WO2008038492A1 - Operating method and operation control apparatus for gasification melting furnace - Google Patents

Operating method and operation control apparatus for gasification melting furnace Download PDF

Info

Publication number
WO2008038492A1
WO2008038492A1 PCT/JP2007/067003 JP2007067003W WO2008038492A1 WO 2008038492 A1 WO2008038492 A1 WO 2008038492A1 JP 2007067003 W JP2007067003 W JP 2007067003W WO 2008038492 A1 WO2008038492 A1 WO 2008038492A1
Authority
WO
WIPO (PCT)
Prior art keywords
melting furnace
waste
gasification
basicity
furnace
Prior art date
Application number
PCT/JP2007/067003
Other languages
French (fr)
Japanese (ja)
Inventor
Hiroyuki Hosoda
Koji Minakawa
Tadashi Ito
Hiroo Nikaido
Original Assignee
Kobelco Eco-Solutions Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2007050892A external-priority patent/JP2008215665A/en
Priority claimed from JP2007141664A external-priority patent/JP4966743B2/en
Application filed by Kobelco Eco-Solutions Co., Ltd. filed Critical Kobelco Eco-Solutions Co., Ltd.
Priority to EP07806476.3A priority Critical patent/EP2068081B1/en
Priority to KR1020117006198A priority patent/KR20110048557A/en
Priority to PL07806476T priority patent/PL2068081T3/en
Priority to KR1020097007726A priority patent/KR101107787B1/en
Priority to ES07806476.3T priority patent/ES2461769T3/en
Publication of WO2008038492A1 publication Critical patent/WO2008038492A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/006General arrangement of incineration plant, e.g. flow sheets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/02Incineration of waste; Incinerator constructions; Details, accessories or control therefor with pretreatment
    • F23G5/027Incineration of waste; Incinerator constructions; Details, accessories or control therefor with pretreatment pyrolising or gasifying stage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/02Incineration of waste; Incinerator constructions; Details, accessories or control therefor with pretreatment
    • F23G5/027Incineration of waste; Incinerator constructions; Details, accessories or control therefor with pretreatment pyrolising or gasifying stage
    • F23G5/0276Incineration of waste; Incinerator constructions; Details, accessories or control therefor with pretreatment pyrolising or gasifying stage using direct heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/50Control or safety arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2202/00Combustion
    • F23G2202/20Combustion to temperatures melting waste
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2203/00Furnace arrangements
    • F23G2203/30Cyclonic combustion furnace
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2203/00Furnace arrangements
    • F23G2203/40Stationary bed furnace
    • F23G2203/403Stationary bed furnace with substantial cylindrical combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2204/00Supplementary heating arrangements
    • F23G2204/10Supplementary heating arrangements using auxiliary fuel
    • F23G2204/103Supplementary heating arrangements using auxiliary fuel gaseous or liquid fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2207/00Control
    • F23G2207/60Additives supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2900/00Special features of, or arrangements for incinerators
    • F23G2900/55Controlling; Monitoring or measuring
    • F23G2900/55011Detecting the properties of waste to be incinerated, e.g. heating value, density
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J2700/00Ash removal, handling and treatment means; Ash and slag handling in pulverulent fuel furnaces; Ash removal means for incinerators
    • F23J2700/001Ash removal, handling and treatment means

Definitions

  • the present invention relates to an operation method and operation control device for a gasification melting furnace for treating waste such as municipal waste and industrial waste, and also relates to slag discharged from the gasification melting furnace.
  • the present invention relates to a method and an apparatus for adjusting basicity.
  • a fluidized bed gasification melting furnace as described in Patent Document 1 is known as a means for treating waste.
  • This fluidized bed type gasification and melting furnace includes a fluidized bed type gasification furnace in which a fluidized bed is formed by the fluidized gas and a subsequent stage melting furnace.
  • the fluidized bed gasifier partially burns the waste introduced into the fluidized bed to generate pyrolysis gas.
  • the melting furnace further burns the pyrolysis gas generated by the fluidized bed gasification furnace to melt ash in the gas to generate slag.
  • an auxiliary burner is installed to maintain the furnace temperature.
  • the temperature in the melting furnace if the temperature in the melting furnace has reached about 1300 ° C, the temperature in the furnace will remain for a while due to self-combustion of unburned components even if the operation of the auxiliary burner is stopped in that state. Kept at high temperature. Therefore, fuel savings and environmental issues (especially CO emissions)
  • the slag is stably discharged from the slag discharge port. In order to keep the bag, it is important to maintain its fluidity. If the slag fluidity continues to decline, this slag may block the slag outlet and hinder continuous operation.
  • the temperature is higher than the melting point, and there is a significant correlation between the melting point and the basicity of the slag. Specifically, when the basicity of the slag exceeds about 0.7, the melting point of the slag increases with the increase. For example, when the basicity of the slag is 1, the melting point of the slag is 1200 It is known to reach up to ° C.
  • the temperature of the discharged slag tends to be 100 to 150 ° C lower than the furnace temperature of the melting furnace, after all, the temperature in the melting furnace is set to 1350 to stabilize the output of the slag. It must be above ° C. Continuing such high-temperature operation over a long period of time is not only necessary for increasing the amount of external fuel to keep the temperature in the furnace, but also incurring an increase in the environmental burden and increasing the running cost. An increase in repair costs can also result.
  • Patent Document 2 proposes that an actual slag basicity is measured by an analyzer.
  • the method disclosed in this document includes a step of analyzing the composition of slag actually discharged from the furnace using a simple fluorescent X-ray analyzer and the like, and a basicity adjusting agent based on the analysis result. Decide the amount to add
  • this method makes it difficult to determine the reliability of analysis results!
  • an analyzer installed outside the equipment as described above is generally used, and therefore analysis by the analyzer must be performed periodically at relatively long intervals. It is difficult to determine whether the analysis results obtained in such a low frequency are worthy of adoption, or whether they should be excluded as specific values that occur suddenly. If you make this mistake, you will not be able to determine the correct amount of basicity adjuster! /.
  • Patent Document 1 Japanese Unexamined Patent Publication No. 2006-29678
  • Patent Document 2 Japanese Patent Laid-Open No. 2001-182924
  • the first invention of this application is to reliably resume good combustion at the time of re-ignition of the burner while performing a highly efficient operation by appropriately stopping the burner of the gasification melting furnace.
  • the purpose is to provide the technology to make this possible.
  • the second invention of this application is to easily perform appropriate basicity adjustment without requiring a special analyzer for analyzing the slag composition when operating the gasification melting furnace.
  • the purpose is to provide technology that makes it possible.
  • the present inventors have repeatedly studied the basicity adjustment described above, and as a result, the calorific value per unit weight of the waste to be input to the gasification melting furnace and the gasification melting It was found that there is a significant correlation between the basicity of slag discharged from the furnace! The use of such correlation makes it possible to quickly and accurately grasp the basicity of actual slag without using a special analyzer.
  • the waste to be charged is thermally decomposed, the ash in the pyrolysis gas generated by the thermal decomposition is melted, and the slag generated by the melting is discharged out of the furnace.
  • a method for adjusting the basicity of the slag is provided. The method includes a step of supplying a basicity adjusting agent for adjusting the basicity of the slag discharged from the slag discharge loca to a position upstream of the slag discharge port, and the gasification melting furnace per unit time.
  • a step of detecting the weight of the waste to be introduced into the gas, a step of detecting a parameter corresponding to the calorific value per unit weight of the waste, and a gas generated in the gasification and melting furnace based on the detected value of the parameter A step of calculating an expected value of basicity of slag, and supply of the basicity adjuster in a direction to bring the basicity of the slag closer to a preset target value of basicity based on the calculated predicted value of basicity Adjusting the amount.
  • the use of the correlation between the parameter corresponding to the calorific value per unit weight of the waste and the basicity of the actual slag can be realized without performing a complicated analysis of the slag composition. It makes it possible to obtain the expected value of basicity of slag. That is, it is possible to calculate the expected value of the basicity based on the detected value of the parameter and the correlation. Based on the expected basicity of the slag, an appropriate amount of basicity adjusting agent is determined.
  • This method is an apparatus for adjusting the basicity of a slag, the slag outlet
  • a basicity adjusting agent supplying means for supplying a basicity adjusting agent for adjusting the basicity of the slag discharged to a position upstream of the slag outlet, and the gasification melting furnace per unit time
  • a waste input amount detecting means for detecting the weight of the waste to be input to the apparatus, a parameter detecting means for detecting a parameter corresponding to the calorific value per unit weight of the waste, and the parameter based on the detected value of the parameter.
  • the basicity expected value calculation means for calculating the basic value of the slag generated in the gasification melting furnace, and based on the predicted basicity value, the basicity is set to a preset basicity target value. This is realized by an apparatus provided with basicity adjusting agent supply amount adjusting means for adjusting the supply amount of the basicity adjusting agent in the approaching direction.
  • FIG. 1 is an overall configuration diagram of a waste treatment facility equipped with a gasification melting furnace according to an embodiment of the first invention of this application.
  • FIG. 2 is a cross-sectional view showing the structure of the gasification melting furnace.
  • FIG. 3 is a cross-sectional view showing an arrangement example of thermometers in the gasification melting furnace.
  • FIG. 4 is a flowchart showing an example of control for determining the timing of re-ignition of the PANA based on the gas oxygen concentration, which is the operation control of the gasification melting furnace.
  • FIG. 5 is a flowchart showing an example of control for determining the timing of re-ignition of the burner based on the top temperature of the gasification melting furnace.
  • FIG. 6 is a diagram showing an example of equipment for performing control for determining the timing of re-ignition of the PANA based on the integrated value of the air supply amount, which is operation control of the gasification melting furnace.
  • FIG. 7 is a flowchart showing an example of control for determining the timing of re-ignition of the burner based on the integrated value of the air supply amount, which is the operation control of the gasification melting furnace.
  • FIG. 8 is a diagram showing an overall configuration of a waste treatment facility according to an embodiment of the second invention of this application.
  • FIG. 9 is a graph showing an example of annual changes in waste heat generation and basicity of slag.
  • FIG. 10 is a graph showing an example of a correlation between waste heat generation and basicity of slag.
  • FIG. 11 is a graph showing an example of setting the basicity regulator supply amount based on the expected basicity of slag.
  • FIG. 1 shows an example of a waste treatment facility equipped with a fluidized bed gasification melting furnace.
  • the present invention can be widely applied to the operation of a gasification melting furnace including a gasification furnace and a melting furnace.
  • the overall configuration of the waste treatment facility where the gasification melting furnace is introduced is not particularly limited.
  • waste as waste is temporarily stored in the waste pit 1 and is put into a hopper 2a of a dust feeder 2 which is a waste feed machine by a turret (not shown).
