JP4225245B2 - Underwater tunnel structure - Google Patents

Underwater tunnel structure Download PDF

Info

Publication number
JP4225245B2
JP4225245B2 JP2004173539A JP2004173539A JP4225245B2 JP 4225245 B2 JP4225245 B2 JP 4225245B2 JP 2004173539 A JP2004173539 A JP 2004173539A JP 2004173539 A JP2004173539 A JP 2004173539A JP 4225245 B2 JP4225245 B2 JP 4225245B2
Authority
JP
Japan
Prior art keywords
water stop
plug
disposal
tunnel
underground
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004173539A
Other languages
Japanese (ja)
Other versions
JP2005350980A (en
Inventor
泰宏 須山
克 戸井田
Original Assignee
鹿島建設株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 鹿島建設株式会社 filed Critical 鹿島建設株式会社
Priority to JP2004173539A priority Critical patent/JP4225245B2/en
Publication of JP2005350980A publication Critical patent/JP2005350980A/en
Application granted granted Critical
Publication of JP4225245B2 publication Critical patent/JP4225245B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、地下坑道の止水プラグを用いた止水構造に関するものであり、特に放射性廃棄物やその他の有害な廃棄物を廃棄物地層処分施設の地下に掘削形成された処分坑道に埋設処分する場合に有効に適用される止水構造である。   TECHNICAL FIELD The present invention relates to a water stop structure using a water stop plug of an underground mine, and in particular, disposes radioactive waste and other harmful waste in a disposal mine formed in the underground of a waste geological disposal facility. It is a water stop structure that is applied effectively when
原子力発電から生じる放射性廃棄物のうち高レベル放射性廃棄物は、使用済核燃料の再処理工程で分離された液体廃棄物であり、放射能レベルが高いばかりでなく、長期間にわたって放射能を持ち続ける長寿命の放射性核種が数多く含まれている。そのため、このような高レベル放射性廃棄物は、ガラス原料と共にステンレス鋼製のキャニスターに溶かし込みガラス固化体として安定化処理し、冷却のため数10年間貯蔵した後、ガラス固化体が収納されたキャニスターをオーバーパックと称される厚肉鋼板製の密閉容器内に密閉収納するなどして廃棄体とし、この廃棄体を地下300m(法律により決定)より深い安定した地層中に埋設処分するようにしている。   Among the radioactive waste generated from nuclear power generation, high-level radioactive waste is liquid waste separated in the reprocessing process of spent nuclear fuel, and not only has a high level of radioactivity but also continues to have radioactivity for a long period of time. It contains many long-lived radionuclides. Therefore, such high-level radioactive waste is dissolved in a stainless steel canister together with glass raw materials, stabilized as a glass solidified body, stored for several decades for cooling, and then the canister in which the glass solidified body is stored. To be disposed of in a sealed container made of thick steel plate called overpack, and disposed of in a stable formation deeper than 300m underground (determined by law). Yes.
この廃棄体の地層処分方法としては、施工性、安全性、経済性の観点から、パネル方式が採用されている。高レベル放射性廃棄物の地層処分施設は、地上施設と地下施設とから構成されている。地下施設は、地上と地下を結ぶ立坑や斜坑等のアクセス坑道、地下深部に複数並列して水平に掘削形成された処分坑道、これら処分坑道に接続される主要坑道等から構成されている。処分坑道は区画されて独立した水平な処分パネルに分割されており、処分サイトの地質環境条件等に応じて、分散配置や多層配置等の柔軟なパネルレイアウトが可能とされ、また建設・操業・閉鎖の主要な作業を独立・並行して実施できるようにされている。   As a geological disposal method of this waste body, a panel method is adopted from the viewpoint of workability, safety, and economy. The geological disposal facility for high-level radioactive waste is composed of ground facilities and underground facilities. The underground facilities are composed of access shafts such as shafts and inclined shafts that connect the ground and underground, disposal tunnels that are formed by excavating horizontally in parallel in the deep underground, and main tunnels connected to these disposal tunnels. The disposal tunnel is divided and divided into independent horizontal disposal panels. Depending on the geological environment conditions of the disposal site, flexible panel layout such as distributed layout and multilayer layout is possible, and construction, operation, The main operation of the closure can be carried out independently and in parallel.
また、処分坑道における廃棄体の定置方式には、種々の方式が考えられているが、例えば、処分孔竪置き方式、処分坑道横置き方式がある。処分孔竪置き方式では、天然バリアとしての岩盤中に掘削形成された処分坑道の底版部から下に向って処分孔を鉛直に掘削形成し、トンネル軸方向には所定の間隔をおいて多数形成し、この処分孔内に人工バリアとして地下水や岩盤圧の影響を低減する緩衝材(ベントナイト等) を敷き詰めると共に、この緩衝材中に竪にした廃棄体を埋設定置している。処分坑道は埋め戻される。処分坑道横置き方式では、処分坑道内に緩衝材を敷き詰めると共に、この緩衝材中に横にした廃棄体をトンネル軸方向に所定の間隔をおいて埋設定置している。   In addition, various methods are considered for placing wastes in the disposal tunnels. For example, there are a disposal hole anchoring method and a disposal tunnel horizontal placement method. In the disposal hole anchoring method, disposal holes are drilled vertically from the bottom of the disposal tunnel formed in the rock as a natural barrier, and many are formed at predetermined intervals in the tunnel axis direction. In addition, a buffer material (such as bentonite) that reduces the influence of groundwater and rock pressure is laid as an artificial barrier in the disposal hole, and the waste that has been trapped is buried in the buffer material. The disposal tunnel is backfilled. In the disposal tunnel sideways system, a buffer material is laid down in the disposal tunnel, and wastes placed in the buffer material are buried at a predetermined interval in the tunnel axis direction.
このような地層処分での安全性を示すためには、高レベル放射性廃棄物に含まれる核種が地下水に乗って人間が住んでいる世界に届かないように、天然バリアとして透水係数が低い岩盤(花崗岩や泥岩など)を選択すると共に、掘削した処分坑道を確実に埋め戻し、核種の卓越した移行経路となる水みちを作らないことが要求されている。しかし、図3に示すように、地盤(花崗岩など健岩部)Aに掘削形成された処分坑道1の周辺には、掘削に伴う損傷と空洞形成による応力再配分により、透水性の高いゆるみ域2が形成され、このゆるみ域2が核種の卓越した移行経路になると考えられている。   In order to demonstrate the safety of such geological disposal, rocks with a low hydraulic conductivity as a natural barrier are used to prevent nuclides contained in high-level radioactive waste from reaching the world where humans live on groundwater ( Granite, mudstone, etc.), as well as ensuring that the excavated disposal mine is backfilled without creating a waterway that provides an excellent migration path for nuclides. However, as shown in FIG. 3, in the periphery of the disposal mine 1 excavated and formed in the ground (granite and other rocks) A, the loosened area 2 having high water permeability due to damage caused by excavation and stress redistribution due to cavity formation. This slack zone 2 is considered to be an excellent migration path for nuclides.
そのため、現在、核種の卓越した移行経路になるゆるみ域2を遮断するため、図4に示すように、処分坑道1の途中に拡幅凹部3を掘り込み掘削で形成し、この部分にプラグ(ベントナイト等の粘土材料など)50を施工して遮断することが考えられている。坑道の横断面を閉塞するプラグ50の外周部における突起状の外周止水リング51が拡幅凹部3内に充填される。このプラグ50は、図4(a) に示すゆるみ域2のみでなく、図4(b) に示すように地質環境に応じてトンネル支保のために施工される覆工コンクリート5の劣化(現在、コンクリート等のセメント系材料は、高レベル放射性廃棄物地層処分で対象となる10万年〜100 万年の超長期間を考慮すると、止水機能が全く無くなる(砂になる)と考えられている。人工材料のため現段階の技術力では、劣化しないと保証することができない。)に対する止水の役割も担っている。なお、処分坑道1内は、岩ずりを含むベントナイト混合土による埋め戻し材4で埋め戻される。   Therefore, in order to cut off the slack zone 2 which is an excellent transition path of nuclides, as shown in FIG. 4, a widening recess 3 is formed by excavation in the middle of the disposal tunnel 1, and a plug (bentonite) is formed in this portion. It is conceived that 50 (such as a clay material) is applied and cut off. A projecting outer peripheral water stop ring 51 at the outer peripheral portion of the plug 50 that closes the cross section of the mine shaft is filled into the widened recess 3. This plug 50 is not only used for the loosened area 2 shown in FIG. 4 (a), but also for the deterioration of the lining concrete 5 that is constructed to support the tunnel according to the geological environment as shown in FIG. 4 (b). Cement-based materials such as concrete are considered to have no water stop function (become sand) considering the ultra-long period of 100,000 to 1 million years that is the target of high-level radioactive waste geological disposal. Because it is an artificial material, it cannot be guaranteed that it will not deteriorate with the current technological capabilities.) The disposal tunnel 1 is backfilled with a backfill material 4 made of bentonite mixed soil containing rock debris.
また、本発明に関連する先行技術文献として、特許文献1〜4がある。特許文献1の発明では、坑道の周囲にガラス状物質と溶融岩からなる鍔状の止水用構造物を形成している。特許文献2の発明では、坑道内に膨張性材料を固化してなるプラグを坑道内面を押圧するように配置している。特許文献3の発明では、空洞の止水領域に空洞から外側に向かって放射状の止水ボアホールを設け、この止水ボアホールに止水材を充填し、これと水密一体の充填材を空洞内に充填している。特許文献4の発明では、坑道内の廃棄物埋設部の外側にベントナイト混合土と透水材を介してコンクリートプラグを設け、コンクリートプラグを貫通する排水管を設けている。
特開平4−120394号公報 特許第3465196号公報 特開2000−346276号公報 特開2002−131484号公報
Moreover, there are patent documents 1 to 4 as prior art documents related to the present invention. In the invention of Patent Document 1, a saddle-like structure for waterstop composed of a glassy material and molten rock is formed around a tunnel. In the invention of Patent Document 2, a plug formed by solidifying an expandable material in a tunnel is disposed so as to press the inner surface of the tunnel. In the invention of Patent Document 3, a radial water stop bore hole is provided in the water stop region of the cavity from the cavity to the outside, the water stop bore hole is filled with a water stop material, and the water tight integral filler is filled in the cavity. Filled. In invention of patent document 4, the concrete plug is provided through the bentonite mixed soil and the water permeable material on the outside of the waste buried portion in the tunnel, and the drain pipe penetrating the concrete plug is provided.
Japanese Patent Laid-Open No. 4-120394 Japanese Patent No. 3465196 JP 2000-346276 A JP 2002-131484 A
上記の現在計画されているプラグは、坑道の埋め戻しなど実施工を十分に考慮しておらず、絵に描いたもちになる可能性が残されている。具体的には、(1) 実際の施工は、図5(a) に示すように、処分坑道1内の埋め戻し材4は、下から順に一定厚で敷き均され、転圧締め固めされるため、埋め戻し材4の端部は階段状の傾斜面6となっており、図5(b) に示すように、ここに現状のプラグ50を設置すると、側面視で逆三角形状の空間部52が残る。つまり、土工で約5mもの鉛直面の施工ができていない。セメント系材料(流動材やコンクリート擁壁)を用いれば施工可能であるが、前述したように超長期間を考えると適用できない。(2) プラグは、ブロックの積上げにより施工されるため、鉛直面の施工は可能であるが、鉛直面でのブロック安定性が悪く、安全面で課題が残されている。(3) ゆるみ域2の拡幅凹部3内にもブロックを充填するが、上部の拡幅凹部3の掘削は高所作業となり、この点においても、安全上、問題があった。   The plugs currently planned above do not fully take into account implementation work such as backfilling of mine shafts, and there is a possibility of being drawn. Specifically, (1) As shown in Fig. 5 (a), the actual construction is such that the backfill material 4 in the disposal tunnel 1 is laid out with a certain thickness in order from the bottom, and compacted and compacted. Therefore, the end portion of the backfill material 4 has a stepped inclined surface 6, and as shown in FIG. 5 (b), when the current plug 50 is installed here, an inverted triangular space portion is seen in a side view. 52 remains. In other words, about 5m vertical work has not been done by earthwork. Construction can be done by using cement-based materials (fluid materials and concrete retaining walls), but it cannot be applied considering the very long period of time as described above. (2) Since the plug is constructed by stacking blocks, it is possible to construct a vertical surface, but the stability of the block on the vertical surface is poor, and there are still safety issues. (3) Although the block is also filled in the widening recess 3 in the loosened area 2, the excavation of the widening recess 3 in the upper part is a work at a high place, which also has a safety problem.
本発明は、上記のような問題を解消すべくなされたものであり、地下坑道の止水プラグを用いた止水構造において、地下坑道内の埋め戻し処理のできない空間部を確実に無くすことができ、また止水プラグのブロック積上げ施工におけるプラグ崩壊に対する安全性を向上させることができ、さらにゆるみ域の拡幅凹部の上部における高所の掘削作業を無くすことができる地下坑道の止水構造を提供することを目的とする。   The present invention has been made to solve the above-described problems, and in a water stop structure using a water stop plug of an underground mine, it is possible to reliably eliminate a space portion that cannot be backfilled in the underground mine. It is possible to improve the safety against plug collapse in block construction of water stop plugs, and to provide a water stop structure for underground mine shafts that can eliminate excavation work at high places above the widening recesses in the loosened area The purpose is to do.
本発明の請求項1の発明は、地盤内に掘削形成された地下坑道内に止水プラグを坑道横断面を閉塞するように設置して止水を行う地下坑道の止水構造において、前記止水プラグが階段状に積上げられて構成されていることを特徴とする地下坑道の止水構造である。   According to a first aspect of the present invention, there is provided an underground mine water stop structure in which a water stop plug is installed in an underground mine excavated in the ground so as to close a cross section of the mine shaft to stop the water. It is a water stop structure of an underground mine, characterized in that water plugs are stacked in a staircase pattern.
本発明は、地下坑道の止水プラグを用いた止水に適用されるが、特に放射性廃棄物やその他の有害な廃棄物を廃棄物地層処分施設の地下に掘削形成された処分坑道に埋設処分する場合に有効に適用される。止水プラグは、ベントナイト等の粘土材料が好ましく、またブロック状にして積上げるのが好ましい。この止水プラグを複数のステップに分け、各ステップを下から順にずれるように形成することで、階段形状の止水プラグを処分坑道の横断面を閉塞するように構築する。止水プラグの一方の面が階段状であればよく、他方の面は階段状や鉛直面などでよく、種々の形状が考えられる。例えば、止水プラグの埋め戻し材側の面も階段状の場合(図1(a) 参照) 、埋め戻し材の端部形状が鉛直面であって止水プラグの埋め戻し材側の面が鉛直面の場合、埋め戻し材の端部形状が階段状であって止水プラグの埋め戻し材側の面が階段状で空間側が鉛直面の場合などが考えられる。   The present invention is applied to water stopping using a water stop plug of an underground mine, and in particular, radioactive waste and other harmful waste are disposed of in a disposal mine formed in the underground of a waste geological disposal facility. It is effectively applied when The water stop plug is preferably a clay material such as bentonite, and is preferably stacked in a block shape. This water stop plug is divided into a plurality of steps, and each step is formed so as to be shifted in order from the bottom, so that a stair-shaped water stop plug is constructed so as to close the cross section of the disposal tunnel. One surface of the water stop plug only needs to be stepped, and the other surface may be stepped or vertical, and various shapes are conceivable. For example, if the surface of the backfill material side of the water stop plug is also stepped (see Fig. 1 (a)), the end shape of the backfill material is a vertical surface, and the back side of the backstop material side of the water stop plug is In the case of a vertical surface, the shape of the end portion of the backfill material may be stepped, the surface of the water stop plug on the backfill material side may be stepped, and the space side may be a vertical surface.
本発明の請求項2の発明は、請求項1に記載の地下坑道の止水構造において、地下坑道の内周面に周方向に連続するリング状の凹部が掘削形成され、この凹部内に止水プラグの外周部分が充填されていることを特徴とする地下坑道の止水構造である。   According to a second aspect of the present invention, in the waterstop structure for an underground mine according to the first aspect, a ring-shaped concave portion continuous in the circumferential direction is formed by excavation on the inner peripheral surface of the underground mine shaft. It is a water stop structure of an underground mine, characterized in that the outer peripheral portion of the water plug is filled.
掘削形成された地下坑道には、掘削に伴う損傷と空洞形成による応力再配分により、透水性の高いゆるみ域が形成されるため、このゆるみ域を遮断する場合であり、さらに地質環境に応じてトンネル支保のために施工される覆工コンクリートの劣化による水みちも遮断する場合であり、坑道内周面に掘り込み掘削したリング状の凹部内にも止水プラグを充填し、突起状の外周止水リングを形成する。   In the excavated underground mine, due to the damage caused by excavation and the stress redistribution due to the formation of cavities, a loose area with high water permeability is formed, so this loose area is blocked, and depending on the geological environment This is a case where the water channel due to deterioration of the lining concrete that is constructed to support the tunnel is cut off. Form a water stop ring.
本発明の請求項3の発明は、請求項1または請求項2に記載の地下坑道の止水構造において、止水プラグは、地下坑道内の埋め戻し材の傾斜端面に沿って配設される傾斜階段形状であることを特徴とする地下坑道の止水構造である。   According to a third aspect of the present invention, in the water stop structure of the underground mine according to claim 1 or 2, the water stop plug is disposed along the inclined end surface of the backfill material in the underground mine. It is a water stop structure for underground tunnels, characterized by an inclined staircase shape.
放射性廃棄物等の処分坑道は、廃棄体の配置後に埋め戻し材により埋め戻され、この埋め戻し材の端部は、下から順に一定厚で敷き均され、転圧締め固めされるため、階段状の傾斜面となっている(図1参照) 。このような階段状の埋め戻し材の各ステップに対して止水プラグを下から順に積上げて、埋め戻し材のステップに対応したステップからなる階段状に傾斜した止水プラグを形成する。この場合、止水プラグの両側の面が平行な階段状となる(図1参照) 。この場合、プラグ量を少なくすることができる。   The disposal tunnel for radioactive waste, etc. is backfilled with backfilling material after the waste is placed, and the end of this backfilling material is laid down with a certain thickness in order from the bottom, and compacted and compacted. (See FIG. 1). The water stop plugs are stacked in order from the bottom to each step of the step-like backfill material to form a water stop plug inclined in a step shape corresponding to the steps of the backfill material. In this case, the surfaces on both sides of the water stop plug are parallel to each other (see FIG. 1). In this case, the amount of plug can be reduced.
以上のような構成の本発明において、(1) 階段状に止水プラグを積上げることにより、坑道内の埋め戻し材の実際の端部形状に対応することができ、従来のプラグでは処理できなかった空間部を確実に無くすことができる。(2) 止水プラグを下から順に階段状に積上げていくため、従来の例えば5mもの高さの鉛直ブロック積上げを無くすことができる。(3) ゆるみ域等の遮断のための拡幅凹部の上部掘削は約5mもの高さの坑道では危険な高所作業(はつり作業となるため、特に危険)となるが、止水プラグを下から順に積上げ、各ステップ上から施工することができ、従来の危険な高所作業を無くすことができる。   In the present invention configured as described above, (1) by stacking the water stop plugs in a staircase shape, it is possible to cope with the actual end shape of the backfill material in the tunnel, and the conventional plug can handle it. The space that did not exist can be eliminated without fail. (2) Since the water stop plugs are stacked stepwise in order from the bottom, it is possible to eliminate the conventional vertical block stacking height of, for example, 5 m. (3) The excavation of the upper part of the widening recess for blocking the loosened area etc. is dangerous work at a high place (especially dangerous because it is a hanger work) in a mine shaft as high as about 5m, but the water stop plug is It can be built up in order, and can be constructed from above each step, eliminating the conventional dangerous work at high places.
本発明は、以上のような構成からなるので、次のような効果が得られる。   Since the present invention is configured as described above, the following effects can be obtained.
(1) 階段状に止水プラグを積上げることにより、坑道内の埋め戻し材の実際の端部形状に対応することができ、処理できない空間部を確実に無くすことができ、現実的な概念設計・基本設計が可能となる。例えば、高レベル放射性廃棄物の地層処分では、掘削した処分坑道を確実に埋め戻し、核種の移行経路となる水みちを確実に無くすことができる。   (1) By stacking the water stop plugs in a staircase shape, it is possible to deal with the actual end shape of the backfill material in the tunnel, and it is possible to eliminate the space that cannot be treated with certainty. Design / basic design becomes possible. For example, in the geological disposal of high-level radioactive waste, the excavated disposal tunnel can be reliably backfilled, and the water channel serving as the nuclide migration path can be reliably eliminated.
(2) 止水プラグを下から順に階段状に積上げていくため、従来の例えば5mもの高さの鉛直ブロック積上げを無くすことができ、施工時の安全性が大幅に向上する。   (2) Since the water stop plugs are stacked stepwise in order from the bottom, it is possible to eliminate the conventional vertical block stacking height of, for example, 5 m and greatly improve the safety during construction.
(3) ゆるみ域等の遮断のための拡幅凹部の上部掘削については、止水プラグを下から順に積上げ、各ステップ上から施工することができるため、従来の危険な高所作業を無くすことができ、施工時の安全性がさらに向上する。   (3) For the upper excavation of the widening recess for blocking the loosened area, etc., the water stop plugs can be stacked in order from the bottom, and construction can be performed from above each step. This will improve the safety during construction.
(4) 以上の安全性の向上の観点から、工期・コストの低減等が図られる。   (4) From the viewpoint of improving safety, the construction period and cost can be reduced.
以下、本発明を図示する実施形態に基づいて説明する。この実施形態は高レベル放射性廃棄物の地層処分における処分坑道に適用した例である。図1は、本発明の処分坑道における埋め戻しと止水プラグの設置の一例を順に示すトンネル軸方向に平行な鉛直断面図である。図2は、止水プラグの拡幅凹部の部分を従来と本発明で比較した斜視図である。   Hereinafter, the present invention will be described based on the illustrated embodiments. This embodiment is an example applied to a disposal tunnel in geological disposal of high-level radioactive waste. FIG. 1 is a vertical cross-sectional view parallel to the tunnel axis direction illustrating an example of backfilling and installation of a water stop plug in the disposal tunnel of the present invention. FIG. 2 is a perspective view in which the widened recess portion of the water stop plug is compared with the prior art in the present invention.
高レベル放射性廃棄物の地層処分施設は、地上施設と地下施設とから構成されており、図1に示すように、地下300m(法律により決定)より深い岩盤(天然バリア:花崗岩など健岩部)A中に掘削形成された処分坑道1内あるいは処分坑道1の底版部等に掘削形成された処分孔内に廃棄体(図示せず)が配置され、処分坑道1内が岩ずりを含むベントナイト混合土からなる埋め戻し材4により埋め戻される。なお、地質環境によってはトンネル支保工(覆工コンクリート)が坑道内周面に施工される。   The geological disposal facility for high-level radioactive waste is composed of ground facilities and underground facilities. As shown in Fig. 1, the bedrock is deeper than 300m underground (determined by law) (natural barrier: healthy rocks such as granite) A A waste body (not shown) is disposed in the disposal tunnel 1 excavated and formed in the disposal hole formed in the bottom slab of the disposal tunnel 1, etc., and the bentonite mixed soil containing the rock in the disposal tunnel 1 It is backfilled with a backfill material 4 made of Depending on the geological environment, tunnel support (lining concrete) will be constructed on the inner periphery of the tunnel.
埋め戻し材4の端部は、下から順に一定厚で敷き均され、転圧締め固めされるため、階段状の傾斜面6となっている。このトンネル軸方向に対して傾斜する階段状の埋め戻し材4の各ステップ4a〜4dに対してベントナイトブロックを下から順に積上げて、ステップ4a〜4dに対応したステップ10a〜10dからなる階段状に傾斜した止水プラグ10を形成する。この止水プラグ10の側面視形状は、ほぼ一定長さの平行四辺形のステップ10a〜10dが下から順にずれて配置された階段形状となる。なお、止水プラグ10の正面視形状は、処分坑道の横断面に対応した形状の円形や半円形等となる。   The end portion of the backfill material 4 is laid out with a certain thickness in order from the bottom and is compacted by rolling, so that it forms a stepped inclined surface 6. The bentonite blocks are stacked in order from the bottom to the respective steps 4a to 4d of the step-like backfilling material 4 inclined with respect to the tunnel axis direction, thereby forming a stepped shape including steps 10a to 10d corresponding to steps 4a to 4d. An inclined water stop plug 10 is formed. The shape of the water stop plug 10 in a side view is a staircase shape in which parallelogram steps 10a to 10d having a substantially constant length are sequentially shifted from the bottom. In addition, the front view shape of the water stop plug 10 becomes a round shape, a semicircle shape, etc. of the shape corresponding to the cross section of a disposal tunnel.
また、核種の卓越した移行経路になるゆるみ域2(必要に応じて設けられる支保工も含む)を遮断する拡幅凹部3は、階段形状で傾斜した止水プラグ10に対応させて処分坑道1の内周面に形成されており、図2に示すように、処分坑道1が断面円形の場合には、傾斜した円形リング状となる。この拡幅凹部3内にもベントナイトブロックを積上げて止水プラグ10の外周部における突起状の外周止水リング11を形成する。   Moreover, the widening recessed part 3 which interrupts the slack area 2 (including supporting work provided if necessary) that becomes an excellent transition path of nuclides corresponds to the water stop plug 10 inclined in a staircase shape, so that the disposal tunnel 1 It is formed in the inner peripheral surface, and as shown in FIG. 2, when the disposal mine 1 has a circular cross section, it has an inclined circular ring shape. A bentonite block is also stacked in the widened recess 3 to form a protruding outer peripheral water stop ring 11 at the outer peripheral portion of the water stop plug 10.
ベントナイトブロックは、ベントナイトという粘土を圧縮締め固めしたものであり、形状は例えばレンガを一回り大きくしたものが用いられる。このベントナイトブロックをブロック積みのように積上げ、隙間が生じる場合には粘土状のベントナイトを充填していく。なお、階段状の止水プラグ10の傾斜角は、プラグ量などから適宜設定されるものであり、施工のし易さの点からは、勾配が緩やかな方がよい。   The bentonite block is obtained by compressing and compacting a clay called bentonite, and for example, a shape obtained by enlarging a brick once is used. This bentonite block is piled up like a block pile, and when a gap is generated, it is filled with clay-like bentonite. In addition, the inclination angle of the stair-shaped water stop plug 10 is appropriately set based on the amount of the plug and the like, and it is preferable that the slope is gentle in terms of ease of construction.
以上のような構成の止水プラグを例えば以下のような手順で施工する。   For example, the water stop plug having the above configuration is constructed in the following procedure.
(1) 処分坑道1の廃棄体埋設箇所が埋め戻し材4により埋め戻されると、図1(a) に示すように、階段状の埋め戻し材4の手前に拡幅凹部3の下部を掘り込み掘削し、第1ステップの外周止水リング11aを拡幅凹部3内に充填し、第1ステップの止水プラグ10aを積上げる。   (1) When the waste burial site in the disposal tunnel 1 is backfilled with the backfill material 4, the lower part of the widening recess 3 is dug before the step-like backfill material 4 as shown in FIG. 1 (a). Excavation is performed, the outer peripheral water stop ring 11a of the first step is filled in the widened recess 3, and the water stop plug 10a of the first step is stacked.
(2) 第1ステップの止水プラグ10aを足場として利用し、第1ステップより上の拡幅凹部3を掘り込み掘削し、第2ステップの外周止水リング11bを拡幅凹部3内に充填し、第2ステップの止水プラグ10bを積上げる。このような工程を順次ステップ毎に繰り返して階段状の止水プラグ10を構築する。なお、最上段のステップの上方の拡幅凹部3内の充填については、ベントナイトブロックを拡幅凹部3内の奥から手前に、横から中央に配置してゆき、最後の隙間は下から上に押し上げた状態で詰めればよい。   (2) Using the water stop plug 10a of the first step as a scaffold, excavating the widening recess 3 above the first step, filling the outer peripheral water stop ring 11b of the second step into the widening recess 3, The water stop plug 10b of the second step is piled up. Such a process is sequentially repeated step by step to construct a stepped water stop plug 10. In addition, about the filling in the widening recessed part 3 above the uppermost step, the bentonite block was arrange | positioned from the back in the widening recessed part 3 to the near side from the side to the center, and the last clearance was pushed up from the bottom to the top. What is necessary is just to pack in a state.
(3) この止水プラグ10の設置が終了すると、次の処分空間の廃棄体の埋設定置が実施され、図1(b) に示すように、空間側が埋め戻し材4により埋め戻される。前記のような止水プラグ10の設置が繰り返される。   (3) When the installation of the water stop plug 10 is completed, the waste is set in the next disposal space, and the space side is backfilled with the backfill material 4 as shown in FIG. The installation of the water stop plug 10 as described above is repeated.
なお、以上は高レベル放射性廃棄物の地層処分における処分坑道に適用した例を示したが、これに限らず、その他の廃棄物の処分坑道の止水、その他の地下坑道の止水にも本発明を適用できる。また、止水プラグの形状や埋め戻し材の端部形状等は図示例に限らず、その他の種々の形状が考えられる。例えば、埋め戻し材の端部形状が鉛直面であり、止水プラグの埋め戻し材側の面が鉛直面で空間側の面が階段状の場合、埋め戻し材の端部形状が階段状であり、止水プラグの埋め戻し材側の面が階段状で空間側の面が鉛直面の場合などが考えられる。   In addition, although the example applied to the disposal tunnel in the geological disposal of the high-level radioactive waste has been shown above, the present invention is not limited to this, but is also applied to the water stoppage of other waste disposal tunnels and other underground tunnels. The invention can be applied. Further, the shape of the water stop plug, the end shape of the backfill material, and the like are not limited to the illustrated example, and other various shapes are conceivable. For example, if the end shape of the backfill material is a vertical surface, the backfill material side surface of the water stop plug is a vertical surface, and the space side surface is stepped, the end shape of the backfill material is stepped. There is a case where the back plug material side surface of the water stop plug is stepped and the space side surface is a vertical surface.
本発明の地下坑道の止水構造の一例であり、処分坑道における埋め戻しと止水プラグの設置を順に示すトンネル軸方向に平行な鉛直断面図であり、(a) はプラグ設置時、(b) はプラグ設置後である。FIG. 2 is an example of a water stop structure of an underground mine shaft according to the present invention, and is a vertical cross-sectional view parallel to the tunnel axis direction sequentially showing backfilling and water stop plug installation in a disposal mine shaft. ) Is after plug installation. 止水プラグの拡幅凹部の部分を(a) 従来と(b) 本発明で比較した斜視図である。It is the perspective view which compared the part of the widening recessed part of a water stop plug with (a) conventional and (b) this invention. 処分坑道周辺におけるゆるみ域を示すトンネル軸方向に平行な鉛直断面図である。It is a vertical sectional view parallel to the tunnel axis direction showing a loosened area around the disposal tunnel. 従来のプラグ形状を示すトンネル軸方向に平行な鉛直断面図であり、(a) は掘削したままの坑道、(b) は支保工のある坑道の例である。It is a vertical sectional view parallel to the tunnel axis direction showing a conventional plug shape, (a) is an example of a mine shaft that has been excavated, and (b) is an example of a mine shaft with a supporting work. 従来における坑道内の埋め戻し材とプラグの関係を示すトンネル軸方向に平行な鉛直断面図であり、(a) はプラグ設置前、(b) はプラグ設置時を示す。It is a vertical sectional view parallel to the tunnel axis direction showing the relationship between a backfill material and a plug in a conventional tunnel, where (a) shows before plug installation and (b) shows when plug installation.
符号の説明Explanation of symbols
1……処分坑道
2……ゆるみ域
3……拡幅凹部
4……埋め戻し材
5……覆工コンクリート
6……埋め戻し材の傾斜面
10……止水プラグ
11……外周止水リング
A……岩盤(花崗岩など健岩部)
DESCRIPTION OF SYMBOLS 1 ... Disposal tunnel 2 ... Loose area 3 ... Widening recessed part 4 ... Backfill material 5 ... Backlining concrete 6 ... Inclined surface 10 of backfill material ... Water stop plug 11 ... Outer peripheral water stop ring A ...... Bed rock (healthy rocks such as granite)

Claims (3)

  1. 地盤内に掘削形成された地下坑道内に止水プラグを坑道横断面を閉塞するように設置して止水を行う地下坑道の止水構造において、前記止水プラグが階段状に積上げられて構成されていることを特徴とする地下坑道の止水構造。   In the underground waterway stop structure where the water stop plug is installed in the underground tunnel excavated in the ground so as to block the cross section of the tunnel and the water stop plug is stacked in steps. Underwater mine water stop structure characterized by being.
  2. 請求項1に記載の地下坑道の止水構造において、地下坑道の内周面に周方向に連続するリング状の凹部が掘削形成され、この凹部内に止水プラグの外周部分が充填されていることを特徴とする地下坑道の止水構造。   In the water stop structure of an underground mine according to claim 1, a ring-shaped recess continuous in the circumferential direction is formed by excavation on an inner peripheral surface of the underground mine, and an outer peripheral portion of a water stop plug is filled in the recess. This is a water stop structure for underground tunnels.
  3. 請求項1または請求項2に記載の地下坑道の止水構造において、止水プラグは、地下坑道内の埋め戻し材の傾斜端面に沿って配設される傾斜階段形状であることを特徴とする地下坑道の止水構造。
    3. The water stop structure for an underground mine according to claim 1 or 2, wherein the water stop plug has an inclined staircase shape disposed along an inclined end surface of a backfill material in the underground mine. Water stop structure of underground tunnels.
JP2004173539A 2004-06-11 2004-06-11 Underwater tunnel structure Active JP4225245B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004173539A JP4225245B2 (en) 2004-06-11 2004-06-11 Underwater tunnel structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004173539A JP4225245B2 (en) 2004-06-11 2004-06-11 Underwater tunnel structure

Publications (2)

Publication Number Publication Date
JP2005350980A JP2005350980A (en) 2005-12-22
JP4225245B2 true JP4225245B2 (en) 2009-02-18

Family

ID=35585674

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004173539A Active JP4225245B2 (en) 2004-06-11 2004-06-11 Underwater tunnel structure

Country Status (1)

Country Link
JP (1) JP4225245B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2939830B1 (en) * 2008-12-16 2010-12-17 Inst Francais Du Petrole Method of shutting acid gas storage wells
FR3030611B1 (en) * 2014-12-18 2017-01-20 Agence Nat Pour La Gestion Des Dechets Radioactifs METHOD FOR FILLING HOLES IN A UNDERGROUND WASTE STORAGE GALLERY
JP2016217028A (en) * 2015-05-21 2016-12-22 清水建設株式会社 Filling method for water-absorbing expansive clay, and structure
CN105840207B (en) * 2016-03-24 2020-04-28 杭州江润科技有限公司 Construction method for comprehensive tunnel entering structure of large-span tunnel penetrating shallow-buried bias-pressure loose accumulation body
CN110748350A (en) * 2019-10-28 2020-02-04 中国石油大学(华东) Method for quickly treating collapse of urban subway tunnel passing through water-rich sand layer section

Also Published As

Publication number Publication date
JP2005350980A (en) 2005-12-22

Similar Documents

Publication Publication Date Title
CN103718249B (en) Landfills engineering method and discarded object receptacle
JP4225245B2 (en) Underwater tunnel structure
JP4356252B2 (en) Geological disposal facility and disposal tunnel segment
CN105178338A (en) Soil slope protecting structure and protecting method thereof
JP5740456B2 (en) Radioactive waste underground storage facility and construction method thereof
JP6464469B2 (en) Radioactive waste disposal tunnel
JP4552152B2 (en) Vertical shaft construction of underground waste disposal facility and construction method of underground underground waste disposal facility
JP4798057B2 (en) Geological disposal facility and its construction method
JP2011528119A (en) Construction method of underground tunnels or holes to form impervious plugs for storing hazardous wastes, especially radioactive waste
Milanovic Prevention and remediation in karst engineering
JP2002048900A (en) Structure for fixing high-level radioactive waste for geologic disposal
JP4492373B2 (en) Disposal tunnel facility at waste geological disposal site
JP3967473B2 (en) Construction method of underground structure
JP4270023B2 (en) Ladder-type underground facility for waste geological disposal facility
JP5637376B2 (en) Method of burying radioactive waste
JP4904581B2 (en) Vertical shaft construction of underground waste disposal facility and construction method of underground underground waste disposal facility
JP2005048404A (en) Cutoff structure for radioactive waste disposal site, and method of constructing the same
JP2005307688A (en) Construction method for earth retaining wall for newly built underground skeleton and construction method for newly built skeleton by use of its method
JP2604210B2 (en) Construction method of underground large-scale spatial structure
JP6703438B2 (en) Support structure of disposal hole, geological disposal facility and geological disposal method
JP4281618B2 (en) Underground facility of waste geological disposal facility
JP2020180824A (en) End structure of radioactive waste disposal tunnel, manufacturing method for end structure of radioactive waste disposal tunnel, and leakage prevention method for material confined in radioactive waste disposal tunnel
JP2008202344A (en) Support structure and support method of tunnel
CN209742895U (en) Shallow tunnel roof fall collapse side processing structure that buries
JP2726621B2 (en) Caisson laying method and caisson blade structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081024

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081104

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081117

R150 Certificate of patent or registration of utility model

Ref document number: 4225245

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111205

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111205

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141205

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250