JP2010120987A - Solidifying agent - Google Patents

Solidifying agent Download PDF

Info

Publication number
JP2010120987A
JP2010120987A JP2008293326A JP2008293326A JP2010120987A JP 2010120987 A JP2010120987 A JP 2010120987A JP 2008293326 A JP2008293326 A JP 2008293326A JP 2008293326 A JP2008293326 A JP 2008293326A JP 2010120987 A JP2010120987 A JP 2010120987A
Authority
JP
Japan
Prior art keywords
steelmaking slag
solidifying agent
solidification
slag
soil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008293326A
Other languages
Japanese (ja)
Other versions
JP5645297B2 (en
Inventor
Kenichi Katayama
賢一 片山
Sadao Shimomura
定男 下村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ECO SYSTEM KK
Nippon Steel Nisshin Co Ltd
Original Assignee
ECO SYSTEM KK
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ECO SYSTEM KK, Nisshin Steel Co Ltd filed Critical ECO SYSTEM KK
Priority to JP2008293326A priority Critical patent/JP5645297B2/en
Publication of JP2010120987A publication Critical patent/JP2010120987A/en
Application granted granted Critical
Publication of JP5645297B2 publication Critical patent/JP5645297B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Treatment Of Sludge (AREA)
  • Soil Conditioners And Soil-Stabilizing Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a solidifying agent which is substantially neutral, prevents elution of heavy metals and F and is excellent in work efficiency in solidification treatment of soil. <P>SOLUTION: The solidifying agent for solidification improvement of soil contains steelmaking slag and a solidification accelerator which accelerates solidification. The finely-powdered steelmaking slag 8 obtained by pulverizing slag generated in a steelmaking process 1 at the pulverization step 41 of a solidifying agent production process 4 after an ore dressing process 3 has basicity of 0.8-1.6, a composition containing <0.4% F, 35-65% CaO, 20-55% SiO<SB>2</SB>and 4-9% Al<SB>2</SB>O<SB>3</SB>, and a particle size of 1,700-4,000 Blaine. In the slag 8, elution amount of F is set to be <0.8 mg/L and elution amount of hexavalent Cr is set to be <0.05 mg/L. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、たとえば軟弱な建設土壌などに混合して土壌を固化改良する固化剤に関する。   The present invention relates to a solidifying agent for solidifying and improving soil by mixing with, for example, soft construction soil.

低湿地などで建設工事を行う場合や河川の浚渫泥土などを再生処理する場合、軟弱な土壌を固化改良することが行われる。従来、土壌を固化改良する固化剤としてセメント系の固化剤が用いられている。セメント系固化剤は、高アルカリであるため、固化剤で処理された土壌に接触した雨水などが高アルカリ水として流出し、周辺の植栽などに悪影響を及ぼすことがある。またセメント系固化剤には、鉄鋼生産の副産物として生成する高炉スラグを有効利用する高炉セメントを主材料とするものがある。このような高炉セメントを用いるセメント系固化剤では、セメント材料に由来する6価Cr(Cr6+)およびセレン(Se)などの重金属やフッ素(F)が雨水によって溶出し、周辺環境に悪影響を及ぼすおそれがある。 When construction work is performed in low-wetlands or when reclaiming dredged mud from rivers, soft soil is solidified and improved. Conventionally, cement-based solidifying agents have been used as solidifying agents for solidifying and improving soil. Since the cement-based solidifying agent is highly alkaline, rainwater or the like in contact with the soil treated with the solidifying agent flows out as highly alkaline water, which may adversely affect surrounding planting. Some cement-based solidifying agents are mainly blast furnace cement that effectively uses blast furnace slag produced as a byproduct of steel production. In such cement-based solidifying agents using blast furnace cement, heavy metals such as hexavalent Cr (Cr 6+ ) and selenium (Se) derived from cement materials and fluorine (F) are eluted by rainwater, which adversely affects the surrounding environment. There is a fear.

セメント系固化剤の高アルカリの問題を解決する一つの方法として、アルカリを中和する中和剤を含有させることが提案されている(たとえば特許文献1参照)。また他の方法として、たとえば石膏を成分とする非セメント系の固化剤が提案されている(たとえば特許文献2参照)。
特開2002−282894号公報 特開2004−323599号公報
As one method for solving the problem of high alkali of the cement-based solidifying agent, it has been proposed to contain a neutralizing agent that neutralizes alkali (for example, see Patent Document 1). As another method, for example, a non-cement solidifying agent containing gypsum as a component has been proposed (for example, see Patent Document 2).
JP 2002-282894 A JP 2004-323599 A

しかし、主材が高炉セメントであるセメント系固化剤に中和剤を含有させて高アルカリの問題を解消するとしても、セメント材料に由来する重金属やFの溶出を十分に防止することができないという問題がある。また非セメント系固化剤は、高アルカリの問題および重金属等の溶出の問題を解消することができるけれども、土壌を固化改良する施工に際して固化反応が急速に進むので、施工時の作業性が良くないという問題やコスト高となる問題がある。   However, even if a high-alkali problem is solved by adding a neutralizing agent to a cement-based solidifying agent whose main material is blast furnace cement, elution of heavy metals and F derived from the cement material cannot be sufficiently prevented. There's a problem. In addition, the non-cement solidifying agent can solve the problem of high alkali and elution of heavy metals, but the solidification reaction proceeds rapidly during construction to improve the solidification of the soil, so the workability during construction is not good. There are problems such as this and high costs.

本発明の目的は、土壌を固化改良する固化剤において、ほぼ中性でありかつ重金属やFの溶出が防止され、固化処理をする施工時の作業性に優れる固化剤を提供することである。   An object of the present invention is to provide a solidifying agent which is almost neutral and prevents elution of heavy metals and F, and is excellent in workability during construction for solidifying treatment, in a solidifying agent for solidifying and improving soil.

本発明は、土壌を固化改良する固化剤において、
製鋼スラグと、土壌の固化を促進する固化促進剤と、を含み、
製鋼スラグは、
塩基度(CaO/SiO)が、0.8〜1.6、
組成が、質量%で、(F):0.4%未満、(CaO):35〜65%、(SiO):20〜55%、(Al):4〜9%、
Fおよび6価Crの水に対する溶出量が、それぞれF:0.8mg/L未満、6価Cr:0.05mg/L未満、
粒度が、1700〜4000ブレーン、であることを特徴とする固化剤である。
The present invention provides a solidifying agent for solidifying and improving soil,
Steelmaking slag and a solidification accelerator that promotes solidification of soil,
Steelmaking slag
Basicity (CaO / SiO 2 ) of 0.8 to 1.6,
Composition, in mass%, (F): less than 0.4%, (CaO): 35~65 %, (SiO 2): 20~55%, (Al 2 O 3): 4~9%,
The elution amounts of F and hexavalent Cr in water are F: less than 0.8 mg / L, hexavalent Cr: less than 0.05 mg / L,
It is a solidifying agent characterized by having a particle size of 1700 to 4000 branes.

また本発明で、前記固化促進剤は、半水石膏および高分子凝集剤のうち少なくともいずれか一方を含むことを特徴とする。   In the present invention, the solidification accelerator includes at least one of hemihydrate gypsum and a polymer flocculant.