  • a dust feeder 2 quantitatively supplies the waste to a fluidized bed gasifier 3.
  • the gasification furnace 3 for example, partial combustion is performed under the condition of an air ratio of 0.2 to 0.4, and thermal decomposition is performed in which the temperature of a fluidized bed composed of a sand layer or the like is maintained at 450 ° C to 650 ° C. That is, one-seven fire combustion is performed.
  • Non-combustible material out of the waste thrown in by the dust feeder 2 is extracted from the bottom of the hearth, screw conveyor 5 and vibrating sieve! /, 6 and not shown! /, Through a magnetic separator, non-combustible material, non-ferrous metal , Iron and fluidized sand are separated, and the fluidized sand is returned to the sand layer of the gasifier 3 and reused.
  • the pyrolysis gas generated in the gasification furnace 3 is guided to the melting furnace 4 and further combusted in the melting furnace 4 under the condition of a total air ratio of 1.3, for example.
  • high temperature combustion of about 1300 ° C is performed while a swirling flow is formed.
  • the heat generated by this high-temperature combustion melts the ash in the pyrolysis gas, separates it from the pyrolysis gas as slag, and decomposes harmful substances in the gas such as dioxin.
  • the molten slag is extracted from the bottom of the melting furnace 4 and is carried out by a slag carry-out device 7 including a conveyor, etc., and cooled and collected by a slag cooler 8 below the molten slag.
  • the melting furnace exhaust gas discharged from the swirling flow melting furnace 4 passes through the air heater 9 and the waste heat boiler 10, and the heat in the gas is recovered here.
  • the exhaust gas after the heat recovery is further cooled by the gas cooler 11 and removed by the bag filter 12.
  • the exhaust gas thus purified passes through the induction fan 13, passes through the denitration device 14, and is discharged from the chimney 15.
  • FIG. 2 shows the details of the structure of the gasification melting furnace constituted by the gasification furnace 3 and the melting furnace 4.
  • a dispersion plate 20 having a large number of gas injection ports 22 is provided at the bottom of the gasification furnace 3, and an air box 24 is formed below the dispersion plate 20.
  • fluidized gas is jetted upward from the wind box 24 through the gas injection port 22 of the dispersion plate 20, thereby forming a fluidized bed 26 made of sand particles above the distribution plate 20.
  • an incombustible outlet 28 is provided in the center of the dispersion plate 20. Incombustible material is extracted from the incombustible material outlet 28 and guided to the screw conveyor 5 and the vibrating screen 6.
  • a waste input port 30 connected to the dust feeder 2 is provided, and the same path in the path connecting the waste input port 30 and the dust feeder 2 is provided.
  • a damper 32 is provided to open and close the door!
  • a gasifier temperature raising pan 34 is provided at a height substantially equal to the waste inlet 30. Further above that, a freeboard 36 for secondary combustion is formed, and a pyrolysis gas outlet 38 is provided at the top of the furnace.
  • the pyrolysis gas discharged from the pyrolysis gas outlet 38 is supplied to the upper part of the swirling melting furnace 4.
  • an auxiliary combustion burner 40 is provided downward, and a pyrolysis gas inlet 42 is provided immediately below it.
  • the opening 42 is connected to the thermal decomposition gas outlet 38 of the gasification furnace 3 through a duct 44 which is a pyrolysis gas passage.
  • the panner 40 is used for raising the temperature and maintaining the temperature of the melting furnace 4 (for example, ensuring a temperature state of 1300 ° C. or higher). The operation of this PANA 40 will be described in detail later.
  • a slag outlet 43 is provided at the bottom of the melting furnace 4, and the slag unloading device 7 is connected to the slag outlet 43.
  • the duct 44 is provided with an oxygen concentration meter 45.
  • the oxygen concentration meter 45 detects the concentration of oxygen in the gas flowing in the duct 44, that is, in the gas sent from the gasification furnace 3 to the melting furnace 4.
  • a thermometer 46 for detecting the temperature inside the furnace is provided in the vicinity of the PANANER 40 (in this embodiment, in the vicinity of the top of the swivel melting furnace 4). Being! /
  • the oxygen concentration meter 45 is preferably one having excellent durability. Specifically, for example, a zirconia oximeter is suitable.
  • the thermometer 46 has excellent durability and detection accuracy in a high temperature range. Specifically, a radiation thermometer (especially an infrared radiation thermometer) is suitable.
  • the thermometer 46 is preferably disposed at a position where it can be monitored as stably as possible. For example, if a melting furnace combustion air supply nozzle 48 as shown in FIG. 3 is provided in the vicinity of the pyrolysis gas inlet 42 of the melting furnace 4, the thermometer 46 is connected to the nozzle 48 as shown in the figure. It is preferable to be provided at a position where the inside of the furnace top of the melting furnace 4 can be monitored through the nozzle 48 from the upstream position.
  • thermometer 46 is such that the detection window of the thermometer 46 is blocked by ash or the like in the melting furnace 4 by using the flow of combustion air from the nozzle 48 into the melting furnace 4. It is possible to effectively prevent this from occurring, thereby enabling stable temperature monitoring.
  • thermometer 46 The position where the thermometer 46 is provided can be appropriately set within a region in the vicinity of the panner 40. Specifically, it can be appropriately set within a range close to the burner 40 to such an extent that unburned gas can be burned by ignition of the burner 40.
  • the gasification melting furnace is equipped with a control system 50 as shown in FIG. 2, and the control system 50 receives output signals (detection signals) from the oxygen concentration meter 45 and the thermometer 46. Each is entered.
  • the control system 50 is configured by a computer or the like, and has a panner control unit 52 and a dust supply control unit 54 as its functions.
  • the PANA control unit 52 outputs a command signal for causing the PANANER 40 to stop operation and re-ignite.
  • the dust supply control unit 54 outputs a command signal for causing the dust feeder 2 to be stopped and restarted.
  • step S 1 the dust feeder 2 is driven and the burner 40 of the melting furnace 4 is ignited.
  • the dust feeder 2 feeds waste such as municipal waste into the furnace 3 from the waste inlet 30 of the gasifier 3. This waste is burned for seven times in the fluidized bed 26 in the furnace 3, thereby generating pyrolysis gas.
  • This pyrolysis gas is sent from the pyrolysis gas outlet 38 at the top of the furnace through the duct 44 to the pyrolysis gas inlet 42 of the melting furnace 4, and is introduced into the upper part of the furnace 4 from this inlet 42.
  • the combustible component in the pyrolysis gas burns at a higher temperature, and the heat generated by this combustion is the gas. Melt the ash content in the slag. This slag adheres to the furnace wall and then flows down to the slag outlet 43 at the bottom of the furnace and is led out of the furnace.
  • the furnace top temperature of the melting furnace 4 is maintained at a high temperature by the ignition of the PANA 40. However, if the top temperature of the furnace reaches about 1300 ° C, the furnace temperature can be kept high for a while by self-combustion of unburned components even if the operation of the auxiliary burner is stopped in that state. . Therefore, from the viewpoint of fuel saving and environmental problems (especially C02 emission control), it is desirable to stop the operation of the burner appropriately.
  • control system 50 outputs a panner stop command signal for stopping the operation of the parner 40 when the current operating state matches the preset parner stop condition (step S2). (Step S3).
  • thermometer 46 The state where the furnace top temperature detected by the thermometer 46 is equal to or higher than a preset Pana shutdown temperature (eg, 1100 ° C) is maintained for a predetermined time (eg, 30 minutes) or longer.
  • the determination of the “top temperature” may be performed by confirming an instantaneous value at an appropriate sampling period, or the moving average value of the top temperature within an appropriate time (for example, the predetermined time). May be performed on the basis of When the condition of 1) is set, there is an advantage that the thermometer 46 for confirming the satisfaction of the condition can also be used as a means for timing the stoppage of dust supply and timing for re-igniting the burner, which will be described later. is there.
  • the moving average value of the lower heating value of waste is not less than a preset heating value (for example, 2000 kcal / kg).
  • the “low heat generation amount” of the waste here means the amount of heat held by the dust that is put into the gasification furnace 3 by the dust feeder 2 per unit time, and corresponds to the heat amount of waste. .
  • the amount of heat retained by the dust can be calculated from the heat balance of the waste disposal facility as disclosed in, for example, Japanese Patent Application Laid-Open No. 2004-37049, and is generally located at a position downstream of the bag filter 12. It is calculated based on the exhaust gas flow rate Fe (Nm3 / h) detected by the exhaust gas flow meter installed in the exhaust gas and the exhaust gas temperature Te (° C) detected by the exhaust gas thermometer installed at the same position. It can be considered that it is equal to the exhaust gas heat output Q. Specifically, this exclusion
  • the heat Q (kcal / h) from the gas is expressed by the following equation, where the specific heat of the exhaust gas is cE.
  • the amount of heat brought in by other media for example, air, water, and auxiliary fuel of the PANA 40
  • the amount of heat is preferably added to the calculation of the calorific value. This point is as described in the publication.
  • Pana stop condition either one of the above 1) and 2) may be employed, or both may be employed. That is, the operation of the PANANER 40 may be stopped when at least one of the conditions 1) and 2) is satisfied, or the operation of the PANANER 40 is stopped only when both are satisfied. May be.
  • the Pana stop command signal output in step S3 may be used as it is as a control signal or may be used as a notification signal to the operator.
  • the automatic stop control of the parner 40 can be realized by inputting the paran stop command signal to the actuator of the parner 40.
  • the operator is notified of an appropriate PANA stop timing, and the operator performs the PANA stop timing.
  • the operation of 40 is stopped at an appropriate timing while being manual.
  • the parner 40 may be re-ignited at an appropriate timing. However, if the furnace top temperature falls below the self-ignition ignition temperature of the unburned gas for some reason after the operation of the Pana 40 is stopped, if the PANANER 40 is re-ignited at a temperature below the self-burning ignition temperature, the unburned gas Depending on the concentration, re-ignition of the PANA 40 may cause an explosion.
  • the furnace top temperature detected by the thermometer 46 has dropped to a preset waste charging stop temperature (900 ° C in this embodiment).
  • a dust supply stop command signal for stopping the dust supply by the dust feeder 2 is output (step S5).
  • this dust supply stop command signal can function as a signal for automatically stopping the dust supply by the dust feeder 2 if it is directly input to the drive unit of the dust feeder 2, for example. S can and again If an operation panel or the like is input so as to light its display unit, it can function as a signal that conveys an appropriate supply stop timing to the operator.
  • a dust supply stop command signal may be output immediately at the moment when the furnace top temperature falls to the waste charging stop temperature.
  • the dust supply stop command signal is output when the above operation continues (for example, 2 to 20 seconds).
