JP4802813B2 - Underground drilling hole backfilling method - Google Patents

Underground drilling hole backfilling method Download PDF

Info

Publication number
JP4802813B2
JP4802813B2 JP2006092079A JP2006092079A JP4802813B2 JP 4802813 B2 JP4802813 B2 JP 4802813B2 JP 2006092079 A JP2006092079 A JP 2006092079A JP 2006092079 A JP2006092079 A JP 2006092079A JP 4802813 B2 JP4802813 B2 JP 4802813B2
Authority
JP
Japan
Prior art keywords
water
layer
aquifer
permeable
backfilling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006092079A
Other languages
Japanese (ja)
Other versions
JP2007262831A (en
Inventor
義雄 紫竹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2006092079A priority Critical patent/JP4802813B2/en
Publication of JP2007262831A publication Critical patent/JP2007262831A/en
Application granted granted Critical
Publication of JP4802813B2 publication Critical patent/JP4802813B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)
  • Processing Of Solid Wastes (AREA)

Description

本発明は、地下を掘削して生じた掘削孔を埋め戻す方法に関し、特に上下が帯水層によって挟まれた不透水層を埋め戻す方法に関する。   The present invention relates to a method for refilling excavation holes generated by excavating underground, and particularly to a method for refilling an impermeable layer whose upper and lower sides are sandwiched between aquifers.

従来、有害物質で汚染された土壌や汚染土壌を流れる地下水を浄化する目的等で、地下を穿孔する地下工事が行なわれている。掘削により生じた孔は、周辺土壌の性状を考慮して適宜、選択された材料を用いて埋め戻される。例えば、地下水が流れる帯水層を貫く掘削孔を埋め戻す際は、砂等を掘削孔に充填することで埋め戻した部分が透水性の層となるようにする。一方、帯水層の下にある不透水層(「難透水層」とも称する)に穿たれた孔を埋め戻す場合は、粘土のような遮水性材料を用いることで埋め戻した部分を遮水性とする(例えば特許文献1)。   2. Description of the Related Art Conventionally, underground work for drilling underground has been performed for the purpose of purifying soil contaminated with harmful substances and groundwater flowing through contaminated soil. The hole generated by excavation is backfilled using a material selected as appropriate in consideration of the properties of the surrounding soil. For example, when the excavation hole penetrating the aquifer through which groundwater flows is backfilled, the backfilled portion is filled with sand or the like so as to become a water-permeable layer. On the other hand, when refilling a hole made in an impermeable layer (also referred to as a “non-permeable layer”) under the aquifer, the backfilled portion is made water-impervious by using a water-impervious material such as clay. (For example, Patent Document 1).

上述の地下掘削工事においては、表層土で覆われた地表近くの飽和層の下の帯水層、帯水層の下の不透水層を貫通し、さらに不透水層の下にあって被圧されている帯水層(被圧帯水層)にまで達する掘削が行なわれる場合がある。例えば、有害物質による汚染が被圧帯水層の地下水にまで及んでいる場合、被圧帯水層に達する大深度掘削を行い、掘削孔に浄化機能を有する浄化材を投入して浄化壁を設ける工事が行なわれる。
特許第3071308号公報
In the above-mentioned underground excavation work, it penetrates the aquifer below the saturated layer near the surface covered with surface soil, the impermeable layer below the aquifer, and further under the impermeable layer There are cases where excavation reaches the aquifer (contained aquifer). For example, if contamination by harmful substances extends to the groundwater of the confined aquifer, deep excavation reaching the confined aquifer is performed, and a purifying material having a purifying function is introduced into the excavation hole and the purification wall is Construction to install is performed.
Japanese Patent No. 3071308

ところで、被圧帯水層に達するような大深度掘削を行なう場合、被圧帯水層を流れる地下水にかかる圧力が、土重量により不透水層にかかる力を上回ることによって不透水層が押し上げられる「盤ぶくれ」と呼ばれる現象が生じることがある。「盤ぶくれ」現象は、大深度掘削により生じた掘削孔を砂等で埋め戻し、被圧帯水層の上の不透水層を遮水性材料で埋め戻す場合にも生じる。特に、不透水層を埋め戻す材料としてセメントミルクのように速やかに固化する材料を用いる場合、瞬時に遮水層を形成できる一方で、固化材が完全に固化する前に不透水層下部の被圧水による揚力が遮水層に加わることにより、遮水層が破壊されるおそれがある。   By the way, when performing deep excavation to reach the confined aquifer, the pressure applied to the groundwater flowing through the confined aquifer exceeds the force applied to the impermeable layer due to the soil weight, and the impermeable layer is pushed up. A phenomenon called “board bulge” may occur. The “board bulge” phenomenon also occurs when a drilling hole formed by deep excavation is backfilled with sand or the like, and an impermeable layer above a pressure-bearing aquifer is backfilled with a water-impervious material. In particular, when a material that quickly solidifies, such as cement milk, is used as a material for backfilling the impermeable layer, a water-impervious layer can be formed instantaneously, but before the solidified material is completely solidified, There is a possibility that the water shielding layer may be destroyed due to the lift from the pressurized water being applied to the water shielding layer.

このように、遮水性材料で掘削孔を埋め戻して形成された遮水層が被圧水により押し上げられて遮水層が破損すると、遮水層の上にある帯水層と遮水層の下の被圧帯水層との間で地下水が流動する。このため、被圧帯水層に至る掘削を伴う地下工事においては、盤ぶくれ現象を防止することが求められている。また、有害物質で汚染された被圧帯水層の地下水を原位置で浄化する場合、不透水層の上下の帯水層と被圧帯水層との間での地下水の流動を防止することが求められる。   In this way, when the impermeable layer formed by backfilling the excavation hole with the impermeable material is pushed up by the pressurized water and the impermeable layer breaks, the aquifer layer and the impermeable layer above the impermeable layer Groundwater flows between the lower confined aquifer. For this reason, in underground construction that involves excavation leading to a confined aquifer, it is necessary to prevent the blistering phenomenon. In addition, when purifying groundwater in a pressured aquifer contaminated with harmful substances in situ, prevent the flow of groundwater between the aquifer above and below the impermeable layer and the pressured aquifer. Is required.

本発明は上記課題に鑑みてなされ、被圧帯水層に達する掘削孔を埋め戻す際に、不透水層の掘削孔を遮水性材料で埋め戻して形成された遮水層が、被圧水の押し上げ力により破壊されることを回避できる地下掘削孔の埋め戻し工法を提供することを目的とする。   The present invention has been made in view of the above problems, and when the excavation hole reaching the confined aquifer is backfilled, the impermeable layer formed by backfilling the excavation hole of the impermeable layer with a water-impervious material is An object of the present invention is to provide a method for backfilling an underground excavation hole that can be prevented from being destroyed by the pushing-up force.

本発明では、不透水層の上下にある帯水層の掘削孔を砂等で埋め戻すとともに、乾燥した吸水膨張性の粒状物で不透水層の孔を埋め戻すことで、被圧帯水層からの揚圧力と不透水層の埋め戻した部分を押さえつける力とを徐々にバランスさせる。より具体的には、本発明は以下を提供する。   In the present invention, the excavation hole of the aquifer above and below the impermeable layer is backfilled with sand or the like and the hole of the impermeable layer is backfilled with dry water-absorbing expansive granular material, Gradually balance the lifting pressure from and the force to hold back the impermeable layer. More specifically, the present invention provides the following.

(1)帯水層、および該帯水層の下に位置する不透水層を貫通し、該不透水層の下に位置し被圧水が流れる被圧帯水層に達する地下掘削孔の埋め戻し工法であって、前記掘削孔の前記被圧帯水層に位置する部分に、汚染地下水の浄化機能を持つ浄化材及び実質的に吸水膨張性のない透水用粒状物を混合し充填して被圧透水層を形成する被圧帯水層埋め戻し工程と、前記掘削孔の前記不透水層に位置する部分に、含水比が15%以下の粒径5〜30mmの粒状ベントナイトからなる乾燥した吸水膨張性の遮水性粒状物を充填して遮水層を形成し、形成後から1時間までの間前記遮水層に地下水を流動可能とする不透水層埋め戻し工程と、前記掘削孔の前記帯水層に位置する部分に、汚染地下水の浄化機能を持つ浄化材及び透水用粒状物を混合し充填して透水層を形成する帯水層埋め戻し工程と、を含む地下掘削孔の埋め戻し工法。
(2)前記被圧透水層を形成した後、該被圧透水層の上面を転圧して平坦にする第1転圧工程をさらに含む(1)に記載の地下掘削孔の埋め戻し工法。
(3)前記遮水層を形成した後、該遮水層の上面を転圧して平坦にする第2転圧工程をさらに含む(1)または(2)に記載の地下掘削孔の埋め戻し工法
(4)前記透水用粒状物は、粒径0.01〜50mmの砂礫である(1)から()のいずれかに記載の地下掘削孔の埋め戻し工法
(1) Filling an underground excavation hole that penetrates the aquifer and the impermeable layer located under the aquifer and reaches the confined aquifer located under the impermeable layer and through which the pressurized water flows In the return method, a portion of the excavation hole located in the pressured aquifer is mixed with a purifying material having a function of purifying contaminated groundwater and granular material for water permeability that is substantially non-water-absorbable and expandable. A pressured aquifer backfilling step for forming a pressured water permeable layer and a portion of the excavation hole located in the water impermeable layer were dried with granular bentonite having a water content ratio of 15% or less and a particle size of 5 to 30 mm . by filling a water-swellable in water-blocking particulates to form a water shield layer; backfilled impermeable layer you flowable groundwater to the water shield layer between after forming up to 1 hour, the wellbore a portion located on the aquifer, the purification material and water permeation for granules having a purification function of groundwater contaminated by mixing Hama and underground borehole comprising the steps backfill aquifer to form a water-permeable layer, a buried back method.
(2) The backfilling method for an underground excavation hole according to (1), further comprising a first rolling step for rolling the pressure-permeable water layer and then flattening the upper surface of the pressure-permeable water layer.
(3) The backfilling method for an underground excavation hole according to (1) or (2), further comprising a second rolling step for rolling the upper surface of the water shielding layer and flattening the upper surface of the water shielding layer after forming the water shielding layer. .
(4 ) The underground digging hole backfilling method according to any one of (1) to ( 3 ), wherein the water-permeable granular material is gravel having a particle size of 0.01 to 50 mm .

「透水用粒状物」としては、実質的に吸水膨張性がなく、掘削孔に充填した場合に水の流動性を阻害しない層(透水層)を形成する任意の粒状物を使用できる。「実質的に吸水膨張性がない」とは、例えば、最大限まで吸水させた場合の吸水膨張率が10%未満、特に5%未満であればよく、より具体的には地盤工学会基準JGS番号2121−1998による吸水膨張性試験で測定した場合の吸水膨張率が10%未満、特に5%未満であればよい。   As the “water-permeable granular material”, any granular material that has substantially no water-swelling property and forms a layer (water-permeable layer) that does not impede the fluidity of water when filled in the excavation hole can be used. “Substantially no water-absorbing expansibility” means, for example, that the water-absorbing expansion rate is less than 10%, particularly less than 5% when water is absorbed to the maximum, and more specifically, JGSJ standard JGS It is only necessary that the water absorption expansion coefficient is less than 10%, particularly less than 5%, when measured by the water expansion test according to the number 2121-1998.

透水用粒状物の具体例としては、砂礫(以下、特に粒径が0.4mm以上2mm未満のものを「砂」、粒径が2mm以上のものを砂利または礫、粒径が10mmを超えるものを豆砂利と称して区別する場合がある)、水砕スラグ、およびガラス粒等が挙げられる。透水用粒状物は、透水係数が10−2〜10−3cm/sオーダーであることが好ましい。透水用粒状物は、粒径0.01〜50mmのものを好適に使用でき、特に砂礫を好適に使用できる。なお、砂(砂利)には川砂(川砂利)、山砂(山砂利)、海砂(海砂利)、陸砂(陸砂利)、および砕砂(砕石)が含まれるものとする。 Specific examples of the water-permeable granular material include gravel (hereinafter, “sand” having a particle diameter of 0.4 mm or more and less than 2 mm, gravel or gravel having a particle diameter of 2 mm or more, and a particle diameter exceeding 10 mm. May be referred to as bean gravel), granulated slag, and glass particles. The water-permeable granular material preferably has a water permeability coefficient of the order of 10 −2 to 10 −3 cm 2 / s. As the water-permeable granular material, those having a particle diameter of 0.01 to 50 mm can be suitably used, and particularly gravel can be suitably used. Sand (gravel) includes river sand (river gravel), mountain sand (mountain gravel), sea sand (sea gravel), land sand (land gravel), and crushed sand (crushed stone).

「吸水膨張性の遮水性粒状物」の吸水膨張性としては、例えば、最大限まで吸水させた場合の吸水膨張率、特にJGS番号2121−1998による吸水膨張性試験で測定した場合の吸水膨張率が20%以上、特に30%以上であることが好ましい。また、遮水性としては透水係数が10−6〜10−8cm/sオーダーであることが好ましい。 The water-absorbing expansibility of the “water-absorbing expansible water-impervious granular material” includes, for example, the water-absorbing expansivity when water is absorbed to the maximum, particularly the water-absorbing expansivity measured by a water-absorbing expansibility test according to JGS No. 2121-1998 Is preferably 20% or more, more preferably 30% or more. Moreover, it is preferable that a water permeability coefficient is 10 <-6 > -10 < -8 > cm < 2 > / s order as water-imperviousness.

遮水性粒状物は、粒径が5〜30mm、特に15〜25mmであることが好ましい。粒径が小さすぎると被圧水の押上げ力がゆるやかに抜け難い一方、粒径が大きすぎると遮水性が確保できないおそれが生じる。遮水性粒状物の具体例としては、モンモリロナイト、バイデライト、サポナイト、ヘクトライト、およびソーコナイト等のスメクタイト系膨潤性粘土鉱物を含む粒状物が挙げられる。特に、モンモリロナイトを主成分とするベントナイトは吸水膨張性が高く、好適に使用できる。粒状の粘土鉱物としては、採掘物を破砕して乾燥させた天然系のもの(実質的に未加工のもの)を用いてもよく、膨張制御剤添加や成形等の加工を施したものを用いてもよい。   The water-impervious granular material preferably has a particle size of 5 to 30 mm, particularly 15 to 25 mm. If the particle size is too small, it is difficult to gently lift the pressurized water. On the other hand, if the particle size is too large, there is a possibility that water shielding cannot be ensured. Specific examples of the water-impervious granular material include granular materials containing smectite-based swellable clay minerals such as montmorillonite, beidellite, saponite, hectorite, and saconite. In particular, bentonite mainly composed of montmorillonite has a high water-swelling property and can be suitably used. Granular clay minerals may be natural (substantially unprocessed) obtained by crushing and drying mined materials, or those subjected to processing such as expansion control agent addition or molding May be.

遮水性粒状物は、乾燥した状態で掘削孔に投入する。具体的には、粒状のベントナイトのような粘土質の粒状物であれば、含水比15%以下、特に5〜10%程度であることが好ましい。含水比が高いと掘削孔に投入した直後から高い遮水性を奏する遮水層が形成されてしまい、粒径が小さすぎる場合と同様に遮水層が破壊されるおそれが生じる。   The water-impervious granular material is put into the excavation hole in a dry state. Specifically, in the case of a clay-like granular material such as granular bentonite, the water content is preferably 15% or less, particularly preferably about 5 to 10%. If the water content is high, a water-impervious layer having high water-imperviousness is formed immediately after being introduced into the excavation hole, and the water-impervious layer may be destroyed as in the case where the particle size is too small.

掘削孔に透水用粒状物または遮水性粒状物を充填した後、透水用粒状物または遮水性粒状物を充填してなる層は、それぞれ、平坦な面を有する重量物で圧して締め固めることがよい。かかる転圧を行なうことにより、掘削孔の埋め戻し部分を早期に安定化させることができ、また、埋め戻し工事後に埋め戻し部分が想定外に沈下することを防止できる。   After filling the drilling hole with water-permeable granular material or water-impervious granular material, the layers filled with water-permeable granular material or water-impervious granular material can be compacted by pressing with a heavy object having a flat surface, respectively. Good. By performing such rolling, the backfill portion of the excavation hole can be stabilized at an early stage, and the backfill portion can be prevented from sinking unexpectedly after the backfill work.

本発明では、上下2層の帯水層に挟まれた不透水層を、乾燥した粒状の遮水性材料で埋め戻すことにより、スラリー状の遮水性材料を用いる場合のように埋め戻された不透水層が瞬時に遮水性となることを回避する。そして、不透水層が次第に遮水性を増し被圧水により不透水層が破壊される前に、遮水層の上に埋め戻し材料を充填することにより、被圧帯水層の被圧水が不透水層に形成された遮水層を押し上げる力よりも、遮水層の上に充填した埋め戻し材料が遮水層を下向きに押さえ付ける力のほうが大きくなるようにさせることができる。この結果、盤ぶくれによる遮水層の破壊を防いで、漸次的に遮水性が向上して地下水の垂直方向での移動を阻止するに足る遮水性を奏する遮水層を形成できる。   In the present invention, the impermeable layer sandwiched between the two upper and lower aquifers is backfilled with a dry granular water-impervious material, so that the impermeable layer is backfilled as in the case of using a slurry-like water-impervious material. Avoid that the water-permeable layer becomes instantaneously water-impervious. And before the impervious layer gradually increases the water barrier and the impermeable layer is destroyed by the pressurized water, the backwater material is filled on the impermeable layer so that the pressurized water in the pressurized aquifer becomes The force with which the backfill material filled on the water-impervious layer presses the water-impervious layer downward can be made larger than the force that pushes up the water-impervious layer formed on the impermeable layer. As a result, it is possible to prevent the destruction of the water-impervious layer due to the board bulge, and to form a water-impervious layer that is water-impervious enough to gradually improve the water-impervious property and prevent movement in the vertical direction of groundwater.

以下、図面を参照して本発明について詳細に説明する。以下において、同一部材には同一符号を付し、説明を省略または簡略化する。   Hereinafter, the present invention will be described in detail with reference to the drawings. In the following, the same members are denoted by the same reference numerals, and description thereof is omitted or simplified.

図1は、本発明の一実施形態に係る埋め戻し工法により埋め戻される掘削孔Hが形成された地層断面図である。この例では、地表面11から地下約2mの深さまでは表層土で構成される飽和層1が存在し、飽和層1より下層に地下水が流れる第1帯水層2、第1帯水層2の下に粘土等が堆積した第1不透水層3、第1不透水層3の下に第2の帯水層(被圧帯水層)4が存在する。   FIG. 1 is a cross-sectional view of a formation in which excavation holes H to be backfilled by a backfilling method according to an embodiment of the present invention are formed. In this example, a saturated layer 1 composed of surface soil exists at a depth of about 2 m below the ground surface 11, and a first aquifer 2 and a first aquifer 2 in which groundwater flows below the saturated layer 1. A first impermeable layer 3 in which clay or the like is deposited below, and a second aquifer (pressured aquifer) 4 exists under the first impermeable layer 3.

被圧帯水層4の下には第2の不透水層5が存在し、さらに第2の不透水層5の下に第3の帯水層(被圧帯水層)、第3の不透水層等が存在する場合もある。以下においては、被圧帯水層4下部に達する地下掘削を行なう場合を例とし、第1帯水層2と被圧された帯水層である第2の帯水層4とに挟まれた第1不透水層3の盤ぶくれを回避して埋め戻し工事を行なう場合について説明する。しかし、本発明はこれに限られず、被圧された帯水層の上方にある任意の不透水層、例えば第2不透水層5の埋め戻し工事にも適用できる。   A second impermeable layer 5 exists below the pressurized aquifer 4, and further, a third aquifer (pressured aquifer), a third impermeable layer 5 exist below the second impermeable layer 5. There may be a water permeable layer or the like. In the following, the case where underground excavation reaching the lower part of the confined aquifer 4 is taken as an example, and it is sandwiched between the first aquifer 2 and the second aquifer 4 that is the confined aquifer. A case where the backfilling work is performed while avoiding the bulging of the first impermeable layer 3 will be described. However, the present invention is not limited to this, and can also be applied to backfilling an arbitrary impermeable layer above the pressurized aquifer, for example, the second impermeable layer 5.

第1帯水層2は厚さ約8m、第1不透水層3の厚さは約2m、被圧帯水層4の厚さは約6mで、掘削孔Hは地下を深さ約18mまで掘削することにより形成され、最深部は被圧帯水層4の下部界面とほぼ同一の深さにある。この地層において、第1帯水層2を流れる地下水の水位(第1水位)12は地下約2mの深さにある。被圧帯水層4を流れる地下水(被圧水)の水位(第2水位)14は、本来は図1にあるように被圧帯水層4の上部界面と同じ高さ、すなわち地下約12mにある。ただしこの例では、被圧帯水層4は上層の土重量等によって58.8kN/mの圧力で被圧されており、この被圧による揚力を考慮すると第2水位14は地下約4mとなる。そして、掘削孔H内の地下水位HWは、地下約5mにある。 The first aquifer 2 has a thickness of about 8 m, the first impermeable layer 3 has a thickness of about 2 m, the pressured aquifer 4 has a thickness of about 6 m, and the borehole H has a depth of about 18 m. It is formed by excavation, and the deepest part is at the same depth as the lower interface of the confined aquifer 4. In this formation, the water level (first water level) 12 flowing through the first aquifer 2 is about 2 m deep. The water level (second water level) 14 of the groundwater (pressured water) flowing through the pressured aquifer 4 is essentially the same height as the upper interface of the pressured aquifer 4 as shown in FIG. It is in. However, in this example, the aquifer aquifer 4 is pressurized at a pressure of 58.8 kN / m 2 due to the soil weight of the upper layer, and the second water level 14 is about 4 m below the ground considering the lift due to this pressure. Become. And the underground water level HW in the excavation hole H is about 5 m underground.

図2〜図5は、本発明の一実施形態に係る埋め戻し工法の実施手順説明図であり、図2は被圧帯水層埋め戻し工程を実施した状態を示す。本実施形態では、まず被圧帯水層埋め戻し工程として、図2に示すように透水用粒状物としての川砂Sを掘削孔Hに充填する。これにより、被圧帯水層4が掘削された部分(被圧帯水層孔)に透水性の埋め戻し層(被圧透水層)24を形成する。   2-5 is explanatory drawing of the implementation procedure of the backfilling construction method which concerns on one Embodiment of this invention, FIG. 2 shows the state which implemented the pressurized aquifer backfilling process. In the present embodiment, first, as the pressured aquifer backfilling step, the river sand S as the permeable granular material is filled into the excavation hole H as shown in FIG. As a result, a water-permeable backfill layer (pressured water layer) 24 is formed in a portion (pressured water layer hole) where the pressured aquifer 4 is excavated.

この実施形態では、透水用粒状物として粒径が0.4〜2mm程度で吸水膨張率が0.5%未満の川砂Sを用いている。この川砂Sを充填して形成した被圧透水層24は、一般的な帯水層と同等の透水性、すなわち10−2〜10−3cm/sオーダー程度の透水係数を有する。 In this embodiment, river sand S having a particle size of about 0.4 to 2 mm and a water absorption expansion rate of less than 0.5% is used as the water-permeable granular material. The pressurized permeable layer 24 formed by filling the river sand S has a water permeability equivalent to that of a general aquifer, that is, a water permeability coefficient of the order of 10 −2 to 10 −3 cm 2 / s.

川砂Sの充填量は、被圧透水層24の高さが、被圧帯水層4の上部界面とほぼ同じ高さとなるように、すなわち被圧透水層24の厚さが約6mとなる量とする。かかる量の川砂Sを掘削孔Hに投入する被圧帯水層埋め戻し工程を実施した後、被圧透水層24の上部表面を平坦化する転圧工程(第1転圧工程)を実施することが好ましい。   The filling amount of the river sand S is such that the height of the pressurized permeable layer 24 is substantially the same as the upper interface of the pressurized aquifer 4, that is, the thickness of the pressurized permeable layer 24 is about 6 m. And After performing the pressure-bearing aquifer backfilling process in which the amount of the river sand S is thrown into the excavation hole H, the compacting process (first rolling process) for flattening the upper surface of the pressurized water-permeable layer 24 is performed. It is preferable.

転圧工程では、先端に平らな面を有する重量物をクレーンや杭打ち機に取り付け、重量物を掘削孔Hに落下させて被圧透水層24の表面を転圧すればよい。図3は、第1転圧工程の実施手順を示す模式図である。図3に示すように、本実施形態では円錐の頂部を切り欠くことにより先端面を円板状の平らな面とした重量物Gを杭打ち機Cに取り付け、重量物Gを掘削孔H内部に打ち下ろすことで被圧透水層24の表面を締め固めて平坦にする。   In the rolling step, a heavy object having a flat surface at the tip is attached to a crane or a pile driving machine, and the heavy object is dropped into the excavation hole H to roll the surface of the pressurized water permeable layer 24. FIG. 3 is a schematic diagram showing an execution procedure of the first rolling step. As shown in FIG. 3, in this embodiment, a heavy object G having a disk-shaped flat surface is attached to the pile driving machine C by cutting out the top of the cone, and the heavy object G is attached to the inside of the excavation hole H. The surface of the pressurized water-permeable layer 24 is compacted and flattened.

第1転圧工程を実施した結果、被圧透水層24の上面位置が被圧帯水層4の上面より深くなった場合は、川砂Sを追加充填してもよい。転圧工程を実施する際、重量物Gの先端に巻尺を取り付けると、被圧透水層24上面の地下深度を測定できる。この場合、被圧透水層24の上面を被圧帯水層4の上面と面一にすることが容易となる。なお、第1転圧工程は、被圧透水層24を形成するために必要な川砂Sの全量を掘削孔Hに投入した後に実施してもよく、川砂Sの掘削孔Hへの投入回数を複数とし、各回の投入後に転圧処理を行なってもよい。   As a result of performing the first rolling step, river sand S may be additionally filled when the upper surface position of the pressurized water-permeable layer 24 becomes deeper than the upper surface of the pressurized aquifer 4. When carrying out the rolling step, if a tape measure is attached to the tip of the heavy object G, the underground depth of the upper surface of the pressurized water permeable layer 24 can be measured. In this case, it becomes easy to make the upper surface of the pressurized water-permeable layer 24 flush with the upper surface of the pressurized aquifer 4. Note that the first rolling step may be performed after the entire amount of river sand S necessary for forming the pressurized water-permeable layer 24 is input to the excavation hole H, and the number of times the river sand S is input to the excavation hole H is determined. There may be a plurality, and the rolling process may be performed after each injection.

被圧透水層24の上面を転圧して平坦化した後は、図4に示すように掘削孔Hに吸水膨張性の粒状物として、ベントナイトの鉱石を砕いて乾燥させた天然系の粒状ベントナイトBを充填して遮水層23を形成する不透水層埋め戻し工程を行なう。本実施形態の粒状ベントナイトBは、粒径が15〜25mm(平均粒径約20mm)、含水比5%、吸水膨張率が約30%である。   After the upper surface of the pressurized water-permeable layer 24 is rolled and flattened, natural granular bentonite B obtained by crushing and drying bentonite ore as a water-absorbing expandable granular material in the excavation hole H as shown in FIG. The impervious layer back-filling step of forming the water-impervious layer 23 by filling with water. The granular bentonite B of this embodiment has a particle size of 15 to 25 mm (average particle size of about 20 mm), a water content ratio of 5%, and a water absorption expansion coefficient of about 30%.

不透水層埋め戻し工程では、このような粒状ベントナイトBが被圧透水層24を構成する平坦化された川砂S層の上に堆積するように、粒状ベントナイトBを掘削孔Hに投入する。粒状ベントナイトBの充填量は、遮水層23の高さが、第1不透水層3の上部界面とほぼ同じ高さとなるように、すなわち遮水層23の厚さが約2mとなる量とする。かかる量の粒状ベントナイトBを掘削孔Hに投入した後、あるいは投入する過程では、粒状ベントナイトBを堆積させた層の表面を平坦化する転圧工程(第2転圧工程)を実施することが好ましい。   In the impervious layer backfilling step, the granular bentonite B is introduced into the excavation hole H so that such granular bentonite B is deposited on the flattened river sand S layer constituting the pressurized water permeable layer 24. The amount of the granular bentonite B is such that the height of the water-impervious layer 23 is substantially the same height as the upper interface of the first impermeable layer 3, that is, the amount of the thickness of the water-impervious layer 23 is about 2 m. To do. After the amount of granular bentonite B is charged into the excavation hole H or in the process of charging, a rolling step (second rolling step) for flattening the surface of the layer on which the granular bentonite B is deposited may be performed. preferable.

第2転圧工程は、上述した被圧帯水層埋め戻し工程に伴って実施する第1転圧工程と同様の手順で実施することができる。また、第2転圧工程を実施した結果、遮水層23の上面位置が沈下した場合は、粒状ベントナイトBを追加充填してもよい。遮水層23を形成し、必要に応じて転圧して上部表面を平坦化した後は、図5に示すように掘削孔Hに透水用粒状物としての川砂Sを充填して透水層22を形成する帯水層埋め戻し工程を行なう。   The second rolling step can be performed in the same procedure as the first rolling step that is performed in conjunction with the above-described pressurized aquifer backfilling step. Moreover, when the upper surface position of the water-impervious layer 23 sinks as a result of performing the second rolling step, the granular bentonite B may be additionally filled. After forming the water-impervious layer 23 and rolling the surface as necessary to flatten the upper surface, as shown in FIG. 5, the river sand S as the water-permeable granular material is filled in the excavation hole H to form the water-permeable layer 22. The aquifer backfilling step to be formed is performed.

本実施形態では透水層22を形成する川砂Sとして、被圧透水層24を形成するために用いた川砂Sと同一のものを用いている。しかし、透水層22の厚さや被圧帯水層4を流れる地下水にかかる圧力によっては、透水層22を構成する透水用粒状物は、被圧透水層24を構成する透水用粒状物と異なる物を用いてもよい。例えば、透水層22が薄い場合や被圧水の圧力が高い場合等は、透水層22を構成する透水用粒状物として、被圧透水層24を構成する透水用粒状物より真比重が0.1〜0.5程度、大きい物を用いてもよい。このようにすることにより、より速く被圧水による力に比べて、透水層22の重みにより遮水層23にかかる力が大きくなるようにして、遮水層23の破壊をより効果的に回避できる。   In the present embodiment, the river sand S that forms the water permeable layer 22 is the same as the river sand S used to form the pressurized water permeable layer 24. However, depending on the thickness of the water permeable layer 22 and the pressure applied to the groundwater flowing through the pressurized aquifer 4, the water permeable granular material constituting the water permeable layer 22 is different from the water permeable granular material constituting the pressure permeable water layer 24. May be used. For example, when the water-permeable layer 22 is thin or when the pressure of pressurized water is high, the true specific gravity of the water-permeable granular material constituting the water-permeable layer 24 is 0. You may use a large thing about 1-0.5. By doing so, the force applied to the water shielding layer 23 is increased by the weight of the water permeable layer 22 more quickly than the force caused by the pressurized water, and the destruction of the water shielding layer 23 is more effectively avoided. it can.

帯水層埋め戻し工程では、掘削孔Hに川砂Sを投入し、粒状ベントナイトBで構成された遮水層23の上に川砂Sを堆積させる。川砂Sの投入量は、透水層22の高さが帯水層2の上部界面とほぼ同じ高さとなるように、すなわち透水層22の厚さが約8mとなる量とする。川砂Sを堆積させて構成した透水層22の上部表面は、上述した重量物G等により転圧して平坦化することが好ましい。透水層22を転圧する場合の転圧工程は、前述した第1および第2の転圧工程と同様にすればよい。   In the aquifer backfilling step, the river sand S is introduced into the excavation hole H, and the river sand S is deposited on the water shielding layer 23 composed of the granular bentonite B. The amount of river sand S introduced is such that the height of the water permeable layer 22 is substantially the same as the upper interface of the aquifer 2, that is, the thickness of the water permeable layer 22 is about 8 m. It is preferable that the upper surface of the water permeable layer 22 formed by depositing the river sand S is flattened by rolling with the heavy material G described above. What is necessary is just to make the rolling process in the case of rolling the water-permeable layer 22 the same as the 1st and 2nd rolling process mentioned above.

透水層22の上部は、土等を被せる等して飽和層1と同様の性状の地表層を構成すればよく、工事目的によっては地表層を構成する代わりに引き続いて川砂Sを充填して透水層22上部界面を地表に露出させてもよい。   The upper part of the water permeable layer 22 may be formed with a surface layer having the same properties as the saturated layer 1 by covering with soil or the like, and depending on the construction purpose, the river layer S is continuously filled instead of forming the surface layer. The upper interface of the layer 22 may be exposed to the ground.

上述した本発明の一実施形態に係る埋め戻し工法では、粒状ベントナイトBは、掘削孔Hに投入される際は乾燥し、遮水層23は多くの間隙を有する状態であるため周辺の第1不透水層3に比べて透水性が高くなる。例えば、第2転圧工程を実施しない場合、遮水層23の透水係数は例えば10−2〜10−3cm/sオーダーとなることもあり、第2転圧工程を実施した場合でも遮水層23の透水係数は10−3〜10−5cm/sオーダー程度となる。 In the backfilling method according to the embodiment of the present invention described above, the granular bentonite B is dried when it is put into the excavation hole H, and the water shielding layer 23 is in a state having many gaps, so The water permeability is higher than that of the impermeable layer 3. For example, when the second rolling step is not performed, the water permeability coefficient of the water shielding layer 23 may be, for example, on the order of 10 −2 to 10 −3 cm 2 / s. The water permeability of the water layer 23 is on the order of 10 −3 to 10 −5 cm 2 / s.

このため、遮水層23を形成してから1〜5時間程度の間は、遮水層23の間を地下水が流動できる。すなわち、埋め戻し工法を施行する間、あるいは施行した直後は、被圧帯水層4の被圧水は遮水層23を通り抜けて透水層22へと移動することで、被圧透水層24から遮水層23に対して上向きにかかる被圧水による揚圧が開放される。   For this reason, groundwater can flow between the impermeable layers 23 for about 1 to 5 hours after forming the impermeable layers 23. That is, during or immediately after the backfilling method, the pressurized water in the pressurized aquifer 4 passes through the impermeable layer 23 and moves to the permeable layer 22, so that the pressurized permeable layer 24 Lifting by the pressurized water applied upward with respect to the water shielding layer 23 is released.

一方で、遮水層23を構成する粒状物は吸水膨張性であるため、埋め戻し工法を実施した後、漸次、地下水を吸収することにより膨潤し、粒状物同士の間隙が小さくなる。このため、埋め戻し工法実施後1週間程度で、遮水層23の透水性は低下し、周辺の第1不透水層3と同等の透水係数、例えば10−6〜10−8cm/sオーダー程度となる。 On the other hand, since the granular material which comprises the water-impervious layer 23 is a water absorption expansibility, after implementing a backfilling method, it swells by absorbing groundwater gradually, and the clearance gap between granular materials becomes small. For this reason, in about one week after the backfilling method is implemented, the water permeability of the water-impervious layer 23 decreases, and the water permeability coefficient equivalent to that of the surrounding first impermeable layer 3, for example, 10 −6 to 10 −8 cm 2 / s. It becomes the order grade.

本発明によれば、遮水層23の透水性が緩やかに低下する間に、遮水層23を挟む被圧透水層24および透水層22の安定性が高まる。すなわち、被圧帯水層4と帯水層3との間での地下水が流動性は漸減するため、遮水層23に対して上向きにかかる力より遮水層23を押さえ付ける力が大きいという状態を保ったまま、遮水層23の遮水性が次第に高くなる。この結果、盤ぶくれによる遮水層23の破壊を回避しつつ、遮水層23の遮水性を漸増させ、埋め戻し工事終了から所定期間(例えば3〜7日後)には周囲の第1不透水層3と同程度の遮水性を持たせることができる。   According to the present invention, the stability of the pressurized water permeable layer 24 and the water permeable layer 22 sandwiching the water shielding layer 23 is increased while the water permeability of the water shielding layer 23 is gradually decreased. That is, since the fluidity of the groundwater between the pressurized aquifer 4 and the aquifer 3 gradually decreases, the force for pressing the impermeable layer 23 is greater than the upward force applied to the impermeable layer 23. While maintaining the state, the water-imperviousness of the water-impervious layer 23 gradually increases. As a result, while avoiding the destruction of the impermeable layer 23 due to the blisters, the imperviousness of the impermeable layer 23 is gradually increased. Water impermeability comparable to that of the water permeable layer 3 can be provided.

上記実施形態は適宜、変更することができる。すなわち、地下工事に伴い生じた掘削孔を単純に埋め戻す場合に適用できるだけでなく、汚染地下水を浄化する浄化壁を地中に埋設する場合にも用いることができる。具体的には、川砂Sに例えば鉄粉を混合することにより、被圧透水層24および/または透水層22を、有機塩素化合物等を吸着、分解する機能を有する透過性反応壁とすることができる。かかる透過性反応壁を地中に埋設することにより、有機塩素化合物や重金属等により汚染された地下水を原位置で浄化できる。   The said embodiment can be changed suitably. In other words, it can be used not only for refilling excavation holes caused by underground work, but also for burying a purification wall for purifying contaminated groundwater. Specifically, by mixing, for example, iron powder into the river sand S, the pressurized water-permeable layer 24 and / or the water-permeable layer 22 is made to be a permeable reaction wall having a function of adsorbing and decomposing organic chlorine compounds and the like. it can. By burying such a permeable reaction wall in the ground, groundwater contaminated with organic chlorine compounds, heavy metals, etc. can be purified in situ.

このように、本発明によれば2層以上の帯水層に渡る地下掘削を行い、生じた掘削孔に浄化壁を形成する際、あるいは掘削孔を単純に埋め戻す際、盤ぶくれによる遮水層の破壊を回避して連続的にそれぞれの帯水層に透水層を形成できる。このため、特に2層以上の帯水層のそれぞれに透過性反応壁を埋設する場合は、1本の地下孔を掘削するだけで垂直方向に2以上の透過性反応壁を容易に設置できる。   Thus, according to the present invention, when underground excavation over two or more aquifers is performed and a purification wall is formed in the generated excavation hole, or when the excavation hole is simply backfilled, it is blocked by a blister. A water permeable layer can be continuously formed in each aquifer while avoiding destruction of the water layer. For this reason, especially when embedding permeable reaction walls in each of two or more aquifers, it is possible to easily install two or more permeable reaction walls in the vertical direction by simply excavating one underground hole.

本発明は、地下掘削工時に伴い生じた掘削孔の埋め戻し工事や、汚染地下水を浄化するための浄化壁の設置工事に用いることができる。   INDUSTRIAL APPLICABILITY The present invention can be used for backfilling of excavation holes generated during underground excavation work and installation work of a purification wall for purifying contaminated groundwater.

本発明の一実施形態に係る埋め戻し工法により埋め戻される掘削孔が形成された地層断面図である。1 is a cross-sectional view of a formation in which excavation holes to be backfilled by a backfilling method according to an embodiment of the present invention are formed. 前記埋め戻し工法の被圧帯水層埋め戻し工程の実施手順説明図である。It is an implementation procedure explanatory drawing of the pressure backed aquifer backfilling process of the backfilling method. 前記埋め戻し工法の転圧工程の実施手順説明図である。It is execution procedure explanatory drawing of the rolling pressure process of the said backfilling construction method. 前記埋め戻し工法の不透水層埋め戻し工程の実施手順説明図である。It is execution procedure explanatory drawing of the impermeable layer backfilling process of the said backfilling construction method. 前記埋め戻し工法の帯水層埋め戻し工程の実施手順説明図である。It is execution procedure explanatory drawing of the aquifer backfilling process of the said backfilling construction method.

符号の説明Explanation of symbols

1 飽和層
2 第1帯水層
3 第1不透水層
4 被圧帯水層
5 第2不透水層
22 透水層
23 遮水層
24 被圧透水層
S 川砂(透水用粒状物)
B 粒状ベントナイト(遮水性粒状物)
DESCRIPTION OF SYMBOLS 1 Saturation layer 2 1st aquifer 3 1st impermeable layer 4 Confined aquifer 5 5 2nd impermeable 22
B Granular bentonite (water-impervious granular material)

Claims (4)

帯水層、および該帯水層の下に位置する不透水層を貫通し、該不透水層の下に位置し被圧水が流れる被圧帯水層に達する地下掘削孔の埋め戻し工法であって、
前記掘削孔の前記被圧帯水層に位置する部分に、汚染地下水の浄化機能を持つ浄化材及び実質的に吸水膨張性のない透水用粒状物を混合し充填して被圧透水層を形成する被圧帯水層埋め戻し工程と、
前記掘削孔の前記不透水層に位置する部分に、含水比が15%以下の粒径5〜30mmの粒状ベントナイトからなる乾燥した吸水膨張性の遮水性粒状物を充填して遮水層を形成し、形成後から1時間までの間前記遮水層に地下水を流動可能とする不透水層埋め戻し工程と、
前記掘削孔の前記帯水層に位置する部分に、汚染地下水の浄化機能を持つ浄化材及び透水用粒状物を混合し充填して透水層を形成する帯水層埋め戻し工程と、を含む地下掘削孔の埋め戻し工法。
In the backfilling method of underground excavation holes that penetrate the aquifer and the impermeable layer located under the aquifer and reach the confined aquifer located under the impermeable layer and through which the pressurized water flows There,
A portion of the excavation hole located in the pressured aquifer is mixed with a purifying material having a function of purifying contaminated groundwater and water- permeable granular material having substantially no water-swellability to form a pressurized water-permeable layer. A backwater aquifer backfilling step,
A portion of the excavation hole located in the impermeable layer is filled with a dry water-absorbing expandable water-impervious granular material composed of granular bentonite having a water content ratio of 15% or less and a particle size of 5 to 30 mm to form a water-impervious layer. a step back to the ground water fills impermeable layer you flowable to said water shield layer between after forming up to 1 hour,
An aquifer backfilling step in which a portion located in the aquifer of the excavation hole is mixed with a purification material having a purifying function for contaminated groundwater and a granular material for permeable to form a permeable layer by filling the subsurface Drilling hole backfilling method.
前記被圧透水層を形成した後、該被圧透水層の上面を転圧して平坦にする第1転圧工程をさらに含む請求項1に記載の地下掘削孔の埋め戻し工法。 The method for backfilling an underground excavation hole according to claim 1, further comprising a first rolling step for rolling the pressure-permeable water layer and rolling the upper surface of the pressure-permeable water layer to make it flat. 前記遮水層を形成した後、該遮水層の上面を転圧して平坦にする第2転圧工程をさらに含む請求項1または2に記載の地下掘削孔の埋め戻し工法。 The backfilling method for an underground excavation hole according to claim 1 or 2, further comprising a second rolling step for rolling and flattening the upper surface of the water shielding layer after forming the water shielding layer. 前記透水用粒状物は、粒径0.01〜50mmの砂礫である請求項1からのいずれかに記載の地下掘削孔の埋め戻し工法。 The backfilling method for an underground excavation hole according to any one of claims 1 to 3 , wherein the water-permeable granular material is gravel having a particle size of 0.01 to 50 mm.
JP2006092079A 2006-03-29 2006-03-29 Underground drilling hole backfilling method Active JP4802813B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006092079A JP4802813B2 (en) 2006-03-29 2006-03-29 Underground drilling hole backfilling method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006092079A JP4802813B2 (en) 2006-03-29 2006-03-29 Underground drilling hole backfilling method

Publications (2)

Publication Number Publication Date
JP2007262831A JP2007262831A (en) 2007-10-11
JP4802813B2 true JP4802813B2 (en) 2011-10-26

Family

ID=38636076

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006092079A Active JP4802813B2 (en) 2006-03-29 2006-03-29 Underground drilling hole backfilling method

Country Status (1)

Country Link
JP (1) JP4802813B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6009138B2 (en) * 2010-03-16 2016-10-19 住友不動産株式会社 Geothermal utilization system
JP6207149B2 (en) * 2011-11-28 2017-10-04 学校法人早稲田大学 Underground continuous water barrier method
JP6269721B2 (en) 2015-05-15 2018-01-31 Jfeスチール株式会社 How to improve dredged soil

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5736295A (en) * 1980-08-14 1982-02-27 Shimizu Construction Co Ltd
JPH0371308A (en) * 1989-08-11 1991-03-27 Toshiba Corp Origin detecting method for moving body
JP3164196B2 (en) * 1995-08-04 2001-05-08 株式会社大林組 Impermeable wall and method of constructing the same
JP3216014B2 (en) * 1997-11-27 2001-10-09 大成建設株式会社 Continuous underground water purification wall

Also Published As

Publication number Publication date
JP2007262831A (en) 2007-10-11

Similar Documents

Publication Publication Date Title
Booker et al. Barrier systems for waste disposal facilities
Zhou et al. Engineering issues on karst
Bhowmik et al. Failure analysis of a geomembrane lined reservoir embankment
Zhou et al. Management and mitigation of sinkholes on karst lands: an overview of practical applications
CN106759390A (en) A kind of rubble non-uniform pile composite construction and its construction method with draining and AsA -GSH cycle
US4222685A (en) Pond sealing
JP4802813B2 (en) Underground drilling hole backfilling method
CN103046564B (en) Comprehensive water controlling method applicable to waste dumps with confined water at waste dump bases
CN209114425U (en) A kind of irrigation canals and ditches that can normally use in a variety of contexts
JP2010101090A (en) Water-stop structure, construction method therefor, and method of performing water stop of anchor penetration part of seepage control member
Milanovic Prevention and remediation in karst engineering
Hore et al. In-pit tailings disposal at Langer Heinrich–tailings storage facilities in a unique hydrogeological setting
Sotil et al. Reducing long term risk at the Candelaria tailings storage facility
JP2001011847A (en) Mounting load increasing and decreasing method
CN111485941B (en) Construction method of rock cavern backfilled with industrial hazardous wastes
Al-Homoud et al. Marine stone columns to prevent earthquake induced soil liquefaction
JP4225245B2 (en) Underwater tunnel structure
JP2006312877A (en) Construction method for preventing leakage of water/drain for construction work of bank
Witt et al. Tailings management facilities–risks and reliability
Blight et al. Issues in the geotechnics of mining wastes and tailings
James et al. The use of waste rock inclusions in tailings impoundments to improve geotechnical and environmental performance
JP2007154603A (en) Uneven settlement preventing method for building
Kamon Remediation techniques by use of ground improvement
Jansen et al. Earthfill dam design and analysis
KR20190062066A (en) Soft ground improvement device and that method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090324

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110318

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110712

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110725

R150 Certificate of patent or registration of utility model

Ref document number: 4802813

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140819

Year of fee payment: 3