JP7133281B2 - Dredged soil modification method - Google Patents

Dredged soil modification method Download PDF

Info

Publication number
JP7133281B2
JP7133281B2 JP2019195262A JP2019195262A JP7133281B2 JP 7133281 B2 JP7133281 B2 JP 7133281B2 JP 2019195262 A JP2019195262 A JP 2019195262A JP 2019195262 A JP2019195262 A JP 2019195262A JP 7133281 B2 JP7133281 B2 JP 7133281B2
Authority
JP
Japan
Prior art keywords
dredged soil
steel slag
slag
iron
gypsum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019195262A
Other languages
Japanese (ja)
Other versions
JP2020019017A (en
Inventor
克則 ▲高▼橋
圭児 渡辺
秀樹 本田
多穂 谷敷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Publication of JP2020019017A publication Critical patent/JP2020019017A/en
Application granted granted Critical
Publication of JP7133281B2 publication Critical patent/JP7133281B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Treatment Of Sludge (AREA)
  • Soil Conditioners And Soil-Stabilizing Materials (AREA)

Description

本発明は、水域環境修復材(例えば、浅場や干潟の造成材)などに用いる浚渫土の改質方法に関する。 TECHNICAL FIELD The present invention relates to a method for modifying dredged soil used as a water environment restoration material (for example, a material for constructing shallow waters and tidal flats).

水質環境改善などを目的として、浅場や干潟の造成が行われている。従来、浅場や干潟の造成は、砕石を用いて沖合に土留め潜堤を設置した後、その岸側(陸側)に中詰材として浚渫土を設置し、その表層に天然砂を覆砂するような工法が採られている。
これに対して、特許文献1には、浚渫土砂と鉄鋼スラグとからなる非固結性の浅場・干潟造成材が開示されている。また、特許文献2~4には、鉄鋼スラグに含まれるCaO分を積極的に活用し、浚渫土に鉄鋼スラグを混合して強度改質を行う技術が示されている。この技術では、主に鉄鋼スラグのCaO分と浚渫土のSi、Al等とのポゾラン反応により、浚渫土の強度改質を行うものである。このように鉄鋼スラグを用いて軟弱浚渫土の強度改善を図ることは、今まで利用できなかった浚渫土を、鉄鋼スラグの元来の固有特性であるCaOと結びつけて活用できるため、社会的に有用性が極めて高い。
Shallows and tidal flats are being created for the purpose of improving the water quality environment. Conventionally, shallow waters and tidal flats are created by setting up a submerged earth retaining embankment offshore using crushed stone, then placing dredged soil as filling material on the bank side (land side), and covering the surface layer with natural sand. A construction method is adopted to do so.
On the other hand, Patent Document 1 discloses a non-caking material for constructing shallow areas and tidal flats, which is composed of dredged sand and steel slag. Further, Patent Documents 2 to 4 disclose techniques for positively utilizing CaO contained in steel slag and mixing steel slag with dredged soil to improve strength. In this technique, the strength of the dredged soil is modified mainly by the pozzolanic reaction between the CaO content of the iron and steel slag and the Si, Al, etc. of the dredged soil. In this way, using iron and steel slag to improve the strength of soft dredged soil can be used in combination with CaO, which is the original characteristic of iron and steel slag. Very useful.

特開2005-133309号公報JP-A-2005-133309 特開2009-121167号公報JP 2009-121167 A 特開2011-206625号公報JP 2011-206625 A 特開2011-208365号公報JP 2011-208365 A 特開2012-31618号公報Japanese Unexamined Patent Application Publication No. 2012-31618 特開平8-60152号公報JP-A-8-60152 特開平9-100470号公報JP-A-9-100470

鉄鋼スラグを混合した浚渫土を浅場・干潟造成材などのような水域環境修復材として用いる場合、鉄鋼スラグの混合による強度改質が十分でないと、設置した水域環境修復材が流出したり、構造的な安定性が確保できないなどの問題を生じる。しかし、実際の浚渫土の性質は地域や海域によってさまざまであり、鉄鋼スラグを混合することによる固化(強度発現)の度合いは、浚渫土によって大きく異なる。そのため、浚渫土に鉄鋼スラグを混合する方法を実際に適用する場合には、事前に配合テストを実施するか、その浚渫土の物理的特性に応じて適用するスラグを選定する必要がある(例えば、特許文献5)。 When dredged soil mixed with iron and steel slag is used as an aquatic environment restoration material such as shallow water and tidal flat construction materials, if the strength improvement by mixing iron and steel slag is not sufficient, the installed aquatic environment restoration material may flow out or cause structural damage. problems such as the inability to ensure stability. However, the properties of the actual dredged soil vary depending on the region and sea area, and the degree of solidification (development of strength) due to the mixing of iron and steel slag varies greatly depending on the dredged soil. Therefore, when actually applying the method of mixing iron and steel slag with dredged soil, it is necessary to conduct a mixing test in advance or select the slag to be applied according to the physical characteristics of the dredged soil (for example, , Patent Document 5).

また、基本的にはこれらの対応によって浚渫土の強度は発現するが、本発明者らは様々な浚渫土を対象に試験を行った結果、鉄鋼スラグを50体積%に近い割合まで混合しても強度がほとんど発現しない浚渫土が稀にではあるが存在することが判った。鉄鋼スラグを50体積%に近い割合まで混合すると浚渫土の割合が少なくなるため、浚渫土を有効利用するという本来の目的が達成できなくなる。また、この状態は鉄鋼スラグの粒どうしが接触して構造を保持できるレベルであるとも考えられ、鉄鋼スラグと浚渫土によるポゾラン反応が十分作用していないとみなされる。このような浚渫土に対しては、製鋼スラグ以外のセメントや石灰といった材料を添加した場合でも、強度発現性が劣ることが判った。このような浚渫土を固化するには有効な手法がなく、浚渫土は有効利用できずに廃棄するしかない状況であった。 In addition, basically, the strength of the dredged soil is expressed by these measures, but as a result of experiments conducted on various dredged soils, the present inventors have found that iron and steel slag is mixed up to a ratio close to 50% by volume. However, it was found that dredged soil with little strength exists, though rare. If iron and steel slag is mixed in a ratio close to 50% by volume, the ratio of dredged soil decreases, so the original purpose of effectively utilizing dredged soil cannot be achieved. In addition, it is considered that this state is a level where steel slag grains are in contact with each other and the structure can be maintained, and it is considered that the pozzolanic reaction between steel slag and dredged soil is not sufficiently acting. For such dredged soil, it was found that even when materials other than steelmaking slag such as cement and lime were added, the strength development was poor. There was no effective method for solidifying such dredged soil, and the dredged soil could not be effectively used and had to be discarded.

したがって本発明の目的は、以上のような従来技術の課題を解決し、鉄鋼スラグを混合して浚渫土の改質を行う方法において、事前に配合テストを実施したり、浚渫土の物理的特性に応じて鉄鋼スラグを選定したりすることなく、浚渫土を十分な強度を発現できる性状に改質することができ、特に、鉄鋼スラグを混合するだけでは強度が発現しない浚渫土についても、十分な強度を発現させることができる改質方法を提供することにある。 Therefore, the object of the present invention is to solve the problems of the prior art as described above, and to improve the quality of the dredged soil by mixing steel slag, in which a mixing test is performed in advance and the physical properties of the dredged soil are improved. It is possible to modify the dredged soil to a property that can develop sufficient strength without selecting steel slag according to To provide a modification method capable of developing a high strength.