  • the stoppage of the dust supply as described above increases the concentration of oxygen in the gas discharged from the gasification furnace 3 and sent to the melting furnace 4, and safely reignites the burner 40 in the melting furnace 4.
  • the control system 50 monitors the oxygen concentration in the gas detected by the oximeter 45, and the oxygen concentration of the gas is set in advance to the Pana reignition concentration (burner reignition concentration; this embodiment).
  • a burner re-ignition command signal (Pana re-ignition command signal) is output (step S8).
  • the control system 50 has a predetermined temperature higher than the Pana reignition temperature due to a rise in the furnace top temperature for some reason.
  • the temperature reaches (950 ° C in this embodiment) (YES in step S7), the above-mentioned Pana re-ignition command signal is output.
  • This signal may also be input to the actuator of the PANANER 40 as it is to the PANANER STOP signal and cause the PANANER 40 to be automatically re-ignited, or may be input to the operation panel to allow the operator to properly re-ignite the burner. It may even be a timing display.
  • control system 50 confirms that the dust feeder 2 can be started (YES in step S9), and then outputs a restart command signal to the dust feeder 2 to turn off the dust feeder 2. Reboot (Step S10). This restart may also be performed manually by the operator.
  • FIG. 5 shows another example of operation for ensuring such high safety.
  • the operation up to the PANANER stop command signal output (step S3) is the previous operation. It is equivalent to that shown in Fig. 4.
  • the control system 50 when the furnace top temperature falls to the preset Pana re-ignition temperature (1000 ° C in this embodiment) (YES in Step S11), A signal is output (step S12).
  • the Pana re-ignition temperature reliably prevents the occurrence of abnormal combustion of unburned gas due to the re-ignition when PANA 40 is re-ignited at that temperature, thereby ensuring high safety.
  • the temperature is set to a high level. In general, if the self-ignition temperature of the unburned gas (for example, about 680 ° C in the case of natural gas) is multiplied by a sufficient safety factor and a temperature that has been confirmed to be safe by testing, etc. is adopted. Good.
  • Such operation also prevents excessive cooling in the melting furnace 4 in advance by reigniting the PANANER 40 before the furnace top temperature drops so much after the PANA 40 operation is stopped. In addition to this, it is possible to ensure high safety when re-igniting the PANA.
  • the fail-safe operation is performed when the burner re-ignition command signal is output in step S12 but the operation of the burner 40 is not stopped or the output of the signal itself is disabled. Therefore, the operation shown in FIG. 4 above, that is, the operation of stopping the supply and increasing the oxygen concentration of the gasifier outlet gas may be performed together.
  • the operation control shown in Fig. 4 is a force that determines the timing of re-ignition of the burner based on the gas oxygen concentration after stopping the supply of fuel, as a parameter that directly affects the gas oxygen concentration.
  • the integrated value of the amount of air supplied to the upstream side of the melting furnace 4 after the dust is stopped may be monitored, and the timing of re-ignition of the burner may be determined based on this integrated value. An example of this will be described with reference to FIGS.
  • the facility shown in FIG. 6 includes a blower 60 and a flow meter 62.
  • the blower 60 is for supplying air to the fluidized bed gasification furnace 3, and this air is supplied as fluidized gas into the wind box 24 of the gasification furnace 3, and Is supplied as purge air into the freeboard 36.
  • a pyrolysis gas outlet 38 is provided at the top of the furnace.
  • the flow meter 62 is provided on the outlet side of the blower 60, detects the flow rate of air supplied from the blower 60 to the gasification furnace 3, and outputs a detection signal for the flow rate. This detection signal is input to the control system 50.
  • the control operation of this control system 50 is shown in FIG. In FIG.
  • step S7 the operations (steps S1 to S5) until the dust supply stop command signal is output are the same as the operations performed in the control shown in FIG.
  • the PANA controller 52 integrates the amount of air supplied to the gasifier 3 from the time when the dust supply stops based on the detection signal (step When the integrated value reaches a preset constant value (YES in step S6B), a Pana re-ignition command signal is output (step S8).
  • This control is also performed by supplying air from the blower 60 after the operation of the parner 40 is stopped.
  • the air to be integrated includes all air that is supplied to the upstream side of the melting furnace 4 and can contribute to the increase in the oxygen concentration in the melting furnace 4. Therefore, this air is not limited to that supplied into the gasification furnace 3.
  • this purge gas is supplied to a duct 44 provided between the gasification furnace 3 and the melting furnace 4, this purge gas is also included in the accumulation target.
  • a gasification furnace for gasifying waste to be input and a pyrolysis gas generated in the gasification furnace are introduced and introduced.
  • Method for operating a gasification melting furnace comprising a melting furnace that burns combustible components in the pyrolysis gas and melts ash in the gas, and an auxiliary burner provided in the melting furnace I will provide a.
  • the operation of stopping the operation of the gas generator when the operation state of the gasification melting furnace satisfies a specific condition of stopping the furnace, and the melting furnace in the vicinity of the burner after the operation of the heater is stopped.
  • the position where the "temperature in the melting furnace near the burner” is detected is in the vicinity of the burner and in a region where unburned gas can be burned by reignition of the burner. It is possible to set appropriately.
  • the melting furnace temperature in the vicinity of the burner falls to a preset waste charging stop temperature (for example, self-combustion of unburned gas).
  • a preset waste charging stop temperature for example, self-combustion of unburned gas.
  • the temperature in the melting furnace in the vicinity of the burner is a preset temperature that is higher than the waste charging stop temperature (for example, unburned gas
  • the waste charging stop temperature for example, unburned gas
  • this operation method after the operation of stopping the operation of the burner is performed when the operation state of the gasification melting furnace satisfies a specific condition of stopping the partner, the inside of the melting furnace in the vicinity of the burner is performed.
  • An operation may be performed to re-ignite the PANA when the temperature drops to a preset PANA re-ignition temperature.
  • This method also makes it possible to prevent the re-ignition of the PANA in an excessively low temperature range (for example, a temperature range in which self-ignition of unburned gas is difficult) and to ensure good combustion. .
  • the Pana stop condition can be set as appropriate. However, if the condition for stopping the panner is such that the temperature in the melting furnace in the vicinity of the panner or the moving average value thereof is equal to or higher than the preset temperature at which the panner is stopped, the disposal is performed. Stuffing In order to determine the timing of stopping or the timing of reignition of the burner, it is possible to determine the burner stop condition by using the means for detecting the temperature.
  • a waste input device for inputting the waste into the gasification furnace, and a temperature in the melting furnace in the vicinity of the panner are detected.
  • the gasification melting furnace based on the detection results of the thermometer and the oxygen concentration meter, and the oxygen concentration meter for detecting the oxygen concentration in the gas sent from the gasification furnace to the melting furnace.
  • a control system for controlling operation includes a panner control unit that outputs a panner stop command signal for stopping the operation of the panner when the operation state of the gasification melting furnace satisfies a specific panner stop condition, and the operation of the panner is stopped.
  • the waste input for stopping the input of the waste into the gasifier by the waste input machine is performed.
  • a waste input control unit that outputs a stop command signal, and the panner control unit has an oxygen concentration detected by the oximeter after the waste input by the waste input device is stopped.
  • a PANA re-ignition command signal is output to re-ignite the PANA.
  • the burner control unit is configured such that the temperature in the melting furnace in the vicinity of the panner detected by the thermometer is a preset temperature, and the waste When the temperature rises to a temperature higher than the charging stop temperature, the Pana reignition signal may be output regardless of the oxygen concentration.
  • a waste input device that inputs the waste into the gasification furnace, and a temperature that detects a temperature in the melting furnace in the vicinity of the panner
  • a control system for controlling the operation of the burner based on the detection result of the thermometer, and this control system stops the operation of the gasification melting furnace with a specific
  • a Pana stop signal for stopping the operation of the PANA is output.
  • the temperature is reduced to a preset re-ignition temperature by the thermometer.
  • One that outputs a Pana reignition signal to resume PANA operation is provided.
  • the condition for stopping the panner is that the temperature detected by the thermometer or its moving average value is equal to or higher than the preset panner stop temperature for a predetermined time. It is preferable that the condition is included! /.
  • a panner stop for stopping the operation of the panner when an operation state of the gasification melting furnace satisfies a specific condition for stopping the partner
  • a waste input control unit that outputs a waste input stop command signal for stopping the input of the waste into the gasifier, and the panner control unit includes the waste input by the waste input device.
  • the amount of air detected by the air amount detecting means is integrated from the time when the introduction of the article is stopped, and when the integrated value reaches a predetermined constant value, the operation of the panner is resumed.
  • An apparatus for outputting a banner re-ignition signal is provided.
  • the operation control device described above is generated by a gasification furnace for gasifying the input waste, a waste input machine for inputting the waste into the gasification furnace, and the gasification furnace.
  • An excellent pyrolysis gas is introduced together with a melting furnace that burns combustible components in the introduced pyrolysis gas and melts ash in the gas, and a combustion burner installed in the melting furnace.
  • a gasification melting furnace can be constituted.
  • FIG. 8 shows a waste treatment facility including a gasification melting furnace to which the second invention is applied.
  • This facility includes a gasification melting furnace 110, a waste supply unit 112 for supplying waste as waste to the gasification melting furnace 110, and a gas for treating the gas discharged from the gasification melting furnace 110.
  • a gas processing unit 114 The gas processing unit 114.
  • the waste supply unit 112 includes a waste pit 116, a waste transport device 118, and a dust feeder 120.
  • the garbage pit 116 receives the garbage which is a treatment target to which external equipment force is also carried, and temporarily stores it.
  • the waste transport device 118 includes a crane, and grips the dust in the waste pit 116 and transports it to the dust feeder 120.
  • the dust feeder 120 has a hopper 122 2, and the hopper 122 accepts the waste introduced from the waste transport device 118. This input amount corresponds to the amount of waste input into the gasification melting furnace 110.
  • the feeder 120 has a built-in screw conveyor for conveying garbage, and supplies the garbage charged into the hopper 122 to the gasification melting furnace 110.
  • the gasification melting furnace 110 includes a gasification furnace 124 and a melting furnace 126.
  • the gasification furnace 124 pyrolyzes the waste supplied from the dust feeder 120, thereby generating pyrolysis gas.
  • this gasification furnace 124 for example, a well-known fluidized bed furnace or kiln furnace can be applied as it is.
  • the melting furnace 126 burns combustible components in the pyrolysis gas at a high temperature and melts ash in the gas to generate slag. This slag adheres to the furnace wall of the melting furnace 126, for example.
  • a slag discharge port 128 is provided at the bottom of the melting furnace 126.