また本発明で、前記固化促進剤は半水石膏であり、前記製鋼スラグと半水石膏とを混合して得られる混合物中に占める半水石膏の含有比率は、20〜50質量%であることを特徴とする。   In the present invention, the solidification accelerator is hemihydrate gypsum, and the content ratio of hemihydrate gypsum in a mixture obtained by mixing the steelmaking slag and hemihydrate gypsum is 20 to 50% by mass. It is characterized by.

また本発明で、前記固化促進剤は高分子凝集剤であり、前記製鋼スラグと高分子凝集剤とを混合して得られる混合物中に占める高分子凝集剤の含有比率は、2〜10質量%であることを特徴とする。   In the present invention, the solidification accelerator is a polymer flocculant, and the content ratio of the polymer flocculant in the mixture obtained by mixing the steelmaking slag and the polymer flocculant is 2 to 10% by mass. It is characterized by being.

また本発明で、前記固化促進剤は半水石膏および高分子凝集剤であり、前記製鋼スラグと半水石膏および高分子凝集剤とを混合して得られる混合物中に占める半水石膏および高分子凝集剤の含有比率は、半水石膏が10〜50質量%、高分子凝集剤が2〜10質量%であることを特徴とする。   Further, in the present invention, the solidification accelerator is hemihydrate gypsum and polymer flocculant, and hemihydrate gypsum and polymer occupying in a mixture obtained by mixing the steelmaking slag, hemihydrate gypsum and polymer flocculant. The content ratio of the flocculant is characterized by 10 to 50% by mass of hemihydrate gypsum and 2 to 10% by mass of the polymer flocculant.

また本発明で、前記製鋼スラグは、ステンレス鋼を溶製する製鋼工程で発生するスラグから地金を回収し、地金回収後の塊状のスラグを粉砕して得られる製鋼スラグであることを特徴とする。   Further, in the present invention, the steelmaking slag is a steelmaking slag obtained by recovering a metal from a slag generated in a steelmaking process for melting stainless steel, and pulverizing a massive slag after the metal recovery. And

本発明によれば、固化剤の成分である製鋼スラグについて、塩基度および組成を調整することによって固化剤をほぼ中性にすることができ、6価CrおよびFの水に対する溶出量を制限することによって環境に対する安全性を高めることができる。また、製鋼スラグの粒度を調整することによって硬化性を良好に発揮して十分な土壌強度を発現することができる。また、製鋼スラグで長期的強度を得るとともに、固化促進剤で土壌の固化を促進することにより作業性の良好な初期強度を発現することができる。   According to the present invention, with respect to steelmaking slag, which is a component of the solidifying agent, the solidifying agent can be made almost neutral by adjusting the basicity and composition, and the elution amount of hexavalent Cr and F into water is limited. The safety to the environment can be increased. In addition, by adjusting the particle size of the steelmaking slag, the curability can be satisfactorily exhibited and sufficient soil strength can be expressed. Moreover, while obtaining long-term intensity | strength with steelmaking slag, initial stage intensity | strength with favorable workability | operativity can be expressed by accelerating | stimulating solidification of soil with a solidification promoter.

また本発明によれば、固化促進剤として含まれる半水石膏や高分子凝集剤は、固化剤をほぼ中性に保つとともに、土壌の固化を促進することにより作業性の良好な初期強度を発現する。   Further, according to the present invention, the hemihydrate gypsum and polymer flocculant contained as the solidification accelerator keep the solidification agent almost neutral, and also promote the solidification of the soil to express the initial strength with good workability. To do.

また本発明によれば、固化促進剤である半水石膏および高分子凝集剤のうち少なくともいずれか一方、または両方の固化剤中での含有比率を調整することによって、固化処理施工時に土壌の取り扱いが容易な土壌硬さを得ることができ、作業性が向上する。   Further, according to the present invention, by adjusting the content ratio in at least one of hemihydrate gypsum and polymer flocculant as a solidification accelerator, or both solidification agents, handling of soil during solidification treatment construction However, easy soil hardness can be obtained, and workability is improved.

また本発明によれば、製鋼スラグは、ステンレス鋼の製鋼工程で発生するスラグから地金を回収した後の塊状のスラグを粉砕したものであり、このようなステンレス鋼製造の副産物を利用することによって、処理土壌の長期的強度に優れ、安価で汎用性に優れる固化剤を得ることができる。ここで塊状は、粒状を含む意味に用いる。   Further, according to the present invention, the steelmaking slag is obtained by pulverizing massive slag after recovering the metal from the slag generated in the steelmaking process of stainless steel, and uses such a by-product of stainless steel production. Thus, it is possible to obtain a solidifying agent which is excellent in long-term strength of the treated soil, is inexpensive and has excellent versatility. Here, the lump is used to mean including granularity.

本発明の実施の形態である固化剤は、製鋼スラグと土壌の固化を促進する固化促進剤とを含む。製鋼スラグは、塩基度(CaO/SiO)が、0.8〜1.6、組成が、質量%で、(F):0.4%未満、(CaO):35〜65%、(SiO):20〜55%、(Al):4〜9%、Fおよび6価Crの水に対する溶出量が、それぞれF:0.8mg/L未満、6価Cr:0.05mg/L未満、粒度が、1700〜4000ブレーン、である。以後、組成等を表す含有比率は、特に断らない限り質量%を表すものとする。 The solidification agent which is embodiment of this invention contains steelmaking slag and the solidification promoter which accelerates | stimulates solidification of soil. Steelmaking slag has a basicity (CaO / SiO 2 ) of 0.8 to 1.6, a composition of mass%, (F): less than 0.4%, (CaO): 35 to 65%, (SiO 2 ): 20 to 55%, (Al 2 O 3 ): 4 to 9%, F and hexavalent Cr were dissolved in water in amounts of F: less than 0.8 mg / L and hexavalent Cr: 0.05 mg / liter, respectively. Less than L, particle size is 1700-4000 branes. Hereinafter, unless otherwise specified, the content ratio representing the composition and the like represents mass%.

以下、製鋼スラグの塩基度等の範囲限定理由について説明する。
塩基度(CaO/SiO):0.8〜1.6
製鋼スラグの塩基度は、溶鋼の脱硫に大きな影響をおよぼす。塩基度が0.8未満であると、十分な脱硫反応が得られない。塩基度が1.6を超えると、製鋼スラグの流動性が低下し、溶鋼と製鋼スラグとの接触界面が減少して脱硫反応が促進されない。また、後述する(F)<0.4%を達成するには、従来スラグの流動性確保のために添加していた蛍石(CaF)の使用量を抑制しなければならない。そこで、蛍石を用いずに製鋼スラグの流動性を確保するには、塩基度を1.6以下にすることが必要になる。したがって、塩基度を0.8〜1.6とする。
Hereinafter, the reasons for limiting the range such as the basicity of the steelmaking slag will be described.
Basicity (CaO / SiO 2): 0.8~1.6
The basicity of steelmaking slag has a great influence on the desulfurization of molten steel. If the basicity is less than 0.8, a sufficient desulfurization reaction cannot be obtained. When basicity exceeds 1.6, the fluidity | liquidity of steelmaking slag will fall, the contact interface of molten steel and steelmaking slag will reduce, and desulfurization reaction will not be accelerated | stimulated. In order to achieve (F) <0.4%, which will be described later, the amount of fluorite (CaF 2 ) that has been added for securing the fluidity of slag must be suppressed. Therefore, in order to ensure the fluidity of the steelmaking slag without using fluorite, the basicity needs to be 1.6 or less. Therefore, the basicity is set to 0.8 to 1.6.

