WO2014175294A1 - Improved-fluidity cement clinker - Google Patents

Improved-fluidity cement clinker Download PDF

Info

Publication number
WO2014175294A1
WO2014175294A1 PCT/JP2014/061344 JP2014061344W WO2014175294A1 WO 2014175294 A1 WO2014175294 A1 WO 2014175294A1 JP 2014061344 W JP2014061344 W JP 2014061344W WO 2014175294 A1 WO2014175294 A1 WO 2014175294A1
Authority
WO
WIPO (PCT)
Prior art keywords
cement
cement clinker
tio
mass
content
Prior art date
Application number
PCT/JP2014/061344
Other languages
French (fr)
Japanese (ja)
Inventor
敬司 茶林
慎吾 吉本
中村 明則
弘義 加藤
Original Assignee
株式会社トクヤマ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社トクヤマ filed Critical 株式会社トクヤマ
Priority to AU2014258396A priority Critical patent/AU2014258396B2/en
Publication of WO2014175294A1 publication Critical patent/WO2014175294A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B7/00Hydraulic cements
    • C04B7/02Portland cement
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B7/00Hydraulic cements
    • C04B7/14Cements containing slag
    • C04B7/147Metallurgical slag
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B7/00Hydraulic cements
    • C04B7/24Cements from oil shales, residues or waste other than slag
    • C04B7/26Cements from oil shales, residues or waste other than slag from raw materials containing flue dust, i.e. fly ash
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00034Physico-chemical characteristics of the mixtures
    • C04B2111/00215Mortar or concrete mixtures defined by their oxide composition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/10Production of cement, e.g. improving or optimising the production methods; Cement grinding

Definitions

  • the present invention relates to Portland cement clinker. More specifically, the present invention relates to a cement clinker which gives a cement composition exhibiting good fluidity even when containing TiO 2 derived from a raw material.
  • Portland cement clinker is mainly composed of SiO 2 , Al 2 O 3 , CaO and Fe 2 O 3 . These components are contained in clinker as several minerals. Specifically, minerals in clinker are C 3 S (3CaO ⁇ SiO 2 ), C 3 A (3CaO ⁇ Al 2 O 3 ), C 2 S (2CaO ⁇ SiO 2 ) and C 4 AF (4CaO ⁇ Al 2) It is well known that they are O 3 ⁇ Fe 2 O 3 ), and the proportions of these have a great influence on various physical properties of cement. Various studies have also been conducted on the effects of minor components in cement. For example, the JIS standards specify the amount of magnesium oxide in cement, the total amount of alkalis, the amount of chloride ions, etc.
  • Ti component chemical species containing a titanium atom
  • a neutralizing slag titanium slag
  • the content of TiO 2 in the cement clinker to be produced often increases to about 1% by mass.
  • the coal ash generally used as a cement raw material may contain comparatively many Ti components (for example, refer Unexamined-Japanese-Patent No. 2010-120832).
  • the cement contains TiO 2 , its fluidity decreases, but when it is set to a specific iron ratio and silicic acid ratio, the TiO 2 content is 1 mass% It has been reported to show good liquidity even if the degree is reached.
  • the object of the present invention is to provide a cement clinker which gives a cement composition which exhibits good fluidity even with a high TiO 2 content in a mineral composition equivalent to that of ordinary Portland cement clinker. Do.
  • the present inventors diligently studied in view of the above problems. As a result, when the TiO 2 content is high with a mineral composition equivalent to that of ordinary Portland cement clinker, it is found that by adjusting the content of MnO in the cement clinker, it is possible to secure good fluidity. It has been completed. That is, the present invention
  • the hydraulic ratio is 1.8 to 2.2
  • the silicic acid ratio is 2.0 to 2.8
  • the iron ratio is 1.7 to 2.0
  • a Portland cement clinker characterized by having a TiO 2 content of 0.3 to 1.0% by mass, and further containing 1.5 mass times or more of MnO with respect to TiO 2 . .
  • cement clinker has a hydraulic ratio of 1.8 to 2.2, a silicic acid ratio of 2.0 to 2.8, and an iron ratio of 1. 7 to 2.0.
  • the hydraulic ratio is 1.9 to 2.1
  • the silicic acid ratio is 2.3 to 2.6
  • the iron ratio is 1.8 to 2.0.
  • the above-mentioned hydraulic rate, silicic acid rate and iron rate (triple rate) are values which are calculated by substituting the result of the chemical composition analysis obtained for the cement clinker into the following equation, as is well known.
  • Hydraulic modulus CaO / (SiO 2 + Al 2 O 3 + Fe 2 O 3 )
  • Silica rate SiO 2 / (Al 2 O 3 + Fe 2 O 3 )
  • Iron ratio Al 2 O 3 / Fe 2 O 3
  • the term represented by the chemical formula is the content (mass basis) of the species obtained by chemical composition analysis of cement clinker.
  • the values of the above three rates in the cement clinker of the present invention are all in the same range as the portland cement clinker exhibiting normal properties.
  • the cement clinker of the present invention contains 0.3 to 1.0% by mass of TiO 2 . It is known that when the cement clinker contains TiO 2 , the fluidity of the resulting cement composition is reduced.
  • the present invention relates to a technology for recovering fluidity impaired by the inclusion of TiO 2 by the cement clinker containing TiO 2 further containing MnO.
  • TiO 2 content is less than 0.3% by mass, the reduction in fluidity due to the TiO 2 is substantially negligible, so there is no practical application of the present invention.
  • the TiO 2 content exceeds 1.0% by mass, the recovery of fluidity in the resulting cement composition may be insufficient even if other requirements in the cement clinker of the present invention are satisfied. , Practical problems are big.
  • the TiO 2 content in the cement clinker of the present invention is preferably 0.5 to 1.0% by mass.
  • the cement clinker of the present invention contains MnO at 1.5 mass times or more of the TiO 2 content.
  • MnO content when the MnO content satisfies the above-mentioned requirements, the flowability reduced by the Ti component is restored to an industrially useful level.
  • the compressive strength of the cured product tends to decrease as the MnO content increases. Therefore, the MnO content is preferably 2.5% by mass or less, more preferably 2.0% by mass or less.
  • the TiO 2 content and the MnO content in the present specification are not limited to the contents of chemical species actually present in the form of TiO 2 or MnO, respectively.
  • These values are values calculated by converting the amounts of titanium and manganese atoms quantified by chemical composition analysis of cement clinker into the mass of TiO 2 and MnO, respectively.
  • Chemical composition analysis (quantitative analysis) of each component contained in cement clinker can be performed, for example, in accordance with the chemical analysis method defined in JIS R 5202, the fluorescent X-ray analysis method defined in JIS R 5204, etc. .
  • the method for producing the cement clinker of the present invention is not particularly limited. As described above, since all of the three rates in the cement clinker of the present invention are in the same range as cement clinkers exhibiting conventional properties conventionally known, selection and preparation of main raw materials such as limestone, silica stone, etc.
  • the cement clinker of the present invention has an advantage that waste etc. containing a Ti component can be used as a raw material in a large amount since the content of TiO 2 can be increased. Then, an appropriate Mn source is further added to the raw material, and the mixing ratio of the raw material is adjusted and used so that the cement clinker after firing has the above-mentioned ratio of 3%, TiO 2 content and MnO content, A conventionally known method of producing a cement clinker may be appropriately selected and applied.
  • usable raw materials in addition to natural raw materials such as limestone, clay, silica, iron ore, waste and by-products can be used.
  • wastes and by-products include blast furnace slag, steelmaking slag, non-ferrous slag, coal ash, sewage sludge, purified water sludge, papermaking sludge, construction-generated soil, casting sand, dust, incineration fly ash, and molten fly Ashes, trees, waste white earth, plants, waste tires, shells, urban waste, incineration ash of municipal waste, etc. can be mentioned (In addition, among these, it becomes a raw material of cement clinker and also a thermal energy source.
  • raw materials having a high content of Ti component for example, titanium slag, coal ash, blast furnace slag and the like;
  • raw materials having a large content of Mn component chemical species containing a manganese atom
  • Mn component chemical species containing a manganese atom
  • the Ti component and the Mn component contained in the raw material are often contained in a form (for example, an oxide, a composite oxide, an alloy, etc.) having little volatility at the clinker firing temperature.
  • the titanium atoms and manganese atoms in the Ti component and the Mn component contained in the raw material may be calculated to determine the compounding ratio as the total amount thereof migrates into the cement clinker.
  • the composition of each component of cement clinker after firing can be controlled usually within the range of calculated value ⁇ 0.05% by mass if calculation is performed according to a standard method in composition control at the time of cement clinker production.
  • a cement clinker can be obtained by using the raw material whose blending ratio is adjusted as described above and firing according to a method in the art.
  • the firing method is not particularly limited, and a known method may be appropriately selected.
  • a cement kiln such as NSP kiln or SP kiln
  • the cement clinker manufactured as described above can be used as a cement composition of JIS standard, a cement composition other than JIS standard, a raw material of a cement-based solidifying material, and the like according to a known method.
  • the cement composition of JIS standard or the cement composition other than JIS standard preferably includes at least a ground product of cement clinker manufactured as described above and a ground product of gypsum.
  • at least one ground material selected from blast furnace slag, limestone (calcium carbonate), fly ash, silica fume and the like may be contained.
  • the content of ground gypsum in the cement composition is preferably 0.5 to 5 parts by mass, more preferably 1.5 to 3 parts by mass, in terms of SO 3 based on 100 parts by mass of ground cement clinker. is there.
  • the preferable contents of the other components are as follows with respect to 100 parts by mass of ground cement clinker.
  • Blast furnace slag preferably 70 parts by mass or less, more preferably 0.5 to 60 parts by mass, still more preferably 0.5 to 30 parts by mass limestone (calcium carbonate): preferably 30 parts by mass or less, more preferably 0.5 ⁇ 10 parts by mass fly ash: preferably 50 parts by mass or less, more preferably 0.5 to 30 parts by mass silica fume: preferably 20 parts by mass or less, more preferably 0.5 to 10 parts by mass
  • the above cement composition is produced In this case, each of the above components may be mixed and then crushed, or may be mixed after being crushed, or these may be combined. A suitable grinding aid may be added during grinding.
  • the cement composition preferably has a brane specific surface area equal to or greater than a value determined by the JIS standard, and more preferably 2,800 to 5,000 cm 2 / g. Such a specific surface area can be realized by appropriately adjusting the degree of pulverization described above.
  • the cement composition obtained as described above can be used as it is or after mixing it with an appropriate material such as an aggregate or a water reducing agent and adding water to produce a cured product, It is also possible to mix blast furnace slag, fly ash and the like and use it as, for example, blast furnace slag cement, fly ash cement and the like.
  • the gypsum used to prepare the cement composition is a by-product gypsum generated from a thermal power plant.
  • Reference Example, Examples 1 to 5 and Comparative Examples 1 to 5 (1) Preparation of cement clinker and analysis of composition The values of C 3 S, C 2 S, C 3 A and C 4 AF and the contents of TiO 2 and MnO calculated by the Vogue equation are shown in Table 1 below, respectively.
  • the above cement composition raw materials were charged into an electric furnace and mixed sufficiently to obtain the values described above, and then fired in air at 1,450 ° C. for 1.5 hours to obtain a cement clinker.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

This Portland cement clinker, which has a hydraulic modulus of 1.8-2.2, a silica modulus of 2.0-2.8, an iron modulus of 1.7-2.0, and a TiO2 content of 0.3-1.0 mass%, has an MnO content that is set in the range of at least 1.5 times that of TiO by mass. By means of such a composition, it is possible to increase the fluidity of the cement composition without a loss of strength of the cured cement body.

Description

流動性改善型セメントクリンカーFluidity improved cement clinker
 本発明は、ポルトランドセメントクリンカーに係わる。詳しくは、原料に由来するTiOを含有する場合であっても、良好な流動性を示すセメント組成物を与えるセメントクリンカーに係わる。 The present invention relates to Portland cement clinker. More specifically, the present invention relates to a cement clinker which gives a cement composition exhibiting good fluidity even when containing TiO 2 derived from a raw material.
 ポルトランドセメントクリンカーは、主にSiO、Al、CaO及びFeから構成される。これらの成分は、数種の鉱物としてクリンカー中に含有される。クリンカー中の鉱物は、具体的にはCS(3CaO・SiO)、CA(3CaO・Al)、CS(2CaO・SiO)及びCAF(4CaO・Al・Fe)であり、これらの存在比率がセメントの各種物性に大きな影響を与えることは、よく知られている。
 セメントにおける少量成分の影響についても、種々の検討が行われている。例えばJIS規格では、セメント中の酸化マグネシウム量、全アルカリ量、塩化物イオン量等が規定されている(JIS R 5210)。
 ところで近年、下廃棄物・副産物の処理が社会問題となっている。例えば水汚泥、下水汚泥焼却灰、都市ゴミ焼却灰、高炉水滓スラグ、高炉徐冷スラグ、鉄鋼スラグ等である。今後は、処理の難しい廃棄物・副産物の種類及び量が更に増えることが予想され、その有効な処理方法の確立及び再利用・再資源化方法については、更なる研究が必要となっている。
 従来からセメントの製造においては、上記廃棄物・副産物を、原料及び熱エネルギー源として使用することによる再利用を図っている。しかしながら上記廃棄物・副産物の中には、セメントを構成する主成分及びJIS規格に規定のある少量成分以外の様々な成分が、比較的多く含有されている場合も多い。
 そのような成分の一つとしてTi成分(チタン原子を含有する化学種)がある。特に、チタンの精製過程で生じる中和滓(チタン鉱滓)をセメント原料として用いると、製造されるセメントクリンカー中のTiOの含有量が1質量%程度に多くなることも少なくない。また、セメント原料として汎用されている石炭灰が、比較的多くのTi成分を含む場合もある(例えば、特開2010−120832号公報参照)。
 この点、特開2012−224503号公報には、セメントがTiOを含有するとその流動性が低下するが、特定の鉄率及びケイ酸率に設定することにより、TiO含有量が1質量%程度となっても良好な流動性を示すことが報告されている。
Portland cement clinker is mainly composed of SiO 2 , Al 2 O 3 , CaO and Fe 2 O 3 . These components are contained in clinker as several minerals. Specifically, minerals in clinker are C 3 S (3CaO · SiO 2 ), C 3 A (3CaO · Al 2 O 3 ), C 2 S (2CaO · SiO 2 ) and C 4 AF (4CaO · Al 2) It is well known that they are O 3 · Fe 2 O 3 ), and the proportions of these have a great influence on various physical properties of cement.
Various studies have also been conducted on the effects of minor components in cement. For example, the JIS standards specify the amount of magnesium oxide in cement, the total amount of alkalis, the amount of chloride ions, etc. (JIS R 5210).
By the way, in recent years, the treatment of lower waste and by-products has become a social problem. For example, water sludge, sewage sludge incineration ash, municipal waste incineration ash, blast furnace slag slag, blast furnace slowly cooled slag, steel slag and the like. In the future, it is expected that the types and amounts of wastes and by-products that are difficult to treat will further increase, and further research on establishment of effective treatment methods and reutilization and recycling methods is needed.
Conventionally, in the production of cement, the above wastes and by-products are reused by using them as raw materials and thermal energy sources. However, in the above-mentioned waste and by-products, various components other than the main components constituting cement and minor components specified in the JIS standards are often contained in relatively large amounts.
One such component is a Ti component (chemical species containing a titanium atom). In particular, when a neutralizing slag (titanium slag) generated in the process of refining titanium is used as a cement raw material, the content of TiO 2 in the cement clinker to be produced often increases to about 1% by mass. Moreover, the coal ash generally used as a cement raw material may contain comparatively many Ti components (for example, refer Unexamined-Japanese-Patent No. 2010-120832).
In this respect, in Japanese Patent Application Laid-Open No. 2012-224503, when the cement contains TiO 2 , its fluidity decreases, but when it is set to a specific iron ratio and silicic acid ratio, the TiO 2 content is 1 mass% It has been reported to show good liquidity even if the degree is reached.
 しかしながら、クリンカー鉱物の存在比は各種物性に大きく影響するから、鉄率及びケイ酸率を変更した場合には、得られるセメントの物性が普通ポルトランドセメントから乖離することとなる。Ti成分を多く含有する廃棄物を原料として多く使用した場合に、普通ポルトランドセメントと同等の鉄率及びケイ酸率を有するセメント組成物は、流動性が不十分となる。
 本発明は、上記の現状を打開しようとしてなされたものである。
 従って本発明は、普通ポルトランドセメントクリンカーと同等の鉱物組成において、TiO含有量が高くなった場合であっても、良好な流動性を示すセメント組成物を与えるセメントクリンカーを提供することを目的とする。
 本発明者らは上記課題に鑑み鋭意検討を進めた。その結果、普通ポルトランドセメントクリンカーと同等の鉱物組成でTiO含有量が高い場合に、該セメントクリンカー中のMnOの含有量を調整することによって良好な流動性が確保されることを見出し、本発明の完成に至ったのである。
 即ち本発明は、
水硬率が1.8~2.2、ケイ酸率が2.0~2.8及び鉄率が1.7~2.0であり、
TiO含有量が0.3~1.0質量%であり、そして
さらにTiOに対して1.5質量倍以上のMnOを含有することを特徴とする、ポルトランドセメントクリンカーを提供するものである。
However, since the abundance ratio of clinker mineral greatly affects various physical properties, when the iron ratio and the silicic acid ratio are changed, the physical properties of the obtained cement will deviate from ordinary portland cement. When a large amount of waste containing a large amount of Ti component is used as a raw material, a cement composition having an iron ratio and a silicic acid ratio equivalent to that of ordinary portland cement becomes insufficient in fluidity.
The present invention has been made to overcome the above-mentioned current situation.
Therefore, the object of the present invention is to provide a cement clinker which gives a cement composition which exhibits good fluidity even with a high TiO 2 content in a mineral composition equivalent to that of ordinary Portland cement clinker. Do.
The present inventors diligently studied in view of the above problems. As a result, when the TiO 2 content is high with a mineral composition equivalent to that of ordinary Portland cement clinker, it is found that by adjusting the content of MnO in the cement clinker, it is possible to secure good fluidity. It has been completed.
That is, the present invention
The hydraulic ratio is 1.8 to 2.2, the silicic acid ratio is 2.0 to 2.8, and the iron ratio is 1.7 to 2.0,
Provided is a Portland cement clinker characterized by having a TiO 2 content of 0.3 to 1.0% by mass, and further containing 1.5 mass times or more of MnO with respect to TiO 2 . .
 本発明のポルトランドセメントクリンカー(以下、単に「セメントクリンカー」ともいう。)は、水硬率が1.8~2.2、ケイ酸率が2.0~2.8、そして鉄率が1.7~2.0である。好ましくは、水硬率が1.9~2.1、ケイ酸率が2.3~2.6、そして鉄率が1.8~2.0である。
 上記の水硬率、ケイ酸率及び鉄率(三率)は、周知の通り、それぞれ、セメントクリンカーについて得られた化学組成分析の結果を下記式代入して算出される値である。
 水硬率 = CaO/(SiO+Al+Fe
 ケイ酸率 = SiO/(Al+Fe
 鉄率 = Al/Fe
 上記において、化学式で表した項は、セメントクリンカーの化学組成分析によって得られた当該種の含有量(質量基準)である。
 本発明のセメントクリンカーにおける上記の三率の値は、いずれも、通常の性状を示すポルトランドセメントクリンカーと同等の範囲である。
 しかしながら本発明のセメントクリンカーは、TiOを0.3~1.0質量%含有する。セメントクリンカーがTiOを含有すると、得られるセメント組成物の流動性が低下することが知られている。本発明は、TiOを含有するセメントクリンカーが更にMnOを含有することにより、TiOの含有によって損なわれた流動性を回復する技術に関する。ただし、TiO含有量が0.3質量%に満たない場合には、該TiOによる流動性の低下が実質的に無視できるレベルであるため、本発明を適用する実益はない。一方、TiO含有量が1.0質量%を超える場合には、本発明のセメントクリンカーにおける他の要件を満足したとしても、得られるセメント組成物における流動性の回復が不十分の場合があり、実用上の問題が大きい。本発明のセメントクリンカーにおけるTiO含有量は、好ましくは0.5~1.0質量%である。
 本発明のセメントクリンカーは、MnOを、TiO含有量の1.5質量倍以上含有する。本明細書においては、MnO含有量が上記の要件を満たすことにより、Ti成分によって低下した流動性を工業的に有用なレベルにまで回復することとなる。一方で、MnO含有量が多くなるにつれて硬化体の圧縮強さが低下する傾向がある。そのため、MnO含有量は好ましくは2.5質量%以下であり、より好ましくは2.0質量%以下である。
 本明細書におけるTiO含有量及びMnO含有量は、それぞれ、現実にTiO又はMnOの形態で存在する化学種の含有量に限られない。これらの値は、セメントクリンカーの化学組成分析によって定量されたチタン原子及びマンガン原子の量を、それぞれ、TiO及びMnOの質量に換算して算出された値である。
 セメントクリンカーに含まれる各成分の化学組成分析(定量分析)は、例えばJIS R 5202に規定される化学分析法、JIS R 5204に規定される蛍光X線分析法等に準拠して行うことができる。
 本発明のセメントクリンカーを製造する方法は特に限定されるものではない。
 前述のとおり、本発明のセメントクリンカーにおける三率は、いずれも、従来から知られている通常の性状を示すセメントクリンカーと同等の範囲内にあるから、石灰石、珪石等の主要原料の選択及び調合技術等については、従来から知られている方法をそのまま適用することができる。
 本発明のセメントクリンカーは、TiO含有量を多くすることが可能なため、Ti成分を含有する廃棄物等を、原料として多量に使用出来るという利点がある。そして更に適当なMn源を原料に加え、焼成後のセメントクリンカーが上記の三率、TiO含有量及びMnO含有量を有することとなるように原料の配合比率を調整して使用するほかは、従来公知のセメントクリンカーの製造方法を適宜に選択して適用すればよい。
 使用可能な原料としては、石灰石、粘土、珪石、鉄鉱石等の天然原料のほか、廃棄物・副産物を使用することができる。廃棄物・副産物を、より具体的に例示すると、例えば高炉スラグ、製鋼スラグ、非鉄鉱滓、石炭灰、下水汚泥、浄水汚泥、製紙スラッジ、建設発生土、鋳物砂、ばいじん、焼却飛灰、溶融飛灰、木・、廃白土、ボタ、廃タイヤ、貝殻、都市ごみ、都市ごみの焼却灰等を挙げることができる(なお、これらの中には、セメントクリンカーの原料になるとともに熱エネルギー源となるものもある)。
 Ti成分含有量の多い原料としては、例えばチタン鉱滓、石炭灰、高炉スラグ等を;
MnO含有量を上記の範囲とするために使用されるMn成分(マンガン原子を含有する化学種)の含有量の多い原料としては、マンガン鉱物のほか、例えば廃電池等を、それぞれ挙げることができる。
 原料中に含まれるTi成分及びMn成分は、クリンカー焼成温度においては揮発性をほとんど有さない形態(例えば酸化物、複合酸化物、合金等)で含有されることが多い。従って、原料に含有されるTi成分及びMn成分中のチタン原子及びマンガン原子は、それぞれその全量がセメントクリンカー中に移行するとして配合比率を決定するための計算を行えばよい。むろん原料粉砕工程や焼成工程で揮発してセメントクリンカー中に取り込まれないTi成分及び/又はMn成分があることが予め分かっている場合には、その分を考慮に入れて計算する必要がある。セメントクリンカー製造時の組成制御における定法に従って計算を行えば、焼成後のセメントクリンカーの各成分の組成を、通常は計算値±0.05質量%の範囲で制御することができる。
 上記のようにして配合比率を調整した原料を使用し、当業界の定法に従って焼成することにより、セメントクリンカーを得ることができる。焼成方法としては、特に制限されず公知の方法を適宜選択して行えばよい。例えばNSPキルン、SPキルン等のセメントキルン等の高温加熱が可能な装置を用い、概ね1,450℃以上の高温において好ましくは20~120分焼成することが好ましい。
 上記のようにして製造したセメントクリンカーは、公知の方法に従って、JIS規格のセメント組成物、JIS規格外のセメント組成物、セメント系固化材の原料等として利用することができる。
 JIS規格のセメント組成物又はJIS規格外のセメント組成物は、少なくとも、上記のようにして製造されたセメントクリンカーの粉砕物と、石膏の粉砕物とを含むことが好ましい。これら以外に、高炉スラグ、石灰石(炭酸カルシウム)、フライアッシュ、シリカフューム等から選ばれる少なくとも1種の粉砕物を含有していてもよい。
 上記セメント組成物における石膏粉砕物の含有量は、セメントクリンカー粉砕物100質量部に対するSO換算値として、好ましくは0.5~5質量部であり、より好ましくは1.5~3質量部である。その他の成分の好ましい含有量は、セメントクリンカー粉砕物100質量部に対して、それぞれ以下のとおりである。
 高炉スラグ:好ましくは70質量部以下、より好ましくは0.5~60質量部、さらに好ましくは0.5~30質量部
 石灰石(炭酸カルシウム):好ましくは30質量部以下、より好ましくは0.5~10質量部
 フライアッシュ:好ましくは50質量部以下、より好ましくは0.5~30質量部
 シリカフューム:好ましくは20質量部以下、より好ましくは0.5~10質量部
 上記セメント組成物を製造するにあたっては、上記の各成分を混合後に粉砕してもよいし、各成分を粉砕した後に混合してもよいし、これらを組み合わせて行ってもよい。粉砕の際には、適当な粉砕助剤を添加してもよい。
 上記セメント組成物は、そのブレーン比表面積が、JIS規格で定める値以上であることが好ましく、2,800~5,000cm/gであることがより好ましい。このような比表面積は、上記の粉砕の程度を適宜に調整することにより、実現することができる。
 以上のようにして得られたセメント組成物は、そのまま或いは骨材、減水剤等の適切な材料と混合したうえで水を加えて硬化体の製造に使用することができるほか、
高炉スラグ、フライアッシュ等を混合して、例えば高炉スラグセメント、フライアッシュセメント等として使用することも可能である。
The Portland cement clinker of the present invention (hereinafter simply referred to as "cement clinker") has a hydraulic ratio of 1.8 to 2.2, a silicic acid ratio of 2.0 to 2.8, and an iron ratio of 1. 7 to 2.0. Preferably, the hydraulic ratio is 1.9 to 2.1, the silicic acid ratio is 2.3 to 2.6, and the iron ratio is 1.8 to 2.0.
The above-mentioned hydraulic rate, silicic acid rate and iron rate (triple rate) are values which are calculated by substituting the result of the chemical composition analysis obtained for the cement clinker into the following equation, as is well known.
Hydraulic modulus = CaO / (SiO 2 + Al 2 O 3 + Fe 2 O 3 )
Silica rate = SiO 2 / (Al 2 O 3 + Fe 2 O 3 )
Iron ratio = Al 2 O 3 / Fe 2 O 3
In the above, the term represented by the chemical formula is the content (mass basis) of the species obtained by chemical composition analysis of cement clinker.
The values of the above three rates in the cement clinker of the present invention are all in the same range as the portland cement clinker exhibiting normal properties.
However, the cement clinker of the present invention contains 0.3 to 1.0% by mass of TiO 2 . It is known that when the cement clinker contains TiO 2 , the fluidity of the resulting cement composition is reduced. The present invention relates to a technology for recovering fluidity impaired by the inclusion of TiO 2 by the cement clinker containing TiO 2 further containing MnO. However, when the TiO 2 content is less than 0.3% by mass, the reduction in fluidity due to the TiO 2 is substantially negligible, so there is no practical application of the present invention. On the other hand, when the TiO 2 content exceeds 1.0% by mass, the recovery of fluidity in the resulting cement composition may be insufficient even if other requirements in the cement clinker of the present invention are satisfied. , Practical problems are big. The TiO 2 content in the cement clinker of the present invention is preferably 0.5 to 1.0% by mass.
The cement clinker of the present invention contains MnO at 1.5 mass times or more of the TiO 2 content. In the present specification, when the MnO content satisfies the above-mentioned requirements, the flowability reduced by the Ti component is restored to an industrially useful level. On the other hand, the compressive strength of the cured product tends to decrease as the MnO content increases. Therefore, the MnO content is preferably 2.5% by mass or less, more preferably 2.0% by mass or less.
The TiO 2 content and the MnO content in the present specification are not limited to the contents of chemical species actually present in the form of TiO 2 or MnO, respectively. These values are values calculated by converting the amounts of titanium and manganese atoms quantified by chemical composition analysis of cement clinker into the mass of TiO 2 and MnO, respectively.
Chemical composition analysis (quantitative analysis) of each component contained in cement clinker can be performed, for example, in accordance with the chemical analysis method defined in JIS R 5202, the fluorescent X-ray analysis method defined in JIS R 5204, etc. .
The method for producing the cement clinker of the present invention is not particularly limited.
As described above, since all of the three rates in the cement clinker of the present invention are in the same range as cement clinkers exhibiting conventional properties conventionally known, selection and preparation of main raw materials such as limestone, silica stone, etc. For techniques and the like, conventionally known methods can be applied as they are.
The cement clinker of the present invention has an advantage that waste etc. containing a Ti component can be used as a raw material in a large amount since the content of TiO 2 can be increased. Then, an appropriate Mn source is further added to the raw material, and the mixing ratio of the raw material is adjusted and used so that the cement clinker after firing has the above-mentioned ratio of 3%, TiO 2 content and MnO content, A conventionally known method of producing a cement clinker may be appropriately selected and applied.
As usable raw materials, in addition to natural raw materials such as limestone, clay, silica, iron ore, waste and by-products can be used. More specifically, examples of wastes and by-products include blast furnace slag, steelmaking slag, non-ferrous slag, coal ash, sewage sludge, purified water sludge, papermaking sludge, construction-generated soil, casting sand, dust, incineration fly ash, and molten fly Ashes, trees, waste white earth, plants, waste tires, shells, urban waste, incineration ash of municipal waste, etc. can be mentioned (In addition, among these, it becomes a raw material of cement clinker and also a thermal energy source. There is also
As raw materials having a high content of Ti component, for example, titanium slag, coal ash, blast furnace slag and the like;
Examples of raw materials having a large content of Mn component (chemical species containing a manganese atom) used to adjust the MnO content to the above range include, for example, waste batteries and the like in addition to manganese minerals. .
The Ti component and the Mn component contained in the raw material are often contained in a form (for example, an oxide, a composite oxide, an alloy, etc.) having little volatility at the clinker firing temperature. Therefore, the titanium atoms and manganese atoms in the Ti component and the Mn component contained in the raw material may be calculated to determine the compounding ratio as the total amount thereof migrates into the cement clinker. Of course, if it is known in advance that there is a Ti component and / or an Mn component which is volatilized and not incorporated into the cement clinker in the raw material grinding step or the firing step, it is necessary to take into account the calculation. The composition of each component of cement clinker after firing can be controlled usually within the range of calculated value ± 0.05% by mass if calculation is performed according to a standard method in composition control at the time of cement clinker production.
A cement clinker can be obtained by using the raw material whose blending ratio is adjusted as described above and firing according to a method in the art. The firing method is not particularly limited, and a known method may be appropriately selected. For example, using an apparatus capable of high-temperature heating such as a cement kiln such as NSP kiln or SP kiln, it is preferable to bake at a high temperature of about 1,450 ° C. or higher, preferably for 20 to 120 minutes.
The cement clinker manufactured as described above can be used as a cement composition of JIS standard, a cement composition other than JIS standard, a raw material of a cement-based solidifying material, and the like according to a known method.
The cement composition of JIS standard or the cement composition other than JIS standard preferably includes at least a ground product of cement clinker manufactured as described above and a ground product of gypsum. In addition to these, at least one ground material selected from blast furnace slag, limestone (calcium carbonate), fly ash, silica fume and the like may be contained.
The content of ground gypsum in the cement composition is preferably 0.5 to 5 parts by mass, more preferably 1.5 to 3 parts by mass, in terms of SO 3 based on 100 parts by mass of ground cement clinker. is there. The preferable contents of the other components are as follows with respect to 100 parts by mass of ground cement clinker.
Blast furnace slag: preferably 70 parts by mass or less, more preferably 0.5 to 60 parts by mass, still more preferably 0.5 to 30 parts by mass limestone (calcium carbonate): preferably 30 parts by mass or less, more preferably 0.5 ~ 10 parts by mass fly ash: preferably 50 parts by mass or less, more preferably 0.5 to 30 parts by mass silica fume: preferably 20 parts by mass or less, more preferably 0.5 to 10 parts by mass The above cement composition is produced In this case, each of the above components may be mixed and then crushed, or may be mixed after being crushed, or these may be combined. A suitable grinding aid may be added during grinding.
The cement composition preferably has a brane specific surface area equal to or greater than a value determined by the JIS standard, and more preferably 2,800 to 5,000 cm 2 / g. Such a specific surface area can be realized by appropriately adjusting the degree of pulverization described above.
The cement composition obtained as described above can be used as it is or after mixing it with an appropriate material such as an aggregate or a water reducing agent and adding water to produce a cured product,
It is also possible to mix blast furnace slag, fly ash and the like and use it as, for example, blast furnace slag cement, fly ash cement and the like.
 以下、実施例により本発明の構成及び効果を説明するが、本発明はこれらの実施例に限定されるものではない。
 以下の実施例及び比較例では、セメントクリンカーの原料として下記の試薬を使用した。
 TiO源:和光純薬工業(株)製、二酸化チタン(特級)
 CaO源:和光純薬工業(株)製、炭酸カルシウム(特級)
 SiO源:和光純薬工業(株)製、二酸化けい素(特級)
 Al源:和光純薬工業(株)製、酸化アルミニウム(特級)
 Fe源:和光純薬工業(株)製、酸化鉄(一級)
 MnO源:和光純薬工業(株)製、酸化マンガン(一級)
 セメント組成物の調製に用いた石膏は、火力発電所から発生する副生石膏である。
参考例、実施例1~5及び比較例1~5
(1)セメントクリンカーの調製および組成の分析
 ボーグ式によって算出されるCS、CS、CA及びCAFの値並びにTiO及びMnOの含有量が、それぞれ、下記表1に記載の値となるように上記のセメント組成物原料を電気炉中に仕込んで十分に混合した後に、大気中、1,450℃において1.5時間焼成してセメントクリンカーを得た。
 上記で得られたセメントクリンカーにつき、JIS R 5204に準拠する蛍光X線分析によって求めた化学組成、該組成から算出された三率及び該組成をボーグ式に代入して得られたクリンカー鉱物組成を、表1に合わせて示した。
(2)セメント組成物の調製およびセメントペーストフローの測定
 上記で得たセメントクリンカーに、SO含有量が1.8~1.9質量%の範囲内となるように石膏を添加した後、ブレーン比表面積が3,200~3,300cm/gとなるようにボールミルを用いて粉砕することにより、セメント組成物を調製した。
 上記で得られたセメント組成物につき、JASS 15 M−103に準拠して、水/セメント比0.50、混和剤添加なし、練り混ぜ時間3分及び試験温度20℃の条件下で、練り上がり直後のセメントペーストフローを測定した。測定結果は表1に示した。
Figure JPOXMLDOC01-appb-T000001
 参考例は、TiOを有しない通常のポルトランドセメントの例である。
 比較例1~5は、TiOを、それぞれ、0.5質量%及び1.0質量%含有する場合である。これらの比較例のセメントペーストフロー値は参考例の値よりも劣っている。
 これに対してMnOを、TiOに対して1.5質量倍以上含有する実施例1~5においては、TiOを含有する場合であっても良好なフロー値を示すことが理解される。
発明の効果
 本発明によれば、セメントクリンカー中にTiOが含有されることとなるような再生原料を使用する場合であっても、クリンカー中のMnO含有量を増加することによって、流動性の良好なセメント組成物を得ることができる。
 そのため、Ti成分含有量の多い原料を従来よりも多くの割合で使用することが可能となり、廃棄物の有効利用が促進される。
EXAMPLES Hereinafter, although the structure and effect of this invention are demonstrated with an Example, this invention is not limited to these Examples.
In the following examples and comparative examples, the following reagents were used as a raw material of cement clinker.
TiO 2 source: manufactured by Wako Pure Chemical Industries, Ltd., titanium dioxide (special grade)
CaO source: manufactured by Wako Pure Chemical Industries, Ltd., calcium carbonate (special grade)
SiO 2 source: manufactured by Wako Pure Chemical Industries, Ltd., silicon dioxide (special grade)
Al 2 O 3 source: manufactured by Wako Pure Chemical Industries, Ltd., aluminum oxide (special grade)
Fe 2 O 3 source: Wako Pure Chemical Industries Ltd. iron oxide (first grade)
MnO source: manufactured by Wako Pure Chemical Industries, Ltd., manganese oxide (first grade)
The gypsum used to prepare the cement composition is a by-product gypsum generated from a thermal power plant.
Reference Example, Examples 1 to 5 and Comparative Examples 1 to 5
(1) Preparation of cement clinker and analysis of composition The values of C 3 S, C 2 S, C 3 A and C 4 AF and the contents of TiO 2 and MnO calculated by the Vogue equation are shown in Table 1 below, respectively. The above cement composition raw materials were charged into an electric furnace and mixed sufficiently to obtain the values described above, and then fired in air at 1,450 ° C. for 1.5 hours to obtain a cement clinker.
With respect to the cement clinker obtained above, the chemical composition determined by the fluorescent X-ray analysis in accordance with JIS R 5204, the three rates calculated from the composition, and the clinker mineral composition obtained by substituting the composition into the Borg equation , According to Table 1.
(2) Preparation of cement composition and measurement of cement paste flow After adding gypsum to the cement clinker obtained above so that the SO 3 content is in the range of 1.8 to 1.9 mass%, branes A cement composition was prepared by grinding using a ball mill so that the specific surface area would be 3,200 to 3,300 cm 2 / g.
For the cement composition obtained above, according to JASS 15 M-103, the water / cement ratio was 0.50, no admixture was added, the mixing was done under the conditions of 3 minutes of mixing time and the test temperature of 20 ° C. The cement paste flow immediately after was measured. The measurement results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
The reference example is an example of normal portland cement which does not have TiO 2 .
Comparative Examples 1 to 5 are cases where TiO 2 is contained in 0.5 mass% and 1.0 mass%, respectively. The cement paste flow values of these comparative examples are inferior to the values of the reference example.
On the other hand, in Examples 1 to 5 containing MnO at 1.5 mass times or more with respect to TiO 2 , it is understood that even when TiO 2 is contained, good flow values are exhibited.
Effect of the Invention According to the present invention, even in the case of using a regenerated raw material such that TiO 2 will be contained in cement clinker, fluidity can be improved by increasing the MnO content in the clinker. A good cement composition can be obtained.
Therefore, it is possible to use a raw material having a high content of Ti component in a larger proportion than in the past, and the effective use of waste is promoted.

Claims (4)

  1.  水硬率が1.8~2.2、ケイ酸率が2.0~2.8及び鉄率が1.7~2.0であり、
    TiO含有量が0.3~1.0質量%であり、そして
    さらにTiOに対して1.5質量倍以上のMnOを含有することを特徴とする、ポルトランドセメントクリンカー。
    The hydraulic ratio is 1.8 to 2.2, the silicic acid ratio is 2.0 to 2.8, and the iron ratio is 1.7 to 2.0,
    1. A portland cement clinker characterized by having a TiO 2 content of 0.3 to 1.0% by mass, and further containing 1.5 mass times or more of MnO with respect to TiO 2 .
  2.  MnOの含有量が、TiOに対して1.5~2.5質量倍である、請求項1記載のポルトランドセメントクリンカー。 The Portland cement clinker according to claim 1, wherein the content of MnO is 1.5 to 2.5 times by mass that of TiO 2 .
  3.  請求項1又は2記載のポルトランドセメントクリンカーの粉砕物と、石膏との粉砕物とを含むことを特徴とする、セメント組成物。 A cement composition comprising the crushed material of portland cement clinker according to claim 1 or 2 and the crushed material of gypsum.
  4.  高炉スラグ、石灰石、フライアッシュ及びシリカフュームから選ばれる少なくともいずれか1種の粉砕物を更に含有する、請求項3記載のセメント組成物。 The cement composition according to claim 3, further comprising at least one crushed material selected from blast furnace slag, limestone, fly ash and silica fume.
PCT/JP2014/061344 2013-04-24 2014-04-16 Improved-fluidity cement clinker WO2014175294A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2014258396A AU2014258396B2 (en) 2013-04-24 2014-04-16 Fluidity improvement type cement clinker

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-091284 2013-04-24
JP2013091284 2013-04-24

Publications (1)

Publication Number Publication Date
WO2014175294A1 true WO2014175294A1 (en) 2014-10-30

Family

ID=51791865

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/061344 WO2014175294A1 (en) 2013-04-24 2014-04-16 Improved-fluidity cement clinker

Country Status (3)

Country Link
JP (1) JP6353264B2 (en)
AU (1) AU2014258396B2 (en)
WO (1) WO2014175294A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109608075A (en) * 2018-12-24 2019-04-12 攀枝花环业冶金渣开发有限责任公司 High-titanium blast furnace slag composite blend micro mist and preparation method thereof
CN112661489A (en) * 2020-12-31 2021-04-16 山西富森能源科技有限公司 Method for preparing ceramsite proppant by using self-ignition low-aluminum coal gangue and composite mineralizer

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7436249B2 (en) 2020-03-13 2024-02-21 株式会社トクヤマ cement clinker

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10152354A (en) * 1996-11-22 1998-06-09 Tosoh Corp Method for treating manganese slag
JP2008247715A (en) * 2007-03-30 2008-10-16 Jfe Steel Kk Sorting method of granulated blast furnace slag for cement, and forming process of cement composition
JP2010120832A (en) * 2008-11-21 2010-06-03 Tokuyama Corp Method for producing cement clinker
JP2012224503A (en) * 2011-04-19 2012-11-15 Tokuyama Corp Fluidity improvement type cement clinker

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52155623A (en) * 1976-06-22 1977-12-24 Kobe Steel Ltd Method of manufacturing portland cement
JPS5846461B2 (en) * 1977-10-15 1983-10-17 株式会社神戸製鋼所 Manufacturing method of cement clinker using converter slag as raw material
KR100415659B1 (en) * 1998-11-25 2004-03-19 주식회사 포스코 A cement composition and a method thereof using ladle slag
FR2864074B1 (en) * 2003-12-18 2006-05-19 Lafarge Sa HYDRAULIC MINERAL COMPOSITION AND PROCESS FOR THE PRODUCTION THEREOF, CEMENTITIOUS PRODUCTS AND HYDRAULIC BINDERS CONTAINING SUCH A COMPOSITION
CN101544485B (en) * 2009-04-20 2011-07-27 西安建筑科技大学 Method for preparing geopolymer and organic macromolecule composite gelled material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10152354A (en) * 1996-11-22 1998-06-09 Tosoh Corp Method for treating manganese slag
JP2008247715A (en) * 2007-03-30 2008-10-16 Jfe Steel Kk Sorting method of granulated blast furnace slag for cement, and forming process of cement composition
JP2010120832A (en) * 2008-11-21 2010-06-03 Tokuyama Corp Method for producing cement clinker
JP2012224503A (en) * 2011-04-19 2012-11-15 Tokuyama Corp Fluidity improvement type cement clinker

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TOMIKAZU KOYAMA: "Tenrosai o Cement Tetsu Genryo to shite Shiyo shita Baai no Manganese no Eikyo", PROCEEDINGS OF JAPAN CEMENT ENGINEERING ASSOCIATION, vol. 35, 10 December 1981 (1981-12-10), pages 65 - 68 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109608075A (en) * 2018-12-24 2019-04-12 攀枝花环业冶金渣开发有限责任公司 High-titanium blast furnace slag composite blend micro mist and preparation method thereof
CN109608075B (en) * 2018-12-24 2021-10-29 攀枝花环业冶金渣开发有限责任公司 High-titanium blast furnace slag composite admixture micro powder and preparation method thereof
CN112661489A (en) * 2020-12-31 2021-04-16 山西富森能源科技有限公司 Method for preparing ceramsite proppant by using self-ignition low-aluminum coal gangue and composite mineralizer

Also Published As

Publication number Publication date
AU2014258396A1 (en) 2015-11-05
JP2014224033A (en) 2014-12-04
JP6353264B2 (en) 2018-07-04
AU2014258396B2 (en) 2017-07-27

Similar Documents

Publication Publication Date Title
JP5665638B2 (en) Method for producing cement clinker
JP5800387B2 (en) Soil improvement material
JP6579928B2 (en) Method for producing cement clinker
JP7361097B2 (en) Cement clinker manufacturing method and cement clinker powder
JP6282408B2 (en) Hydraulic composition
JP5705021B2 (en) Method for producing cement clinker
WO2015037593A1 (en) Hydraulic composition
WO2014175294A1 (en) Improved-fluidity cement clinker
JP5932478B2 (en) Cement composition and method for producing the same
JP6855691B2 (en) Cement composition and its manufacturing method
JP6516658B2 (en) Cement clinker
WO2015037594A1 (en) Method for producing portland cement clinker
JP2013224227A (en) Method for producing cement composition
JP5818623B2 (en) Low hydration heat cement clinker and low hydration heat cement composition
JP6683025B2 (en) Cement composition and method for producing the same
JP5623329B2 (en) Cement clinker with improved fluidity
WO2014175295A1 (en) Improved-fluidity cement clinker
JP6825171B1 (en) Method for producing hydraulic composition
JP2016064940A (en) Manufacturing method of cement clinker
JP5976069B2 (en) Cement clinker
JP6217305B2 (en) Low hydration thermal cement composition and method for producing the same
JP5980044B2 (en) Method for producing cement composition
JP2013087036A (en) Low hydration heat cement clinker and low hydration heat cement composition
JP2012229162A (en) Method for producing cement clinker
JP7436249B2 (en) cement clinker

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14788171

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2014258396

Country of ref document: AU

Date of ref document: 20140416

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 14788171

Country of ref document: EP

Kind code of ref document: A1