  • the slag discharge port 128 is for discharging the slag adhering to the furnace wall and flowing down to the outside of the furnace. Further, in this melting furnace 126, auxiliary fuel is burned by a burner (not shown) as necessary to adjust the temperature in the furnace.
  • the gas processing unit 114 includes a waste heat boiler 130, a temperature reducing tower 132, a dust collector 134, an induction fan 136, and a chimney 138.
  • the waste heat boiler 130 is for recovering heat from the high-temperature exhaust gas emitted from the melting furnace 126. Specifically, the waste heat boiler 130 generates steam using the heat held by the exhaust gas. , It will be discharged.
  • the flow rate of the discharged steam that is, the amount of steam generated per unit time in the waste heat boiler 130 is a parameter corresponding to the amount of heat generated by the waste introduced into the gasification melting furnace 110 per unit time. It becomes.
  • the temperature reducing tower 132 includes a tower main body into which the gas discharged from the waste heat boiler 130 is introduced.
  • a spraying device for spraying cooling water into the tower body, a temperature sensor for detecting the gas temperature at the outlet of the tower body, and the spraying device for keeping the outlet gas temperature detected by the temperature sensor constant.
  • a controller for adjusting the cooling water supply flow rate.
  • the dust collector 134 captures dust and the like in the gas discharged from the temperature reducing tower 132.
  • the gas removed by the dust collector 134 is discharged from the chimney 138 through the induction fan 136.
  • the equipment includes a basicity adjusting device 140.
  • the basicity adjusting device 140 is for adjusting the basicity of the slag discharged from the slag discharge port 128 of the melting furnace 126.
  • the basicity adjusting agent supply device 142, the steam flow meter 144, An input amount output unit 146 and a controller 150 are provided.
  • the basicity adjusting agent supply device 142 is for supplying the basicity adjusting agent into the garbage put into the gasification furnace 124, and is a screw conveyor 147 serving as a conveying means for supplying the basicity adjusting agent. And a motor 148 for rotating the screw conveyor 147.
  • the above basicity adjusting agent is appropriately selected. In this embodiment, it is assumed only when the basicity of the discharged slag is excessively high, and therefore, the basicity adjusting agent is selected from dredged sand (SiO 2) for reducing the basicity of the slag. ! /
  • the steam flow meter 144 measures the exhaust steam flow rate of the waste heat boiler 130, that is, the amount of steam generated per unit time in the waste heat boiler 130.
  • the waste input amount output unit 146 outputs an information signal about the weight of waste input into the gasifier 124 per unit time. Specifically, the waste input amount output unit 146 is attached to the waste transport device 118, calculates a waste transport amount from the weight load applied to the waste transport device 118 and the number of times of transport, and calculates the waste transport amount. This information is provided to the controller 150 as information corresponding to the amount of waste input to the plant.
  • the controller 150 is constituted by a microcomputer or the like, and has a function of performing overall control of the entire facility.
  • the functions for adjusting the basicity of the slag include a basicity expected value calculation unit 152 and a basicity adjusting agent supply amount adjustment unit 154.
  • the basicity expected value calculation unit 152 outputs an information signal about the weight of the waste to be input into the gasifier 124 per unit time, which is output from the waste input amount output unit 146. Based on the steam flow rate measured by the steam flow meter 144, a predicted value of the basicity of the slag discharged from the slag discharge port 128 is calculated. The calculation of the predicted value is based on the step of calculating the heat generation amount of the waste per unit weight based on the input amount of the waste per unit time and the exhaust steam flow rate, and the generation amount of the waste per unit weight. And calculating a predicted value of the basicity.
  • the predicted basicity value calculation unit 152 stores the correlation, and calculates the predicted basicity value based on the relationship and the steam flow rate actually measured by the steam flow meter 144.
  • the average value of the indicated value of the steam flow meter 144 within a specific period is adopted as the value of the exhaust steam flow rate that is the basis for calculating the basicity expected value.
  • the specific period can be set appropriately, and generally 6 to 24 hours is preferable.
  • the basicity adjuster supply amount adjusting unit 154 receives the predicted value of the basicity of the slag calculated by the basicity expected value calculation unit 152 and the garbage input from the waste input amount output unit 146. Based on the information signal about the input amount, the supply amount of the basicity adjusting agent for bringing the basicity close to a preset target value (for example, 0.5) is determined. Then, a control signal is output to the motor 148 of the basicity adjusting agent supply device 142 to control the driving speed so that the determined supply amount can be obtained.
  • a preset target value for example, 0.5
  • waste heat boiler 130 parameters for the amount of generated waste heat (herein, waste heat boiler 130) closely related to the basicity.
  • the predicted basicity value is calculated based on the detected value of the parameter and the relationship. This means that the actual slag basicity Unlike conventional methods in which operation is carried out while actually measuring, the amount of basicity adjusting agent to be supplied can be determined appropriately and quickly with a simple configuration using existing equipment.
  • a cooling water supply flow rate in the temperature-decreasing tower 132 can be selected as a parameter for the waste heat generation amount.
  • the temperature-decreasing tower 132 includes a temperature sensor that detects the gas temperature at the outlet of the tower body, and cooling water generated by the spray device so as to keep the outlet gas temperature detected by the temperature sensor constant. And a controller for adjusting the supply flow rate, the supply flow rate of the cooling water corresponds to the amount of heat generated by the waste introduced into the gasification melting furnace 110 per unit time.
  • the supply position of the basicity adjusting agent is not limited to the inlet side of the gasification furnace 124.
  • This supply position can be arbitrarily set within a region upstream of the slag discharge port 128.
  • the position may be set in a region between the gasification furnace 124 and the melting furnace 126, or in the combustion chamber upstream of the slag discharge port 128 in the melting furnace 126. It may be set.
  • Figure 9 shows the annual trends in waste heat per unit weight (kcal / kg) and basicity of slag in a waste treatment facility. This figure clearly shows that the waste heat generation amount and the basicity change close to each other!
  • Fig. 10 is a graph showing the relationship between the waste heat value and the basicity of the slag obtained by actual measurement for two waste treatment facilities (Equipment A and Facility B). As shown in this figure, in both facilities A and B, a predetermined correlation is established between the amount of generated heat and the basicity of the slag. In both facilities A and B, the gasification melting furnace will be charged. The relationship between the amount of generated heat and the basicity is different between facilities A and B, but the correlation is approximated by a linear function in both facilities A and B. Can be done.
  • the calculation unit 52 is based on a parameter corresponding to the waste heat generation amount (for example, the exhaust steam flow rate of the waste heat boiler 30). It is possible to quickly calculate the expected basic value of slag.
  • the relationship between the expected basicity of the slag and the supply amount of the basicity adjusting agent can be set in advance theoretically or based on simulation. For example, if only adjustment to lower the basicity of slag is assumed, the supply amount of basicity adjusting agent (for example, silica sand) for that purpose (the supply amount corresponding to the input amount of waste per unit time) and the basicity expected value The relationship shown in Fig. 11 should be set. According to this setting, when the basicity prediction value exceeds the target value (for example, 0.5), an amount of basicity adjusting agent corresponding to the excess is supplied.
  • the target value for example, 0.5
  • the second invention of this application is to pyrolyze the waste to be charged, melt the ash in the pyrolysis gas generated by the thermal decomposition, and slag generated by the melting.
  • a method for adjusting the basicity of the slag is provided in operating a gasification melting furnace having a slag discharge port for discharging the slag out of the furnace.
  • the basicity adjusting method includes a step of supplying a basicity adjusting agent for adjusting the basicity of slag discharged from the slag discharge port at a position upstream of the slag discharge port, and per unit time.
  • the basicity of the slag is brought closer to the preset basicity target value. And a step of adjusting the supply amount of the basicity adjusting agent.
  • This basicity adjustment method uses the correlation between the parameter corresponding to the calorific value per unit weight of the waste and the basicity of the actual slag, thereby complicating the slag composition. It is possible to obtain an expected value of the basicity of the actual slag without performing a detailed analysis. In other words, the predicted value of basicity can be calculated based on the detected value of the parameter and the correlation. And based on the expected value of the basicity of the slag, an appropriate addition amount of the basicity adjusting agent is determined.
  • the unit time in the waste heat boiler that generates steam using the heat of the gas discharged from the gasification melting furnace force It is effective to detect the amount of generated steam. This amount of generated steam is easy to detect.
  • the calorific value of waste per unit weight can be accurately calculated. .
  • the parameter and the actual It is effective to include a step of obtaining a relationship with the basicity of the slag by actual measurement, and to calculate the prediction of the basicity of the slag generated in the gasification melting furnace based on this relationship and the detected value of the parameter.
  • an appropriate expected value of the basicity of the slag is quickly calculated based on the relationship between the parameter obtained in advance and the basicity of the actual slag.
  • a basicity adjusting device of a gasification melting furnace for executing such a basicity adjusting method.
  • the apparatus includes a basicity adjusting agent supplying means for supplying a basicity adjusting agent for adjusting the basicity of the slag discharged from the slag discharge outlet to a position upstream of the slag discharge outlet, and per unit time.
  • a waste input amount detecting means for detecting the weight of the waste charged into the gasification melting furnace, a parameter detecting means for detecting a parameter corresponding to a calorific value per unit weight of the waste, and the parameter Based on the detected value, basicity expected value calculation means for calculating the expected value of basicity of the slag generated in the gasification melting furnace, and based on the predicted value of basicity, the basicity is calculated in advance.
  • Basicity adjusting agent supply amount adjusting means for adjusting the supply amount of the basicity adjusting agent in a direction approaching a set target value of the basicity.
  • the parameter detection means of this apparatus for example, it is discharged from the gasification melting furnace. It is preferable to detect the amount of steam generated per unit time in a waste heat boiler that generates steam using the heat of the gas.
  • the basicity expected value calculation means may calculate the waste per unit weight based on the parameter detected by the parameter detection means and the amount of waste input to the gasification melting furnace per unit time. What is necessary is just to calculate the calorific value.
  • the basicity adjusting agent supply amount adjusting means for example, the relationship between the parameter obtained by actual measurement and the basicity of the actual slag is stored, and the stored relationship and the detected value of the parameter It is preferable to determine the supply amount of the basicity adjusting agent based on the above formula.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Gasification And Melting Of Waste (AREA)
  • Incineration Of Waste (AREA)

Abstract

[PROBLEMS] 1. To realize high-efficiency operation of a gasification melting furnace by cessation of an auxiliary burner and, at the same time, to avoid abnormal combustion of unburned gas in reignition of the auxiliary burner. 2. To facilitate the regulation of the basicity to a proper value without the need to use a special analyzer for a slag composition in the operation of a gasification melting furnace. [MEANS FOR SOLVING PROBLEMS] 1. In a gasification melting furnace, the operation of a burner of the melting furnace is stopped when the operation state satisfies a predetermined requirement. Thereafter, when the temperature in the vicinity of the burner is lowered to a predetermined temperature, the supply of a waste material from a dust feeder to the gasification furnace is stopped. This burner is reignited when the concentration of oxygen in gas in the outlet of the gasification furnace is increased by stopping the supply of the waste material to the gasification furnace. 2. The basicity of slag discharged from a slag-discharge port in a melting furnace is adjusted by supplying a basicity adjuster from an apparatus for supplying the basicity adjuster. Correlation between a parameter corresponding to the calorific value of the waste material per unit weight and the slag basicity is used to determine the amount of the basicity adjuster supplied.

Description

明 細 書  Specification
ガス化溶融炉の運転方法及び運転制御装置  Operation method and operation control apparatus for gasification melting furnace
技術分野  Technical field
[0001] 本発明は、都市ごみや産業廃棄物等の廃棄物を処理するためのガス化溶融炉の 運転方法及び運転制御装置に関するものであり、また、ガス化溶融炉から排出される スラグの塩基度を調整するための方法及び装置に関するものである。  TECHNICAL FIELD [0001] The present invention relates to an operation method and operation control device for a gasification melting furnace for treating waste such as municipal waste and industrial waste, and also relates to slag discharged from the gasification melting furnace. The present invention relates to a method and an apparatus for adjusting basicity.
背景技術  Background art
[0002] 従来、廃棄物を処理するための手段として、例えば特許文献 1に記載されるような 流動床式ガス化溶融炉が知られている。この流動床式ガス化溶融炉は、流動化ガス により流動層が形成される流動床式ガス化炉と、その後段の溶融炉とを備える。前記 流動床式ガス化炉は、その流動層に投入された廃棄物を部分燃焼させて熱分解ガ スを生成する。前記溶融炉は、前記流動床式ガス化炉により生成された熱分解ガス をさらに燃焼させて同ガス中の灰分を溶融させることによりスラグを生成する。この溶 融炉の炉頂には、炉内温度を維持するための助燃用パーナが設けられる。  Conventionally, for example, a fluidized bed gasification melting furnace as described in Patent Document 1 is known as a means for treating waste. This fluidized bed type gasification and melting furnace includes a fluidized bed type gasification furnace in which a fluidized bed is formed by the fluidized gas and a subsequent stage melting furnace. The fluidized bed gasifier partially burns the waste introduced into the fluidized bed to generate pyrolysis gas. The melting furnace further burns the pyrolysis gas generated by the fluidized bed gasification furnace to melt ash in the gas to generate slag. At the top of the melting furnace, an auxiliary burner is installed to maintain the furnace temperature.
[0003] このようなガス化溶融炉の運転については、次のような解決すべき課題がある。  [0003] The operation of such a gasification melting furnace has the following problems to be solved.
[0004] 1)パーナの運転について  [0004] 1) About PANA operation
前記ガス化溶融炉において、前記溶融炉内の温度が 1300°C程度まで達していれ ば、その状態で助燃用のパーナの運転を止めても、未燃成分の自己燃焼により炉内 温度はしばらく高温に保たれる。従って、燃料の節減や環境問題(特に COの排出  In the gasification melting furnace, if the temperature in the melting furnace has reached about 1300 ° C, the temperature in the furnace will remain for a while due to self-combustion of unburned components even if the operation of the auxiliary burner is stopped in that state. Kept at high temperature. Therefore, fuel savings and environmental issues (especially CO emissions)
2 抑制)の観点からは前記パーナの運転を適宜休止させることが望まれる。  2) From the viewpoint of suppression, it is desirable to stop the operation of the above-mentioned PANA as appropriate.
[0005] しかし、このようにパーナの運転を一旦停止させてしまうと、その後の再着火時に良 好な燃焼が再開できない場合がある。例えば、前記パーナの運転の停止後に当該 パーナ付近の炉内温度が何らかの要因で急速に下がり、当該パーナの近傍に存在 する未燃ガスの自燃着火温度以下となった時点で前記パーナが再着火されると、異 常燃焼が生じるおそれがある。 [0005] However, once the operation of the PANA is stopped in this way, good combustion may not be resumed during subsequent re-ignition. For example, when the temperature of the furnace in the vicinity of the burner rapidly decreases for some reason after the operation of the burner stops, and the temperature of the unburned gas in the vicinity of the burner falls below the self-ignition temperature of the burner, the burner is reignited. Then, abnormal combustion may occur.
[0006] 2)スラグの流動性について [0006] 2) Fluidity of slag
前記のようなガス化溶融炉において、前記スラグ排出口からのスラグの安定した出 滓を保っためには、その流動性を維持することが重要である。スラグの流動性が低下 した状態が続くと、このスラグが前記スラグ排出口を閉塞して連続運転を阻害するお それがある。 In the gasification melting furnace as described above, the slag is stably discharged from the slag discharge port. In order to keep the bag, it is important to maintain its fluidity. If the slag fluidity continues to decline, this slag may block the slag outlet and hinder continuous operation.
[0007] 前記スラグの流動性を支配するパラメータとして、当該スラグの温度及び塩基度(C aO/SiO )が存在する。前記スラグがその流動性を維持するためには、当該スラグ  [0007] As parameters governing the fluidity of the slag, the temperature and basicity (C aO / SiO) of the slag exist. In order for the slag to maintain its fluidity, the slag
2  2
の温度が溶融点よりも高いことが条件となり、し力、も、この溶融点とスラグの塩基度と の間には著しい相関関係が存在する。具体的には、スラグの塩基度が約 0. 7の値を 超えると、その上昇に伴ってスラグの溶融点も高くなり、例えばスラグの塩基度が 1の 場合、そのスラグの溶融点は 1200°Cにまで達することが知られている。  The temperature is higher than the melting point, and there is a significant correlation between the melting point and the basicity of the slag. Specifically, when the basicity of the slag exceeds about 0.7, the melting point of the slag increases with the increase. For example, when the basicity of the slag is 1, the melting point of the slag is 1200 It is known to reach up to ° C.
[0008] 従って、前記ガス化溶融炉の安定した連続運転を効率よく行うためには、前記スラ グの塩基度の調整が重要である。仮に溶融炉内をほぼ一定の温度に維持する運転 が行われたとしても、実際のスラグの流動性はその塩基度の変動によって左右される ため、当該スラグの塩基度が適正な範囲内に維持されないと、安定した運転は難し い。また、前記のような塩基度の変動を見越して炉内運転温度を高めに設定すると、 運転効率の低下は免れ得ない。例えば、前記スラグの塩基度が 1にまで達した場合 、スラグ排出口からスラグが安定して出滓されるためには、当該スラグの温度が 1200 °C以上でなければならない。しかも、この排出スラグの温度は溶融炉の炉内温度より も 100〜; 150°Cほど低い傾向にあるから、結局、前記スラグの出滓を安定させるため には、溶融炉内の温度を 1350°C以上にしなければならないことになる。このような高 温運転を長期間にわたって続けることは、炉内保温のための外部燃料の増量の必要 性ひいてはランニングコストの上昇を招くだけでなぐ環境負荷の増大や、耐火物損 耗のための補修費の増大も招き得る。  [0008] Therefore, in order to efficiently perform a stable continuous operation of the gasification melting furnace, it is important to adjust the basicity of the slag. Even if operation is performed to maintain the inside of the melting furnace at a substantially constant temperature, the fluidity of the actual slag is affected by fluctuations in its basicity, so the basicity of the slag is maintained within an appropriate range. Otherwise, stable operation is difficult. In addition, if the in-furnace operating temperature is set high in anticipation of such basicity fluctuations, a reduction in operating efficiency cannot be avoided. For example, when the basicity of the slag reaches 1, the temperature of the slag must be 1200 ° C or higher in order for the slag to be stably discharged from the slag discharge port. Moreover, since the temperature of the discharged slag tends to be 100 to 150 ° C lower than the furnace temperature of the melting furnace, after all, the temperature in the melting furnace is set to 1350 to stabilize the output of the slag. It must be above ° C. Continuing such high-temperature operation over a long period of time is not only necessary for increasing the amount of external fuel to keep the temperature in the furnace, but also incurring an increase in the environmental burden and increasing the running cost. An increase in repair costs can also result.
[0009] そこで従来は、前記スラグの塩基度を調整するために、系内へ塩基度調整剤を供 給することが行われている。具体的に、塩基度を下げる場合には系内に硅砂(SiO )  Therefore, conventionally, in order to adjust the basicity of the slag, a basicity adjusting agent has been supplied into the system. Specifically, when reducing the basicity, cinnabar (SiO 2)
2 等が供給され、逆に塩基度を上げる場合には消石灰(Ca(OH) )等が供給される。こ  2 is supplied, and conversely, when raising the basicity, slaked lime (Ca (OH)) is supplied. This
2  2
のような塩基度調整剤が適量だけ系内に供給されることにより、スラグの塩基度が好 ましい範囲内に保たれる。つまり、この塩基度調整剤の供給量を適正な量に決定す ること力 当該スラグの塩基度調整を的確に行うための必須条件となる。 [0010] 前記塩基度調整剤の供給量を決定するための方法として、特許文献 2は、実際の スラグの塩基度を分析装置によって測定することを提案する。この文献に開示される 方法は、実際に炉内から排出されるスラグの組成を簡易蛍光 X線分析装置等を用い て分析するステップと、その分析結果に基づレ、て塩基度調整剤の添加量を決定する The basicity of the slag is kept within a preferable range by supplying an appropriate amount of such a basicity adjusting agent into the system. In other words, it is an indispensable condition for accurately adjusting the basicity of the slag to determine the supply amount of the basicity adjusting agent to an appropriate amount. [0010] As a method for determining the supply amount of the basicity adjusting agent, Patent Document 2 proposes that an actual slag basicity is measured by an analyzer. The method disclosed in this document includes a step of analyzing the composition of slag actually discharged from the furnace using a simple fluorescent X-ray analyzer and the like, and a basicity adjusting agent based on the analysis result. Decide the amount to add
[0011] しかし、この方法では運転管理が複雑である。具体的には、スラグの塩基度の算出 のために、特別な分析計の設置と定期的な分析作業が必要である。しかも、前記分 析計は、現場から離れた専門機関に設置されている場合が多ぐその場合には前記 ガス化溶融炉を含む処理設備から前記専門機関へのスラグサンプルの輸送が必要 になる。このことは、スラグのサンプリング時期とその塩基度が判明する時期との間に 大きなタイムラグを与える。 However, operation management is complicated in this method. Specifically, it is necessary to install a special analyzer and perform periodic analysis work in order to calculate the basicity of slag. In addition, the analyzer is often installed in a specialized institution that is remote from the site, and in that case, it is necessary to transport the slag sample from the processing facility including the gasification melting furnace to the specialized institution. This gives a large time lag between the sampling time of slag and the time when its basicity is known.
[0012] また、この方法では分析結果の信頼性の見極めが難し!/、。この方法では、前記のよ うに設備の外部に設置される分析計が一般に用いられるため、当該分析計による分 析は、比較的長いインターバルをおいて周期的に行わざるを得ない。このように低い 頻度で得られた分析結果が採用に値するものであるの力、、あるいは突発的に生じた 特異的な値として除外すべきであるのかを見極めることは難しい。そして、この見極め を誤ると、適正な塩基度調整剤の調整量を決定することができな!/、。  [0012] In addition, this method makes it difficult to determine the reliability of analysis results! In this method, an analyzer installed outside the equipment as described above is generally used, and therefore analysis by the analyzer must be performed periodically at relatively long intervals. It is difficult to determine whether the analysis results obtained in such a low frequency are worthy of adoption, or whether they should be excluded as specific values that occur suddenly. If you make this mistake, you will not be able to determine the correct amount of basicity adjuster! /.
特許文献 1 :特開 2006— 29678号公報  Patent Document 1: Japanese Unexamined Patent Publication No. 2006-29678
特許文献 2:特開 2001— 182924号公報  Patent Document 2: Japanese Patent Laid-Open No. 2001-182924
発明の開示  Disclosure of the invention
[0013] この出願の第 1の発明は、ガス化溶融炉のパーナを適当に休止させることにより効 率の高い運転を行いながら、そのパーナの再着火時に良好な燃焼を確実に再開す ることを可能にするための技術の提供を目的とする。  [0013] The first invention of this application is to reliably resume good combustion at the time of re-ignition of the burner while performing a highly efficient operation by appropriately stopping the burner of the gasification melting furnace. The purpose is to provide the technology to make this possible.
[0014] その目的を達成するために、溶融炉の助燃用パーナの運転の停止後、溶融炉温 度がある程度降下した場合に廃棄物投入を停止させてガス化炉力 溶融炉に送られ るガス中の酸素濃度を高めてから前記パーナを再着火させ、もしくは、溶融炉温度が ある程度高いうちに前記パーナを再着火させることが行われる。この方法は、前記バ ーナの休止により効率の高!/、運転を行!/、ながら、再着火に適さな!/、状態(例えば未 燃ガスの自燃着火が困難である状態)でパーナが再着火されるのを未然に防いで、 当該パーナを適切に再着火させることを可能にする。 [0014] In order to achieve the purpose, after the operation of the auxiliary furnace burner of the melting furnace is stopped, if the melting furnace temperature drops to some extent, the waste input is stopped and sent to the gasifier power melting furnace After the oxygen concentration in the gas is increased, the PANA is reignited, or the PANA is reignited while the melting furnace temperature is high to some extent. This method is more efficient due to the burner being out of service! /, Operating! /, But suitable for re-ignition! / It is possible to prevent the PANA from being re-ignited in a state where it is difficult to self-ignite the fuel gas, and to re-ignite the PANA.
[0015] また、この出願の第 2の発明は、ガス化溶融炉を運転するにあたり、スラグ組成を分 析するための特別な分析計を要することなぐ適正な塩基度調整を容易に行うことを 可能にする技術の提供を目的とする。この目的を達成するため、本発明者等は、前 記の塩基度調整について検討を重ね、その結果、ガス化溶融炉に投入される廃棄 物の単位重量あたりの発熱量と、当該ガス化溶融炉から排出されるスラグの塩基度と の間に著し!/、相関関係があることを見出した。このような相関関係の利用は、特別な 分析装置等を用いることなぐ実際のスラグの塩基度を迅速かつ的確に把握すること を可能にする。 [0015] Further, the second invention of this application is to easily perform appropriate basicity adjustment without requiring a special analyzer for analyzing the slag composition when operating the gasification melting furnace. The purpose is to provide technology that makes it possible. In order to achieve this object, the present inventors have repeatedly studied the basicity adjustment described above, and as a result, the calorific value per unit weight of the waste to be input to the gasification melting furnace and the gasification melting It was found that there is a significant correlation between the basicity of slag discharged from the furnace! The use of such correlation makes it possible to quickly and accurately grasp the basicity of actual slag without using a special analyzer.
[0016] この出願の第 2の発明は、投入される廃棄物を熱分解し、その熱分解により生じる 熱分解ガス中の灰分を溶融するとともに、その溶融により生じたスラグを炉外に排出 するためのスラグ排出口を有するガス化溶融炉を運転するにあたって、前記スラグの 塩基度を調整するための方法を提供する。この方法は、前記スラグ排出口よりも上流 側の位置に前記スラグ排出ロカ 排出されるスラグの塩基度を調節するための塩基 度調整剤を供給するステップと、単位時間あたりに前記ガス化溶融炉に投入される 廃棄物の重量を検出するステップと、前記廃棄物の単位重量あたりの発熱量に対応 するパラメータを検出するステップと、前記パラメータの検出値に基づいて前記ガス 化溶融炉内に生じるスラグの塩基度の予想値を演算するステップと、演算した前記 塩基度の予想値に基づき、当該スラグの塩基度を予め設定された塩基度の目標値 に近づける方向に前記塩基度調整剤の供給量を調節するステップとを含む。  [0016] In the second invention of this application, the waste to be charged is thermally decomposed, the ash in the pyrolysis gas generated by the thermal decomposition is melted, and the slag generated by the melting is discharged out of the furnace. In order to operate a gasification melting furnace having a slag discharge port, a method for adjusting the basicity of the slag is provided. The method includes a step of supplying a basicity adjusting agent for adjusting the basicity of the slag discharged from the slag discharge loca to a position upstream of the slag discharge port, and the gasification melting furnace per unit time. A step of detecting the weight of the waste to be introduced into the gas, a step of detecting a parameter corresponding to the calorific value per unit weight of the waste, and a gas generated in the gasification and melting furnace based on the detected value of the parameter A step of calculating an expected value of basicity of slag, and supply of the basicity adjuster in a direction to bring the basicity of the slag closer to a preset target value of basicity based on the calculated predicted value of basicity Adjusting the amount.
[0017] この方法では、前記廃棄物の単位重量あたりの発熱量に対応するパラメータと実際 のスラグの塩基度との相関関係の利用が、スラグ組成の複雑な分析を行わなくても実 際のスラグの塩基度の予想値を得ることを可能にする。すなわち、前記パラメータの 検出値と、前記相関関係とに基づいて、前記塩基度の予想値を演算することが可能 である。そして、このスラグの塩基度の予想値に基づいて、塩基度調整剤の適正な添 加量が決定される。  [0017] In this method, the use of the correlation between the parameter corresponding to the calorific value per unit weight of the waste and the basicity of the actual slag can be realized without performing a complicated analysis of the slag composition. It makes it possible to obtain the expected value of basicity of slag. That is, it is possible to calculate the expected value of the basicity based on the detected value of the parameter and the correlation. Based on the expected basicity of the slag, an appropriate amount of basicity adjusting agent is determined.
[0018] この方法は、スラグの塩基度の調整を行うための装置であって、前記スラグ排出口 よりも上流側の位置に前記スラグ排出口力 排出されるスラグの塩基度を調節するた めの塩基度調整剤を供給する塩基度調整剤供給手段と、単位時間あたりに前記ガ ス化溶融炉に投入される廃棄物の重量を検出する廃棄物投入量検出手段と、前記 廃棄物の単位重量あたりの発熱量に対応するパラメータを検出するパラメータ検出 手段と、前記パラメータの検出値に基づいて前記ガス化溶融炉内に生じるスラグの 塩基度の予想値を演算する塩基度予想値演算手段と、前記塩基度の予想値に基づ き、当該塩基度を予め設定された塩基度の目標値に近づける方向に前記塩基度調 整剤の供給量を調節する塩基度調整剤供給量調節手段とを備える装置により実現 される。 [0018] This method is an apparatus for adjusting the basicity of a slag, the slag outlet A basicity adjusting agent supplying means for supplying a basicity adjusting agent for adjusting the basicity of the slag discharged to a position upstream of the slag outlet, and the gasification melting furnace per unit time A waste input amount detecting means for detecting the weight of the waste to be input to the apparatus, a parameter detecting means for detecting a parameter corresponding to the calorific value per unit weight of the waste, and the parameter based on the detected value of the parameter. The basicity expected value calculation means for calculating the basic value of the slag generated in the gasification melting furnace, and based on the predicted basicity value, the basicity is set to a preset basicity target value. This is realized by an apparatus provided with basicity adjusting agent supply amount adjusting means for adjusting the supply amount of the basicity adjusting agent in the approaching direction.
図面の簡単な説明 Brief Description of Drawings
[図 1]この出願の第 1の発明の実施の形態に係るガス化溶融炉を備えた廃棄物処理 設備の全体構成図である。 FIG. 1 is an overall configuration diagram of a waste treatment facility equipped with a gasification melting furnace according to an embodiment of the first invention of this application.
[図 2]前記ガス化溶融炉の構造を示す断面図である。  FIG. 2 is a cross-sectional view showing the structure of the gasification melting furnace.
[図 3]前記ガス化溶融炉における温度計の配置例を示す断面図である。  FIG. 3 is a cross-sectional view showing an arrangement example of thermometers in the gasification melting furnace.
[図 4]前記ガス化溶融炉の運転制御であってガス酸素濃度に基づきパーナ再着火の タイミングを決定する制御の例を示すフローチャートである。  FIG. 4 is a flowchart showing an example of control for determining the timing of re-ignition of the PANA based on the gas oxygen concentration, which is the operation control of the gasification melting furnace.
[図 5]前記ガス化溶融炉の運転制御であって炉頂温度に基づきパーナ再着火のタイ ミングを決定する制御の例を示すフローチャートである。  FIG. 5 is a flowchart showing an example of control for determining the timing of re-ignition of the burner based on the top temperature of the gasification melting furnace.
[図 6]前記ガス化溶融炉の運転制御であって空気供給量の積算値に基づきパーナ 再着火のタイミングを決定する制御を実行するための設備例を示す図である。  FIG. 6 is a diagram showing an example of equipment for performing control for determining the timing of re-ignition of the PANA based on the integrated value of the air supply amount, which is operation control of the gasification melting furnace.
[図 7]前記ガス化溶融炉の運転制御であって空気供給量の積算値に基づきパーナ 再着火のタイミングを決定する制御の例を示すフローチャートである。  FIG. 7 is a flowchart showing an example of control for determining the timing of re-ignition of the burner based on the integrated value of the air supply amount, which is the operation control of the gasification melting furnace.