(F):0.4%未満
製鋼スラグを土壌の固化剤の成分として使用する場合、F含有量は、土壌環境基準である0.4%未満を満足しなければならない。従来スラグの流動性確保のために使用していた蛍石の使用を制限し、蛍石以外の原料から不可避的に混入する許容量である0.4%未満とする。
(F): Less than 0.4% When steelmaking slag is used as a component of a soil solidifying agent, the F content must satisfy the soil environment standard of less than 0.4%. Limit the use of fluorite that has been used to secure the fluidity of slag in the past, and make it less than 0.4%, which is the allowable amount inevitably mixed from raw materials other than fluorite.

(CaO):35〜65%
CaOは、脱硫反応に必須の成分であり、溶鋼を十分に脱硫するには35%以上が必要である。65%を超えると、原料から発生するSiOおよび還元剤による脱酸反応生成物として発生するSiOに対するCaOの比、すなわち塩基度が高くなり、製鋼スラグの流動性を低下させる。したがって、CaOを35〜65%とする。
(CaO): 35 to 65%
CaO is an essential component for the desulfurization reaction, and 35% or more is necessary to sufficiently desulfurize the molten steel. When it exceeds 65%, the ratio of CaO to SiO 2 generated from the raw material and SiO 2 generated as a deoxidation reaction product by the reducing agent, that is, the basicity increases, and the fluidity of the steelmaking slag is lowered. Therefore, CaO is 35 to 65%.

(SiO):20〜55%
SiOは、原料から発生し、また還元剤による脱酸反応生成物として発生する。20%未満では、塩基度を高くして製鋼スラグの流動性を低下させる。逆に、55%を超えると、製鋼スラグの流動性を確保することができるけれども、塩基度が低下して十分な脱硫反応が得られない。したがって、SiOを20〜55%とする。
(SiO 2 ): 20 to 55%
SiO 2 is generated from the raw material and also generated as a deoxidation reaction product by a reducing agent. If it is less than 20%, the basicity is increased to lower the fluidity of the steelmaking slag. On the contrary, if it exceeds 55%, the fluidity of the steelmaking slag can be ensured, but the basicity is lowered and a sufficient desulfurization reaction cannot be obtained. Therefore, SiO2 is 20 to 55%.

(Al):4〜9%
Alは、耐火レンガや原料からの混入が避けられない成分である。しかし、Alは、スラグの流動性を確保するために従来使用していた蛍石の役割を補う成分として必要なものであり、その含有量が低過ぎても高過ぎても、スラグの融点が上昇し、スラグの流動性の確保が困難になる。したがって、Alを4〜9%とする。
(Al 2 O 3 ): 4 to 9%
Al 2 O 3 is a component that is unavoidably mixed from refractory bricks and raw materials. However, Al 2 O 3 is necessary as a component that supplements the role of fluorite that has been used in the past in order to ensure the fluidity of slag, and whether the content is too low or too high, The melting point of the slag rises, making it difficult to ensure the fluidity of the slag. Therefore, the the Al 2 O 3 4~9%.

Fの溶出量:0.8mg/L未満および6価Crの溶出量:0.05mg/L未満
製鋼スラグは、土壌の固化剤の成分として使用されるので、固化処理後の土壌に含まれて土壌環境基準を満たさなければならない。土壌環境基準の溶出元素の基準を満たすには、それぞれFの溶出量<0.8mg/L、6価Crの溶出量<0.05mg/Lであることを必要とする。
Elution amount of F: less than 0.8 mg / L and elution amount of hexavalent Cr: less than 0.05 mg / L Steelmaking slag is used as a component of soil solidifying agent, so it is contained in the soil after solidification treatment. Soil environmental standards must be met. In order to satisfy the elution element standard of the soil environment standard, it is necessary that the elution amount of F <0.8 mg / L and the elution amount of hexavalent Cr <0.05 mg / L, respectively.

粒度:1700〜4000ブレーン
ここで、ブレーンとは、日本工業規格(JIS)R5201に規定される比表面積試験により求められる粉末度のことであり、その単位は、[cm/g]である。粒度が1700未満であると、製鋼スラグの粒子が粗く、土壌粒子の表面積に対する製鋼スラグ粒子の表面積が不足するので、土壌の固化反応を十分に発現することができない。粒度のブレーン値の上限を限定する理由は特にない。しかし、製鋼スラグの粒度を極めて微粉にするには、長時間を必要とするので、工業的な生産性を考慮すると上限を4000程度とするのが妥当である。したがって、粒度を1700〜4000ブレーンとする。
Particle size: 1700-4000 Blaine Here, the brain is a fineness determined by a specific surface area test defined in Japanese Industrial Standard (JIS) R5201, and its unit is [cm 2 / g]. If the particle size is less than 1700, the steelmaking slag particles are coarse and the surface area of the steelmaking slag particles relative to the surface area of the soil particles is insufficient, so that the solidification reaction of the soil cannot be sufficiently expressed. There is no particular reason for limiting the upper limit of the grain size brane value. However, since it takes a long time to make the particle size of the steelmaking slag extremely fine, it is reasonable to set the upper limit to about 4000 in view of industrial productivity. Therefore, the grain size is 1700-4000 brain.

固化促進剤は、半水石膏および高分子凝集剤のうち少なくともいずれか一方を含む。固化剤に含まれる製鋼スラグは、その自硬性によって土壌を固化改良し、土壌の長期的な強度を発現する。しかし、製鋼スラグが土壌を固化する反応は遅効性であるため、製鋼スラグで処理された土壌が十分な強度を発現するには長時間を要する。一方、固化促進剤は、土壌を固化することに速効性があり、初期強度を発現することができる。したがって、固化促進剤は、土壌の固化処理作業中に軟弱な土壌に強度を付与することができるので、土壌の取り扱いを容易にして作業性を向上することができる。   The solidification accelerator contains at least one of hemihydrate gypsum and polymer flocculant. Steelmaking slag contained in the solidifying agent solidifies and improves the soil due to its self-hardness, and develops long-term strength of the soil. However, since the reaction of steelmaking slag solidifying the soil is slow acting, it takes a long time for the soil treated with steelmaking slag to exhibit sufficient strength. On the other hand, the solidification accelerator has a rapid effect on solidifying the soil and can exhibit initial strength. Therefore, since the solidification promoter can give strength to soft soil during the solidification processing of the soil, handling of the soil can be facilitated and workability can be improved.

半水石膏は、ほぼ中性であり固化剤に含有させても高アルカリ化することがない。ここで、ほぼ中性とは、pHが5.0〜9.0の範囲にあることをいう。半水石膏は、土壌中の水分と反応して比較的短時間の間に硬化し、軟弱な土壌に初期強度を発現させる。高分子凝集剤としては、たとえばアクリル塩化ポリマーや天然系水溶性高分子カルシウム塩などを用いることができる。これらの高分子凝集剤は、ほぼ中性であり固化剤に含有させても高アルカリ化することがなく、土壌中の水分と反応して比較的短時間の間に硬化し、軟弱な土壌に初期強度を発現させる。   Hemihydrate gypsum is almost neutral and does not become highly alkaline even if it is contained in a solidifying agent. Here, “substantially neutral” means that the pH is in the range of 5.0 to 9.0. Hemihydrate gypsum reacts with moisture in the soil and hardens in a relatively short period of time, and develops initial strength in soft soil. As the polymer flocculant, for example, an acryl chloride polymer or a natural water-soluble polymer calcium salt can be used. These polymer flocculants are almost neutral and do not become highly alkaline even when contained in a solidifying agent. They react with moisture in the soil and harden in a relatively short period of time. Develop initial strength.

以下、固化剤中の半水石膏および高分子凝集剤のうちのいずれか一方、または両方の含有比率の範囲限定理由について説明する。固化促進剤が半水石膏である場合、製鋼スラグと半水石膏とを混合して得られる混合物中に占める半水石膏の含有比率は、20〜50%である。20%未満であると、土壌の固化処理時の初期強度が十分でなく、作業性の向上効果を十分に得ることができない。逆に50%を超えると、土壌の固化処理時の固化が急速に進み初期強度が高くなりすぎるので、かえって作業性が低下する。   Hereinafter, the reason for limiting the range of the content ratio of either one or both of the hemihydrate gypsum and the polymer flocculant in the solidifying agent will be described. When the solidification accelerator is hemihydrate gypsum, the content ratio of hemihydrate gypsum in the mixture obtained by mixing steelmaking slag and hemihydrate gypsum is 20 to 50%. If it is less than 20%, the initial strength during the solidification treatment of the soil is not sufficient, and the workability improvement effect cannot be sufficiently obtained. On the other hand, if it exceeds 50%, the solidification during the solidification treatment of the soil proceeds rapidly and the initial strength becomes too high, so the workability is rather lowered.

固化促進剤が高分子凝集剤である場合、製鋼スラグと高分子凝集剤とを混合して得られる混合物中に占める高分子凝集剤の含有比率は、2〜10%である。2%未満であると、土壌の固化処理時の初期強度が十分でなく、作業性の向上効果を十分に得ることができない。逆に10%を超えると、土壌の固化処理時の土壌の固化処理時の固化が急速に進み初期強度が高くなりすぎるので、かえって作業性が低下する。また、コストも大幅にアップする。   When the solidification accelerator is a polymer flocculant, the content ratio of the polymer flocculant in the mixture obtained by mixing the steelmaking slag and the polymer flocculant is 2 to 10%. If it is less than 2%, the initial strength at the time of soil solidification is not sufficient, and the workability improvement effect cannot be sufficiently obtained. On the other hand, if it exceeds 10%, the solidification at the time of the solidification treatment of the soil rapidly proceeds and the initial strength becomes too high, so that the workability is deteriorated. In addition, the cost will increase significantly.

固化促進剤が半水石膏および高分子凝集剤である場合、製鋼スラグと半水石膏および高分子凝集剤とを混合して得られる混合物中に占める半水石膏および高分子凝集剤の含有比率は、半水石膏が10〜50%、高分子凝集剤が2〜10%である。半水石膏および高分子凝集剤それぞれの範囲の限定理由は、単独で含有される場合と同じである。しかし、複合で含有される場合、半水石膏と高分子凝集剤とを加算した含有比率は、20〜50%であることがより好ましい。   When the solidification accelerator is hemihydrate gypsum and polymer flocculant, the content ratio of hemihydrate gypsum and polymer flocculant in the mixture obtained by mixing steelmaking slag, hemihydrate gypsum and polymer flocculant is The hemihydrate gypsum is 10 to 50%, and the polymer flocculant is 2 to 10%. The reasons for limiting the ranges of the hemihydrate gypsum and the polymer flocculant are the same as when they are contained alone. However, when it contains by composite, it is more preferable that the content rate which added hemihydrate gypsum and the polymer flocculent is 20 to 50%.

図1は、固化剤を製造する工程を簡略化して示す。固化剤を製造する工程は、材料となる製鋼スラグを生成する製鋼工程1と、製鋼スラグの冷却工程2と、生成された製鋼スラグから地金を回収する選鉱工程3と、地金回収後の塊状の製鋼スラグを微粉砕し、固化促進剤と混合して固化剤を製造する固化剤製造工程4とを含む。   FIG. 1 shows a simplified process for producing a solidifying agent. The steps for producing the solidifying agent include steelmaking step 1 for producing steelmaking slag as a material, cooling step 2 for steelmaking slag, beneficiation step 3 for collecting metal from the generated steelmaking slag, It includes a solidifying agent production step 4 in which massive steelmaking slag is finely pulverized and mixed with a solidification accelerator to produce a solidifying agent.

製鋼スラグとしては、ステンレス鋼を溶製する製鋼工程1で発生するスラグが好適に用いられる。ステンレス鋼溶製時に得られる製鋼スラグには、電気炉で溶解されるステンレス溶鋼を脱硫処理する工程で生成されるスラグ、および脱硫処理後のステンレス溶鋼を真空脱ガス処理などの二次精錬する工程で生成されるスラグがある。   As steelmaking slag, the slag generated in the steelmaking process 1 which melts stainless steel is used suitably. Steelmaking slag obtained when melting stainless steel includes slag produced in the process of desulfurizing stainless steel melted in an electric furnace, and secondary refining of the molten stainless steel after desulfurization, such as vacuum degassing There is a slag generated in

原料の配合比およびスラグと溶鋼との間の元素分配比についての経験則に基づき、溶製する鋼種ごとにスラグ原料の種類と配合量とを調整して、製鋼スラグの塩基度および組成を前述の限定範囲とすることができる。製鋼スラグ中の(F)含有量を0.4%未満とすることによって、Fの溶出量<0.8mg/Lを実現することができる。塩基度を低く抑えてスラグの流動性を確保することによって、蛍石の使用を制限し製鋼スラグ中の(F)含有量を0.4%未満に低減することができる。なお、塩基度を低くすると脱硫反応が弱まるけれども、溶鋼とスラグとを効果的に撹拌し、溶鋼とスラグとの接触頻度および接触界面積を増大させて脱硫反応を促進することにより、低塩基度での十分な脱硫を実現することができる。   Based on empirical rules regarding the mixing ratio of raw materials and the element distribution ratio between slag and molten steel, the basicity and composition of steelmaking slag are described above by adjusting the type and mixing amount of the slag raw material for each steel type to be melted. It can be made into the limited range. By making the (F) content in the steelmaking slag less than 0.4%, it is possible to realize an elution amount of F <0.8 mg / L. By keeping the basicity low and ensuring the fluidity of the slag, the use of fluorite can be restricted, and the (F) content in the steelmaking slag can be reduced to less than 0.4%. Although the desulfurization reaction is weakened when the basicity is lowered, the molten steel and slag are effectively stirred, and the desulfurization reaction is promoted by increasing the contact frequency and contact interface area between the molten steel and slag. It is possible to achieve sufficient desulfurization in

6価Crの溶出量<0.05mg/Lを、次のようにして実現することができる。製鋼工程1で脱硫処理後にスラグに還元処理を施す。還元処理によりスラグ中の6価Crが3価Crに還元され、またCr酸化物そのものが還元されて金属Crとなり溶鋼中へ移行する。また、電気炉や二次精錬炉から製鋼スラグを取り出して薬剤により還元処理をしても良い。このような還元処理により、製鋼スラグ中の6価Crを低減し、6価Crの溶出量を0.05mg/L未満にすることができる。還元処理が施された後の製鋼スラグは、電気炉や二次精錬炉からノロポットと呼ばれる耐熱容器へと取り出されて冷却工程2で冷却される。冷却後、(F)<0.4%を満足する製鋼スラグは、選鉱工程3へと送られる。   The elution amount of hexavalent Cr <0.05 mg / L can be realized as follows. After the desulfurization process in the steelmaking process 1, the slag is subjected to a reduction process. The hexavalent Cr in the slag is reduced to trivalent Cr by the reduction treatment, and the Cr oxide itself is reduced to become metal Cr and moves into the molten steel. Moreover, steelmaking slag may be taken out from an electric furnace or a secondary smelting furnace and subjected to a reduction treatment with a chemical. By such reduction treatment, hexavalent Cr in the steelmaking slag can be reduced, and the elution amount of hexavalent Cr can be made less than 0.05 mg / L. The steelmaking slag after the reduction treatment is taken out from the electric furnace or the secondary smelting furnace into a heat-resistant container called a noropot and cooled in the cooling step 2. After cooling, the steelmaking slag satisfying (F) <0.4% is sent to the beneficiation step 3.

図2は、選鉱工程3内での地金と製鋼スラグとを分別する処理を示す。製鋼スラグには、有用な金属成分が比較的多く含有される。そこで、選鉱工程3では、溶製の副原料として再使用するために製鋼スラグ中に含まれる金属成分である地金を回収する。製鋼スラグは、ロッドミル破砕工程31で、おおまかな大きさに破砕される。破砕された製鋼スラグは、篩い分級工程32で所定の大きさ以下のものに選り分けられて、湿式の地金回収工程に送られる。なお、篩い分級工程32で篩いを通過しなかった製鋼スラグは、再びロッドミル破砕工程31へ戻される。分級された製鋼スラグは、比重選鉱工程33および磁力選鉱工程34で地金5のみが選鉱されて回収される。地金5が選鉱された後の製鋼スラグは、シックナー工程35で、パウダー状の製鋼スラグ6と塊状の製鋼スラグとに分離される。塊状製鋼スラグは、さらにエーキンス分級工程36で、おおよそ5mm程度の塊状製鋼スラグ7に分級される。シックナーで分離されたパウダー状製鋼スラグ6を固化剤の材料として用いることができる。しかし、選鉱工程3で既にパウダー状にまで破砕されている製鋼スラグ6は、製鋼スラグの中でも軟質であることが多く、また湿式処理により、塊状スラグに比べて水分により反応がある程度既に進んでいる。したがって、固化改良後の土壌に十分な長期的強度を発現させるには、塊状製鋼スラグ7を固化剤の材料にする方が好ましい。   FIG. 2 shows a process of separating the bullion and the steelmaking slag in the beneficiation process 3. Steelmaking slag contains a relatively large amount of useful metal components. Then, in the beneficiation process 3, in order to reuse as a molten auxiliary material, the metal which is a metal component contained in the steelmaking slag is recovered. The steelmaking slag is crushed to a rough size in the rod mill crushing step 31. The crushed steelmaking slag is sorted into those having a predetermined size or less in the sieving classification process 32, and sent to a wet bullion recovery process. The steelmaking slag that has not passed through the sieve in the sieve classification process 32 is returned to the rod mill crushing process 31 again. The classified steelmaking slag is collected by collecting only the metal 5 in the specific gravity separation process 33 and the magnetic separation process 34. The steelmaking slag from which the metal 5 has been beneficiated is separated into a powdery steelmaking slag 6 and a massive steelmaking slag in a thickener process 35. The massive steelmaking slag is further classified into massive steelmaking slag 7 of about 5 mm in the Akins classification step 36. Powdered steel slag 6 separated by a thickener can be used as a material for the solidifying agent. However, the steelmaking slag 6 that has already been crushed to a powder form in the beneficiation process 3 is often soft among the steelmaking slags, and the reaction has already progressed to some extent due to moisture compared to the bulk slag by wet processing. . Therefore, in order to develop sufficient long-term strength in the soil after the solidification improvement, it is preferable to use the massive steelmaking slag 7 as a material for the solidifying agent.

図1に戻って、固化剤製造工程4では、まずローラーミル粉砕工程41で塊状製鋼スラグ7を、粒度が1700〜4000ブレーンの微粉になるように粉砕する。ローラーミル粉砕工程41での粒度の調整は、経験則で得られるローラーミルの押圧力と粉砕スラグの粒度との関係に基づき、粒度が1700〜4000ブレーンの範囲になるように粉砕条件を調整する。次に、ローラーミルで粉砕された製鋼スラグにガス気流を吹き付け、ガス気流で吹き飛ばされた微粉状製鋼スラグ8をセパレーターで分級して捕集機42で捕集する。分級に際し、圧力およびセパレーター回転数を調整して1700〜4000ブレーンの範囲内にある微粉状製鋼スラグ8のみを捕集機42へ導くようにする。微粉状製鋼スラグ8と、半水石膏および高分子凝集剤のうち少なくともいずれか一方を含む固化促進剤9とを、前述した限定範囲の含有比率になるように準備し、微粉状製鋼スラグ8と固化促進剤9とを混合機33で混合して固化剤10を製造する。   Returning to FIG. 1, in the solidifying agent production process 4, the massive steelmaking slag 7 is first pulverized in a roller mill pulverization process 41 so as to become a fine powder having a particle size of 1700 to 4000 branes. The adjustment of the particle size in the roller mill pulverization step 41 is based on the relationship between the pressing force of the roller mill obtained by empirical rules and the particle size of the pulverized slag, and the pulverization conditions are adjusted so that the particle size is in the range of 1700 to 4000 branes. . Next, a gas stream is blown onto the steelmaking slag crushed by the roller mill, and the finely powdered steelmaking slag 8 blown off by the gas stream is classified by the separator and collected by the collector 42. At the time of classification, the pressure and the rotational speed of the separator are adjusted so that only the fine steelmaking slag 8 within the range of 1700 to 4000 branes is guided to the collector 42. A pulverized steelmaking slag 8 and a solidification accelerator 9 containing at least one of hemihydrate gypsum and a polymer flocculant are prepared so as to have a content ratio in the limited range described above. The solidifying agent 9 is produced by mixing the solidifying accelerator 9 with the mixer 33.

(実施例)
以下、本発明の実施例について説明する。本実施例では、軟弱な土壌を固化剤で固化処理し、処理後の土壌について特性を評価した。供試材とした実施例の固化剤には、前述の図1に示す工程で製造したものを使用した。実施例の固化剤の材料として使用した製鋼スラグの塩基度、組成および溶出量を表1に示す。この製鋼スラグの粒度は、1800〜3850ブレーンであった。
(Example)
Examples of the present invention will be described below. In this example, soft soil was solidified with a solidifying agent, and the properties of the treated soil were evaluated. As the solidifying agent of the example used as a test material, the one produced in the process shown in FIG. 1 was used. Table 1 shows the basicity, composition and elution amount of the steelmaking slag used as the material for the solidifying agent of the examples. The particle size of this steelmaking slag was 1800-3850 branes.

Figure 2010120987
Figure 2010120987

表1に示す製鋼スラグと、固化促進剤として半水石膏および高分子凝集剤のうち少なくともいずれか一方とを混合機43で混合して4種類の固化剤を準備した。これらの固化剤を実施例1、実施例2、実施例3および実施例4と呼ぶ。実施例1の固化剤は、固化促進剤が半水石膏である。実施例1で製鋼スラグと半水石膏とを混合して得られる混合物中に占める半水石膏の含有比率は、33.3%である。実施例2の固化剤は、固化促進剤が高分子凝集剤である。実施例2の高分子凝集剤にはアクリル塩化ポリマーを使用した。実施例2で製鋼スラグと高分子凝集剤とを混合して得られる混合物中に占める高分子凝集剤の含有比率は、2.0%である。実施例3の固化剤は、固化促進剤が高分子凝集剤である。実施例3の高分子凝集剤には天然系水溶性高分子カルシウム塩を使用した。実施例3で製鋼スラグと高分子凝集剤とを混合して得られる混合物中に占める高分子凝集剤の含有比率は、4.8%である。実施例4の固化剤は、固化促進剤が半水石膏および高分子凝集剤である。実施例4の高分子凝集剤には天然系水溶性高分子カルシウム塩を使用した。実施例4で製鋼スラグと固化促進剤とを混合して得られる混合物中に占める半水石膏の含有比率は、48.1%であり、高分子凝集剤の含有比率は、3.8%である。比較例の固化剤として、市販のセメント系固化剤であるポルトランドセメントを用いた。固化処理の対象である土壌1mに対して使用した実施例および比較例の固化剤の配合量を表2に示す。 Steelmaking slag shown in Table 1 and at least one of hemihydrate gypsum and a polymer flocculant as a solidification accelerator were mixed in a mixer 43 to prepare four types of solidifying agents. These solidifying agents are referred to as Example 1, Example 2, Example 3, and Example 4. In the solidifying agent of Example 1, the solidification accelerator is hemihydrate gypsum. The content ratio of hemihydrate gypsum in the mixture obtained by mixing steelmaking slag and hemihydrate gypsum in Example 1 is 33.3%. In the solidifying agent of Example 2, the solidification accelerator is a polymer flocculant. An acrylic chloride polymer was used as the polymer flocculant of Example 2. The content ratio of the polymer flocculant in the mixture obtained by mixing the steelmaking slag and the polymer flocculant in Example 2 is 2.0%. In the solidifying agent of Example 3, the solidification accelerator is a polymer flocculant. As the polymer flocculant of Example 3, a natural water-soluble polymer calcium salt was used. The content ratio of the polymer flocculant in the mixture obtained by mixing the steelmaking slag and the polymer flocculant in Example 3 is 4.8%. In the solidifying agent of Example 4, the solidification accelerator is hemihydrate gypsum and a polymer flocculant. As the polymer flocculant of Example 4, a natural water-soluble polymer calcium salt was used. The content ratio of hemihydrate gypsum in the mixture obtained by mixing the steelmaking slag and the solidification accelerator in Example 4 is 48.1%, and the content ratio of the polymer flocculant is 3.8%. is there. As a solidifying agent for the comparative example, Portland cement, which is a commercially available cement-based solidifying agent, was used. Table 2 shows the blending amounts of the solidifying agents of Examples and Comparative Examples used for 1 m 3 of the soil to be solidified.

Figure 2010120987
Figure 2010120987

実施例1ないし実施例3の固化剤および比較例の固化剤を用いて軟弱な建設土壌の固化処理を行った。また、実施例4の固化剤を用いて浚渫土の固化処理を行った。固化処理後の土壌について、強度、pHおよび各種元素の溶出量を測定した。   A soft construction soil was solidified using the solidifying agent of Examples 1 to 3 and the solidifying agent of the comparative example. In addition, the clay was solidified using the solidifying agent of Example 4. About the soil after a solidification process, strength, pH, and the elution amount of various elements were measured.

以下、評価指標である強度、pHおよび溶出量の測定方法について説明する。強度については、JIS−A1228に従ってコーン指数を測定した。コーン指数は、その値が大きいほど土壌の強度が高いことを表す。初期強度として、固化処理後1日〜3日経過時のコーン指数を測定して評価した。また、固化処理後7日経過する時点までのコーン指数を測定して、強度の経時変化を求めるとともに、製鋼スラグによる長期的強度発現の状態を評価した。初期強度と作業性との関係は、予め表2に示す以外の種々の固化剤についても、固化処理後1日〜3日経過時点で盛土作業を行い、体感によって作業性を評価し、そのときのコーン指数を測定して求めた。初期強度としては、400〜2000kN/mである場合、土壌を取り扱い易く作業性が良好であった。また、長期的強度については、800kN/m以上であれば、建設土などとして十分な恒久的強度であると評価した。 Hereinafter, methods for measuring strength, pH, and elution amount, which are evaluation indexes, will be described. Regarding the strength, the cone index was measured in accordance with JIS-A1228. The corn index indicates that the larger the value, the higher the strength of the soil. The initial strength was evaluated by measuring the corn index after 1 to 3 days from the solidification treatment. In addition, the cone index was measured until 7 days after the solidification treatment to determine the change in strength over time, and the state of long-term strength development due to steelmaking slag was evaluated. Regarding the relationship between initial strength and workability, for various solidifying agents other than those shown in Table 2, the embedding work was performed after 1 to 3 days after the solidification treatment, and the workability was evaluated based on the experience. The corn index was measured and determined. When the initial strength was 400 to 2000 kN / m 2 , the soil was easy to handle and the workability was good. Moreover, about long-term intensity | strength, if it was 800 kN / m < 2 > or more, it evaluated that it was permanent strength enough as construction soil.

土壌のpHについては、地盤工学会基準(JGS)T211に規定される「土懸濁液のpH試験方法」に従って測定した。pHは、5.0〜9.0の範囲内にある場合、ほぼ中性であると評価した。なお、pHは、水質汚濁防止法に定められる「海域以外の公共用水域に排水されるもの」についての排水基準である5.8〜8.6を満足することが一層好ましい。   About the pH of soil, it measured according to "the pH test method of a soil suspension" prescribed | regulated to Geotechnical Society standard (JGS) T211. When the pH was in the range of 5.0 to 9.0, it was evaluated as being almost neutral. In addition, it is more preferable that the pH satisfies 5.8 to 8.6, which is a drainage standard for “what is drained into public water areas other than sea areas” defined in the Water Pollution Control Law.

溶出量については、環境庁告示第46号「土壌の汚染に係る環境基準について」に従って測定した。溶出量を測定した元素は、カドミウム(Cd)、鉛(Pb)、6価Cr、ヒ素(As)、総水銀(t.Hg)、セレン(Se)、フッ素(F)およびホウ素(F)である。これらの元素の溶出量が環境庁告示第46号に示される基準値以下である場合、固化剤を使用する上で問題なしと評価した。   The amount of elution was measured in accordance with Environmental Agency Notification No. 46 “Environmental Standards Concerning Soil Contamination”. The elements whose elution amount was measured were cadmium (Cd), lead (Pb), hexavalent Cr, arsenic (As), total mercury (t.Hg), selenium (Se), fluorine (F) and boron (F). is there. When the elution amount of these elements was below the standard value shown in Environment Agency Notification No. 46, it was evaluated that there was no problem in using the solidifying agent.

土壌のコーン指数を測定した結果を表3に示す。表3中で空白の欄は未測定であることを表し、横棒(━)で示す欄は強度が高すぎて測定不能であったことを表す。固化処理後1日〜3日経過時の初期強度についてみると、実施例1〜4では、いずれも上記作業性の良好な強度の範囲を満足する。固化処理後の日数経過とともに強度は増大し、7日経過時の強度についてみると、実施例1ないし実施例4のいずれも800kN/mを超える強度であり、十分な恒久的土壌強度が得られた。初期強度は、前述の限定範囲の含有比率になるように調整した固化促進剤により発現されたものであり、7日経過時の長期的強度は、固化反応を発揮するのに時間を要するが固化強度に優れる製鋼スラグにより発現されたものである。 The results of measuring the soil corn index are shown in Table 3. In Table 3, a blank column represents that the measurement was not performed, and a column indicated by a horizontal bar (-) represents that the measurement was impossible because the strength was too high. As for the initial strength at the time of 1 to 3 days after the solidification treatment, in Examples 1 to 4, all satisfy the above strength range of good workability. The strength increases with the passage of days after the solidification treatment, and when looking at the strength after 7 days, all of Examples 1 to 4 are over 800 kN / m 2 , and sufficient permanent soil strength is obtained. It was. The initial strength is expressed by the solidification accelerator adjusted so that the content ratio is within the above-mentioned limited range. The long-term strength after 7 days is solidified although it takes time to exhibit the solidification reaction. It is expressed by steelmaking slag with excellent strength.

Figure 2010120987
Figure 2010120987

pHの測定結果を表4に示す。表4中で、空白の欄は未測定であることを表す。実施例1ないし実施例4のpHは、7日経過時点で最小8.17、最大8.31であり、中性と評価する5.0〜9.0の範囲を満足し、さらに水質汚濁防止法の排水基準である5.8〜8.6の範囲をも満足する。ただし、実施例1および実施例2では、固化処理後1日経過時のpHが9.0を超え、ややアルカリであった。しかし、実施例1は、2日経過した時点でpH9.0以下を満足し、以降日数経過とともにpHはさらに減少し、7日経過時には前述のように中性と評価する範囲を十分に満足する値になる。実施例2については、3日経過後および7日経過後についての測定結果のみであるが、3日経過時および7日経過時のpH測定値が実施例1の測定値と同水準であることから、実施例1と同様なpH推移挙動を示すと考えられる。したがって、実施例2も固化処理後数日経過すれば、実施例1と同様pH9.0程度の中性になるものと思われる。一方、比較例のセメント系固化剤では、固化処理後1日経過時では、pH11.9の高アルカリであった。セメント系固化剤は、その後日数経過してもpHはほとんど低下せず、7日経過時点でもpH11.2と高アルカリであった。   The measurement results of pH are shown in Table 4. In Table 4, a blank column indicates that no measurement has been performed. The pH of Example 1 to Example 4 is a minimum of 8.17 and a maximum of 8.31 when 7 days have elapsed, satisfies the range of 5.0 to 9.0 evaluated as neutral, and further prevents water pollution. It also satisfies the range of 5.8 to 8.6, which is the wastewater standard of the law. However, in Example 1 and Example 2, the pH at the end of 1 day after the solidification treatment exceeded 9.0 and was slightly alkaline. However, Example 1 satisfied pH 9.0 or less when 2 days passed, and then further decreased with the passage of days, and fully satisfied the range evaluated as neutral when 7 days passed. Value. For Example 2, only the measurement results after the lapse of 3 days and after the lapse of 7 days, but the pH measurement values after the lapse of 3 days and 7 days have the same level as the measurement values of Example 1, It is considered that the same pH transition behavior as in Example 1 is exhibited. Therefore, it is considered that Example 2 becomes neutral at a pH of about 9.0 as in Example 1 when several days have passed after the solidification treatment. On the other hand, the cement-based solidifying agent of the comparative example was a high alkali having a pH of 11.9 after 1 day from the solidification treatment. The cement-based solidifying agent hardly decreased in pH even after the passage of days, and was highly alkaline at pH 11.2 even after 7 days.

Figure 2010120987
Figure 2010120987

溶出量の測定結果を表5に示す。表5中で、NDで示す欄は、各元素についての溶出量が検出限界値以下であったことを示す。実施例1および実施例2では、FおよびBの溶出が認められたけれども、いずれも基準値以下の検出量であり問題がない。実施例1および実施例2のFおよびB以外の元素については検出限界値以下であり、また実施例3および実施例4については、すべての元素が検出限界値以下であった。したがって、溶出量の観点から、実施例1ないし実施例4を固化剤として使用することに全く問題がない。なお、比較例のセメント系固化剤でも重金属等の溶出は基準値以下であった。   Table 5 shows the measurement results of the elution amount. In Table 5, the column indicated by ND indicates that the elution amount for each element was not more than the detection limit value. In Example 1 and Example 2, although elution of F and B was observed, both were detected amounts below the reference value and there was no problem. In Examples 1 and 2, elements other than F and B were below the detection limit value, and in Examples 3 and 4, all the elements were below the detection limit value. Therefore, from the viewpoint of the elution amount, there is no problem in using Examples 1 to 4 as solidifying agents. In the comparative cementitious solidifying agent, elution of heavy metals and the like was below the standard value.

Figure 2010120987
Figure 2010120987

固化剤を製造する工程を簡略化して示す図である。It is a figure which simplifies and shows the process of manufacturing a solidifying agent. 選鉱工程3内での地金と製鋼スラグとを分別する処理を示す図である。It is a figure which shows the process which separates the ingot and the steelmaking slag in the beneficiation process 3.

符号の説明Explanation of symbols

1 製鋼工程
2 冷却工程
3 選鉱工程
4 固化剤製造工程
7 塊状製鋼スラグ
8 微粉状製鋼スラグ
9 固化促進剤
10 固化剤
DESCRIPTION OF SYMBOLS 1 Steelmaking process 2 Cooling process 3 Beneficiation process 4 Solidification agent manufacturing process 7 Lump steelmaking slag 8 Fine powder steelmaking slag 9 Solidification promoter 10 Solidification agent

Claims (6)

土壌を固化改良する固化剤において、
製鋼スラグと、土壌の固化を促進する固化促進剤と、を含み、
製鋼スラグは、
塩基度(CaO/SiO)が、0.8〜1.6、
組成が、質量%で、(F):0.4%未満、(CaO):35〜65%、(SiO):20〜55%、(Al):4〜9%、
Fおよび6価Crの水に対する溶出量が、それぞれF:0.8mg/L未満、6価Cr:0.05mg/L未満、
粒度が、1700〜4000ブレーン、であることを特徴とする固化剤。
In the solidifying agent that solidifies and improves the soil,
Steelmaking slag and a solidification accelerator that promotes solidification of soil,
Steelmaking slag
Basicity (CaO / SiO 2 ) of 0.8 to 1.6,
Composition, in mass%, (F): less than 0.4%, (CaO): 35~65 %, (SiO 2): 20~55%, (Al 2 O 3): 4~9%,
The elution amounts of F and hexavalent Cr in water are F: less than 0.8 mg / L, hexavalent Cr: less than 0.05 mg / L,
A solidifying agent characterized by having a particle size of 1700-4000 branes.
前記固化促進剤は、
半水石膏および高分子凝集剤のうち少なくともいずれか一方を含むことを特徴とする請求項1記載の固化剤。
The solidification accelerator is
The solidifying agent according to claim 1, comprising at least one of hemihydrate gypsum and a polymer flocculant.
前記固化促進剤は半水石膏であり、
前記製鋼スラグと半水石膏とを混合して得られる混合物中に占める半水石膏の含有比率は、20〜50質量%であることを特徴とする請求項2記載の固化剤。
The solidification accelerator is hemihydrate gypsum;
The solidifying agent according to claim 2, wherein the content ratio of hemihydrate gypsum in a mixture obtained by mixing the steelmaking slag and hemihydrate gypsum is 20 to 50% by mass.
前記固化促進剤は高分子凝集剤であり、
前記製鋼スラグと高分子凝集剤とを混合して得られる混合物中に占める高分子凝集剤の含有比率は、2〜10質量%であることを特徴とする請求項2記載の固化剤。
The solidification accelerator is a polymer flocculant;
The solidifying agent according to claim 2, wherein the content ratio of the polymer flocculant in the mixture obtained by mixing the steelmaking slag and the polymer flocculant is 2 to 10% by mass.
前記固化促進剤は半水石膏および高分子凝集剤であり、
前記製鋼スラグと半水石膏および高分子凝集剤とを混合して得られる混合物中に占める半水石膏および高分子凝集剤の含有比率は、半水石膏が10〜50質量%、高分子凝集剤が2〜10質量%であることを特徴とする請求項2記載の固化剤。
The solidification accelerator is hemihydrate gypsum and a polymer flocculant,
The content ratio of hemihydrate gypsum and polymer flocculant in the mixture obtained by mixing steelmaking slag, hemihydrate gypsum and polymer flocculant is 10-50 mass% of hemihydrate gypsum, polymer flocculant The solidifying agent according to claim 2, wherein the content is 2 to 10% by mass.
前記製鋼スラグは、
ステンレス鋼を溶製する製鋼工程で発生するスラグから地金を回収し、地金回収後の塊状のスラグを粉砕して得られる製鋼スラグであることを特徴とする請求項1〜5のいずれか1つに記載の固化剤。
The steelmaking slag is
6. The steelmaking slag obtained by recovering a base metal from a slag generated in a steelmaking process for melting stainless steel, and pulverizing the bulk slag after the recovery of the base metal. Solidifying agent as described in one.
JP2008293326A 2008-11-17 2008-11-17 Solidifying agent Expired - Fee Related JP5645297B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008293326A JP5645297B2 (en) 2008-11-17 2008-11-17 Solidifying agent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008293326A JP5645297B2 (en) 2008-11-17 2008-11-17 Solidifying agent

Publications (2)

Publication Number Publication Date
JP2010120987A true JP2010120987A (en) 2010-06-03
JP5645297B2 JP5645297B2 (en) 2014-12-24

Family

ID=42322606

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008293326A Expired - Fee Related JP5645297B2 (en) 2008-11-17 2008-11-17 Solidifying agent

Country Status (1)

Country Link
JP (1) JP5645297B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012211267A (en) * 2011-03-31 2012-11-01 Nisshin Steel Co Ltd Process for producing solidifying agent
JP2012211268A (en) * 2011-03-31 2012-11-01 Nisshin Steel Co Ltd Process for producing solidifying agent
JP2018065131A (en) * 2015-05-15 2018-04-26 Jfeスチール株式会社 Method for modifying dredge soil
JP2018090477A (en) * 2016-11-29 2018-06-14 Jfeスチール株式会社 Method for processing steel slag
CN110711762A (en) * 2019-10-23 2020-01-21 迁安威盛固废环保实业有限公司 Staged grinding method for steel slag-industrial byproduct gypsum composite powder

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63108093A (en) * 1986-10-23 1988-05-12 Nippon Jiryoku Senko Kk Solidifying material for waste or soft ground soil
JPH0243281A (en) * 1988-08-03 1990-02-13 Sumitomo Metal Ind Ltd Material for foundation conditioning
JP2002282894A (en) * 2001-03-27 2002-10-02 Asahi Organic Chem Ind Co Ltd Agent and method for solidifying sludge
JP2003239012A (en) * 2002-02-19 2003-08-27 Nippon Yakin Kogyo Co Ltd Steel making method by electric furnace
JP2008190015A (en) * 2007-02-07 2008-08-21 Nisshin Steel Co Ltd Method for producing molten stainless steel

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63108093A (en) * 1986-10-23 1988-05-12 Nippon Jiryoku Senko Kk Solidifying material for waste or soft ground soil
JPH0243281A (en) * 1988-08-03 1990-02-13 Sumitomo Metal Ind Ltd Material for foundation conditioning
JP2002282894A (en) * 2001-03-27 2002-10-02 Asahi Organic Chem Ind Co Ltd Agent and method for solidifying sludge
JP2003239012A (en) * 2002-02-19 2003-08-27 Nippon Yakin Kogyo Co Ltd Steel making method by electric furnace
JP2008190015A (en) * 2007-02-07 2008-08-21 Nisshin Steel Co Ltd Method for producing molten stainless steel

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012211267A (en) * 2011-03-31 2012-11-01 Nisshin Steel Co Ltd Process for producing solidifying agent
JP2012211268A (en) * 2011-03-31 2012-11-01 Nisshin Steel Co Ltd Process for producing solidifying agent
JP2018065131A (en) * 2015-05-15 2018-04-26 Jfeスチール株式会社 Method for modifying dredge soil
JP2020019017A (en) * 2015-05-15 2020-02-06 Jfeスチール株式会社 Method for modifying dredge soil
JP7133281B2 (en) 2015-05-15 2022-09-08 Jfeスチール株式会社 Dredged soil modification method
JP2018090477A (en) * 2016-11-29 2018-06-14 Jfeスチール株式会社 Method for processing steel slag
CN110711762A (en) * 2019-10-23 2020-01-21 迁安威盛固废环保实业有限公司 Staged grinding method for steel slag-industrial byproduct gypsum composite powder

Also Published As

Publication number Publication date
JP5645297B2 (en) 2014-12-24

Similar Documents

Publication Publication Date Title
US11685965B2 (en) Construction elements with slag from non-ferrous metal production
JP5645297B2 (en) Solidifying agent
KR20150106661A (en) Manufacturing method of Fe-Si from Fe-Ni slag
JP2005132721A (en) Method for manufacturing stabilizer for steelmaking slag containing fluorine
JP5756065B2 (en) Slag for roadbed material and method for producing slag for roadbed material
JP5824719B2 (en) Method for producing solidifying agent
JP2002053351A (en) Pollution-free stainless steel slag and method for manufacturing the same
JP6353264B2 (en) Cement clinker with improved fluidity
CN105219972A (en) A kind of method utilizing high-carbon content flyash to reclaim iron in slag
JP6413854B2 (en) Manufacturing method for civil engineering materials for land use
JP6442346B2 (en) Solidified material and method for producing the solidified material
JP4751181B2 (en) Sand-capping method
JP6719987B2 (en) Cement admixture, cement composition and hardened cement
JP6388021B2 (en) Roadbed material and manufacturing method thereof
JP2002201051A (en) Stabilizing treatment method of fluorine in the slag
Kurecki et al. Recycling Perspectives of Electric Arc Furnace Slag in the United States: A Review
JP6385818B2 (en) Cement additive and cement composition
JP3674365B2 (en) Method for stabilizing steelmaking slag containing fluorine
JP5824718B2 (en) Method for producing solidifying agent
JP5623329B2 (en) Cement clinker with improved fluidity
JP5998582B2 (en) Civil engineering materials processing method
JP4754318B2 (en) Soil improvement method
JP7216462B2 (en) Slag fine aggregate used for spraying mortar, spraying mortar using the same, and method for producing slag fine aggregate used for spraying mortar
JP4661732B2 (en) Stabilization technology for industrial waste containing fluorine
JP2007112647A (en) Hydraulic composition and hydrated solidified body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131002

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140311

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140602

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20140602

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140623

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20140623

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20140806

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141029

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141031

R150 Certificate of patent or registration of utility model

Ref document number: 5645297

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees