or water granulation. A reformer was added at a position indicated by a black circle to the molten blast furnace slag flowing out together with the molten iron from the slag opening 2 provided at the lower part of the blast furnace 1. That is, the hot metal 3 after the hot metal P and the molten blast furnace steel S are separated by the large hot water 3 and the skinmer 4, the hot water pan 6 which is a container for collecting the molten metal in the molten blast furnace steel S, Either the water granulation / discharge rod 7 immediately before the discharge pit 9, the pit outlet 10 of the discharge rod 7, or any place in the discharge pit 9 was used as a modifier addition location according to the amount of modifier addition. The results are shown in Tables 4-6.

尚、溶融高炉滓は表3に示す化学成分を有するものを使用した。 In addition, the molten blast furnace iron having the chemical composition shown in Table 3 was used.

Figure 2005146332
Figure 2005146332

Figure 2005146332
Figure 2005146332

Figure 2005146332
Figure 2005146332

Figure 2005146332
Figure 2005146332

また、石炭灰は表1に示す成分のものを使用した。
酸化鉄含有物として表2に示す成分の焼結集塵ダストを使用した。さらに、その他の酸化鉄含有物として表4の欄外に示す成分を有するものを使用した。
Moreover, the thing of the component shown in Table 1 was used for the coal ash.
Sintered dust collection dust having the components shown in Table 2 was used as the iron oxide-containing material. Furthermore, what has a component shown in the margin of Table 4 as another iron oxide containing material was used.

表4〜表6中の実施例1〜9は、本発明の条件の範囲内であることから、改質材添加に伴う耐火物への付着物(未溶解焼結体の生成、成長或いは温度低下増大に伴う溶融高炉滓の樋内面或いは流銑鍋内面の耐火物への付着)起因の操業トラブルを惹起すること無く、改質材を継続添加出来、これにより、石炭灰の未溶解比率も低く抑えられ、比重の大きい高炉滓が得られた。 Since Examples 1 to 9 in Tables 4 to 6 are within the range of the conditions of the present invention, the deposits on the refractory (addition, growth or temperature of undissolved sintered body) accompanying the addition of the modifier The modifier can be continuously added without causing any operational troubles due to the increase in the drop, causing the inner surface of the molten blast furnace or the inner surface of the ladle to adhere to the refractory. A blast furnace furnace with low specific gravity and high specific gravity was obtained.

一方、比較例1、5では、改質材の石炭灰への酸化鉄含有物中T.Feの配合比率が本発明範囲の下限を外れた為に、石炭灰が溶融高炉滓にスムーズに溶融せずに高融点結晶の焼結体が生成し、改質材添加による改質効果が得られず、いずれも比重が小さい高炉滓に成ってしまった。
比較例2は、比較例1とは逆に石炭灰への酸化鉄含有物中T.Feの配合比率が本発明範囲の上限を外れており、上限以上に加えた改質材の効果は得られないのに加えて無駄な改質材コストを必要とするし、酸化鉄含有物質中T.Feの過剰添加に起因する高炉滓の色調変化等、品質上の懸念も生じた。
比較例3は、改質材の溶融高炉滓への添加量が本発明範囲の下限を外れた為に、改質材による改質効果が不足して高炉滓の比重は小さいものであった。
On the other hand, in Comparative Examples 1 and 5, the T.O. Since the blending ratio of Fe deviated from the lower limit of the range of the present invention, coal ash was not melted smoothly into the molten blast furnace so that a sintered body of high melting point crystals was formed, and a modification effect by adding a modifier was obtained. None of them became blast furnaces with low specific gravity.
In Comparative Example 2, contrary to Comparative Example 1, T.I. The blending ratio of Fe is outside the upper limit of the scope of the present invention, and the effect of the modifier added above the upper limit cannot be obtained, and in addition, a waste modifier cost is required, and in the iron oxide-containing substance T.A. There were also concerns about quality, such as a change in the color tone of the blast furnace due to the excessive addition of Fe.
In Comparative Example 3, the amount of the reformer added to the molten blast furnace slag deviated from the lower limit of the range of the present invention, so that the reforming effect by the modifier was insufficient and the specific gravity of the blast furnace slag was small.

また、比較例4は、比較例3とは逆に改質材の溶融高炉滓への添加量が本発明範囲の上限を外れた為に、該改質材に奪われる顕熱が大きく成り、溶融高炉滓の改質材添加部分の温度が局部的に大きく下がり、改質材は溶けるものの添加後の溶融高炉滓の粘性が上がり、改質材添加後の大樋や流銑鍋の内面耐火物への溶融高炉滓の付着量が増大して、処理後の付着スラグ除去等、煩雑な作業を伴うことに成り、操業上の支障が生じた。
比較例6は、酸化鉄含有物中のT.Fe含有量が22質量%と低いため、T.Fe以外の成分が溶融高炉滓に多量混入するために、改質材を添加した際の温度降下が大きく成り、操業上の支障を来すし、石炭灰を主成分とする改質材としての効果が十分に得られず、比重は小さい物と成った。
In contrast to Comparative Example 3, the amount of addition of the reforming material to the molten blast furnace slag deviates from the upper limit of the scope of the present invention, so that the sensible heat taken away by the modifying material increases. The temperature of the part where the modifier is added in the molten blast furnace drastically decreases locally, but the modifier melts, but the viscosity of the molten blast furnace bowl after the addition increases, and the inner surface refractory of the large bowl and the potato pan after the addition of the modifier The adhesion amount of the molten blast furnace slag to the steel increased, resulting in complicated operations such as removal of the adhered slag after treatment, resulting in operational problems.
In Comparative Example 6, T.I. Since the Fe content is as low as 22% by mass, T.I. Since components other than Fe are mixed in a large amount in the molten blast furnace soot, the temperature drop when adding a modifier increases, causing operational problems, and the effect as a modifier mainly composed of coal ash. Was not sufficiently obtained, and the specific gravity was small.

石炭灰に対する酸化鉄の配合割合と石炭灰未溶解比率の関係を示す説明図である。It is explanatory drawing which shows the relationship between the compounding ratio of the iron oxide with respect to coal ash, and a coal ash undissolved ratio. 溶融高炉滓に対する改質材の添加比率と高炉滓の絶乾比重との関係を示す説明図である。It is explanatory drawing which shows the relationship between the addition ratio of the modifier with respect to a molten blast furnace slag, and the absolute dry specific gravity of a blast furnace slag. 本発明の一実施例に係る高炉滓の改質方法において溶融高炉滓に改質材を添加する位置を示す説明図である。It is explanatory drawing which shows the position which adds a modifier to a molten blast furnace slag in the reforming method of blast furnace slag concerning one Example of this invention.

符号の説明Explanation of symbols

1:高炉、2:出銑口、3:大樋、4:スキンマー、5:滓樋、6:流銑鍋、7:水砕・放流樋、8:水砕設備、9:放流ピット、10:ピット落ち口 1: Blast furnace, 2: Outlet, 3: Oiso, 4: Skinmer, 5: Firewood, 6: Floating hot pot, 7: Granulation / release basin, 8: Granulation equipment, 9: Discharge pit, 10: Pit exit

Claims (5)

溶融高炉滓に改質材を添加した後、冷却固化して高炉滓とするに際して、前記改質材が石炭灰と酸化鉄を含有した酸化鉄含有物との混合粉粒体であることを特徴とする高炉滓の改質材。 When the modifier is added to the molten blast furnace slag and then cooled and solidified to form a blast furnace slag, the modifier is a mixed powder of coal ash and iron oxide-containing material containing iron oxide. Reformer for blast furnace. 前記石炭灰に対して前記酸化鉄含有物中のT.Fe量が5〜50質量%に成るように該酸化鉄含有物を配合したことを特徴とする請求項1記載の高炉滓の改質材。 T. in the iron oxide-containing material with respect to the coal ash. The blast furnace soot reforming material according to claim 1, wherein the iron oxide-containing material is blended so that the amount of Fe is 5 to 50% by mass. 前記酸化鉄含有物が、T.Feを30質量%以上含有するダスト、スラッジ、金属精錬時の廃棄物、及び鉱物のいずれかであることを特徴とする請求項1又は2記載の高炉滓の改質材。 The iron oxide-containing material is T.I. The blast furnace slag reformer according to claim 1 or 2, which is any one of dust, sludge, metal refining waste, and minerals containing 30 mass% or more of Fe. 溶融高炉滓に対して請求項1〜3のいずれか1項に記載の改質材を1〜30質量%添加した後、徐冷滓又は水砕して高炉滓とすることを特徴とする高炉滓の改質方法。 A blast furnace characterized in that after adding 1 to 30% by mass of the reforming material according to any one of claims 1 to 3 to a molten blast furnace slag, it is gradually cooled or granulated into a blast furnace slag. A method for reforming straw. 前記改質材を1カ所、又は複数カ所で前記溶融高炉滓に対し1〜30質量%添加し、かつ、その添加する場所の1ヶ所当たりの添加量が10質量%以下であることを特徴とする請求項4記載の高炉滓の改質方法。 1 to 30% by mass of the modifier is added to the molten blast furnace at one place or a plurality of places, and the addition amount per one place of the addition is 10% by mass or less. The method for reforming a blast furnace soot according to claim 4.
JP2003384128A 2003-11-13 2003-11-13 Blast furnace reforming method Expired - Fee Related JP4081427B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003384128A JP4081427B2 (en) 2003-11-13 2003-11-13 Blast furnace reforming method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003384128A JP4081427B2 (en) 2003-11-13 2003-11-13 Blast furnace reforming method

Publications (2)

Publication Number Publication Date
JP2005146332A true JP2005146332A (en) 2005-06-09
JP4081427B2 JP4081427B2 (en) 2008-04-23

Family

ID=34692652

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003384128A Expired - Fee Related JP4081427B2 (en) 2003-11-13 2003-11-13 Blast furnace reforming method

Country Status (1)

Country Link
JP (1) JP4081427B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007022818A (en) * 2005-07-12 2007-02-01 Nippon Steel Corp Method of treating fluorine-containing steel making slag
KR101355515B1 (en) * 2012-02-28 2014-01-27 현대제철 주식회사 Recycling apparatus for fuel and raw material and recycling method thereof
CN114671621A (en) * 2022-04-02 2022-06-28 陕西理工大学 Method for preparing microcrystalline glass fiber by using blast furnace slag powder and microcrystalline glass fiber
CN115141000A (en) * 2022-07-13 2022-10-04 山东国茂冶金材料有限公司 Smoke suppressant for hot-metal bottle and preparation method and application thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007022818A (en) * 2005-07-12 2007-02-01 Nippon Steel Corp Method of treating fluorine-containing steel making slag
KR101355515B1 (en) * 2012-02-28 2014-01-27 현대제철 주식회사 Recycling apparatus for fuel and raw material and recycling method thereof
CN114671621A (en) * 2022-04-02 2022-06-28 陕西理工大学 Method for preparing microcrystalline glass fiber by using blast furnace slag powder and microcrystalline glass fiber
CN114671621B (en) * 2022-04-02 2023-09-19 陕西理工大学 Method for preparing microcrystalline glass fiber by utilizing blast furnace slag powder and microcrystalline glass fiber
CN115141000A (en) * 2022-07-13 2022-10-04 山东国茂冶金材料有限公司 Smoke suppressant for hot-metal bottle and preparation method and application thereof

Also Published As

Publication number Publication date
JP4081427B2 (en) 2008-04-23

Similar Documents

Publication Publication Date Title
KR100470089B1 (en) Method for producing metallic iron
JP5297077B2 (en) Method for producing ferromolybdenum
JP2010111941A (en) Method for producing ferrovanadium
TW200948980A (en) Producing method of reduced iron
JP2008274362A (en) Method for producing ferro-molybdenum
JP4081427B2 (en) Blast furnace reforming method
JP2011246760A (en) Method of manufacturing ferromolybdenum, and ferromolybdenum
JP3965139B2 (en) Method for reforming steelmaking slag
JP4436153B2 (en) Blast furnace slag reformer and its reforming method
JP2006315907A (en) Blast furnace slag aggregate using coal ash
JP2010090431A (en) Method for producing ferro-alloy containing nickel and vanadium
JP2005126732A (en) Smelting-reduction method for material containing metallic oxide, and smelting-reduction apparatus
JP4318534B2 (en) Treatment method of fly ash using blast furnace slag
TW202035706A (en) Recarburizer and recarburization method using the same
JP3135042B2 (en) Synthetic processing method and apparatus for artificial rock from incinerated ash molten slag
RU2244026C1 (en) Briquette for metal smelting
JP2021084092A (en) By-product processing method
JP2003328022A (en) Desulfurizing agent for molten steel and manufacturing method therefor
TWI843517B (en) Direct-reduction iron melting method, solid iron and method for producing solid iron, civil engineering and construction material and method for producing civil engineering and construction material, and direct-reduction iron melting system
JP5910542B2 (en) Hot metal manufacturing method using vertical melting furnace
KR100668792B1 (en) Vanadium dioxide ingot for substituting ferro-vanadium and method of producing the same
JPH09301748A (en) Production of stable slag
JP7095674B2 (en) How to make concrete
JP2007204825A (en) Method for producing molten iron
JP2009052074A (en) Molten iron production method using vertical scrap melting furnace

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050913

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070417

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070612

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070821

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071010

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080208

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110215

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4081427

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110215

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110215

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120215

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120215

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130215

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130215

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130215

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130215

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140215

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees