JP2016215191A - Method for modifying dredge soil - Google Patents

Method for modifying dredge soil Download PDF

Info

Publication number
JP2016215191A
JP2016215191A JP2016094962A JP2016094962A JP2016215191A JP 2016215191 A JP2016215191 A JP 2016215191A JP 2016094962 A JP2016094962 A JP 2016094962A JP 2016094962 A JP2016094962 A JP 2016094962A JP 2016215191 A JP2016215191 A JP 2016215191A
Authority
JP
Japan
Prior art keywords
clay
steel slag
gypsum
slag
mixing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016094962A
Other languages
Japanese (ja)
Other versions
JP6269721B2 (en
Inventor
克則 ▲高▼橋
克則 ▲高▼橋
Katsunori Takahashi
渡辺 圭児
Keiji Watanabe
圭児 渡辺
本田 秀樹
Hideki Honda
秀樹 本田
多穂 谷敷
Taho Yashiki
多穂 谷敷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Publication of JP2016215191A publication Critical patent/JP2016215191A/en
Application granted granted Critical
Publication of JP6269721B2 publication Critical patent/JP6269721B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Abstract

PROBLEM TO BE SOLVED: To provide a modification method of dredge soil by mixing an iron steel slag, capable of modifying the dredge soil to property exhibiting sufficient strength without selecting the iron steel slag depending on physical properties of the dredge soil, especially capable of making the dredge soil, which does not exhibit strength only by mixing the iron steel slag, exhibit sufficient strength.SOLUTION: An iron steel slag is added to a dredge oil with setting SOconcentration of interstitial water of the dredge soil at 1000 mg/L or more or gypsum is added together with the iron steel slag to make percentage of the gypsum in a mixture material at 0.5 vol.% or more.SELECTED DRAWING: Figure 2

Description

本発明は、水域環境修復材(例えば、浅場や干潟の造成材)などに用いる浚渫土の改質方法に関する。   The present invention relates to a method for reforming dredged soil used for a water environment restoration material (for example, a shallow or tidal flat).

水質環境改善などを目的として、浅場や干潟の造成が行われている。従来、浅場や干潟の造成は、砕石を用いて沖合に土留め潜堤を設置した後、その岸側(陸側)に中詰材として浚渫土を設置し、その表層に天然砂を覆砂するような工法が採られている。
これに対して、特許文献1には、浚渫土砂と鉄鋼スラグとからなる非固結性の浅場・干潟造成材が開示されている。また、特許文献2〜4には、鉄鋼スラグに含まれるCaO分を積極的に活用し、浚渫土に鉄鋼スラグを混合して強度改質を行う技術が示されている。この技術では、主に鉄鋼スラグのCaO分と浚渫土のSi、Al等とのポゾラン反応により、浚渫土の強度改質を行うものである。このように鉄鋼スラグを用いて軟弱浚渫土の強度改善を図ることは、今まで利用できなかった浚渫土を、鉄鋼スラグの元来の固有特性であるCaOと結びつけて活用できるため、社会的に有用性が極めて高い。
For the purpose of improving the water quality environment, shallow areas and tidal flats are being created. Conventionally, shallow ground and tidal flats have been constructed by using a crushed stone to install an earth retaining submarine offshore, and then installing dredged soil as a filling material on the shore side (land side) and covering the surface with natural sand. Such a construction method is adopted.
On the other hand, Patent Document 1 discloses a non-consolidated shallow / tidal flat material composed of dredged sand and steel slag. Further, Patent Documents 2 to 4 disclose techniques for performing strength modification by actively utilizing CaO contained in steel slag and mixing steel slag with clay. In this technique, the strength of the clay is improved mainly by a pozzolanic reaction between the CaO content of the steel slag and Si, Al, etc. of the clay. In this way, the improvement of the strength of soft clay using steel slag can be utilized in combination with CaO, which is an inherent characteristic of steel slag, because it can be used in combination with the previously unavailable clay. Very useful.

特開2005−133309号公報JP 2005-133309 A 特開2009−121167号公報JP 2009-121167 A 特開2011−206625号公報JP 2011-206625 A 特開2011−208365号公報JP 2011-208365 A 特開2012−31618号公報JP 2012-31618 A 特開平8−60152号公報JP-A-8-60152 特開平9−100470号公報Japanese Patent Application Laid-Open No. 9-100500

鉄鋼スラグを混合した浚渫土を浅場・干潟造成材などのような水域環境修復材として用いる場合、鉄鋼スラグの混合による強度改質が十分でないと、設置した水域環境修復材が流出したり、構造的な安定性が確保できないなどの問題を生じる。しかし、実際の浚渫土の性質は地域や海域によってさまざまであり、鉄鋼スラグを混合することによる固化(強度発現)の度合いは、浚渫土によって大きく異なる。そのため、浚渫土に鉄鋼スラグを混合する方法を実際に適用する場合には、事前に配合テストを実施するか、その浚渫土の物理的特性に応じて適用するスラグを選定する必要がある(例えば、特許文献5)。   When dredged soil mixed with steel slag is used as an aquatic environment restoration material such as shallow ground and tidal flats, if the strength improvement by mixing steel slag is not sufficient, the installed aquatic environment restoration material will flow out or structure Cause problems such as inability to secure stability. However, the actual characteristics of dredged soil vary depending on the region and sea area, and the degree of solidification (strength development) by mixing steel slag varies greatly depending on dredged soil. Therefore, when actually applying the method of mixing steel slag into the clay, it is necessary to conduct a blending test in advance or to select the slag to be applied according to the physical characteristics of the clay (for example, Patent Document 5).

また、基本的にはこれらの対応によって浚渫土の強度は発現するが、本発明者らは様々な浚渫土を対象に試験を行った結果、鉄鋼スラグを50体積%に近い割合まで混合しても強度がほとんど発現しない浚渫土が稀にではあるが存在することが判った。鉄鋼スラグを50体積%に近い割合まで混合すると浚渫土の割合が少なくなるため、浚渫土を有効利用するという本来の目的が達成できなくなる。また、この状態は鉄鋼スラグの粒どうしが接触して構造を保持できるレベルであるとも考えられ、鉄鋼スラグと浚渫土によるポゾラン反応が十分作用していないとみなされる。このような浚渫土に対しては、製鋼スラグ以外のセメントや石灰といった材料を添加した場合でも、強度発現性が劣ることが判った。このような浚渫土を固化するには有効な手法がなく、浚渫土は有効利用できずに廃棄するしかない状況であった。   In addition, the strength of the clay is basically expressed by these measures, but as a result of the test conducted on various clays, the present inventors mixed steel slag to a ratio close to 50% by volume. However, it was found that there are rare cases of dredged soil with little strength. When steel slag is mixed to a ratio close to 50% by volume, the ratio of clay is reduced, and the original purpose of effectively using the clay cannot be achieved. In addition, this state is considered to be a level at which the structure of the steel slag can be kept in contact with each other, and it is considered that the pozzolanic reaction between the steel slag and the clay is not sufficiently acting. It was found that for such clay, even when materials such as cement and lime other than steelmaking slag were added, strength development was inferior. There is no effective method for solidifying such dredged soil, and the dredged soil cannot be effectively used and must be discarded.

したがって本発明の目的は、以上のような従来技術の課題を解決し、鉄鋼スラグを混合して浚渫土の改質を行う方法において、事前に配合テストを実施したり、浚渫土の物理的特性に応じて鉄鋼スラグを選定したりすることなく、浚渫土を十分な強度を発現できる性状に改質することができ、特に、鉄鋼スラグを混合するだけでは強度が発現しない浚渫土についても、十分な強度を発現させることができる改質方法を提供することにある。   Therefore, the object of the present invention is to solve the above-mentioned problems of the prior art and to conduct a blending test in advance in a method for reforming clay by mixing steel slag, It is possible to modify the clay so that sufficient strength can be developed without selecting steel slag according to the conditions, especially for the clay that does not exhibit strength only by mixing steel slag. An object of the present invention is to provide a modification method capable of developing a sufficient strength.

本発明者らは、上記課題を解決するために検討を重ねた結果、鉄鋼スラグを混合するだけでは強度が発現しない浚渫土であっても、浚渫土の間隙水のSO濃度を一定レベル以上とした上で鉄鋼スラグを混合するか、或いは浚渫土に対して鉄鋼スラグとともに微量の石膏を添加することにより、施工に必要な流動性を確保しつつ、施工後に流出を生じない十分な強度を有する浚渫土に改質できることを見出した。 As a result of repeated studies to solve the above problems, the present inventors have determined that the SO 4 concentration of the pore water in the dredged soil exceeds a certain level even in dredged soil that does not exhibit strength only by mixing steel slag. In addition, by mixing steel slag or adding a small amount of gypsum together with steel slag to the dredged soil, sufficient fluidity necessary for construction is ensured and sufficient strength that does not cause outflow after construction is obtained. It has been found that it can be modified into a clay.

本発明は、このような知見に基づきなされたもので、以下を要旨とするものである。
[1]鉄鋼スラグを混合して浚渫土の改質を行う方法において、浚渫土に対して、浚渫土の間隙水のSO濃度を1000mg/L以上とした上で鉄鋼スラグを混合することを特徴とする浚渫土の改質方法。
[2]鉄鋼スラグを混合して浚渫土の改質を行う方法において、浚渫土に対して、鉄鋼スラグとともに石膏を混合し、該石膏の混合材中での割合を0.5体積%以上とすることを特徴とする浚渫土の改質方法。
[3]上記[1]または[2]の改質方法において、浚渫土が、遊離CaO含有量が10質量%の鉄鋼スラグを20体積%混合しても7日後の一軸圧縮強度が30kN/mを超えない浚渫土であることを特徴とする浚渫土の改質方法。
The present invention has been made on the basis of such knowledge and has the following gist.
[1] In the method of reforming the clay by mixing steel slag, the steel slag is mixed with the clay after the SO 4 concentration of the pore water in the clay is 1000 mg / L or more. A characteristic modification method for dredged soil.
[2] In the method of reforming the clay by mixing steel slag, gypsum is mixed with the steel slag with respect to the clay, and the proportion of the gypsum in the mixed material is 0.5% by volume or more. A method for reforming clay.
[3] In the reforming method of [1] or [2] above, the uniaxial compressive strength after 7 days is 30 kN / m even if the clay is mixed with 20% by volume of steel slag having a free CaO content of 10% by mass. A method for reforming dredged soil, characterized in that the dredged soil does not exceed 2 .

[4]上記[1]〜[3]のいずれかの改質方法において、浚渫土に鉄鋼スラグまたは鉄鋼スラグと石膏を混合した混合材のフロー値が8.5cm以上であることを特徴とする浚渫土の改質方法。
[5]上記[1]〜[4]のいずれかの改質方法において、浚渫土が、有機炭素量が4質量%以上の浚渫土であることを特徴とする渫土の改質方法。
[6]上記[1]〜[5]のいずれかの改質方法において、鉄鋼スラグは遊離CaOを0.5質量%以上含むことを特徴とする浚渫土の改質方法。
[4] In the reforming method according to any one of [1] to [3] above, the flow value of the mixed material obtained by mixing steel slag or steel slag and gypsum into the clay is 8.5 cm or more. How to improve dredged soil.
[5] A method for modifying a clay according to any one of the above [1] to [4], wherein the clay is a clay having an organic carbon content of 4% by mass or more.
[6] The method for reforming clay according to any one of the above [1] to [5], wherein the steel slag contains 0.5% by mass or more of free CaO.

[7]鉄鋼スラグを混合して浚渫土の改質を行う方法において、
浚渫土の間隙水のSO濃度と乾燥後の有機炭素量を測定し、測定されたSO濃度と有機炭素量に応じて、下記(a)または(b)を行うことを特徴とする浚渫土の改質方法。
(a)SO濃度が1000mg/L以上で、かつ有機炭素量が4質量%未満のときには、浚渫土に鉄鋼スラグのみを添加して混合する。
(b)SO濃度が1000mg/L未満または/および有機炭素量が4質量%以上のときには、浚渫土に鉄鋼スラグとともに石膏を混合し、該石膏の混合材中での割合を0.5体積%以上とする。
[7] In a method for reforming clay by mixing steel slag,
Measure the SO 4 concentration of pore water in the dredged soil and the amount of organic carbon after drying, and perform the following (a) or (b) depending on the measured SO 4 concentration and the amount of organic carbon: Soil reforming method.
(A) When the SO 4 concentration is 1000 mg / L or more and the amount of organic carbon is less than 4% by mass, only steel slag is added to the clay and mixed.
(B) When the SO 4 concentration is less than 1000 mg / L or / and the amount of organic carbon is 4% by mass or more, gypsum is mixed with steel slag in the clay, and the proportion of the gypsum in the mixed material is 0.5 volume. % Or more.

本発明によれば、鉄鋼スラグを混合して浚渫土の改質を行う方法において、鉄鋼スラグを混合するだけでは強度が発現しない浚渫土であっても、事前に配合テストを実施したり、浚渫土の物理的特性に応じて鉄鋼スラグを選定したりすることなく、施工後に流出を生じない十分な強度を有する浚渫土に改質することができる。このため、従来使用できなかったような浚渫土を浅場・干潟造成材料などの水域環境修復材として有効利用することができ、また、鉄鋼スラグもエージング処理などを施すことなく使用できるので、鉄鋼スラグを経済的に利材化できる利点もある。   According to the present invention, in the method of reforming the clay by mixing steel slag, even if the clay does not exhibit strength only by mixing the steel slag, a blending test is performed in advance, Without selecting steel slag according to the physical properties of the soil, it can be modified into dredged soil with sufficient strength that does not cause runoff after construction. For this reason, dredged soil that could not be used in the past can be effectively used as an aquatic environment restoration material such as shallow ground and tidal flats, and steel slag can also be used without aging treatment. There is also an advantage that can be used economically.

海底から回収した浚渫土の間隙水を置換してそのSO濃度を変えた上で、製鋼スラグを所定量混合した材料(混合材)について、強度発現(平面式土壌硬度)を調べた結果を示すグラフSubstituting the pore water of dredged soil recovered from the seabed and changing its SO 4 concentration, the results of examining the strength expression (planar soil hardness) of the material (mixed material) mixed with a predetermined amount of steelmaking slag Graph showing 製鋼スラグを混合する前の浚渫土の間隙水のSO濃度と、浚渫土と製鋼スラグとの混合材の一軸圧縮強さとの関係を示すグラフGraph showing the SO 4 concentration of the interstitial water of dredged material before mixing the steel slag, the relationship between the uniaxial compressive strength of admixture of dredged material and steel slag 浚渫土に製鋼スラグとともに石膏を0〜1.0体積%の範囲で混合した混合材について、石膏の配合割合と混合材の一軸圧縮強さとの関係を示すグラフThe graph which shows the relationship between the mixture ratio of gypsum and the uniaxial compressive strength of a mixture about the mixed material which mixed gypsum with the steelmaking slag in the range of 0-1.0 volume%. 浚渫土に製鋼スラグのみを混合した混合材と、浚渫土に製鋼スラグとともに石膏を混合した混合材について、製鋼スラグの混合率と混合材の一軸圧縮強さとの関係を示すグラフA graph showing the relationship between the mixing ratio of steelmaking slag and the uniaxial compressive strength of the mixed material for the mixed material in which only steelmaking slag is mixed with the clay and the mixed material in which gypsum is mixed with the steelmaking slag. 浚渫土に製鋼スラグとともに石膏を混合した混合材について、製鋼スラグの混合率と混合材のフロー値との関係を示すグラフGraph showing the relationship between the mixing ratio of steelmaking slag and the flow value of the mixture for the mixed material in which gypsum is mixed with steelmaking slag in the clay

本発明の浚渫土の改質方法は、浚渫土と鉄鋼スラグの混合材(以下、単に「混合材」という場合がある)を、例えば、浅場・干潟造成材などのような水域環境修復材として用いようとする際に、浚渫土の混合利用量を十分に確保しつつ、混合材の強度を改善することができる改質方法である。また、特に、標準的な浚渫土に対して混合した場合には強度が発現する鉄鋼スラグを混合したにも関わらず、強度が発現しないような浚渫土に対して適用し、十分な強度を発現させることができる改質方法である。   The method for reforming dredged soil according to the present invention uses a mixed material of dredged soil and steel slag (hereinafter sometimes simply referred to as “mixed material”) as an aquatic environment restoration material such as a shallow ground / tidal flat construction material. This is a modification method that can improve the strength of the mixed material while ensuring a sufficient amount of mixed use of the clay when trying to use it. In particular, when mixed with standard dredged soil, it is applied to dredged soil that does not develop strength despite the mixing of steel slag that develops strength. This is a modification method that can be performed.

浚渫土に鉄鋼スラグを混合した場合の通常の硬化は、ポゾラン反応によってなされるとされている。すなわち、浚渫土のSi、Al成分と、製鋼スラグのCaとが主に反応し、その結果として、セメントで見られるようなCa−Si−Al−HOの生成物が形成されて硬化すると考えられる。したがって、この反応を阻害するような因子が浚渫土に含まれる場合には、硬化が阻害されることになる。これを補う方法としては、主にCa−Si−Al−HOをより積極的に生成させるため、セメントや高炉スラグ微粉末を添加するのが代表的な対処方法である。 It is said that normal hardening when steel slag is mixed with clay is done by pozzolanic reaction. That is, when the Si and Al components of the clay are mainly reacted with Ca of the steelmaking slag, as a result, a product of Ca—Si—Al—H 2 O as seen in cement is formed and hardened. Conceivable. Therefore, when a factor that inhibits this reaction is contained in the clay, hardening is inhibited. As a method for compensating for this, a typical coping method is to add cement or blast furnace slag fine powder mainly in order to more actively generate Ca—Si—Al—H 2 O.

ところが、このような反応阻害物質の種類や量は、浚渫土によってまちまちであり、また場合によっては、セメントなどを加えても効果がほとんどない場合すらあった。そこで本発明者らは、全く違った反応を組み合わせることで強度発現をさせることを検討することにした。一般に陸上の土壌の改良はセメントなどを添加して行われるが、強度が発現しにくい原因として有機性土壌が知られており、その対策としてエトリンガイト系化合物を生成させる方法が知られている。陸上の軟弱な土壌にスラグと石膏とを同時に添加する方法は、特許文献6、7などで提案されている。本発明者らは、浚渫土においても、これと類似の機構が働く可能性があると考え、一般的に評価されるような、浚渫土の固形分に含まれるSO量と強度発現との相関を調査したが、浚渫土の場合にはあまり明瞭な関係は見られなかった。また、上述の方法の場合には陸上での施工であるため、同時に含有する水はほとんどなく、例えば、特許文献6、7では含水率32%の土壌を対象とした配合試験例が示されている。このような場合には、もともとの土が流動するような特性を持っておらず、浚渫土と製鋼スラグの混合材を海中施工する際に想定されているような、混合材の流動性を確保できない。 However, the types and amounts of such reaction-inhibiting substances vary depending on the clay, and in some cases, even when cement or the like is added, there are even cases where there is almost no effect. Therefore, the present inventors decided to examine the strength development by combining completely different reactions. In general, improvement of soil on land is performed by adding cement or the like, but organic soil is known as a cause of difficulty in developing strength, and a method of producing an ettringite compound is known as a countermeasure. Methods for simultaneously adding slag and gypsum to terrestrial soft soil are proposed in Patent Documents 6 and 7 and the like. The present inventors consider that a similar mechanism may work in dredged soil, and the amount of SO 4 contained in the solid content of dredged soil and strength development as generally evaluated. The correlation was investigated, but in the case of dredged soil, a clear relationship was not seen. Moreover, in the case of the above-mentioned method, since it is construction on land, there is almost no water contained at the same time. For example, Patent Documents 6 and 7 show blending test examples for soil having a moisture content of 32%. Yes. In such cases, the original soil does not have the property of flowing, and the fluidity of the mixed material is ensured as expected when the mixed material of dredged soil and steelmaking slag is constructed in the sea. Can not.

そこで、さらに検討を進めた結果、陸上で使用しているような、常に空気にさらされている土壌と、浚渫土のように空気と遮断されている土壌とでは、環境が全く異なり、反応経路を含めて考慮すべきであることが判った。さらに、浚渫土は陸上の土壌とは異なり間隙水を多量に含んでいるため、その影響が無視できないことも判った。通常、海域の浚渫土の間隙水であるので、そのイオン種や濃度は海水とほぼ同じであると考えられていたが、実際の状況を調査してみると、原因は不明であるが、浚渫土によって間隙水に含まれるイオン種の濃度が大きく異なることが判明した。そして、間隙水の水質のなかで、特にSO濃度が不足している場合に、強度発現性が低下していることを見出し、そこに必要な量のSOイオンを供給することによって、固化を進行させることができることを見出した。
図1に、海底から回収した浚渫土の間隙水を置換してそのSO濃度を25mg/L、1200mg/L、2400mg/Lと変えた上で、製鋼スラグを20体積%混合した材料について、強度発現(土壌硬度)を調べた結果を示す。なお、強度(土壌硬度)は山中式土壌硬度計(平面型)を用いて評価した。図1によれば、製鋼スラグを混合する前の浚渫土のSO濃度を高くすることで、混合材の強度が大幅に改善されることが判る。
As a result of further investigation, the environment is completely different between soil that is constantly exposed to air, such as that used on land, and soil that is isolated from air, such as dredged soil. It was found that this should be taken into account. Furthermore, it was found that dredged soil contains a large amount of pore water, unlike soil on land, and its influence cannot be ignored. Usually, it is pore water in dredged soil in the sea area, so its ionic species and concentration were thought to be almost the same as seawater, but when investigating the actual situation, the cause is unknown, It was found that the concentration of ionic species contained in pore water varies greatly depending on the soil. Then, in the water quality of pore water, especially when the SO 4 concentration is insufficient, the strength development is found to be reduced, and solidification is achieved by supplying a necessary amount of SO 4 ions thereto. Has been found to be able to proceed.
1, the SO 4 concentration 25 mg / L by substituting pore water dredged material recovered from the seabed, 1200 mg / L, in terms of changing the 2400 mg / L, the material and the steel slag were mixed 20% by volume, The result of examining the strength expression (soil hardness) is shown. In addition, intensity | strength (soil hardness) was evaluated using the Yamanaka type soil hardness meter (plane type). According to FIG. 1, it can be seen that the strength of the mixed material is greatly improved by increasing the SO 4 concentration of the clay before mixing the steelmaking slag.

実水域において、水域によって浚渫土の間隙水のSO濃度が小さくなる原因は、必ずしも明確ではないが、淡水が入り込むことによる希釈、海底に有機物が堆積することによって、酸化還元電位が低下して硫酸塩が硫化物に変異する、などの原因が考えられる。
以上の調査結果から、鉄鋼スラグを混合する浚渫土の間隙水のSO濃度を十分に高めることにより、鉄鋼スラグを混合するだけでは強度が発現しない浚渫土であっても、鉄鋼スラグを混合した混合材の強度を発現させることができ、一方、鉄鋼スラグを混合すると強度が発現するような浚渫土では、強度をさらに高めることができることが判った。
In actual waters, the cause of the SO 4 concentration of the interstitial water of dredged material is reduced by water, but not necessarily clear, diluted by the fresh water enters, by organic matter deposited on the seabed, the oxidation-reduction potential is decreased Possible causes such as sulfate being mutated to sulfide.
From the above survey results, by sufficiently increasing the SO 4 concentration of the pore water in the clay mixed with steel slag, steel slag was mixed even in a clay that does not develop strength only by mixing steel slag. It has been found that the strength of the mixed material can be expressed, and on the other hand, the strength can be further increased in the clay where the strength is expressed when steel slag is mixed.

このため本発明の第一の改質方法では、浚渫土に対して、浚渫土の間隙水のSO濃度を1000mg/L以上、好ましくは1800mg/L以上とした上で鉄鋼スラグを混合するものである。なお、間隙水のSO濃度の測定は、例えば、浚渫土を遠心分離し、その上澄み部のSO濃度を測定する。
浚渫土の間隙水のSO濃度を高めるには、当該浚渫土の間隙水のSO濃度よりも高いSO濃度の溶液を浚渫土に添加すればよいが、標準的な海水にはSOが2400mg/L程度含まれているため、間隙水のSO濃度を高める簡便な方法としては、もとの浚渫土の水分調整する際に海水を加える方法がある。また、海水以外のSOイオン含有溶液を添加してもよい。海水などのSOイオン含有溶液を浚渫土に添加するのは、浚渫土を掘り出した後、鉄鋼スラグを混合するまでの任意のタイミングで行うことができる。
なお、浚渫土の間隙水のSO濃度を高める場合において、SO濃度の上限は特にないが、SO濃度が高くなりすぎるとエトリンガイトが過剰に生成するため、浚渫土の種類によっては膨張崩壊が起こるおそれがあるので、2800mg/L程度を上限することが好ましい。
For this reason, in the first reforming method of the present invention, the steel slag is mixed with the clay after the SO 4 concentration of the pore water in the clay is 1000 mg / L or more, preferably 1800 mg / L or more. It is. The measurement of SO 4 concentration of interstitial water, for example, the dredged material is centrifuged to measure SO 4 concentration of the supernatant portion.
To increase the SO 4 concentration of the interstitial water of dredged soil, the solution of high SO 4 concentration than SO 4 concentration of the interstitial water of the dredged material may be added to the dredged soil, but standard seawater SO 4 Is contained at about 2400 mg / L, a simple method for increasing the SO 4 concentration of pore water is to add seawater when adjusting the water content of the original dredged soil. Also, SO 4 ion containing solution other than seawater may be added. The SO 4 ion-containing solution such as seawater can be added to the clay at any timing until the steel slag is mixed after digging the clay.
In addition, when increasing the SO 4 concentration of the interstitial water in the dredged soil, there is no particular upper limit on the SO 4 concentration, but if the SO 4 concentration is too high, ettringite is excessively generated, and depending on the type of dredged soil, expansion and collapse Therefore, it is preferable to set the upper limit of about 2800 mg / L.

また、本発明の第二の改質方法では、浚渫土に対して、鉄鋼スラグとともに石膏を混合するものであり、この方法は、石膏を加えて、より直接的に溶解あるいは反応させるものである。混合材(浚渫土+鉄鋼スラグ+石膏)中での石膏の割合は0.5体積%以上、好ましくは1.0体積%以上とする。石膏の割合が0.5体積%未満では、添加効果が十分に得られない。一方、石膏の割合が多くなると、均質に混合するために必要な時間が長くなったり、流動性を確保するために浚渫土中の水の再調整が必要となるため、混合材(浚渫土+鉄鋼スラグ+石膏)中での石膏の割合は3.0体積%以下が好ましい。このような石膏の添加量は、通常の陸上の土壌改質での石膏系材料の添加量(例えば、5〜20体積%(文献値))に比べてきわめて少量である。このように微量の石膏添加であれば、浚渫土と鉄鋼スラグとあわせて混合しても、混合材の流動性、換言すれば混合材の施工性を阻害することなく浚渫土を改質することができる。   Further, in the second modification method of the present invention, gypsum is mixed with steel slag with respect to the clay, and this method dissolves or reacts more directly by adding gypsum. . The proportion of gypsum in the mixed material (kneaded clay + steel slag + gypsum) is 0.5% by volume or more, preferably 1.0% by volume or more. When the proportion of gypsum is less than 0.5% by volume, the effect of addition cannot be obtained sufficiently. On the other hand, if the percentage of gypsum increases, the time required for homogeneous mixing becomes longer, or the water in the clay needs to be readjusted to ensure fluidity. The ratio of gypsum in steel slag + gypsum is preferably 3.0% by volume or less. The amount of gypsum added is extremely small compared to the amount of gypsum-based material added in normal land-based soil reforming (for example, 5 to 20% by volume (reference value)). In this way, if a small amount of gypsum is added, even if mixed with clay and steel slag, the fluidity of the mixed material, in other words, to improve the clay without impairing the workability of the mixed material. Can do.

本発明で使用する石膏の種類に特別な制限はないが、石膏のなかでも特に二水石膏が好ましい。本発明における浚渫土と鉄鋼スラグとの混合材は、流動性をもった状態で施工されるが、陸上の土質改良剤で主に使用される半水石膏では、半水石膏に水を取り込まれてしまうため、余剰に加水する必要があるためである。
石膏の添加・混合は、鉄鋼スラグの添加・混合と同時に行ってもよいし、鉄鋼スラグの添加・混合と相前後して行ってよい。
Although there is no special restriction | limiting in the kind of gypsum used by this invention, Dihydrate gypsum is especially preferable also in gypsum. The mixed material of dredged soil and steel slag in the present invention is constructed in a fluid state, but in the case of hemihydrate gypsum mainly used in land soil improvement agents, water is taken into the hemihydrate gypsum. This is because it is necessary to add water excessively.
Addition and mixing of gypsum may be performed simultaneously with the addition and mixing of steel slag, or may be performed before or after the addition and mixing of steel slag.

本発明の第一の改質方法や第二の改質方法のように、微量の水質の調整や石膏の添加により、浚渫土と鉄鋼スラグの混合材の固化が進行するようになるメカニズムは、必ずしも明確ではないが、エトリンガイトやタウマライトといった硫黄を含む結晶が生成する際に、反応阻害物質を結晶内に取り込んだり、吸着したりすることによって反応阻害物質による影響が軽減され、その結果として鉄鋼スラグが関与するポゾラン反応も機能することができるようになり、その結果、固化が進行して強度が発現することなどが考えられる。   As in the first reforming method and the second reforming method of the present invention, the mechanism that the solidification of the mixed material of the clay and the steel slag proceeds by adjusting a small amount of water quality and adding gypsum, Although not necessarily clear, when crystals containing sulfur such as ettringite and taumarite are produced, the influence of the reaction inhibitor is reduced by incorporating or adsorbing the reaction inhibitor into the crystal, and as a result, steel slag is reduced. It is possible that the pozzolanic reaction involving the saponification can also function, and as a result, solidification progresses and strength is developed.

以下、本発明法のその他の条件について説明する。
本発明において浚渫土に混合する鉄鋼スラグ(鉄鋼製造プロセスで発生するスラグ)としては、高炉スラグ、製鋼スラグ、鉱石還元スラグなどがある。高炉スラグには、高炉徐冷スラグ、高炉水砕スラグがある。また、製鋼スラグとしては、溶銑予備処理、転炉吹錬、鋳造などの工程で発生する製鋼系スラグ(例えば、脱炭スラグ、脱燐スラグ、脱硫スラグ、脱珪スラグ、造塊スラグなど)、電気炉スラグなどが挙げられる。この中でも、ポゾラン反応を有効に作用させる観点から製鋼系スラグが好ましく、なかでも転炉脱炭スラグが特に好ましい。
一般に鉄鋼スラグを使用する場合、事前にエージングが施される。エージングとは、大気中でウェザリングしたり、蒸気雰囲気中に一定期間置くことによって、スラグの体積安定性や表面鉱物の安定性を確保するものである。しかし、本発明の場合には、スラグ表面の化学的反応も強度発現に寄与しているため、エージングは特に必要としない。
Hereinafter, other conditions of the method of the present invention will be described.
In the present invention, the steel slag mixed in the clay (slag generated in the steel production process) includes blast furnace slag, steelmaking slag, ore reduction slag, and the like. Blast furnace slag includes blast furnace slow cooling slag and blast furnace granulated slag. In addition, as steelmaking slag, steelmaking slag generated in hot metal pretreatment, converter blowing, casting and other processes (for example, decarburized slag, dephosphorized slag, desulfurized slag, desiliconized slag, ingot slag, etc.), Examples include electric furnace slag. Among these, steelmaking slag is preferable from the viewpoint of effectively acting the pozzolanic reaction, and converter decarburization slag is particularly preferable.
In general, when steel slag is used, aging is performed in advance. Aging means securing the volume stability of slag and the stability of surface minerals by weathering in the air or placing in a steam atmosphere for a certain period of time. However, in the case of the present invention, aging is not particularly required because the chemical reaction on the slag surface also contributes to strength development.

鉄鋼スラグは、遊離CaO含有量が0.5質量%以上であることが好ましい。遊離CaO含有量が0.5質量%未満では、上述したようなポゾラン反応が十分に生じないおそれがある。但し、遊離CaO含有量が10質量%を超えるとアルカリ溶出量が多くなるため、遊離CaO含有量は10質量%以下が好ましい。
鉄鋼スラグの粒度は特に制限はないが、比表面積が小さいと反応性が低下するため、最大粒度を40mm以下とし、微粒分まで含む粒度(例えば、40−0mm、20−0mm、5−0mmなどの粒度)が好ましく、特に、礫状材料が混合することによる改良効果が得られるようにするため、40−0mmないし20−0mmの粒度が好ましい。
The steel slag preferably has a free CaO content of 0.5% by mass or more. If the free CaO content is less than 0.5% by mass, the pozzolanic reaction as described above may not be sufficiently generated. However, when the free CaO content exceeds 10% by mass, the amount of alkali elution increases, so the free CaO content is preferably 10% by mass or less.
The particle size of the steel slag is not particularly limited, but the reactivity decreases when the specific surface area is small, so the maximum particle size is 40 mm or less, and the particle size includes up to fine particles (for example, 40-0 mm, 20-0 mm, 5-0 mm, etc. In particular, a particle size of 40-0 mm to 20-0 mm is preferable in order to obtain an improvement effect by mixing the gravel-like material.

また、混合材中での鉄鋼スラグの割合(混合率)は10〜50体積%が好ましい。鉄鋼スラグの混合率が10体積%未満では、上述の礫状の鉄鋼スラグを混合させる利点が少なくなり、また、ポゾラン反応を作用させる鉄鋼スラグによる浚渫土の改質効果が小さくなる。一方、鉄鋼スラグの混合率が50体積%を超えると、浚渫土の割合が少なくなるので、浚渫土を有効利用するという意義が小さくなるとともに、施工性の管理やpHの制御が難しくなる。なお、後述するように混合材のフロー値は8.5以上が好ましいが、このフロー値を確保する観点からは、鉄鋼スラグの混合率は50体積%未満(特に48体積%以下)とすることが好ましい。
また、以上のような観点から、鉄鋼スラグの混合率のより好ましい範囲は15〜30体積%である。
Moreover, 10-50 volume% is preferable for the ratio (mixing rate) of the steel slag in a mixed material. When the mixing ratio of the steel slag is less than 10% by volume, the advantage of mixing the above-mentioned gravel-like steel slag is reduced, and the effect of reforming the clay by the steel slag acting on the pozzolanic reaction is reduced. On the other hand, when the mixing ratio of the steel slag exceeds 50% by volume, the ratio of the clay is reduced, so that the significance of effectively using the clay is reduced, and it becomes difficult to manage the workability and control the pH. As will be described later, the flow value of the mixed material is preferably 8.5 or more, but from the viewpoint of securing this flow value, the mixing ratio of steel slag should be less than 50% by volume (particularly 48% by volume or less). Is preferred.
Moreover, from the above viewpoint, the more preferable range of the mixing rate of steel slag is 15-30 volume%.

本発明を適用する浚渫土の種類にも特別な制限はないが、ポゾラン反応性が劣る浚渫土に適用することが有用である。特に、遊離CaO含有量が10質量%の鉄鋼スラグを20体積%混合しても7日後の一軸圧縮強度が30kN/mを超えない浚渫土は、鉄鋼スラグを混合するだけでは強度が発現しない浚渫土であるといえるので、このような浚渫土に適用することが有用である。ただし、本発明をポゾラン反応性が高い浚渫土(特に、遊離CaO含有量が10質量%の鉄鋼スラグを20体積%混合した場合に7日後の一軸圧縮強度が30kN/mを超える浚渫土)に適用することもでき、これにより、強度をさらに高めることができる。 Although there is no special restriction | limiting also in the kind of clay to which this invention is applied, it is useful to apply to the clay with inferior pozzolanic reactivity. In particular, even if 20 vol% of steel slag having a free CaO content of 10% by mass is mixed, the uniaxial compressive strength after 7 days does not exceed 30 kN / m 2 , and the strength does not develop only by mixing the steel slag. Since it can be said that it is dredged soil, it is useful to apply to such dredged soil. However, the present invention is a clay having high pozzolanic reactivity (particularly, a clay having a uniaxial compressive strength exceeding 30 kN / m 2 after 7 days when 20% by volume of steel slag having a free CaO content of 10% by mass is mixed) The strength can be further increased.

また、浚渫土の有機炭素量が多いと強度が発現しにくくなるので、本発明は有機炭素量が比較的多い浚渫土、なかでも有機炭素量が4質量%以上の浚渫土の改質に特に有用である。有機炭素量が4質量%未満の浚渫土であっても本発明の効果は得られるが、有機炭素量がその範囲では、基本的に製鋼スラグの量を調整することによって必要な強度は確保できる。一方、有機炭素量が4質量%以上の浚渫土は、鉄鋼スラグの混合だけでもある程度は強度が上昇するが、所望の強度を得ようとすると鉄鋼スラグを大量(例えば、混合材中の割合で50体積%を超える量)に混合する必要があり、本来有効利用する対象である浚渫土の使用比率が大幅に低下してしまう。   In addition, since the strength becomes difficult to develop when the amount of organic carbon in the clay is large, the present invention is particularly suitable for the modification of clay with a relatively large amount of organic carbon, especially a clay with an organic carbon content of 4% by mass or more. Useful. The effect of the present invention can be obtained even if the amount of organic carbon is less than 4% by mass. However, if the amount of organic carbon is within the range, the necessary strength can be secured basically by adjusting the amount of steelmaking slag. . On the other hand, the clay with an organic carbon content of 4% by mass or more increases the strength to some extent even when only the steel slag is mixed. In an amount exceeding 50% by volume), and the use ratio of the clay, which is originally the object of effective use, is greatly reduced.

浚渫土と鉄鋼スラグの混合材(浚渫土に鉄鋼スラグまたは鉄鋼スラグと石膏を混合した混合材。以下同様)は流動性を有するものであり、流動性の程度に特に制限はないが、施工性および鉄鋼スラグの粒子を浚渫土が安定的に覆う効果を考慮した場合、混合材のフロー値は8.5cm以上が好ましい。一方、混合材のフロー値が大きすぎると浚渫土と製鋼スラグの分離が起こってしまい、施工後の品質が確保できなかったり、施工直後に流出してしまうなどの問題を生じやすい。このためフロー値は23.0cm未満が好ましい。ここで、フロー値の測定は、JHS−A−313(日本道路公団規格)の「シリンダーフロー試験」に準拠して行う。浚渫土と鉄鋼スラグの混合材のフロー値は、浚渫土の含水率、浚渫土と鉄鋼スラグの混合割合などで調整することができる。   The mixed material of clay and steel slag (mixed material of steel slag or steel slag and gypsum mixed with clay. The same applies hereinafter) has fluidity, and there is no particular restriction on the degree of fluidity. And considering the effect of the clay covering the particles of steel slag stably, the flow value of the mixed material is preferably 8.5 cm or more. On the other hand, when the flow value of the mixed material is too large, separation of the clay and the steelmaking slag occurs, and it is likely to cause problems such as failure to secure the quality after construction or outflow immediately after construction. For this reason, the flow value is preferably less than 23.0 cm. Here, the flow value is measured in accordance with “Cylinder Flow Test” of JHS-A-313 (Japan Highway Public Corporation Standard). The flow value of the mixed material of the clay and the steel slag can be adjusted by the moisture content of the clay and the mixing ratio of the clay and the steel slag.

本発明(第二の改質方法)を実施するに当たっては、例えば、浚渫土の間隙水のSO濃度と乾燥後の有機炭素量を測定し、測定されたSO濃度と有機炭素量に応じて、下記(a)または(b)を行うようにすることができる。
(a)SO濃度が1000mg/L以上で、かつ有機炭素量が4質量%未満のときには、浚渫土に鉄鋼スラグのみを添加して混合する。
(b)SO濃度が1000mg/L未満または/および有機炭素量が4質量%以上のときには、浚渫土に鉄鋼スラグとともに石膏を混合し、この石膏の混合材中での割合を0.5体積%以上とする。
本発明により改質された浚渫土(混合材)は、浅場・干潟造成材をはじめ、水域での種々の用途に適用できる。
In carrying out the present invention (second reforming method), for example, the SO 4 concentration of the pore water in the clay and the amount of organic carbon after drying are measured, and the measured SO 4 concentration and the amount of organic carbon are measured. Then, the following (a) or (b) can be performed.
(A) When the SO 4 concentration is 1000 mg / L or more and the amount of organic carbon is less than 4% by mass, only steel slag is added to the clay and mixed.
(B) When the SO 4 concentration is less than 1000 mg / L or / and the amount of organic carbon is 4% by mass or more, gypsum is mixed with steel slag in the clay, and the proportion of this gypsum in the mixed material is 0.5 volume. % Or more.
The dredged soil (mixed material) modified according to the present invention can be applied to various uses in water areas including shallow ground and tidal flats.

東京湾の工業地帯エリアから回収された浚渫土を対象として、製鋼スラグを混合することで改質を行った。浚渫土の基本物性を表1に示す。これによると、強熱減量が比較的高く、有機分が多いことが示唆される。また、この浚渫土は、乾土に含まれるSOが2.6質量%と一般の浚渫土(0.8質量%以下)と比較して高いが、間隙水のSO濃度は780mg/Lと低レベルであった。なお、間隙水のSO濃度は、浚渫土を遠心分離し、その上澄み部のSO濃度を測定したものである。
製鋼スラグとしては、JIS A5015「道路用鉄鋼スラグ」においてCS20相当の粒度を持つ転炉脱炭スラグを用いた。この転炉脱炭スラグは、表乾密度が3.11、遊離CaO量が3質量%である。
For dredged soil recovered from the industrial area of Tokyo Bay, steelmaking slag was mixed and reformed. Table 1 shows the basic physical properties of the clay. This suggests that the loss on ignition is relatively high and the organic content is high. In addition, this dredged soil has a SO 4 content of 2.6% by mass in dry soil, which is higher than that of ordinary dredged soil (0.8% by mass or less), but the SO 4 concentration of pore water is 780 mg / L. And was at a low level. The pore water SO 4 concentration is obtained by centrifuging the clay and measuring the SO 4 concentration in the supernatant.
As steelmaking slag, converter decarburization slag having a particle size equivalent to CS20 in JIS A5015 “Steel Slag for Roads” was used. This converter decarburization slag has a surface dry density of 3.11 and a free CaO content of 3% by mass.

Figure 2016215191
Figure 2016215191

[実施例1]
浚渫土の間隙水のSO濃度を、SO濃度のみを変えた人工海水で置換することで調整した上で、これらの浚渫土と製鋼スラグを体積%で70(浚渫土):30(製鋼スラグ)の割合で混合し、混合材の養生後の強度を調査した。この混合材の強度の調査では、混合材をφ5cm×10cm高さのモールドに入れて養生し、浚渫土と製鋼スラグを混合して7日後の一軸圧縮強さを測定した。一軸圧縮強さの測定は、JIS A1108に規定されたコンクリートの圧縮強度試験方法に準拠して行った。
[Example 1]
After adjusting the pore water SO 4 concentration of the dredged soil with artificial seawater with only the SO 4 concentration changed, the dredged soil and the steelmaking slag were 70% (volumetric): 30 (steel making) The strength after curing of the mixed material was investigated. In the investigation of the strength of the mixed material, the mixed material was put in a mold having a height of φ5 cm × 10 cm, cured, mixed with clay and steelmaking slag, and uniaxial compressive strength after 7 days was measured. The measurement of the uniaxial compressive strength was performed in accordance with the compressive strength test method for concrete defined in JIS A1108.

図2に測定結果(図2の横軸は、製鋼スラグを混合する前の浚渫土の間隙水のSO濃度である)を示す。これによると、間隙水のSO濃度(製鋼スラグを混合する前の間隙水のSO濃度)が1000mg/L未満の浚渫土では、混合材の強度は十分に発現していない。これに対して、間隙水のSO濃度が1000mg/L以上の浚渫土では、混合材の強度が発現し、特に、SO濃度が1800mg/L以上の浚渫土では、7日後の一軸圧縮強さが約200kN/mとなり、海底地盤として十分利用できる強度が確保できている。このように、浚渫土の間隙水のSO濃度を十分に高めた状態で製鋼スラグを添加・混合することにより、ただ単に製鋼スラグを混合するだけでは強度発現しないような浚渫土であっても、強度を安定的に発現させることができる。 FIG. 2 shows the measurement results (the horizontal axis in FIG. 2 is the SO 4 concentration of pore water in the clay before mixing the steelmaking slag). According to this, SO 4 concentration of the interstitial water (SO 4 concentration of interstitial water before mixing the steelmaking slag) is in the dredged soil of less than 1000 mg / L, the intensity of the mixing material is not sufficiently exhibited. On the other hand, when the pore water SO 4 concentration is 1000 mg / L or more, the strength of the mixed material is expressed. In particular, when the SO 4 concentration is 1800 mg / L or more, the uniaxial compressive strength after 7 days. The strength is about 200 kN / m 2 , and sufficient strength can be secured for the seabed ground. As described above, even when the steelmaking slag is added and mixed in a state where the SO 4 concentration of the pore water in the dredged soil is sufficiently increased, even if the dredged soil does not exhibit strength simply by mixing the steelmaking slag. , The strength can be stably expressed.

[実施例2]
浚渫土に製鋼スラグとともに石膏を混合し、混合材の養生後の強度を調査した。浚渫土、製鋼スラグ、石膏の配合割合は、浚渫土を70体積%、製鋼スラグ+石膏を30体積%で固定し、石膏の割合を全体の0〜1.0体積%の範囲で変えた。この混合材の強度の調査では、上述のとおり製鋼スラグとして20−0mmの粒度のものを用い、混合材をφ10cm×20cm高さのモールドに入れて養生し、浚渫土と製鋼スラグ(および石膏)を混合して7日後と、28日後の一軸圧縮強さをそれぞれ測定した。石膏としては、二水石膏(吉野石膏(株)製、表乾密度2.32)を用いた。混合材の一軸圧縮強さの測定は、JIS A1108に規定されたコンクリートの圧縮強度試験方法に準拠して行った。
図3に測定結果を示す。これによると、石膏の添加量が0.3体積%添加までは変化がほとんど見られないが、0.5体積%になると強度の上昇が明確になり、1.0体積%ではさらに高くなり、陸上の改良土としても使用できるレベルまで強度が上昇している。
[Example 2]
Gypsum was mixed with the steelmaking slag in the clay, and the strength after curing of the mixed material was investigated. The mixing ratio of the clay, the steelmaking slag, and the gypsum was fixed at 70 volume% for the clay, and 30 volume% for the steelmaking slag + gypsum, and the ratio of the gypsum was changed within the range of 0 to 1.0 volume%. In the investigation of the strength of the mixed material, as described above, a steelmaking slag having a particle size of 20-0 mm is used, and the mixed material is cured in a mold having a height of φ10 cm × 20 cm, and clay and steelmaking slag (and gypsum) are used. The uniaxial compressive strength after 7 days and 28 days after mixing was measured. As gypsum, dihydrate gypsum (manufactured by Yoshino Gypsum Co., Ltd., surface dry density 2.32) was used. The uniaxial compressive strength of the mixed material was measured in accordance with the concrete compressive strength test method defined in JIS A1108.
FIG. 3 shows the measurement results. According to this, almost no change is seen until the addition amount of gypsum is 0.3 volume% addition, but when the volume is 0.5 volume%, the increase in strength becomes clear, and at 1.0 volume%, it becomes higher, The strength has risen to a level where it can be used as land improvement soil.

また、表1の浚渫土とは異なる場所(東京湾沿岸部)で回収された表2に示す基本物性の浚渫土を対象とし、石膏(添加量0.5体積%)を添加した混合材と、石膏を添加しない混合材であって、それぞれ製鋼スラグの混合率(混合材中での割合)を変化させたものについて、28日後の一軸圧縮強さを測定した結果を図4に示す。これによると、製鋼スラグの混合率に関わりなく、石膏の添加によって強度が上昇しているが、特に製鋼スラグを10体積%以上混合することが有効であることが判る。また、その際のフロー値の測定結果を図5に示す。これによれば、製鋼スラグの混合率が大きいとフロー値が小さくなり、施工性が低下するが、混合率が50体積%未満(特に48体積%以下)であれば、フロー値は8.5以上を確保できており、安定した施工性が確保できていることが確認された。   In addition, for the clay with the basic physical properties shown in Table 2 collected in a place different from the dredged soil in Table 1 (the coastal area of Tokyo Bay), FIG. 4 shows the results of measuring the uniaxial compressive strength after 28 days for each of the mixed materials to which gypsum was not added and the mixing ratio of steelmaking slag (the ratio in the mixed material) was changed. According to this, regardless of the mixing rate of the steelmaking slag, the strength is increased by the addition of gypsum, but it can be seen that mixing 10% by volume or more of the steelmaking slag is particularly effective. Moreover, the measurement result of the flow value in that case is shown in FIG. According to this, when the mixing rate of steelmaking slag is large, the flow value becomes small and the workability decreases, but if the mixing rate is less than 50% by volume (particularly 48% by volume or less), the flow value becomes 8.5. As a result, it was confirmed that stable workability was secured.

Figure 2016215191
Figure 2016215191

Claims (7)

鉄鋼スラグを混合して浚渫土の改質を行う方法において、
浚渫土に対して、浚渫土の間隙水のSO濃度を1000mg/L以上とした上で鉄鋼スラグを混合することを特徴とする浚渫土の改質方法。
In the method of reforming the clay by mixing steel slag,
A method for modifying dredged soil, comprising mixing steel slag after setting the SO 4 concentration of pore water in the dredged soil to 1000 mg / L or more.
鉄鋼スラグを混合して浚渫土の改質を行う方法において、
浚渫土に対して、鉄鋼スラグとともに石膏を混合し、該石膏の混合材中での割合を0.5体積%以上とすることを特徴とする浚渫土の改質方法。
In the method of reforming the clay by mixing steel slag,
A method for reforming clay, comprising mixing gypsum with steel slag with respect to the clay and setting the proportion of the gypsum in the mixed material to 0.5% by volume or more.
浚渫土が、遊離CaO含有量が10質量%の鉄鋼スラグを20体積%混合しても7日後の一軸圧縮強度が30kN/mを超えない浚渫土であることを特徴とする請求項1または2に記載の浚渫土の改質方法。 The clay is a clay whose uniaxial compressive strength after 7 days does not exceed 30 kN / m 2 even when 20% by volume of steel slag having a free CaO content of 10% by mass is mixed. 2. The method for reforming clay according to 2. 浚渫土に鉄鋼スラグまたは鉄鋼スラグと石膏を混合した混合材のフロー値が8.5cm以上であることを特徴とする請求項1〜3のいずれかに記載の浚渫土の改質方法。   The method for reforming clay according to any one of claims 1 to 3, wherein the flow value of the mixed material obtained by mixing steel slag or steel slag and gypsum into the clay is 8.5 cm or more. 浚渫土が、有機炭素量が4質量%以上の浚渫土であることを特徴とする請求項1〜4のいずれかに記載の浚渫土の改質方法。   The method for reforming a clay according to any one of claims 1 to 4, wherein the clay is a clay having an organic carbon content of 4% by mass or more. 鉄鋼スラグは遊離CaOを0.5質量%以上含むことを特徴とする請求項1〜5のいずれかに記載の浚渫土の改質方法。   The method for reforming clay according to any one of claims 1 to 5, wherein the steel slag contains 0.5 mass% or more of free CaO. 鉄鋼スラグを混合して浚渫土の改質を行う方法において、
浚渫土の間隙水のSO濃度と乾燥後の有機炭素量を測定し、測定されたSO濃度と有機炭素量に応じて、下記(a)または(b)を行うことを特徴とする浚渫土の改質方法。
(a)SO濃度が1000mg/L以上で、かつ有機炭素量が4質量%未満のときには、浚渫土に鉄鋼スラグのみを添加して混合する。
(b)SO濃度が1000mg/L未満または/および有機炭素量が4質量%以上のときには、浚渫土に鉄鋼スラグとともに石膏を混合し、該石膏の混合材中での割合を0.5体積%以上とする。
In the method of reforming the clay by mixing steel slag,
Measure the SO 4 concentration of pore water in the dredged soil and the amount of organic carbon after drying, and perform the following (a) or (b) depending on the measured SO 4 concentration and the amount of organic carbon: Soil reforming method.
(A) When the SO 4 concentration is 1000 mg / L or more and the amount of organic carbon is less than 4% by mass, only steel slag is added to the clay and mixed.
(B) When the SO 4 concentration is less than 1000 mg / L or / and the amount of organic carbon is 4% by mass or more, gypsum is mixed with steel slag in the clay, and the proportion of the gypsum in the mixed material is 0.5 volume. % Or more.
JP2016094962A 2015-05-15 2016-05-11 How to improve dredged soil Active JP6269721B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015099637 2015-05-15
JP2015099637 2015-05-15

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2017222442A Division JP6658718B2 (en) 2015-05-15 2017-11-20 How to modify dredged soil

Publications (2)

Publication Number Publication Date
JP2016215191A true JP2016215191A (en) 2016-12-22
JP6269721B2 JP6269721B2 (en) 2018-01-31

Family

ID=57579371

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2016094962A Active JP6269721B2 (en) 2015-05-15 2016-05-11 How to improve dredged soil
JP2017222442A Active JP6658718B2 (en) 2015-05-15 2017-11-20 How to modify dredged soil
JP2019195262A Active JP7133281B2 (en) 2015-05-15 2019-10-28 Dredged soil modification method

Family Applications After (2)

Application Number Title Priority Date Filing Date
JP2017222442A Active JP6658718B2 (en) 2015-05-15 2017-11-20 How to modify dredged soil
JP2019195262A Active JP7133281B2 (en) 2015-05-15 2019-10-28 Dredged soil modification method

Country Status (1)

Country Link
JP (3) JP6269721B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021122177A (en) * 2020-01-31 2021-08-30 日本製鉄株式会社 Soil preparation method for growing benthic organism and method for growing benthic organism
JP7365187B2 (en) 2019-10-09 2023-10-19 五洋建設株式会社 Method for improving dredged soil

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61238398A (en) * 1985-04-17 1986-10-23 Nippon Jiryoku Senko Kk Preparation of submerged sludge curing material
JPH0860152A (en) * 1994-08-17 1996-03-05 Nippon Steel Corp Method for hardening soil
JP2005133309A (en) * 2003-10-28 2005-05-26 Nippon Steel Corp Waters environmental recovery material for tidal marsh and shallow place
JP2006214084A (en) * 2005-02-01 2006-08-17 Jfe Steel Kk Method for developing shallows and the like
WO2010116602A1 (en) * 2009-03-30 2010-10-14 新日本製鐵株式会社 Method for backfilling subaqueous borrow pit
JP2011206625A (en) * 2010-03-29 2011-10-20 Jfe Steel Corp Method for modifying dredged soil
JP2015074914A (en) * 2013-10-08 2015-04-20 新日鐵住金株式会社 Modified soil strength prediction method

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09100470A (en) * 1995-08-03 1997-04-15 Nippon Steel Corp Hardening of soil
JP2004315662A (en) * 2003-04-16 2004-11-11 Chiyoda Eco Recycle Kk Soil conditioner and soil conditioning method
WO2007035101A2 (en) * 2005-09-26 2007-03-29 Stichting Energieonderzoek Centrum Nederland Composition comprising active charcoal, steel slag and contaminated material and use thereof
JP4802813B2 (en) 2006-03-29 2011-10-26 栗田工業株式会社 Underground drilling hole backfilling method
JP5645297B2 (en) * 2008-11-17 2014-12-24 日新製鋼株式会社 Solidifying agent
JP5135552B2 (en) * 2009-04-09 2013-02-06 新日鐵住金株式会社 Method for producing steelmaking slag for water injection
CA2767740A1 (en) * 2009-06-11 2010-12-16 Sweetwater Environmental Solutions, Llc Process for enhanced remediation of contaminated wastewaters, soils and wasteforms
JP5742477B2 (en) * 2011-05-31 2015-07-01 新日鐵住金株式会社 How to backfill the Ogikubo land

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61238398A (en) * 1985-04-17 1986-10-23 Nippon Jiryoku Senko Kk Preparation of submerged sludge curing material
JPH0860152A (en) * 1994-08-17 1996-03-05 Nippon Steel Corp Method for hardening soil
JP2005133309A (en) * 2003-10-28 2005-05-26 Nippon Steel Corp Waters environmental recovery material for tidal marsh and shallow place
JP2006214084A (en) * 2005-02-01 2006-08-17 Jfe Steel Kk Method for developing shallows and the like
WO2010116602A1 (en) * 2009-03-30 2010-10-14 新日本製鐵株式会社 Method for backfilling subaqueous borrow pit
JP2011206625A (en) * 2010-03-29 2011-10-20 Jfe Steel Corp Method for modifying dredged soil
JP2015074914A (en) * 2013-10-08 2015-04-20 新日鐵住金株式会社 Modified soil strength prediction method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7365187B2 (en) 2019-10-09 2023-10-19 五洋建設株式会社 Method for improving dredged soil
JP2021122177A (en) * 2020-01-31 2021-08-30 日本製鉄株式会社 Soil preparation method for growing benthic organism and method for growing benthic organism
JP7323808B2 (en) 2020-01-31 2023-08-09 日本製鉄株式会社 Method for preparing soil for cultivating benthic organisms and method for cultivating benthic organisms

Also Published As

Publication number Publication date
JP2018065131A (en) 2018-04-26
JP2020019017A (en) 2020-02-06
JP7133281B2 (en) 2022-09-08
JP6269721B2 (en) 2018-01-31
JP6658718B2 (en) 2020-03-04

Similar Documents

Publication Publication Date Title
Arribas et al. Electric arc furnace slag and its use in hydraulic concrete
JP5728845B2 (en) Method for estimating strength of modified dredged soil and method for modifying dredged soil
JPWO2010116602A1 (en) How to backfill the Ogikubo land
JP7133281B2 (en) Dredged soil modification method
JP5047745B2 (en) Ground improvement material
CN107935509A (en) One kind is used for the cured anti-sulphates corrosive curing agent of ocean sludge
JP6662046B2 (en) Method for producing solidified body containing mud
JP2012031618A5 (en)
JP2024045574A (en) Method for producing modified soil of high water content mud
JP5790597B2 (en) Method for predicting strength of modified soil and method for producing modified soil using the same
JP5318013B2 (en) How to improve dredged soil
Ma et al. Using recycled aggregate and powder from high-strength mortar waste for durable cement-based materials: Microstructure and chloride transport
Hussan et al. Co-valorization of sediments incorporating high and low organic matter with alkali-activated GGBS and hydraulic binder for use in road construction
JP6142760B2 (en) Strength prediction method for modified soil
JP2018002509A (en) Neutralization suppression of cement-based cured product and chloride ion permeation suppression method
CN112500101A (en) Anti-cracking drilling fluid rock debris curing agent and using method thereof
JP2003034562A (en) Hydraulic composition and hydrated hardened body
KR101148916B1 (en) Solidifying agent and method for solidifying soft ground using the same
Ahmad et al. Self-compacting concrete with partially substitution of waste marble: a review
JP5742477B2 (en) How to backfill the Ogikubo land
JP6464904B2 (en) Method for predicting strength of modified soil and method for producing modified soil
Rajagopalan et al. Evaluation of sulfate resistance of cement mortars with the replacement of fine stone powder
JP2015101830A (en) Sand arrestation soil cement method utilizing organic soil as construction material
KR100913268B1 (en) Hardening Material To Solidify Frail Ground
JP2001040652A (en) Soil improvement method and solidifying material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170921

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171218

R150 Certificate of patent or registration of utility model

Ref document number: 6269721

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250