本発明者らは、上記課題を解決するために検討を重ねた結果、鉄鋼スラグを混合するだけでは強度が発現しない浚渫土であっても、浚渫土の間隙水のSO濃度を一定レベル以上とした上で鉄鋼スラグを混合するか、或いは浚渫土に対して鉄鋼スラグとともに微量の石膏を添加することにより、施工に必要な流動性を確保しつつ、施工後に流出を生じない十分な強度を有する浚渫土に改質できることを見出した。 As a result of repeated studies to solve the above problems, the present inventors have found that even if the dredged soil does not develop strength only by mixing steel slag, the SO 4 concentration of the interstitial water of the dredged soil is increased to a certain level or more. After that, by mixing iron and steel slag or adding a small amount of gypsum together with iron and steel slag to the dredged soil, while securing the fluidity necessary for construction, sufficient strength that does not cause outflow after construction It was found that the dredged soil can be reformed.

本発明は、このような知見に基づきなされたもので、以下を要旨とするものである。
[1]鉄鋼スラグを混合して浚渫土の改質を行う方法において、浚渫土に対して、浚渫土の間隙水のSO濃度を1000mg/L以上とした上で鉄鋼スラグを混合することを特徴とする浚渫土の改質方法。
[2]鉄鋼スラグを混合して浚渫土の改質を行う方法において、浚渫土に対して、鉄鋼スラグとともに石膏を混合し、該石膏の混合材中での割合を0.5体積%以上とすることを特徴とする浚渫土の改質方法。
[3]上記[1]または[2]の改質方法において、浚渫土が、遊離CaO含有量が10質量%の鉄鋼スラグを20体積%混合しても7日後の一軸圧縮強度が30kN/mを超えない浚渫土であることを特徴とする浚渫土の改質方法。
The present invention was made based on such findings, and has the following gist.
[1] In the method of modifying the dredged soil by mixing iron and steel slag, the iron and steel slag is mixed with the dredged soil after the SO 4 concentration of the interstitial water of the dredged soil is 1000 mg / L or more. A dredged soil improvement method characterized by:
[2] In the method of modifying the dredged soil by mixing iron and steel slag, gypsum is mixed with iron and steel slag in the dredged soil, and the ratio of the gypsum in the mixed material is 0.5% by volume or more. A dredged soil reforming method characterized by:
[3] In the modification method of [1] or [2] above, even if the dredged soil is mixed with 20% by volume of steel slag with a free CaO content of 10% by mass, the unconfined compressive strength after 7 days is 30kN / m A dredged soil improvement method characterized in that the dredged soil does not exceed 2 .

[4]上記[1]~[3]のいずれかの改質方法において、浚渫土に鉄鋼スラグまたは鉄鋼スラグと石膏を混合した混合材のフロー値が8.5cm以上であることを特徴とする浚渫土の改質方法。
[5]上記[1]~[4]のいずれかの改質方法において、浚渫土が、有機炭素量が4質量%以上の浚渫土であることを特徴とする渫土の改質方法。
[6]上記[1]~[5]のいずれかの改質方法において、鉄鋼スラグは遊離CaOを0.5質量%以上含むことを特徴とする浚渫土の改質方法。
[4] In the modification method of any one of [1] to [3] above, the flow value of the mixed material obtained by mixing steel slag or steel slag and gypsum in the dredged soil is 8.5 cm or more. Method for modifying dredged soil.
[5] A method for modifying dredged soil according to any one of [1] to [4] above, wherein the dredged soil has an organic carbon content of 4% by mass or more.
[6] The method for modifying dredged soil according to any one of [1] to [5] above, wherein the iron and steel slag contains 0.5% by mass or more of free CaO.

[7]鉄鋼スラグを混合して浚渫土の改質を行う方法において、
浚渫土の間隙水のSO濃度と乾燥後の有機炭素量を測定し、測定されたSO濃度と有機炭素量に応じて、下記(a)または(b)を行うことを特徴とする浚渫土の改質方法。
(a)SO濃度が1000mg/L以上で、かつ有機炭素量が4質量%未満のときには、浚渫土に鉄鋼スラグのみを添加して混合する。
(b)SO濃度が1000mg/L未満または/および有機炭素量が4質量%以上のときには、浚渫土に鉄鋼スラグとともに石膏を混合し、該石膏の混合材中での割合を0.5体積%以上とする。
[7] In the method of modifying the dredged soil by mixing steel slag,
Dredging characterized by measuring the SO4 concentration of interstitial water and the amount of organic carbon after drying, and performing the following (a) or (b) according to the measured SO4 concentration and the amount of organic carbon Soil modification method.
(a) When the SO 4 concentration is 1000 mg/L or more and the organic carbon content is less than 4% by mass, only steel slag is added to the dredged soil and mixed.
(b) When the SO 4 concentration is less than 1000 mg / L and / and the organic carbon content is 4% by mass or more, gypsum is mixed with steel slag in the dredged soil, and the ratio of the gypsum in the mixed material is 0.5 volume % or more.

本発明によれば、鉄鋼スラグを混合して浚渫土の改質を行う方法において、鉄鋼スラグを混合するだけでは強度が発現しない浚渫土であっても、事前に配合テストを実施したり、浚渫土の物理的特性に応じて鉄鋼スラグを選定したりすることなく、施工後に流出を生じない十分な強度を有する浚渫土に改質することができる。このため、従来使用できなかったような浚渫土を浅場・干潟造成材料などの水域環境修復材として有効利用することができ、また、鉄鋼スラグもエージング処理などを施すことなく使用できるので、鉄鋼スラグを経済的に利材化できる利点もある。 According to the present invention, in the method of modifying the dredged soil by mixing steel slag, even if the dredged soil does not develop strength only by mixing steel slag, a mixing test is performed in advance, and dredging is performed. Without selecting steel slag according to the physical properties of the soil, it is possible to modify the dredged soil to have sufficient strength to prevent runoff after construction. For this reason, dredged soil, which could not be used conventionally, can be effectively used as a water environment restoration material such as shallow water and tidal flat construction materials, and steel slag can be used without aging treatment, etc. It also has the advantage of being economically profitable.

海底から回収した浚渫土の間隙水を置換してそのSO濃度を変えた上で、製鋼スラグを所定量混合した材料(混合材)について、強度発現(平面式土壌硬度)を調べた結果を示すグラフThe result of examining the strength expression (planar soil hardness) of a material (mixed material) in which a predetermined amount of steelmaking slag is mixed after replacing the interstitial water of the dredged soil collected from the seabed and changing its SO4 concentration. graph showing 製鋼スラグを混合する前の浚渫土の間隙水のSO濃度と、浚渫土と製鋼スラグとの混合材の一軸圧縮強さとの関係を示すグラフGraph showing the relationship between SO4 concentration of pore water in dredged soil before mixing with steelmaking slag and unconfined compressive strength of mixed material of dredged soil and steelmaking slag 浚渫土に製鋼スラグとともに石膏を0~1.0体積%の範囲で混合した混合材について、石膏の配合割合と混合材の一軸圧縮強さとの関係を示すグラフGraph showing the relationship between the mixing ratio of gypsum and the uniaxial compressive strength of the mixed material in which gypsum is mixed with steelmaking slag in the dredged soil in the range of 0 to 1.0% by volume. 浚渫土に製鋼スラグのみを混合した混合材と、浚渫土に製鋼スラグとともに石膏を混合した混合材について、製鋼スラグの混合率と混合材の一軸圧縮強さとの関係を示すグラフGraph showing the relationship between the mixing ratio of steelmaking slag and the unconfined compressive strength of the mixed material in which only steelmaking slag is mixed with dredged soil and the mixed material in which gypsum is mixed with steelmaking slag in dredged soil 浚渫土に製鋼スラグとともに石膏を混合した混合材について、製鋼スラグの混合率と混合材のフロー値との関係を示すグラフA graph showing the relationship between the mixing ratio of steelmaking slag and the flow value of the mixed material, which is a mixture of steelmaking slag and gypsum mixed with dredged soil.

本発明の浚渫土の改質方法は、浚渫土と鉄鋼スラグの混合材(以下、単に「混合材」という場合がある)を、例えば、浅場・干潟造成材などのような水域環境修復材として用いようとする際に、浚渫土の混合利用量を十分に確保しつつ、混合材の強度を改善することができる改質方法である。また、特に、標準的な浚渫土に対して混合した場合には強度が発現する鉄鋼スラグを混合したにも関わらず、強度が発現しないような浚渫土に対して適用し、十分な強度を発現させることができる改質方法である。 In the dredged soil modification method of the present invention, a mixed material of dredged soil and steel slag (hereinafter sometimes simply referred to as "mixed material") is used as aquatic environment restoration material such as shallow and tidal flat construction material. It is a modification method that can improve the strength of the mixed material while ensuring a sufficient amount of mixed dredged soil when it is about to be used. In particular, it is applied to dredged soil that does not develop strength despite mixing iron and steel slag that develops strength when mixed with standard dredged soil, and develops sufficient strength. It is a modification method that can be made.

浚渫土に鉄鋼スラグを混合した場合の通常の硬化は、ポゾラン反応によってなされるとされている。すなわち、浚渫土のSi、Al成分と、製鋼スラグのCaとが主に反応し、その結果として、セメントで見られるようなCa-Si-Al-HOの生成物が形成されて硬化すると考えられる。したがって、この反応を阻害するような因子が浚渫土に含まれる場合には、硬化が阻害されることになる。これを補う方法としては、主にCa-Si-Al-HOをより積極的に生成させるため、セメントや高炉スラグ微粉末を添加するのが代表的な対処方法である。 The normal hardening of steel slag mixed with dredged soil is believed to occur through pozzolanic reactions. That is, the Si and Al components of the dredged soil primarily react with the Ca of the steelmaking slag, resulting in the formation and hardening of Ca—Si—Al—H 2 O products such as those found in cement. Conceivable. Therefore, if the dredged soil contains factors that inhibit this reaction, hardening will be inhibited. As a method of compensating for this, a typical coping method is to add cement or ground granulated blast furnace slag mainly in order to more positively generate Ca--Si--Al-- H.sub.2O .

ところが、このような反応阻害物質の種類や量は、浚渫土によってまちまちであり、また場合によっては、セメントなどを加えても効果がほとんどない場合すらあった。そこで本発明者らは、全く違った反応を組み合わせることで強度発現をさせることを検討することにした。一般に陸上の土壌の改良はセメントなどを添加して行われるが、強度が発現しにくい原因として有機性土壌が知られており、その対策としてエトリンガイト系化合物を生成させる方法が知られている。陸上の軟弱な土壌にスラグと石膏とを同時に添加する方法は、特許文献6、7などで提案されている。本発明者らは、浚渫土においても、これと類似の機構が働く可能性があると考え、一般的に評価されるような、浚渫土の固形分に含まれるSO量と強度発現との相関を調査したが、浚渫土の場合にはあまり明瞭な関係は見られなかった。また、上述の方法の場合には陸上での施工であるため、同時に含有する水はほとんどなく、例えば、特許文献6、7では含水率32%の土壌を対象とした配合試験例が示されている。このような場合には、もともとの土が流動するような特性を持っておらず、浚渫土と製鋼スラグの混合材を海中施工する際に想定されているような、混合材の流動性を確保できない。 However, the types and amounts of such reaction-inhibiting substances vary depending on the dredged soil, and in some cases, adding cement or the like has almost no effect. Therefore, the inventors of the present invention decided to study the development of strength by combining completely different reactions. Land soil is generally improved by adding cement, etc., but it is known that organic soil is the cause of difficulty in developing strength, and a method of generating ettringite-based compounds is known as a countermeasure. A method of simultaneously adding slag and gypsum to soft soil on land is proposed in Patent Documents 6 and 7 and the like. The present inventors believe that a similar mechanism may work in dredged soil, and the amount of SO 4 contained in the solid content of dredged soil and the strength development are generally evaluated. Correlations were investigated, but no clear correlation was found in the case of dredged soil. In addition, in the case of the above-mentioned method, since it is carried out on land, there is almost no water contained at the same time. there is In such a case, the original soil does not have the property of flowing, and the fluidity of the mixed material is secured as assumed when the mixed material of dredged soil and steelmaking slag is used for underwater construction. Can not.

そこで、さらに検討を進めた結果、陸上で使用しているような、常に空気にさらされている土壌と、浚渫土のように空気と遮断されている土壌とでは、環境が全く異なり、反応経路を含めて考慮すべきであることが判った。さらに、浚渫土は陸上の土壌とは異なり間隙水を多量に含んでいるため、その影響が無視できないことも判った。通常、海域の浚渫土の間隙水であるので、そのイオン種や濃度は海水とほぼ同じであると考えられていたが、実際の状況を調査してみると、原因は不明であるが、浚渫土によって間隙水に含まれるイオン種の濃度が大きく異なることが判明した。そして、間隙水の水質のなかで、特にSO濃度が不足している場合に、強度発現性が低下していることを見出し、そこに必要な量のSOイオンを供給することによって、固化を進行させることができることを見出した。
図1に、海底から回収した浚渫土の間隙水を置換してそのSO濃度を25mg/L、1200mg/L、2400mg/Lと変えた上で、製鋼スラグを20体積%混合した材料について、強度発現(土壌硬度)を調べた結果を示す。なお、強度(土壌硬度)は山中式土壌硬度計(平面型)を用いて評価した。図1によれば、製鋼スラグを混合する前の浚渫土のSO濃度を高くすることで、混合材の強度が大幅に改善されることが判る。
Therefore, as a result of further investigation, the environment is completely different between soil that is constantly exposed to air, such as that used on land, and soil that is blocked from air, such as dredged soil. It was found that it should be considered including In addition, the dredged soil contains a large amount of interstitial water unlike the soil on land, so it was found that the effect cannot be ignored. It was thought that the ion species and concentration were almost the same as seawater because it is the interstitial water of the dredged soil in the sea area. It was found that the concentrations of ionic species contained in pore water differ greatly depending on the soil. Then, among the water quality of the interstitial water, we found that when the SO4 concentration is particularly insufficient, the strength development is reduced. was found to be able to proceed.
Fig. 1 shows the material obtained by replacing the interstitial water of the dredged soil collected from the seabed and changing the SO4 concentration to 25 mg/L, 1200 mg/L, and 2400 mg/L, and then mixing 20% by volume of steelmaking slag. The results of examining strength expression (soil hardness) are shown. The strength (soil hardness) was evaluated using a Yamanaka soil hardness tester (flat type). According to FIG. 1, it can be seen that the strength of the mixed material is greatly improved by increasing the SO 4 concentration of the dredged soil before mixing with the steelmaking slag.

実水域において、水域によって浚渫土の間隙水のSO濃度が小さくなる原因は、必ずしも明確ではないが、淡水が入り込むことによる希釈、海底に有機物が堆積することによって、酸化還元電位が低下して硫酸塩が硫化物に変異する、などの原因が考えられる。
以上の調査結果から、鉄鋼スラグを混合する浚渫土の間隙水のSO濃度を十分に高めることにより、鉄鋼スラグを混合するだけでは強度が発現しない浚渫土であっても、鉄鋼スラグを混合した混合材の強度を発現させることができ、一方、鉄鋼スラグを混合すると強度が発現するような浚渫土では、強度をさらに高めることができることが判った。
In the actual water area, the reason why the SO4 concentration of the pore water in the dredged soil decreases is not necessarily clear. One possible cause is that sulfates mutate into sulfides.
From the above investigation results, by sufficiently increasing the concentration of SO 4 in the pore water of the dredged soil mixed with iron and steel slag, iron and steel slag can be mixed even in dredged soil that does not develop strength only by mixing iron and steel slag. It was found that the strength of the mixed material can be expressed, and the strength can be further increased in the dredged soil in which the strength is expressed by mixing steel slag.

このため本発明の第一の改質方法では、浚渫土に対して、浚渫土の間隙水のSO濃度を1000mg/L以上、好ましくは1800mg/L以上とした上で鉄鋼スラグを混合するものである。なお、間隙水のSO濃度の測定は、例えば、浚渫土を遠心分離し、その上澄み部のSO濃度を測定する。
浚渫土の間隙水のSO濃度を高めるには、当該浚渫土の間隙水のSO濃度よりも高いSO濃度の溶液を浚渫土に添加すればよいが、標準的な海水にはSOが2400mg/L程度含まれているため、間隙水のSO濃度を高める簡便な方法としては、もとの浚渫土の水分調整する際に海水を加える方法がある。また、海水以外のSOイオン含有溶液を添加してもよい。海水などのSOイオン含有溶液を浚渫土に添加するのは、浚渫土を掘り出した後、鉄鋼スラグを混合するまでの任意のタイミングで行うことができる。
なお、浚渫土の間隙水のSO濃度を高める場合において、SO濃度の上限は特にないが、SO濃度が高くなりすぎるとエトリンガイトが過剰に生成するため、浚渫土の種類によっては膨張崩壊が起こるおそれがあるので、2800mg/L程度を上限することが好ましい。
Therefore, in the first reforming method of the present invention, the interstitial water of the dredged soil has a SO4 concentration of 1000 mg/L or more, preferably 1800 mg/L or more, and then iron and steel slag is mixed with the dredged soil. is. The SO 4 concentration of pore water is measured, for example, by centrifuging the dredged soil and measuring the SO 4 concentration in the supernatant.
In order to increase the SO4 concentration of the interstitial water of the dredged soil, a solution with a SO4 concentration higher than the SO4 concentration of the interstitial water of the dredged soil can be added to the dredged soil, but standard seawater has SO4 contains about 2400 mg/L, a simple method to increase the SO 4 concentration in the interstitial water is to add seawater when adjusting the moisture content of the original dredged soil. Also, a SO 4 ion-containing solution other than seawater may be added. The SO 4 ion-containing solution such as seawater can be added to the dredged soil at any time after the dredged soil is excavated and before the steel slag is mixed.
When increasing the SO4 concentration of interstitial water in the dredged soil, there is no particular upper limit for the SO4 concentration, but if the SO4 concentration becomes too high, ettringite will be excessively generated. is likely to occur, it is preferable to set the upper limit to about 2800 mg/L.

また、本発明の第二の改質方法では、浚渫土に対して、鉄鋼スラグとともに石膏を混合するものであり、この方法は、石膏を加えて、より直接的に溶解あるいは反応させるものである。混合材(浚渫土+鉄鋼スラグ+石膏)中での石膏の割合は0.5体積%以上、好ましくは1.0体積%以上とする。石膏の割合が0.5体積%未満では、添加効果が十分に得られない。一方、石膏の割合が多くなると、均質に混合するために必要な時間が長くなったり、流動性を確保するために浚渫土中の水の再調整が必要となるため、混合材(浚渫土+鉄鋼スラグ+石膏)中での石膏の割合は3.0体積%以下が好ましい。このような石膏の添加量は、通常の陸上の土壌改質での石膏系材料の添加量(例えば、5~20体積%(文献値))に比べてきわめて少量である。このように微量の石膏添加であれば、浚渫土と鉄鋼スラグとあわせて混合しても、混合材の流動性、換言すれば混合材の施工性を阻害することなく浚渫土を改質することができる。 In addition, in the second modification method of the present invention, gypsum is mixed with steel slag in the dredged soil, and in this method, gypsum is added and dissolved or reacted more directly. . The ratio of gypsum in the mixed material (dredged soil + steel slag + gypsum) is 0.5% by volume or more, preferably 1.0% by volume or more. If the proportion of gypsum is less than 0.5% by volume, the effect of addition cannot be sufficiently obtained. On the other hand, when the ratio of gypsum increases, the time required for homogeneous mixing increases, and readjustment of the water in the dredged soil is required to ensure fluidity. The proportion of gypsum in (steel slag + gypsum) is preferably 3.0% by volume or less. The amount of such gypsum added is extremely small compared to the amount of gypsum-based material added in normal soil improvement on land (for example, 5 to 20% by volume (literature value)). With such a small amount of gypsum addition, even if the dredged soil and steel slag are mixed together, the fluidity of the mixed material, in other words, the dredged soil can be improved without hindering the workability of the mixed material. can be done.

本発明で使用する石膏の種類に特別な制限はないが、石膏のなかでも特に二水石膏が好ましい。本発明における浚渫土と鉄鋼スラグとの混合材は、流動性をもった状態で施工されるが、陸上の土質改良剤で主に使用される半水石膏では、半水石膏に水を取り込まれてしまうため、余剰に加水する必要があるためである。
石膏の添加・混合は、鉄鋼スラグの添加・混合と同時に行ってもよいし、鉄鋼スラグの添加・混合と相前後して行ってよい。
Although the type of gypsum used in the present invention is not particularly limited, gypsum dihydrate is particularly preferred among gypsum. The mixed material of dredged soil and steel slag in the present invention is constructed in a fluid state, but gypsum hemihydrate, which is mainly used as a soil conditioner on land, does not absorb water into the gypsum hemihydrate. This is because it is necessary to add water in excess.
The addition and mixing of the gypsum may be performed simultaneously with the addition and mixing of the steel slag, or may be performed before and after the addition and mixing of the steel slag.

本発明の第一の改質方法や第二の改質方法のように、微量の水質の調整や石膏の添加により、浚渫土と鉄鋼スラグの混合材の固化が進行するようになるメカニズムは、必ずしも明確ではないが、エトリンガイトやタウマライトといった硫黄を含む結晶が生成する際に、反応阻害物質を結晶内に取り込んだり、吸着したりすることによって反応阻害物質による影響が軽減され、その結果として鉄鋼スラグが関与するポゾラン反応も機能することができるようになり、その結果、固化が進行して強度が発現することなどが考えられる。 As in the first modification method and the second modification method of the present invention, the mechanism by which the solidification of the mixed material of dredged soil and steel slag proceeds by adjusting the water quality or adding gypsum in a small amount is as follows. Although it is not always clear, when sulfur-containing crystals such as ettringite and taumulite are formed, the influence of reaction inhibitors is reduced by incorporating or adsorbing reaction inhibitors into the crystals, and as a result, iron and steel slag It is thought that the pozzolanic reaction in which the

以下、本発明法のその他の条件について説明する。
本発明において浚渫土に混合する鉄鋼スラグ(鉄鋼製造プロセスで発生するスラグ)としては、高炉スラグ、製鋼スラグ、鉱石還元スラグなどがある。高炉スラグには、高炉徐冷スラグ、高炉水砕スラグがある。また、製鋼スラグとしては、溶銑予備処理、転炉吹錬、鋳造などの工程で発生する製鋼系スラグ(例えば、脱炭スラグ、脱燐スラグ、脱硫スラグ、脱珪スラグ、造塊スラグなど)、電気炉スラグなどが挙げられる。この中でも、ポゾラン反応を有効に作用させる観点から製鋼系スラグが好ましく、なかでも転炉脱炭スラグが特に好ましい。
一般に鉄鋼スラグを使用する場合、事前にエージングが施される。エージングとは、大気中でウェザリングしたり、蒸気雰囲気中に一定期間置くことによって、スラグの体積安定性や表面鉱物の安定性を確保するものである。しかし、本発明の場合には、スラグ表面の化学的反応も強度発現に寄与しているため、エージングは特に必要としない。
Other conditions of the method of the present invention are described below.
Iron and steel slag (slag generated in the steel manufacturing process) mixed with the dredged soil in the present invention includes blast furnace slag, steelmaking slag, ore reduction slag, and the like. Blast furnace slag includes slow-cooled blast furnace slag and granulated blast furnace slag. Steelmaking slag includes steelmaking slag generated in processes such as hot metal pretreatment, converter blowing, and casting (for example, decarburization slag, dephosphorization slag, desulfurization slag, silicon removal slag, ingot-making slag, etc.), Examples include electric furnace slag. Among these, steelmaking slag is preferable from the viewpoint of effectively acting the pozzolanic reaction, and converter decarburization slag is particularly preferable.
Generally, when steel slag is used, it is pre-aged. Aging is to secure volume stability of slag and stability of surface minerals by weathering in the atmosphere or placing in a steam atmosphere for a certain period of time. However, in the case of the present invention, the chemical reaction on the slag surface also contributes to the development of strength, so aging is not particularly required.

鉄鋼スラグは、遊離CaO含有量が0.5質量%以上であることが好ましい。遊離CaO含有量が0.5質量%未満では、上述したようなポゾラン反応が十分に生じないおそれがある。但し、遊離CaO含有量が10質量%を超えるとアルカリ溶出量が多くなるため、遊離CaO含有量は10質量%以下が好ましい。
鉄鋼スラグの粒度は特に制限はないが、比表面積が小さいと反応性が低下するため、最大粒度を40mm以下とし、微粒分まで含む粒度(例えば、40-0mm、20-0mm、5-0mmなどの粒度)が好ましく、特に、礫状材料が混合することによる改良効果が得られるようにするため、40-0mmないし20-0mmの粒度が好ましい。
The iron and steel slag preferably has a free CaO content of 0.5% by mass or more. If the free CaO content is less than 0.5% by mass, the pozzolanic reaction as described above may not occur sufficiently. However, if the free CaO content exceeds 10% by mass, the alkali elution amount increases, so the free CaO content is preferably 10% by mass or less.
The particle size of the steel slag is not particularly limited, but if the specific surface area is small, the reactivity will decrease. A particle size of 40-0 mm to 20-0 mm is preferred, especially in order to obtain an improved effect by mixing the gravel-like material.

また、混合材中での鉄鋼スラグの割合(混合率)は10~50体積%が好ましい。鉄鋼スラグの混合率が10体積%未満では、上述の礫状の鉄鋼スラグを混合させる利点が少なくなり、また、ポゾラン反応を作用させる鉄鋼スラグによる浚渫土の改質効果が小さくなる。一方、鉄鋼スラグの混合率が50体積%を超えると、浚渫土の割合が少なくなるので、浚渫土を有効利用するという意義が小さくなるとともに、施工性の管理やpHの制御が難しくなる。なお、後述するように混合材のフロー値は8.5以上が好ましいが、このフロー値を確保する観点からは、鉄鋼スラグの混合率は50体積%未満(特に48体積%以下)とすることが好ましい。
また、以上のような観点から、鉄鋼スラグの混合率のより好ましい範囲は15~30体積%である。
Further, the ratio (mixing ratio) of iron and steel slag in the mixed material is preferably 10 to 50% by volume. If the mixing ratio of iron and steel slag is less than 10% by volume, the advantage of mixing gravel-like iron and steel slag is reduced, and the effect of iron and steel slag that causes the pozzolanic reaction to modify the dredged soil is reduced. On the other hand, if the mixing ratio of iron and steel slag exceeds 50% by volume, the ratio of dredged soil decreases, so the significance of effective use of dredged soil decreases, and workability management and pH control become difficult. As will be described later, the flow value of the mixed material is preferably 8.5 or more, but from the viewpoint of securing this flow value, the mixing ratio of steel slag should be less than 50% by volume (especially 48% by volume or less). is preferred.
In view of the above, a more preferable range of the mixing ratio of iron and steel slag is 15 to 30% by volume.

本発明を適用する浚渫土の種類にも特別な制限はないが、ポゾラン反応性が劣る浚渫土に適用することが有用である。特に、遊離CaO含有量が10質量%の鉄鋼スラグを20体積%混合しても7日後の一軸圧縮強度が30kN/mを超えない浚渫土は、鉄鋼スラグを混合するだけでは強度が発現しない浚渫土であるといえるので、このような浚渫土に適用することが有用である。ただし、本発明をポゾラン反応性が高い浚渫土(特に、遊離CaO含有量が10質量%の鉄鋼スラグを20体積%混合した場合に7日後の一軸圧縮強度が30kN/mを超える浚渫土)に適用することもでき、これにより、強度をさらに高めることができる。 The type of dredged soil to which the present invention is applied is not particularly limited, but it is useful to apply it to dredged soil with poor pozzolanic reactivity. In particular, dredged soil whose unconfined compressive strength after 7 days does not exceed 30 kN / m 2 even if 20% by volume of iron and steel slag with a free CaO content of 10% by mass is mixed does not develop strength just by mixing iron and steel slag. Since it can be said to be dredged soil, it is useful to apply it to such dredged soil. However, the dredged soil with high pozzolanic reactivity (especially dredged soil with a uniaxial compressive strength exceeding 30 kN / m 2 after 7 days when iron and steel slag with a free CaO content of 10% by mass is mixed with 20% by volume) It can also be applied to , which can further increase the strength.

また、浚渫土の有機炭素量が多いと強度が発現しにくくなるので、本発明は有機炭素量が比較的多い浚渫土、なかでも有機炭素量が4質量%以上の浚渫土の改質に特に有用である。有機炭素量が4質量%未満の浚渫土であっても本発明の効果は得られるが、有機炭素量がその範囲では、基本的に製鋼スラグの量を調整することによって必要な強度は確保できる。一方、有機炭素量が4質量%以上の浚渫土は、鉄鋼スラグの混合だけでもある程度は強度が上昇するが、所望の強度を得ようとすると鉄鋼スラグを大量(例えば、混合材中の割合で50体積%を超える量)に混合する必要があり、本来有効利用する対象である浚渫土の使用比率が大幅に低下してしまう。 In addition, if the dredged soil has a large amount of organic carbon, it becomes difficult to develop strength. Useful. Although the effect of the present invention can be obtained even with dredged soil having an organic carbon content of less than 4% by mass, the necessary strength can be secured basically by adjusting the amount of steelmaking slag within the organic carbon content range. . On the other hand, dredged soil with an organic carbon content of 4% by mass or more can increase its strength to some extent by mixing only iron and steel slag, but when trying to obtain the desired strength, a large amount of iron and steel slag (for example, the ratio in the mixed material amount exceeding 50% by volume), and the usage ratio of the dredged soil, which is originally intended to be effectively used, is greatly reduced.

浚渫土と鉄鋼スラグの混合材(浚渫土に鉄鋼スラグまたは鉄鋼スラグと石膏を混合した混合材。以下同様)は流動性を有するものであり、流動性の程度に特に制限はないが、施工性および鉄鋼スラグの粒子を浚渫土が安定的に覆う効果を考慮した場合、混合材のフロー値は8.5cm以上が好ましい。一方、混合材のフロー値が大きすぎると浚渫土と製鋼スラグの分離が起こってしまい、施工後の品質が確保できなかったり、施工直後に流出してしまうなどの問題を生じやすい。このためフロー値は23.0cm未満が好ましい。ここで、フロー値の測定は、JHS-A-313(日本道路公団規格)の「シリンダーフロー試験」に準拠して行う。浚渫土と鉄鋼スラグの混合材のフロー値は、浚渫土の含水率、浚渫土と鉄鋼スラグの混合割合などで調整することができる。 The mixed material of dredged soil and iron and steel slag (mixture of iron and steel slag or iron and steel slag and gypsum mixed with dredged soil; the same shall apply hereinafter) has fluidity, and there is no particular limitation on the degree of fluidity, but workability And considering the effect of stably covering the steel slag particles with the dredged soil, the flow value of the mixed material is preferably 8.5 cm or more. On the other hand, if the flow value of the mixed material is too large, the dredged soil and the steelmaking slag will separate, and problems such as not being able to secure the quality after construction or flowing out immediately after construction are likely to occur. Therefore, the flow value is preferably less than 23.0 cm. Here, the flow value is measured according to JHS-A-313 (Japan Highway Public Corporation Standard) "Cylinder Flow Test". The flow value of the mixed material of dredged soil and steel slag can be adjusted by the water content of dredged soil, the mixing ratio of dredged soil and steel slag, and the like.

本発明(第二の改質方法)を実施するに当たっては、例えば、浚渫土の間隙水のSO濃度と乾燥後の有機炭素量を測定し、測定されたSO濃度と有機炭素量に応じて、下記(a)または(b)を行うようにすることができる。
(a)SO濃度が1000mg/L以上で、かつ有機炭素量が4質量%未満のときには、浚渫土に鉄鋼スラグのみを添加して混合する。
(b)SO濃度が1000mg/L未満または/および有機炭素量が4質量%以上のときには、浚渫土に鉄鋼スラグとともに石膏を混合し、この石膏の混合材中での割合を0.5体積%以上とする。
本発明により改質された浚渫土(混合材)は、浅場・干潟造成材をはじめ、水域での種々の用途に適用できる。
In carrying out the present invention (second reforming method), for example, the SO 4 concentration of interstitial water in the dredged soil and the organic carbon content after drying are measured, and depending on the measured SO 4 concentration and organic carbon content Then, the following (a) or (b) can be performed.
(a) When the SO 4 concentration is 1000 mg/L or more and the organic carbon content is less than 4% by mass, only steel slag is added to the dredged soil and mixed.
(b) When the SO 4 concentration is less than 1000 mg / L and / and the organic carbon content is 4% by mass or more, gypsum is mixed with steel slag in the dredged soil, and the ratio of this gypsum in the mixed material is 0.5 volume % or more.
The dredged soil (mixed material) modified by the present invention can be applied to various uses in water areas, including materials for building shallows and tidal flats.

東京湾の工業地帯エリアから回収された浚渫土を対象として、製鋼スラグを混合することで改質を行った。浚渫土の基本物性を表1に示す。これによると、強熱減量が比較的高く、有機分が多いことが示唆される。また、この浚渫土は、乾土に含まれるSOが2.6質量%と一般の浚渫土(0.8質量%以下)と比較して高いが、間隙水のSO濃度は780mg/Lと低レベルであった。なお、間隙水のSO濃度は、浚渫土を遠心分離し、その上澄み部のSO濃度を測定したものである。
製鋼スラグとしては、JIS A5015「道路用鉄鋼スラグ」においてCS20相当の粒度を持つ転炉脱炭スラグを用いた。この転炉脱炭スラグは、表乾密度が3.11、遊離CaO量が3質量%である。
The dredged soil collected from the industrial area of Tokyo Bay was modified by mixing it with steelmaking slag. Table 1 shows the basic physical properties of the dredged soil. This suggests that the ignition loss is relatively high and the organic content is high. In addition, this dredged soil contains 2.6% by mass of SO 4 in dry soil, which is higher than general dredged soil (0.8% by mass or less), but the SO 4 concentration in pore water is 780 mg / L and were at a low level. The SO 4 concentration of the interstitial water is obtained by centrifuging the dredged soil and measuring the SO 4 concentration of the supernatant.
As the steelmaking slag, converter decarburization slag having a grain size equivalent to CS20 in JIS A5015 "Iron and steel slag for roads" was used. This converter decarburized slag has a surface dry density of 3.11 and an amount of free CaO of 3% by mass.

Figure 0007133281000001
Figure 0007133281000001

[実施例1]
浚渫土の間隙水のSO濃度を、SO濃度のみを変えた人工海水で置換することで調整した上で、これらの浚渫土と製鋼スラグを体積%で70(浚渫土):30(製鋼スラグ)の割合で混合し、混合材の養生後の強度を調査した。この混合材の強度の調査では、混合材をφ5cm×10cm高さのモールドに入れて養生し、浚渫土と製鋼スラグを混合して7日後の一軸圧縮強さを測定した。一軸圧縮強さの測定は、JIS A1108に規定されたコンクリートの圧縮強度試験方法に準拠して行った。
[Example 1]
After adjusting the SO 4 concentration of the interstitial water of the dredged soil by replacing it with artificial seawater in which only the SO 4 concentration is changed, these dredged soil and steelmaking slag are vol% 70 (dredged soil): 30 (steelmaking slag), and investigated the strength of the mixed material after curing. In the investigation of the strength of this mixed material, the mixed material was placed in a mold of φ5 cm×10 cm high, cured, dredged soil and steelmaking slag were mixed, and the unconfined compressive strength was measured 7 days later. The unconfined compressive strength was measured according to the concrete compressive strength test method specified in JIS A1108.

図2に測定結果(図2の横軸は、製鋼スラグを混合する前の浚渫土の間隙水のSO濃度である)を示す。これによると、間隙水のSO濃度(製鋼スラグを混合する前の間隙水のSO濃度)が1000mg/L未満の浚渫土では、混合材の強度は十分に発現していない。これに対して、間隙水のSO濃度が1000mg/L以上の浚渫土では、混合材の強度が発現し、特に、SO濃度が1800mg/L以上の浚渫土では、7日後の一軸圧縮強さが約200kN/mとなり、海底地盤として十分利用できる強度が確保できている。このように、浚渫土の間隙水のSO濃度を十分に高めた状態で製鋼スラグを添加・混合することにより、ただ単に製鋼スラグを混合するだけでは強度発現しないような浚渫土であっても、強度を安定的に発現させることができる。 Fig. 2 shows the measurement results (the horizontal axis in Fig. 2 is the SO4 concentration of the interstitial water of the dredged soil before mixing with the steelmaking slag). According to this, dredged soil having a SO 4 concentration in pore water (SO 4 concentration in pore water before mixing with steelmaking slag) of less than 1000 mg/L does not exhibit sufficient strength of the mixed material. On the other hand, dredged soil with a SO4 concentration of 1000 mg/L or more in pore water exhibits strength of the mixed material. The strength is about 200kN/m 2 , and sufficient strength is secured for use as seabed ground. In this way, by adding and mixing steelmaking slag in a state where the SO 4 concentration of the interstitial water of the dredged soil is sufficiently increased, even dredged soil that does not develop strength simply by mixing steelmaking slag , strength can be expressed stably.

[実施例2]
浚渫土に製鋼スラグとともに石膏を混合し、混合材の養生後の強度を調査した。浚渫土、製鋼スラグ、石膏の配合割合は、浚渫土を70体積%、製鋼スラグ+石膏を30体積%で固定し、石膏の割合を全体の0~1.0体積%の範囲で変えた。この混合材の強度の調査では、上述のとおり製鋼スラグとして20-0mmの粒度のものを用い、混合材をφ10cm×20cm高さのモールドに入れて養生し、浚渫土と製鋼スラグ(および石膏)を混合して7日後と、28日後の一軸圧縮強さをそれぞれ測定した。石膏としては、二水石膏(吉野石膏(株)製、表乾密度2.32)を用いた。混合材の一軸圧縮強さの測定は、JIS A1108に規定されたコンクリートの圧縮強度試験方法に準拠して行った。
図3に測定結果を示す。これによると、石膏の添加量が0.3体積%添加までは変化がほとんど見られないが、0.5体積%になると強度の上昇が明確になり、1.0体積%ではさらに高くなり、陸上の改良土としても使用できるレベルまで強度が上昇している。
[Example 2]
Gypsum was mixed with steelmaking slag in the dredged soil, and the strength of the mixed material after curing was investigated. The dredged soil, steelmaking slag, and gypsum mixture ratios were fixed at 70% by volume for dredged soil and 30% by volume for steelmaking slag + gypsum, and the ratio of gypsum was varied within the range of 0 to 1.0% by volume. In the investigation of the strength of this mixed material, as described above, steelmaking slag with a grain size of 20-0 mm was used, and the mixed material was cured in a mold of φ10 cm × 20 cm height, dredged soil and steel slag (and gypsum). The unconfined compressive strength was measured 7 days after mixing and 28 days after mixing. As the gypsum, gypsum dihydrate (manufactured by Yoshino Gypsum Co., Ltd., surface dry density: 2.32) was used. The unconfined compressive strength of the mixed material was measured according to the concrete compressive strength test method specified in JIS A1108.
FIG. 3 shows the measurement results. According to this, almost no change is seen until the amount of gypsum added is 0.3% by volume, but when the amount is 0.5% by volume, the increase in strength becomes clear. The strength has increased to a level that can be used as improved soil on land.

また、表1の浚渫土とは異なる場所(東京湾沿岸部)で回収された表2に示す基本物性の浚渫土を対象とし、石膏(添加量0.5体積%)を添加した混合材と、石膏を添加しない混合材であって、それぞれ製鋼スラグの混合率(混合材中での割合)を変化させたものについて、28日後の一軸圧縮強さを測定した結果を図4に示す。これによると、製鋼スラグの混合率に関わりなく、石膏の添加によって強度が上昇しているが、特に製鋼スラグを10体積%以上混合することが有効であることが判る。また、その際のフロー値の測定結果を図5に示す。これによれば、製鋼スラグの混合率が大きいとフロー値が小さくなり、施工性が低下するが、混合率が50体積%未満(特に48体積%以下)であれば、フロー値は8.5以上を確保できており、安定した施工性が確保できていることが確認された。 In addition, the dredged soil with the basic physical properties shown in Table 2 collected at a location (coastal area of Tokyo Bay) different from the dredged soil in Table 1 is targeted, and a mixed material with gypsum (addition amount 0.5% by volume) added 4 shows the results of measuring the unconfined compressive strength after 28 days for mixed materials with no gypsum added and varying the mixing ratio of steelmaking slag (proportion in the mixed material). According to this, the addition of gypsum increases the strength regardless of the mixing ratio of steelmaking slag. FIG. 5 shows the measurement results of the flow value at that time. According to this, if the mixing ratio of steelmaking slag is high, the flow value will be small, and the workability will decrease. It has been confirmed that the above has been ensured and that stable workability has been ensured.

Figure 0007133281000002
Figure 0007133281000002

Claims (6)

鉄鋼スラグ(但し、水砕スラグを除く。)を混合して浚渫土の改質を行う方法において、
鉄鋼スラグとして、製鋼スラグ、鉱石還元スラグの中から選ばれる1種以上を用い、
水底から掘り出された浚渫土に対して、礫状粒を含む鉄鋼スラグとともに石膏を混合し、該石膏の混合材中での割合を0.5体積%以上とすることを特徴とする浚渫土の改質方法(但し、浚渫土に対して、鉄鋼スラグおよび石膏とともに、アルミナ系物質、石炭灰、高炉水砕微粉末、消石灰のうちの1種以上を混合する方法を除く。)。
In the method of improving the quality of dredged soil by mixing iron and steel slag (excluding granulated slag),
As iron and steel slag, using one or more selected from steelmaking slag and ore reduction slag,
Dredged soil characterized by mixing gypsum with iron and steel slag containing gravel grains with dredged soil excavated from the bottom of the water so that the ratio of the gypsum in the mixed material is 0.5% by volume or more. (However, the method of mixing one or more of alumina-based material, coal ash, ground granulated blast furnace powder, and hydrated lime with iron and steel slag and gypsum with respect to dredged soil is excluded.).
浚渫土が、遊離CaO含有量が10質量%の鉄鋼スラグを20体積%混合しても7日後の一軸圧縮強度が30kN/mを超えない浚渫土であることを特徴とする請求項1に記載の浚渫土の改質方法。 Even if the dredged soil is mixed with 20% by volume of iron and steel slag with a free CaO content of 10% by mass, the unconfined compressive strength after 7 days is dredged soil that does not exceed 30 kN / m 2 . A method for modifying dredged soil as described. 浚渫土に鉄鋼スラグと石膏を混合した混合材のフロー値が8.5cm以上であることを特徴とする請求項1または2に記載の浚渫土の改質方法。 3. The dredged soil reforming method according to claim 1 or 2, wherein the flow value of the mixed material obtained by mixing the dredged soil with steel slag and gypsum is 8.5 cm or more. 浚渫土が、有機炭素量が4質量%以上の浚渫土であることを特徴とする請求項1~3のいずれかに記載の浚渫土の改質方法。 The dredged soil reforming method according to any one of claims 1 to 3, wherein the dredged soil has an organic carbon content of 4% by mass or more. 鉄鋼スラグは遊離CaOを0.5質量%以上含むことを特徴とする請求項1~4のいずれかに記載の浚渫土の改質方法。 The method for modifying dredged soil according to any one of claims 1 to 4, wherein the iron and steel slag contains 0.5% by mass or more of free CaO. 混合材中での鉄鋼スラグの割合を10~50体積%、石膏の割合を0.5~3.0体積%とすることを特徴とする請求項1~5のいずれかに記載の浚渫土の改質方法。The dredged soil according to any one of claims 1 to 5, wherein the ratio of iron and steel slag in the mixed material is 10 to 50% by volume and the ratio of gypsum is 0.5 to 3.0% by volume. modification method.
JP2019195262A 2015-05-15 2019-10-28 Dredged soil modification method Active JP7133281B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015099637 2015-05-15
JP2015099637 2015-05-15

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2017222442A Division JP6658718B2 (en) 2015-05-15 2017-11-20 How to modify dredged soil

Publications (2)

Publication Number Publication Date
JP2020019017A JP2020019017A (en) 2020-02-06
JP7133281B2 true JP7133281B2 (en) 2022-09-08

Family

ID=57579371

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2016094962A Active JP6269721B2 (en) 2015-05-15 2016-05-11 How to improve dredged soil
JP2017222442A Active JP6658718B2 (en) 2015-05-15 2017-11-20 How to modify dredged soil
JP2019195262A Active JP7133281B2 (en) 2015-05-15 2019-10-28 Dredged soil modification method

Family Applications Before (2)

Application Number Title Priority Date Filing Date
JP2016094962A Active JP6269721B2 (en) 2015-05-15 2016-05-11 How to improve dredged soil
JP2017222442A Active JP6658718B2 (en) 2015-05-15 2017-11-20 How to modify dredged soil

Country Status (1)

Country Link
JP (3) JP6269721B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7365187B2 (en) * 2019-10-09 2023-10-19 五洋建設株式会社 Method for improving dredged soil
JP7323808B2 (en) * 2020-01-31 2023-08-09 日本製鉄株式会社 Method for preparing soil for cultivating benthic organisms and method for cultivating benthic organisms

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004315662A (en) 2003-04-16 2004-11-11 Chiyoda Eco Recycle Kk Soil conditioner and soil conditioning method
JP2007262831A (en) 2006-03-29 2007-10-11 Kurita Water Ind Ltd Back-filling method for underground excavated hole
JP2010120987A (en) 2008-11-17 2010-06-03 Nisshin Steel Co Ltd Solidifying agent
JP2011206625A (en) 2010-03-29 2011-10-20 Jfe Steel Corp Method for modifying dredged soil

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61238398A (en) * 1985-04-17 1986-10-23 Nippon Jiryoku Senko Kk Preparation of submerged sludge curing material
JPH0860152A (en) * 1994-08-17 1996-03-05 Nippon Steel Corp Method for hardening soil
JPH09100470A (en) * 1995-08-03 1997-04-15 Nippon Steel Corp Hardening of soil
JP4069056B2 (en) * 2003-10-28 2008-03-26 新日本製鐵株式会社 Tidal flat, shallow water environment restoration material
JP4736448B2 (en) * 2005-02-01 2011-07-27 Jfeスチール株式会社 Construction method of shallow ground
WO2007035101A2 (en) * 2005-09-26 2007-03-29 Stichting Energieonderzoek Centrum Nederland Composition comprising active charcoal, steel slag and contaminated material and use thereof
BRPI1014832B1 (en) * 2009-03-30 2020-03-31 Nippon Steel Corporation LANDING AREAS METHOD OF LOAN
JP5135552B2 (en) * 2009-04-09 2013-02-06 新日鐵住金株式会社 Method for producing steelmaking slag for water injection
BR112012003094A2 (en) * 2009-06-11 2019-09-24 Sweetwater Env Solutions Llc process for intensified remediation of contaminated wastewater, soil and waste forms
JP5742477B2 (en) * 2011-05-31 2015-07-01 新日鐵住金株式会社 How to backfill the Ogikubo land
JP6142760B2 (en) * 2013-10-08 2017-06-07 新日鐵住金株式会社 Strength prediction method for modified soil

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004315662A (en) 2003-04-16 2004-11-11 Chiyoda Eco Recycle Kk Soil conditioner and soil conditioning method
JP2007262831A (en) 2006-03-29 2007-10-11 Kurita Water Ind Ltd Back-filling method for underground excavated hole
JP2010120987A (en) 2008-11-17 2010-06-03 Nisshin Steel Co Ltd Solidifying agent
JP2011206625A (en) 2010-03-29 2011-10-20 Jfe Steel Corp Method for modifying dredged soil

Also Published As

Publication number Publication date
JP2016215191A (en) 2016-12-22
JP2018065131A (en) 2018-04-26
JP6269721B2 (en) 2018-01-31
JP6658718B2 (en) 2020-03-04
JP2020019017A (en) 2020-02-06

Similar Documents

Publication Publication Date Title
JP4719316B2 (en) How to backfill the Ogikubo land
CA2551822A1 (en) Porous particulate material for fluid treatment, cementitious composition and method of manufacture thereof
JP5728845B2 (en) Method for estimating strength of modified dredged soil and method for modifying dredged soil
JP7133281B2 (en) Dredged soil modification method
JP5047745B2 (en) Ground improvement material
JP2012031618A5 (en)
JP2017122203A (en) Manufacturing method of mud-containing solidified body
JP2024045574A (en) Manufacturing method of modified soil of high moisture content mud
JP5790597B2 (en) Method for predicting strength of modified soil and method for producing modified soil using the same
JP6142760B2 (en) Strength prediction method for modified soil
Yu et al. One-phase MICP and two-phase MISP composite cementation
JP2018002509A (en) Neutralization suppression of cement-based cured product and chloride ion permeation suppression method
JP2003034562A (en) Hydraulic composition and hydrated hardened body
JP7532560B2 (en) Neutral solidification material and soil processing method
JP5742477B2 (en) How to backfill the Ogikubo land
JP5954351B2 (en) Artificial shallow ground or tidal flat and its repair method
JP6464904B2 (en) Method for predicting strength of modified soil and method for producing modified soil
JP2004313818A (en) Bottom sediment covering material
JP2015101830A (en) Sand arrestation soil cement method utilizing organic soil as construction material
JP6183621B2 (en) Manufacturing method for civil engineering materials
JP6750817B2 (en) Water pollution prevention method
JP5761146B2 (en) Processing method of civil engineering materials using steel slag
Vu et al. Effects of additives on the results of improving peat soil: A case study at Mekong delta in Vietnam
JP5857994B2 (en) Manufacturing method of artificial stone
JP2007270464A (en) Cement composition, cement milk, water holding pavement, and method of constructing water holding pavement

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20191206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210219

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210406

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20210704

C116 Written invitation by the chief administrative judge to file amendments

Free format text: JAPANESE INTERMEDIATE CODE: C116

Effective date: 20210713

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20210713

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20210803

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20220510

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20220601

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20220705

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20220803

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20220803

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220827

R150 Certificate of patent or registration of utility model

Ref document number: 7133281

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150