JP2010120832A - Method for producing cement clinker - Google Patents

Method for producing cement clinker Download PDF

Info

Publication number
JP2010120832A
JP2010120832A JP2008298548A JP2008298548A JP2010120832A JP 2010120832 A JP2010120832 A JP 2010120832A JP 2008298548 A JP2008298548 A JP 2008298548A JP 2008298548 A JP2008298548 A JP 2008298548A JP 2010120832 A JP2010120832 A JP 2010120832A
Authority
JP
Japan
Prior art keywords
cement clinker
cement
content
raw material
clinker
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008298548A
Other languages
Japanese (ja)
Other versions
JP5398236B2 (en
Inventor
Takashi Sabayashi
敬司 茶林
Akinori Nakamura
明則 中村
Hiroyoshi Kato
弘義 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP2008298548A priority Critical patent/JP5398236B2/en
Publication of JP2010120832A publication Critical patent/JP2010120832A/en
Application granted granted Critical
Publication of JP5398236B2 publication Critical patent/JP5398236B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/10Production of cement, e.g. improving or optimising the production methods; Cement grinding

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing cement clinker by using waste materials such as nonferrous slag and coal ash as raw materials in which the cement produced by using the obtained cement clinker is prevented from occurrence of a phenomenon that the mortar compressive strength lowers. <P>SOLUTION: The method for producing cement clinker comprises the steps of: measuring the Ti content of each of raw materials (minerals, waste materials, etc.) to be used for producing the cement clinker by X-ray fluorescence analysis; and adjusting a mixing ratio of each of raw materials so that the Ti content of the cement clinker obtained by firing becomes ≤1.0 mass% in terms of TiO<SB>2</SB>. When titanium slag having high Ti content is used as the raw material, a good result can be achieved particularly according to this method. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明はセメントクリンカの製造方法に係る。詳しくは、セメント原料として廃棄物を用いた場合でも、圧縮強度等のセメント物性に悪影響を与えることの少ないセメントクリンカの製造方法に係る。   The present invention relates to a method for producing a cement clinker. Specifically, the present invention relates to a method for producing a cement clinker that hardly causes adverse effects on cement physical properties such as compressive strength even when waste is used as a cement raw material.

近年、下水汚泥、下水汚泥焼却灰、都市ゴミ焼却灰、高炉水滓スラグ、高炉徐冷スラグおよび鉄鋼スラグなどの廃棄物の処理が社会問題となっており、今後さらに処理の難しい廃棄物の量が増えることが予想される。そのため、上記廃棄物の有効な処理方法の確立や再利用、再資源化への対応については、さらなる研究が必要となっている。   In recent years, the disposal of waste such as sewage sludge, sewage sludge incineration ash, municipal waste incineration ash, blast furnace water slag, blast furnace slow-cooled slag, and steel slag has become a social issue, and the amount of waste that will be more difficult to process in the future. Is expected to increase. For this reason, further research is necessary for the establishment, reuse, and recycling of effective waste disposal methods.

従来からセメントの製造においては、上記廃棄物を原燃料として使用することで再資源化を行なっている。   Conventionally, in the manufacture of cement, recycling is performed by using the above waste as raw fuel.

セメントクリンカは主にSiO、Al、CaO及びFeから構成されており、これら成分からなる鉱物比率、具体的にはCS(3CaO・SiO)、CA(3CaO・Al)、CS(2CaO・SiO)及びCAF(4CaO・Al・Fe)の組成比が、セメントの各種物性に大きな影響を与えることはよく知られている。 Cement clinker is mainly composed of SiO 2 , Al 2 O 3 , CaO, and Fe 3 O 3, and the mineral ratio of these components, specifically C 3 S (3CaO · SiO 2 ), C 3 A ( 3CaO.Al 2 O 3 ), C 2 S (2CaO.SiO 2 ) and C 4 AF (4CaO.Al 2 O 3 .Fe 3 O 3 ) have a great influence on various physical properties of cement. well known.

また少量成分の影響についても種々検討が行われており、例えばポルトランドセメントに係るJIS規格(JIS R 5210)では、酸化マグネシウム量、全アルカリ量、塩化物イオン量などが規定されている。   Various studies have also been conducted on the effects of small amounts of components. For example, the JIS standard (JIS R 5210) relating to Portland cement defines the amount of magnesium oxide, the amount of total alkali, the amount of chloride ions, and the like.

また遊離酸化カルシウム(フリーライム;f-CaO)が多すぎると種々の問題が生じることは知られており(例えば、特許文献1、2)、P量についても単独での影響や、他の成分と組み合わさった場合の検討が多く行われている(例えば、特許文献3〜5参照)。 The free calcium oxide (free lime; f-CaO) When there is too much has been known that various problems occur (e.g., Patent Documents 1 and 2), and impact alone also P 2 O 5 content, Many studies have been made in combination with other components (see, for example, Patent Documents 3 to 5).

特開平8−34653号公報JP-A-8-34653 特開平7−267699号公報JP-A-7-267699 特開2000−272939号公報JP 2000-272939 A 特開2002−187747号公報JP 2002-187747 A 特開2002−265242号公報JP 2002-265242 A

しかしながら、その影響の知られている各成分の組成(含有量)が適切となるよう原料組成や焼成条件を調整しても、場合によっては、モルタル圧縮強度等が相対的に劣るものを生じることがある。このような現象は、多量の廃棄物を原料とした場合により頻繁に生じることから、物性の良好なものを安定的に生産するためには、廃棄物使用量を抑制しなければならないという問題を生じていた。   However, even if the raw material composition and the firing conditions are adjusted so that the composition (content) of each component whose influence is known is appropriate, in some cases, the mortar compressive strength is relatively poor. There is. Such a phenomenon occurs more frequently when a large amount of waste is used as a raw material. Therefore, in order to stably produce products having good physical properties, there is a problem that the amount of waste used must be suppressed. It was happening.

従って本発明は、この課題を解決し、多量の廃棄物を原料とすることを可能とし、かつ物性の良好なセメントクリンカを安定的に製造する方法を提供することを目的とする。   Accordingly, an object of the present invention is to solve this problem, and to provide a method for stably producing a cement clinker having a good physical property that enables a large amount of waste to be used as a raw material.

本発明者らは上記課題に鑑み鋭意検討を進めた結果、原料中に含まれるTi成分は、その量が少ない場合には他の鉱物中に固溶しているが、一定量を超えるとCaTiOなどとして析出することを見出し、さらに検討を進めた結果、本発明を完成した。 As a result of diligent investigations in view of the above problems, the present inventors have found that the Ti component contained in the raw material is dissolved in other minerals when the amount is small, but if the amount exceeds a certain amount, CaTiO As a result of finding out that it precipitates as 3 etc., and having further investigated, the present invention was completed.

即ち本発明は、複数種の原料を調合、これを焼成してセメントクリンカを製造するに際し、用いる各原料の成分分析を行い、該分析結果に基づいて、焼成後に得られるセメントクリンカ中のTi含有量がTiO換算で1.0質量%以下となるように原料の配合比率を調整するセメントクリンカの製造方法である。 That is, in the present invention, when preparing a cement clinker by preparing a plurality of types of raw materials and firing them, component analysis of each raw material used is performed, and based on the analysis results, Ti content in the cement clinker obtained after firing This is a method for producing a cement clinker in which the mixing ratio of the raw materials is adjusted so that the amount is 1.0% by mass or less in terms of TiO 2 .

本発明によれば、焼成により得られたセメントクリンカ中にCaTiOが析出することを簡便に防止することができる。これにより該セメントクリンカを用いて製造したセメントのモルタル圧縮強度などの物性が相対的に低くなってしまうことを防止することが容易となる。 According to the present invention, it is possible to easily prevent CaTiO 3 from being precipitated in a cement clinker obtained by firing. As a result, it becomes easy to prevent the physical properties such as mortar compressive strength of the cement produced using the cement clinker from becoming relatively low.

そのため、廃棄物等のTi含有量の多い原料であっても、その使用量を適切な範囲と調整することが容易となり、必要以上に廃棄物使用量を抑制しなくてもよい。   Therefore, even if it is a raw material with many Ti content, such as a waste, it becomes easy to adjust the usage amount with an appropriate range, and it is not necessary to suppress the waste usage amount more than necessary.

本発明の製造方法では、各原料に含まれる成分を分析し、該分析結果に基づいて焼成後のセメントクリンカ中に含まれるTi含有量を、TiO換算で1.0質量%以下となるように各原料の配合を調整する(以下、セメントクリンカを単に「クリンカ」と記す場合がある)。 In the production method of the present invention, the components contained in each raw material are analyzed, and based on the analysis results, the Ti content contained in the cement clinker after firing is 1.0% by mass or less in terms of TiO 2. The composition of each raw material is adjusted (hereinafter, the cement clinker may be simply referred to as “clinker”).

後述する実施例、比較例に具体的に結果を示すように、クリンカ中のTiO換算でのTi含有量が1.0質量%を超えると、例えばモルタル圧縮強度が大幅に低下してしまう。 As specifically shown in the examples and comparative examples described later, when the Ti content in terms of TiO 2 in the clinker exceeds 1.0% by mass, for example, the mortar compressive strength is significantly reduced.

Ti含有量が異なるだけで、他の原料組成や焼成条件が同一のクリンカについて分析してみると、TiO換算でのTi含有量が1.0質量%までは空隙率が低下していくが、それを超えると一定の値になる。またクリンカのX線回折ではTiO換算でのTi含有量が1.0質量%を超えるとCaTiOに同定される物質の存在が確認され始め、また他の鉱物成分量も変化が確認される(図1)。これらのことから、TiO換算でのTi含有量が1.0質量%までは、Ti成分はセメントクリンカを構成する通常の鉱物成分中に固溶するが、1.0質量%を超えると固溶しきれなくなって析出し、そのため他の鉱物組成にも影響を与え、結果としてセメント物性に影響を与えてしまうものと考えられる。 When the clinker having the same raw material composition and the same firing conditions is analyzed only in the Ti content, the porosity decreases until the Ti content in terms of TiO 2 is 1.0% by mass. If it exceeds that, it becomes a certain value. In addition, in the X-ray diffraction of clinker, when the Ti content in terms of TiO 2 exceeds 1.0 mass%, the presence of a substance identified as CaTiO 3 begins to be confirmed, and the amount of other mineral components is also confirmed to change. (FIG. 1). From these facts, when the Ti content in terms of TiO 2 is up to 1.0% by mass, the Ti component is solid-dissolved in the normal mineral component constituting the cement clinker. It is thought that it becomes impossible to melt and precipitates, and therefore affects other mineral compositions, and consequently affects the physical properties of cement.

より良好なセメント物性を得られるという観点からは、焼成後に得られるセメントクリンカ中のTi含有量がTiO換算で0.5質量%以下となるように各原料の配合比率を調整することが好ましい。 From the viewpoint of obtaining better cement properties, it is preferable to adjust the blending ratio of each raw material so that the Ti content in the cement clinker obtained after firing is 0.5% by mass or less in terms of TiO 2. .

一方で空隙率が低いクリンカが得られる、即ち、焼き締まりが良好なものを得られるという観点からは、同0.5〜1.0質量%の範囲となるように各原料の配合比率を調整することが好ましい。   On the other hand, from the viewpoint that a clinker with a low porosity is obtained, that is, a product with good shrinkage is obtained, the blending ratio of each raw material is adjusted to be in the range of 0.5 to 1.0% by mass. It is preferable to do.

本発明の製造方法は、上述の如く焼成後のクリンカが含有するTi量がTiO換算で1.0質量%以下となるように各原料の配合比率を調整しなければならない以外は、従来公知のセメントクリンカの製造方法を適用すれよい。即ち、例えばJIS規格のポルトランドセメントを製造するのであれば、石灰石、粘土、珪石、酸化鉄原料等の鉱物性原材料や各種廃棄物・副産物等を原料としてセメントキルンにより焼成し、得られたクリンカとセッコウ等を混合、粉砕してセメント組成物とする。 The production method of the present invention is conventionally known except that the mixing ratio of each raw material must be adjusted so that the amount of Ti contained in the clinker after firing is 1.0 mass% or less in terms of TiO 2 as described above. The method for producing cement clinker may be applied. That is, for example, if JIS standard Portland cement is manufactured, the clinker obtained by calcining with a cement kiln using mineral raw materials such as limestone, clay, silica, and iron oxide raw materials and various wastes and by-products as raw materials Gypsum and the like are mixed and pulverized to obtain a cement composition.

使用可能な廃棄物・副産物をより具体的に例示すると、高炉スラグ、製鋼スラグ、非鉄鉱滓、石炭灰、下水汚泥、浄水汚泥、製紙スラッジ、建設発生土、鋳物砂、ばいじん、焼却飛灰、溶融飛灰、塩素バイパスダスト、木屑、廃白土、ボタ、廃タイヤ、貝殻、都市ごみやその焼却灰等が挙げられる(なお、これらの中には、セメント原料になるとともに熱エネルギー源となるものもある)。   Specific examples of usable waste and by-products include blast furnace slag, steelmaking slag, non-ferrous iron slag, coal ash, sewage sludge, purified water sludge, papermaking sludge, construction generated soil, foundry sand, dust, incineration fly ash, melting Examples include fly ash, chlorine bypass dust, wood scrap, waste white clay, waste, tires, shells, municipal waste and incinerated ash. is there).

上記廃棄物・副産物のなかでも、高濃度でTi成分を含有している可能性が高い点で、非鉄鉱滓や石炭灰、特にチタン精製過程で生じる中和滓(チタン鉱滓)を原料として用いる場合に本発明を適用する有用性が特に高い。   Among the wastes and by-products mentioned above, non-ferrous slag and coal ash, especially neutralized slag (titanium slag) produced during the titanium refining process, is used as a raw material because it is highly likely to contain a Ti component at a high concentration. The present invention is particularly useful for applying the present invention.

本発明を実施するに際しては、焼成後に得られるクリンカの含有するTi量がTiO換算で1.0質量%にするために、各原料の成分分析を行う。本発明においては、この原料の成分分析は、該原料に含まれる全ての構成成分を分析する必要はなく、上記目的を達成できる成分を分析、定量すればよい。最も簡単には原料中のTi成分の含有量を分析により求めればよい。 In carrying out the present invention, component analysis of each raw material is performed so that the amount of Ti contained in the clinker obtained after firing is 1.0% by mass in terms of TiO 2 . In the present invention, the component analysis of the raw material does not need to analyze all the constituent components contained in the raw material, and it is only necessary to analyze and quantify the component that can achieve the above object. In the simplest case, the content of the Ti component in the raw material may be obtained by analysis.

この場合、各々の原料に含まれるTi成分の量は、該Tiの形態(TiO、他の金属との複酸化物、チタン酸塩、硫酸チタン、金属チタンやチタン合金の形態など)に合わせて公知の分析方法により分析すればよい。好ましくは蛍光X線分析(JIS R 5204に準じる)を採用することにより、Tiの存在形態に関係なく必要な精度で定量することができる。 In this case, the amount of Ti component contained in each raw material is matched to the form of Ti (TiO 2 , double oxide with other metals, titanate, titanium sulfate, metal titanium, titanium alloy, etc.). The analysis may be performed by a known analysis method. Preferably, by adopting fluorescent X-ray analysis (according to JIS R 5204), it can be quantified with the required accuracy irrespective of the presence form of Ti.

むろん分析方法は蛍光X線分析に限られるものではなく、必要に応じてJIS R 5202で規定される化学分析法などで定量してもよい。また原料の一部が金属切削粉を含む廃棄物である等によりTiが金属チタンやチタン合金として存在している場合には、例えば無機酸−フッ化水素酸で溶解し、得られた溶液を原子吸光分析、IPC発光分析等により分析して定量することもできる。   Of course, the analysis method is not limited to the fluorescent X-ray analysis, and may be quantified by a chemical analysis method defined in JIS R 5202, if necessary. In addition, when Ti is present as titanium metal or titanium alloy because a part of the raw material is a waste containing metal cutting powder, for example, the solution obtained by dissolving with inorganic acid-hydrofluoric acid is used. It can also be analyzed and quantified by atomic absorption analysis, IPC emission analysis or the like.

都市ごみやその焼却灰を原料とする場合には、様々な形態のTiが多量に含まれる場合がある。このような原料を用いる場合には、酸による溶解、アルカリ融解などを組合わせた未知試料の系統的分析方法の手法などに従い、その含有量を求めることもできる。   When municipal waste or its incinerated ash is used as a raw material, a large amount of Ti in various forms may be contained. When such a raw material is used, its content can also be determined according to the method of a systematic analysis method of an unknown sample combined with dissolution by acid, alkali fusion, or the like.

またクリンカの含有するTi量がTiO換算で1.0質量%となるようにするための他の分析手法としては、Ti以外の成分について分析してその含有量を求め、該含有量から計算されるクリンカ中に含まれうるTi量の最大値が上記範囲以下となるように原料の配合比率を調整する方法が挙げられる。即ち、Ti以外の種々の成分について分析してその含有量を求め、該分析成分から生じるクリンカ構成成分の合計が99質量%を上回るように原料の配合比率を決定すれば、Tiを直接分析しなくともセメントクリンカ中のTi含有量をTiO換算で1.0質量%以下とできる。 In addition, as another analysis method for making the amount of Ti contained in the clinker become 1.0% by mass in terms of TiO 2 , the content other than Ti is analyzed to obtain the content, and the content is calculated from the content. There is a method of adjusting the blending ratio of the raw materials so that the maximum value of Ti amount that can be contained in the clinker is within the above range. That is, various components other than Ti are analyzed to determine their contents, and if the mixing ratio of raw materials is determined so that the total of the clinker constituent components generated from the analyzed components exceeds 99% by mass, Ti is directly analyzed. At least, the Ti content in the cement clinker can be 1.0% by mass or less in terms of TiO 2 .

また用いる原料毎に、直接Ti量を分析する方法と、非Ti成分量を分析する方法とを適宜組合わせて分析してもよい。   Further, for each raw material to be used, a method of directly analyzing the amount of Ti and a method of analyzing the amount of non-Ti component may be appropriately combined for analysis.

なお前記のとおり焼成後に得られるクリンカ中のCS、CA、CS及びCAF等の鉱物比率は物性に多大な影響を与えるため、これらの鉱物比率が目的の範囲となるようTi以外の成分の分析も同様に行う必要がある。この分析は、一般には蛍光X線分析法(JIS R 5204)により行うことができる。 Note for a significant impact on C 3 S, C 3 A, C 2 S and C 4 mineral ratio of AF, etc. properties in clinker obtained after sintering as described above, these minerals ratio becomes the target range Analysis of components other than Ti needs to be performed in the same manner. This analysis can be generally performed by fluorescent X-ray analysis (JIS R 5204).

最も好ましくは、蛍光X線分析によりTiとその他の成分を分析する方法である。   Most preferred is a method of analyzing Ti and other components by fluorescent X-ray analysis.

上記のようにして分析した各原料が含有する成分量を元に、CS、CA、CS及びCAF等の鉱物比率が目的の範囲となり、かつTi成分の含有量がTiO換算で1.0質量%以下となるように各原料の配合比率を調整する。なお鉱物比率は、どのようなセメント(例えば、普通ポルトランドセメント、早強ポルトランドセメント、中庸熱ポルトランドセメント等)を製造するかなどに応じ、水硬率(HM)やケイ酸率(SM)、鉄率(IM)等が所望の値になるように適宜設定すればよい。 Based on the amount of components contained in each raw material analyzed as described above, the ratio of minerals such as C 3 S, C 3 A, C 2 S and C 4 AF is within the target range, and the content of Ti component is The mixing ratio of each raw material is adjusted so as to be 1.0% by mass or less in terms of TiO 2 . The mineral ratio depends on the hydraulic modulus (HM), silicic acid rate (SM), iron, etc., depending on what kind of cement (for example, ordinary Portland cement, early strong Portland cement, moderately hot Portland cement, etc.) is manufactured. What is necessary is just to set suitably so that a rate (IM) etc. may become a desired value.

また通常、原料中に含まれるTi成分は、酸化物(TiO)や複合酸化物、場合によりチタン合金や金属チタンといったクリンカ焼成温度では揮発性のほとんどない形で含まれる。従って、原料中に含まれるTi成分は全量がクリンカ中に移行するとして配合比率を決定するための計算を行えばよい。むろん原料粉砕工程や焼成工程で揮発してクリンカ中に取り込まれないTi成分があることがわかっている場合には、その分を考慮に入れて計算する必要がある。 In general, the Ti component contained in the raw material is contained in a form that is hardly volatile at a clinker firing temperature such as an oxide (TiO 2 ) or a composite oxide, and in some cases, a titanium alloy or metallic titanium. Therefore, the Ti component contained in the raw material may be calculated to determine the blending ratio assuming that the entire amount is transferred to the clinker. Of course, when it is known that there is a Ti component that volatilizes in the raw material pulverization step or firing step and is not taken into the clinker, it is necessary to take into account that amount.

製造スケールや秤量精度にもよるが、セメントクリンカ製造時の組成制御における定法に従って計算を行えば、通常は計算値±0.05質量%の範囲で焼成後のセメントクリンカの各成分の組成を制御できる。   Depending on the production scale and weighing accuracy, the composition of each component of the cement clinker after firing is usually controlled within the range of the calculated value ± 0.05% by weight if the calculation is performed according to the usual method for composition control during cement clinker production. it can.

このようにして配合比率を調整した原料を焼成してセメントクリンカとする。焼成方法は特に制限されず公知の方法を適宜選択して行えばよく、例えばNSPキルンやSPキルンに代表されるセメントキルン等の高温加熱が可能な装置を用いて概ね1450℃を超える高温で焼成するのが一般的である。   Thus, the raw material which adjusted the mixture ratio is baked and it is set as a cement clinker. The firing method is not particularly limited and may be appropriately selected from known methods. For example, firing is performed at a temperature exceeding approximately 1450 ° C. using a device capable of high-temperature heating such as a cement kiln represented by NSP kiln or SP kiln. It is common to do.

得られたセメントクリンカ中に含まれる各成分の定量は、例えばJIS R 5202に規定される化学分析方法や、JIS R 5204に規定される蛍光X線分析法に従い行えばよい。   The quantification of each component contained in the obtained cement clinker may be performed according to, for example, a chemical analysis method defined in JIS R 5202 or a fluorescent X-ray analysis method defined in JIS R 5204.

上記のようにして製造したTi含有量がTiO換算で1.0質量%以下のセメントクリンカは、次いで公知の方法に従いセメントとすればよい。例えばJIS規格セメントとするのであれば、石膏及び必要に応じて粉砕助剤、高炉スラグ、シリカ質混合材、フライアッシュ、炭酸カルシウム、石灰石等を混合、粉砕すればよい。また塩素バイパスダストを混合してもよい。粉砕によりブレーン比表面積をJIS規格で定める値以上、好適には2800〜5000cm/g程度とする。 The cement clinker manufactured as described above and having a Ti content of 1.0% by mass or less in terms of TiO 2 may be used as a cement according to a known method. For example, when using JIS standard cement, gypsum and, if necessary, grinding aid, blast furnace slag, siliceous mixed material, fly ash, calcium carbonate, limestone, etc. may be mixed and ground. Further, chlorine bypass dust may be mixed. By pulverization, the Blaine specific surface area is set to a value determined by the JIS standard or more, preferably about 2800 to 5000 cm 2 / g.

さらに必要に応じ、粉砕後に高炉スラグ、フライアッシュ等を混合し、高炉スラグセメント、フライアッシュセメント等にすることも可能である。   Further, if necessary, blast furnace slag, fly ash or the like can be mixed after pulverization to obtain blast furnace slag cement, fly ash cement or the like.

むろん本発明の製造方法で得られたセメントクリンカは、JIS規格外のセメントの製造原料や、セメント系固化材等の原料としてもよい。   Needless to say, the cement clinker obtained by the production method of the present invention may be used as a raw material for manufacturing cement other than JIS standards or a cement-based solidifying material.

以下、実施例により本発明の構成及び効果を説明するが、本発明はこれらの実施例に限定されるものではない。   Hereinafter, although an example explains composition and an effect of the present invention, the present invention is not limited to these examples.

表1に組成を示す原料を用い、その配合比を調整してTiOの含有量を変化させたセメント用原料をそれぞれ調製し、これを1450℃で2時間焼成してセメントクリンカを得た。このセメントクリンカにSO含有量2.0〜2.1質量%となるように石膏を添加し、ブレーン比表面積3450〜3550cm/gとなるように粉砕し、セメントを作製した。 Cement raw materials were prepared by using the raw materials having the compositions shown in Table 1 and adjusting the blending ratio to change the content of TiO 2 , and firing them at 1450 ° C. for 2 hours to obtain cement clinker. Gypsum was added to the cement clinker so as to have an SO 3 content of 2.0 to 2.1% by mass, and the mixture was pulverized to have a Blaine specific surface area of 3450 to 3550 cm 2 / g to prepare a cement.

また各測定方法は以下の方法による。
(1)原料及びセメントクリンカの化学組成の測定:JIS R 5204に準拠する蛍光X線分析法により測定した。
(2)モルタル圧縮強度の測定:JIS R 5201規格に準拠する強さ試験により測定した。
(3)空隙率の測定:アルコール溶媒を用いたアルキメデス法でおこなった。
Each measuring method is as follows.
(1) Measurement of chemical composition of raw material and cement clinker: Measured by fluorescent X-ray analysis in accordance with JIS R 5204.
(2) Measurement of mortar compressive strength: It was measured by a strength test based on JIS R 5201 standard.
(3) Measurement of porosity: It was carried out by the Archimedes method using an alcohol solvent.

Figure 2010120832
Figure 2010120832

なお中和滓は、チタン精製過程で生じた中和滓である。   The neutralized soot is a neutralized soot generated during the titanium purification process.

実施例1
表1に分析結果を示す組成から計算し、クリンカ中のTi含有量が、TiO換算で0.35質量%となるように各原料の配合比を調整し、これを焼成してセメントクリンカを得た。得られたセメントクリンカの化学組成及びボーグ式により算出される鉱物組成を表2に、空隙率を表3に示す。
Example 1
Calculated from the composition showing the analysis results in Table 1, Ti content in the clinker, adjusting the blending ratio of each raw material so that the 0.35 mass% in terms of TiO 2, calcined to cement clinker this Obtained. Table 2 shows the chemical composition of the obtained cement clinker and the mineral composition calculated by the Borg equation, and Table 3 shows the porosity.

さらにこのセメントクリンカに石膏を添加、粉砕してセメントとし、モルタルの圧縮強度試験を行なった。この結果を表4に示す。   Further, gypsum was added to the cement clinker, and the mixture was pulverized to obtain cement. A mortar compressive strength test was conducted. The results are shown in Table 4.

実施例2〜4、比較例1、2
最終的な組成に占めるTi含有量が異なるように、各原料の配合比を変化させてセメントクリンカを製造した。なおこのとき、Ti含有量以外の組成等が物性に与える影響を排除するため、HM、SM及びIMが実施例1で得たセメントクリンカと実質的に同一となるように計算し他の原料の配合割合も調整している。
Examples 2 to 4, Comparative Examples 1 and 2
Cement clinker was manufactured by changing the blending ratio of each raw material so that the Ti content in the final composition was different. At this time, in order to eliminate the influence of the composition other than the Ti content on the physical properties, HM, SM and IM were calculated so as to be substantially the same as the cement clinker obtained in Example 1, and other raw materials The blending ratio is also adjusted.

得られたセメントクリンカ及び該セメントクリンカを用いて製造したセメントについて測定した結果を表2〜4に示す。   Tables 2 to 4 show the measurement results of the obtained cement clinker and the cement produced using the cement clinker.

Figure 2010120832
Figure 2010120832

Figure 2010120832
Figure 2010120832

Figure 2010120832
Figure 2010120832

上記結果に示されているように、実施例1〜4では、Ti含有量が増加するに伴い空隙率が低下しているが、比較例1、2の結果より、TiO換算のTi含有量が1.0質量%超えると、空隙率が変化していない。このことから、Ti含有量の増加は焼結性の向上に有効だが、1.0質量%を超える含有量は焼結性の向上には寄与しないことがわかる。 As shown in the above results, in Examples 1 to 4, the porosity decreased as the Ti content increased, but from the results of Comparative Examples 1 and 2 , the Ti content in terms of TiO 2 When the amount exceeds 1.0% by mass, the porosity is not changed. From this, it can be seen that an increase in the Ti content is effective in improving the sinterability, but a content exceeding 1.0 mass% does not contribute to the improvement in the sinterability.

比較例1、2の圧縮強度は、実施例に比べて各材齢において低下しており、特に材齢3日を越えると1割以上の減少となっていることから、TiO含有量を多くしすぎると、強度発現性に問題を生じることが明らかである。 The compressive strengths of Comparative Examples 1 and 2 are lower in each material age than in Examples, and particularly when the material age exceeds 3 days, it is reduced by 10% or more, so the TiO 2 content is increased. If it is too much, it is clear that there is a problem in strength development.

また図1にTiO含有量0.34%(実施例1)及び2.11%(比較例2)のX線回折パターンを示す。2.11%(比較例2)では、0.34%(実施例1)と比べて33°付近にピークが出現している。これは、CaTiOに同定されるピークであり、TiO含有量増大に伴い、CaTiOが生成したものと推定される。このCaTiOのピークは実施例2〜4のセメントクリンカには確認されないが、比較例1でも確認されている。このことより、TiO含有量が1.0質量%以下の場合は固溶されるが、1.0質量%以上になると固溶されないTiOがCaTiOを生成していることがわかる。このCaTiOの生成が、空隙率減少の抑制及びモルタル圧縮強度の強度発現性の低下に影響しているものと推測される。 FIG. 1 shows X-ray diffraction patterns having a TiO 2 content of 0.34% (Example 1) and 2.11% (Comparative Example 2). In 2.11% (Comparative Example 2), a peak appears in the vicinity of 33 ° compared to 0.34% (Example 1). This is a peak identified in CaTiO 3 , and it is presumed that CaTiO 3 was generated with an increase in TiO 2 content. This CaTiO 3 peak is not confirmed in the cement clinker of Examples 2 to 4, but is confirmed in Comparative Example 1. From this, it can be seen that when the TiO 2 content is 1.0% by mass or less, it is solid-dissolved, but when it is 1.0% by mass or more, TiO 2 that is not solid-dissolved produces CaTiO 3 . It is presumed that the production of CaTiO 3 affects the suppression of the porosity reduction and the decrease in the strength development of the mortar compressive strength.

TiO含有量0.34%(実施例1)及び2.11%(比較例2)のX線回折パターン図。TiO 2 content of 0.34% X-ray diffraction pattern diagram of (Example 1) and 2.11% (Comparative Example 2).

Claims (3)

複数種の原料を調合、これを焼成してセメントクリンカを製造するに際し、用いる各原料の成分分析を行い、該分析結果に基づいて、焼成後に得られるセメントクリンカ中のTi含有量がTiO換算で1.0質量%以下となるように各原料の配合比率を調整するセメントクリンカの製造方法。 When preparing multiple types of raw materials and firing them to produce cement clinker, component analysis of each raw material used is performed, and based on the analysis results, the Ti content in the cement clinker obtained after firing is converted to TiO 2 The manufacturing method of the cement clinker which adjusts the compounding ratio of each raw material so that it may become 1.0 mass% or less. 原料の少なくとも一部として廃棄物を用いる請求項1記載の製造方法。   The manufacturing method of Claim 1 which uses a waste material as at least one part of a raw material. 請求項1又は2記載の方法でセメントクリンカを製造し、ついで該セメントクリンカに石膏を混合するセメントの製造方法。   A method for producing cement, comprising producing a cement clinker by the method according to claim 1 and then mixing gypsum with the cement clinker.
JP2008298548A 2008-11-21 2008-11-21 Cement clinker manufacturing method Active JP5398236B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008298548A JP5398236B2 (en) 2008-11-21 2008-11-21 Cement clinker manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008298548A JP5398236B2 (en) 2008-11-21 2008-11-21 Cement clinker manufacturing method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2012187366A Division JP2012229162A (en) 2012-08-28 2012-08-28 Method for producing cement clinker

Publications (2)

Publication Number Publication Date
JP2010120832A true JP2010120832A (en) 2010-06-03
JP5398236B2 JP5398236B2 (en) 2014-01-29

Family

ID=42322506

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008298548A Active JP5398236B2 (en) 2008-11-21 2008-11-21 Cement clinker manufacturing method

Country Status (1)

Country Link
JP (1) JP5398236B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011225393A (en) * 2010-04-19 2011-11-10 Taiheiyo Cement Corp Hydraulic composition
JP2012224503A (en) * 2011-04-19 2012-11-15 Tokuyama Corp Fluidity improvement type cement clinker
JP2012240856A (en) * 2011-05-16 2012-12-10 Tokuyama Corp Method for producing cement clinker
WO2014175294A1 (en) * 2013-04-24 2014-10-30 株式会社トクヤマ Improved-fluidity cement clinker
CN108975820A (en) * 2018-08-27 2018-12-11 攀钢集团攀枝花钢铁研究院有限公司 A kind of foam wall body material and preparation method thereof
CN113372029A (en) * 2021-07-21 2021-09-10 攀钢冶金材料有限责任公司 Low-carbon type super-sulfate cement, preparation method thereof and cement mortar

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110698133A (en) * 2019-10-08 2020-01-17 湖北交投智能检测股份有限公司 High-titanium heavy slag sand ultrahigh-performance concrete and preparation method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH058133B2 (en) * 1984-10-30 1993-02-01 Blue Circle Ind Plc

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH058133B2 (en) * 1984-10-30 1993-02-01 Blue Circle Ind Plc

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JPN6012036217; セメントの常識 , 199107, 第7-13頁、第26、27頁, 社団法人セメント協会 *
JPN6012054368; 蛍光X線分析用セメント標準物質601A , 200304, 社団法人セメント協会 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011225393A (en) * 2010-04-19 2011-11-10 Taiheiyo Cement Corp Hydraulic composition
JP2012224503A (en) * 2011-04-19 2012-11-15 Tokuyama Corp Fluidity improvement type cement clinker
JP2012240856A (en) * 2011-05-16 2012-12-10 Tokuyama Corp Method for producing cement clinker
WO2014175294A1 (en) * 2013-04-24 2014-10-30 株式会社トクヤマ Improved-fluidity cement clinker
CN108975820A (en) * 2018-08-27 2018-12-11 攀钢集团攀枝花钢铁研究院有限公司 A kind of foam wall body material and preparation method thereof
CN113372029A (en) * 2021-07-21 2021-09-10 攀钢冶金材料有限责任公司 Low-carbon type super-sulfate cement, preparation method thereof and cement mortar

Also Published As

Publication number Publication date
JP5398236B2 (en) 2014-01-29

Similar Documents

Publication Publication Date Title
JP5665638B2 (en) Method for producing cement clinker
JP5398236B2 (en) Cement clinker manufacturing method
JP6311485B2 (en) Method for producing fine blast furnace slag powder and method for producing blast furnace cement
JP5624722B2 (en) Cement clinker and cement
JP2011020890A (en) Method for reducing hydration heat of cement composition and method for producing the cement composition
JP5627840B2 (en) Cement composition
JP2017122016A (en) Manufacturing method of portland cement clinker
JP2009013023A (en) Portland cement clinker and its manufacturing method
JP2009190904A (en) Solidifying material
JP5705021B2 (en) Method for producing cement clinker
JP2014097918A (en) Hydraulic composition
JP6353264B2 (en) Cement clinker with improved fluidity
JP6305875B2 (en) Method for producing Portland cement clinker
JP6855691B2 (en) Cement composition and its manufacturing method
JP4728829B2 (en) Hydraulic composition and method for producing the same
JP5932478B2 (en) Cement composition and method for producing the same
JP2010120787A (en) Method for manufacturing low-heat portland cement
JP2012229162A (en) Method for producing cement clinker
JP6333690B2 (en) Cement clinker, manufacturing method thereof, and solidified material
JP2017095300A (en) Cement clinker
JP5623329B2 (en) Cement clinker with improved fluidity
JP2013224227A (en) Method for producing cement composition
JP6683025B2 (en) Cement composition and method for producing the same
JP5976069B2 (en) Cement clinker
JP6440537B2 (en) Solidified material and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110803

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120705

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120717

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120828

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121023

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121212

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20121213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130924

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131022

R150 Certificate of patent or registration of utility model

Ref document number: 5398236

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150