[図 8]この出願の第 2の発明の実施の形態に係る廃棄物処理設備の全体構成を示し た図である。  FIG. 8 is a diagram showing an overall configuration of a waste treatment facility according to an embodiment of the second invention of this application.
[図 9]ごみ発熱量及びスラグの塩基度の年間推移の例を示すグラフである。  FIG. 9 is a graph showing an example of annual changes in waste heat generation and basicity of slag.
[図 10]ごみ発熱量とスラグの塩基度との相関関係の例を示すグラフである。  FIG. 10 is a graph showing an example of a correlation between waste heat generation and basicity of slag.
[図 11]スラグの塩基度の予想値に基づく塩基度調整剤供給量の設定例を示すグラフ である。 発明を実施するための最良の形態 FIG. 11 is a graph showing an example of setting the basicity regulator supply amount based on the expected basicity of slag. BEST MODE FOR CARRYING OUT THE INVENTION
[0020] この出願の第 1の発明の好まし!/、実施の形態を図 1〜図 7に基づ!/、て説明する。 [0020] The preferred embodiment of the first invention of this application is described below based on FIG. 1 to FIG.
[0021] 図 1は、流動床式ガス化溶融炉を具備する廃棄物処理設備の一例を示したもので ある。なお、本発明はガス化炉及び溶融炉を具備するガス化溶融炉の運転に広く適 用され得る。当該ガス化溶融炉が導入される廃棄物処理設備の全体構成は特に限 定されない。 [0021] FIG. 1 shows an example of a waste treatment facility equipped with a fluidized bed gasification melting furnace. The present invention can be widely applied to the operation of a gasification melting furnace including a gasification furnace and a melting furnace. The overall configuration of the waste treatment facility where the gasification melting furnace is introduced is not particularly limited.
[0022] 図 1において、廃棄物としてのごみが一旦、ごみピット 1に貯留され、図示しないタレ ーンによって廃棄物投入機である給じん機 2のホッパ 2aに投入される。給じん機 2は 前記ごみを定量的に流動床式のガス化炉 3に供給する。  In FIG. 1, waste as waste is temporarily stored in the waste pit 1 and is put into a hopper 2a of a dust feeder 2 which is a waste feed machine by a turret (not shown). A dust feeder 2 quantitatively supplies the waste to a fluidized bed gasifier 3.
[0023] このガス化炉 3では、例えば空気比 0. 2〜0. 4の条件で部分燃焼が行われ、砂層 等からなる流動層の温度を 450°C〜650°Cに維持した熱分解すなわち一 7火燃焼が 行われる。前記給じん機 2により投入されたごみのうちの不燃物は炉床下部より抜き 出され、スクリューコンベア 5及び振動ふる!/、6及び図示しな!/、磁選機を経て不燃物、 非鉄金属、鉄分、流動砂にそれぞれ分離されて、そのうちの流動砂がガス化炉 3の 砂層に戻されて再利用される。  [0023] In the gasification furnace 3, for example, partial combustion is performed under the condition of an air ratio of 0.2 to 0.4, and thermal decomposition is performed in which the temperature of a fluidized bed composed of a sand layer or the like is maintained at 450 ° C to 650 ° C. That is, one-seven fire combustion is performed. Non-combustible material out of the waste thrown in by the dust feeder 2 is extracted from the bottom of the hearth, screw conveyor 5 and vibrating sieve! /, 6 and not shown! /, Through a magnetic separator, non-combustible material, non-ferrous metal , Iron and fluidized sand are separated, and the fluidized sand is returned to the sand layer of the gasifier 3 and reused.
[0024] このガス化炉 3で発生した熱分解ガスは、溶融炉 4に導かれ、この溶融炉 4内で例 えばトータル空気比 1. 3の条件下でさらに燃焼する。この溶融炉 4内では旋回流が 形成されながら約 1300°Cの高温燃焼が行われる。この高温燃焼により生ずる熱が前 記熱分解ガス中の灰分を溶融し、当該熱分解ガス中からスラグとして分離するととも に、ダイォキシン等のガス中の有害物質を分解する。前記溶融スラグは溶融炉 4の底 部から抜出されてコンベア等を含むスラグ搬出装置 7により搬出され、その下方のス ラグ冷却装置 8で冷却されて回収される。  The pyrolysis gas generated in the gasification furnace 3 is guided to the melting furnace 4 and further combusted in the melting furnace 4 under the condition of a total air ratio of 1.3, for example. In the melting furnace 4, high temperature combustion of about 1300 ° C is performed while a swirling flow is formed. The heat generated by this high-temperature combustion melts the ash in the pyrolysis gas, separates it from the pyrolysis gas as slag, and decomposes harmful substances in the gas such as dioxin. The molten slag is extracted from the bottom of the melting furnace 4 and is carried out by a slag carry-out device 7 including a conveyor, etc., and cooled and collected by a slag cooler 8 below the molten slag.
[0025] この旋回流溶融炉 4から排出される溶融炉排ガスは、空気加熱器 9及び廃熱ボイラ 10を通り、ここで同ガス中の熱が回収される。熱回収後の排ガスはさらにガス冷却器 11で冷却され、バグフィルタ 12で除塵される。このようにして浄化された排ガスは誘 引ファン 13を経て脱硝装置 14を通り、煙突 15から排出される。  [0025] The melting furnace exhaust gas discharged from the swirling flow melting furnace 4 passes through the air heater 9 and the waste heat boiler 10, and the heat in the gas is recovered here. The exhaust gas after the heat recovery is further cooled by the gas cooler 11 and removed by the bag filter 12. The exhaust gas thus purified passes through the induction fan 13, passes through the denitration device 14, and is discharged from the chimney 15.
[0026] 図 2は、前記ガス化炉 3及び溶融炉 4により構成されるガス化溶融炉の構造の詳細 を示している。 [0027] 同図において、前記ガス化炉 3の底部には、多数のガス噴射口 22をもつ分散板 20 が設けられ、その下方に風箱 24が形成されている。この風箱 24から前記分散板 20 のガス噴射口 22を通じて例えば上向きに流動化ガスが噴射されることにより、この分 散板 20の上方に砂粒子からなる流動層 26が形成される。また、前記分散板 20の中 央には不燃物抜出し口 28が設けられる。この不燃物抜出し口 28から不燃物が抜き 出され、前記スクリューコンベア 5及び振動ふるい 6に導かれる。 FIG. 2 shows the details of the structure of the gasification melting furnace constituted by the gasification furnace 3 and the melting furnace 4. In the figure, a dispersion plate 20 having a large number of gas injection ports 22 is provided at the bottom of the gasification furnace 3, and an air box 24 is formed below the dispersion plate 20. For example, fluidized gas is jetted upward from the wind box 24 through the gas injection port 22 of the dispersion plate 20, thereby forming a fluidized bed 26 made of sand particles above the distribution plate 20. In addition, an incombustible outlet 28 is provided in the center of the dispersion plate 20. Incombustible material is extracted from the incombustible material outlet 28 and guided to the screw conveyor 5 and the vibrating screen 6.
[0028] 前記流動層 26の上方には、前記給じん機 2に接続される廃棄物投入口 30が設け られ、この廃棄物投入口 30と前記給じん機 2とを結ぶ経路中に同経路を開閉するダ ンパ 32が設けられて!/、る。前記廃棄物投入口 30と略同等の高さ位置にはガス化炉 昇温パーナ 34が設けられる。そのさらに上方には二次燃焼用のフリーボード 36が形 成され、炉頂部には熱分解ガス出口 38が設けられている。  [0028] Above the fluidized bed 26, a waste input port 30 connected to the dust feeder 2 is provided, and the same path in the path connecting the waste input port 30 and the dust feeder 2 is provided. A damper 32 is provided to open and close the door! A gasifier temperature raising pan 34 is provided at a height substantially equal to the waste inlet 30. Further above that, a freeboard 36 for secondary combustion is formed, and a pyrolysis gas outlet 38 is provided at the top of the furnace.
[0029] 前記熱分解ガス出口 38から排出される熱分解ガスは、前記旋回式溶融炉 4の上部 に供給される。この旋回式溶融炉 4の適所(図例では炉頂)には、助燃用のパーナ 4 0が下向きに設けられ、そのすぐ下方に熱分解ガス入口 42が設けられており、この熱 分解ガス導入口 42が熱分解ガス通路であるダクト 44を介して前記ガス化炉 3の熱分 解ガス出口 38に接続されている。前記パーナ 40は、前記溶融炉 4の昇温及び温度 維持 (例えば 1300°C以上の温度状態の確保)に使用される。このパーナ 40の運転 については後に詳述する。  The pyrolysis gas discharged from the pyrolysis gas outlet 38 is supplied to the upper part of the swirling melting furnace 4. At the appropriate place of the swirling melting furnace 4 (top of the figure in the figure), an auxiliary combustion burner 40 is provided downward, and a pyrolysis gas inlet 42 is provided immediately below it. The opening 42 is connected to the thermal decomposition gas outlet 38 of the gasification furnace 3 through a duct 44 which is a pyrolysis gas passage. The panner 40 is used for raising the temperature and maintaining the temperature of the melting furnace 4 (for example, ensuring a temperature state of 1300 ° C. or higher). The operation of this PANA 40 will be described in detail later.
[0030] また、この溶融炉 4の底部にはスラグ出滓口 43が設けられ、このスラグ出滓口 43に 前記スラグ搬出装置 7が接続されて!/、る。  Further, a slag outlet 43 is provided at the bottom of the melting furnace 4, and the slag unloading device 7 is connected to the slag outlet 43.
[0031] 前記ダクト 44には、酸素濃度計 45が設けられる。この酸素濃度計 45は、前記ダクト 44内を流れるガス、すなわち、前記ガス化炉 3から前記溶融炉 4に送られるガスの中 の酸素の濃度を検出する。前記パーナ 40の近傍部位 (この実施の形態では旋回式 溶融炉 4の炉頂近傍部位)には、その部位における炉内温度(この実施の形態では 炉頂温度)を検出する温度計 46が設けられて!/、る。  [0031] The duct 44 is provided with an oxygen concentration meter 45. The oxygen concentration meter 45 detects the concentration of oxygen in the gas flowing in the duct 44, that is, in the gas sent from the gasification furnace 3 to the melting furnace 4. A thermometer 46 for detecting the temperature inside the furnace (in this embodiment, the furnace top temperature) is provided in the vicinity of the PANANER 40 (in this embodiment, in the vicinity of the top of the swivel melting furnace 4). Being! /
[0032] 前記酸素濃度計 45としては、耐久性に優れたものが好ましい。具体的には、例え ばジルコユア式酸素濃度計が好適である。  [0032] The oxygen concentration meter 45 is preferably one having excellent durability. Specifically, for example, a zirconia oximeter is suitable.
[0033] 前記温度計 46としては、耐久性に優れ、かつ、高温域での検出精度に優れたもの が好ましぐ具体的には放射温度計 (特に赤外線式放射温度計)等が好適である。こ の温度計 46の配設位置は、炉頂温度が検出可能な範囲で適宜設定可能である力 なるべく安定した監視ができる位置が好ましい。例えば、前記溶融炉 4の熱分解ガス 入口 42の付近に図 3に示すような溶融炉用燃焼空気供給ノズル 48が設けられてい る場合、前記温度計 46は、図示のように、同ノズル 48の上流側の位置から同ノズル 4 8を通して溶融炉 4の炉頂内を監視し得る位置に設けられることが好ましい。このよう な温度計 46の配置は、前記ノズル 48から前記溶融炉 4内に向力、う燃焼空気の流れ を利用して、前記温度計 46の検知窓が溶融炉 4内の灰分等で閉塞されるのを有効 に防ぐことを可能にし、これにより安定した温度監視を可能にする。 [0033] The thermometer 46 has excellent durability and detection accuracy in a high temperature range. Specifically, a radiation thermometer (especially an infrared radiation thermometer) is suitable. The thermometer 46 is preferably disposed at a position where it can be monitored as stably as possible. For example, if a melting furnace combustion air supply nozzle 48 as shown in FIG. 3 is provided in the vicinity of the pyrolysis gas inlet 42 of the melting furnace 4, the thermometer 46 is connected to the nozzle 48 as shown in the figure. It is preferable to be provided at a position where the inside of the furnace top of the melting furnace 4 can be monitored through the nozzle 48 from the upstream position. The arrangement of the thermometer 46 is such that the detection window of the thermometer 46 is blocked by ash or the like in the melting furnace 4 by using the flow of combustion air from the nozzle 48 into the melting furnace 4. It is possible to effectively prevent this from occurring, thereby enabling stable temperature monitoring.
[0034] この温度計 46が設けられる位置は、前記パーナ 40の近傍の領域内で適宜設定可 能である。具体的には、当該パーナ 40の着火により未燃ガスの燃焼が生じ得る程度 に当該パーナ 40に近い範囲で適宜設定可能である。  [0034] The position where the thermometer 46 is provided can be appropriately set within a region in the vicinity of the panner 40. Specifically, it can be appropriately set within a range close to the burner 40 to such an extent that unburned gas can be burned by ignition of the burner 40.
[0035] さらに、このガス化溶融炉には、図 2に示すような制御系 50が装備され、この制御 系 50に前記酸素濃度計 45および前記温度計 46の出力信号 (検出信号)がそれぞ れ入力される。  Further, the gasification melting furnace is equipped with a control system 50 as shown in FIG. 2, and the control system 50 receives output signals (detection signals) from the oxygen concentration meter 45 and the thermometer 46. Each is entered.
[0036] この制御系 50は、コンピュータ等により構成され、その機能としてパーナ制御部 52 と給じん制御部 54とを有している。パーナ制御部 52は、前記パーナ 40の運転停止 及び再着火を行わせるための指令信号をそれぞれ出力する。前記給じん制御部 54 は、前記給じん機 2の運転停止及び再起動を行わせるための指令信号を出力する。  [0036] The control system 50 is configured by a computer or the like, and has a panner control unit 52 and a dust supply control unit 54 as its functions. The PANA control unit 52 outputs a command signal for causing the PANANER 40 to stop operation and re-ignite. The dust supply control unit 54 outputs a command signal for causing the dust feeder 2 to be stopped and restarted.
[0037] 次に、このガス化溶融炉の作用、及び、前記制御系 50が行う運転制御の内容を図 4のフローチャートも併せて参照しながら説明する。  Next, the operation of the gasification melting furnace and the contents of the operation control performed by the control system 50 will be described with reference to the flowchart of FIG.
[0038] 図 4に示す「通常運転状態」(ステップ S 1)では、給じん機 2が駆動され、溶融炉 4の パーナ 40が着火されている。この通常運転状態では、前記給じん機 2が都市ごみ等 の廃棄物を前記ガス化炉 3の廃棄物投入口 30から同炉 3内に投入する。この廃棄物 は、同炉 3内の流動層 26で一 7火燃焼し、これにより熱分解ガスが発生する。この熱分 解ガスは炉頂の熱分解ガス出口 38からダクト 44を通じて溶融炉 4の熱分解ガス入口 42に送られ、この入口 42から同炉 4内の上部に導入される。この溶融炉 4内では前 記熱分解ガス中の可燃成分がさらに高温燃焼し、この燃焼により発生する熱がガス 中の灰分を溶融させてスラグにする。このスラグは炉壁に付着し、さらに炉底のスラグ 出滓口 43へ流下して炉外へ導出される。 In the “normal operation state” (step S 1) shown in FIG. 4, the dust feeder 2 is driven and the burner 40 of the melting furnace 4 is ignited. In this normal operation state, the dust feeder 2 feeds waste such as municipal waste into the furnace 3 from the waste inlet 30 of the gasifier 3. This waste is burned for seven times in the fluidized bed 26 in the furnace 3, thereby generating pyrolysis gas. This pyrolysis gas is sent from the pyrolysis gas outlet 38 at the top of the furnace through the duct 44 to the pyrolysis gas inlet 42 of the melting furnace 4, and is introduced into the upper part of the furnace 4 from this inlet 42. In this melting furnace 4, the combustible component in the pyrolysis gas burns at a higher temperature, and the heat generated by this combustion is the gas. Melt the ash content in the slag. This slag adheres to the furnace wall and then flows down to the slag outlet 43 at the bottom of the furnace and is led out of the furnace.
[0039] この溶融炉 4の炉頂温度は、前記パーナ 40の着火によって高温に保持される。し かし、当該炉頂温度が 1300°C程度まで達していれば、その状態で助燃用のパーナ の運転を止めても、未燃成分の自己燃焼によって炉内温度はしばらく高温に保たれ る。従って、燃料の節減や環境問題(特に C02の排出抑制)の観点からは前記バー ナの運転を適宜休止させることが望まれる。 [0039] The furnace top temperature of the melting furnace 4 is maintained at a high temperature by the ignition of the PANA 40. However, if the top temperature of the furnace reaches about 1300 ° C, the furnace temperature can be kept high for a while by self-combustion of unburned components even if the operation of the auxiliary burner is stopped in that state. . Therefore, from the viewpoint of fuel saving and environmental problems (especially C02 emission control), it is desirable to stop the operation of the burner appropriately.
[0040] そこで、制御系 50は、現在の運転状態が予め設定されたパーナ停止条件に合致 した時点で(ステップ S2)、前記パーナ 40の運転を停止させるためのパーナ停止指 令信号を出力する (ステップ S3)。 [0040] Therefore, the control system 50 outputs a panner stop command signal for stopping the operation of the parner 40 when the current operating state matches the preset parner stop condition (step S2). (Step S3).
[0041] 前記パーナ停止条件は種々設定可能である。例えば次のような条件が好適である[0041] Various conditions for stopping the PANA can be set. For example, the following conditions are suitable
Yes
[0042] 1)前記温度計 46により検出される炉頂温度が予め設定されたパーナ停止温度(例 えば 1100°C)以上である状態が所定時間(例えば 30分)以上保たれること。前記の「 炉頂温度」の判定は、適当なサンプリング周期で瞬時値を確認することにより行われ てもよいし、適当な時間(例えば前記所定時間)内での前記炉頂温度の移動平均値 に基いて行われてもよい。この 1)の条件を設定した場合には、当該条件の充足を確 認するための温度計 46を後述の給じん停止のタイミングやパーナ再着火のタイミン グを図るための手段として兼用できる利点がある。  [0042] 1) The state where the furnace top temperature detected by the thermometer 46 is equal to or higher than a preset Pana shutdown temperature (eg, 1100 ° C) is maintained for a predetermined time (eg, 30 minutes) or longer. The determination of the “top temperature” may be performed by confirming an instantaneous value at an appropriate sampling period, or the moving average value of the top temperature within an appropriate time (for example, the predetermined time). May be performed on the basis of When the condition of 1) is set, there is an advantage that the thermometer 46 for confirming the satisfaction of the condition can also be used as a means for timing the stoppage of dust supply and timing for re-igniting the burner, which will be described later. is there.
[0043] 2)ごみ低位発熱量の移動平均値が予め設定された発熱量 (例えば 2000kcal/ kg)以上であること。ここでいう「ごみ低位発熱量」とは、前記給じん機 2により前記ガ ス化炉 3に対して単位時間当たりに投入されるゴミが保有する熱量を意味し、廃棄物 の熱量に相当する。  [0043] 2) The moving average value of the lower heating value of waste is not less than a preset heating value (for example, 2000 kcal / kg). The “low heat generation amount” of the waste here means the amount of heat held by the dust that is put into the gasification furnace 3 by the dust feeder 2 per unit time, and corresponds to the heat amount of waste. .
[0044] このゴミの保有熱量は、例えば特開 2004— 37049号公報に開示されるように、廃 棄物処理設備の熱収支から演算可能であり、概ね、前記バグフィルタ 12の下流側の 位置に設けられる排ガス流量計により検出される排ガスの流量 Fe (Nm3/h)と、同 様の位置に設けられる排ガス温度計により検出される排ガスの温度 Te (°C)とに基づ いて算出される排ガス持出熱量 Qと等しいものとみなされてよい。具体的に、この排 ガス持出熱量 Q (kcal/h)は、排ガスの比熱を cEとすると次式で表される。 [0044] The amount of heat retained by the dust can be calculated from the heat balance of the waste disposal facility as disclosed in, for example, Japanese Patent Application Laid-Open No. 2004-37049, and is generally located at a position downstream of the bag filter 12. It is calculated based on the exhaust gas flow rate Fe (Nm3 / h) detected by the exhaust gas flow meter installed in the exhaust gas and the exhaust gas temperature Te (° C) detected by the exhaust gas thermometer installed at the same position. It can be considered that it is equal to the exhaust gas heat output Q. Specifically, this exclusion The heat Q (kcal / h) from the gas is expressed by the following equation, where the specific heat of the exhaust gas is cE.
[0045] Q = cE X Fe XTe  [0045] Q = cE X Fe XTe
より精度の高いカロリー算出を行うためには、前記排ガス持出熱量 Qに加え、その 他の媒体 (例えば空気、水、パーナ 40の補助燃料)による持込熱量と、当該媒体によ る持出熱量とが、前記発熱量の算出に加味することが好ましい。この点は前記公報 に記載されたとおりである。  In order to calculate calorie with higher accuracy, in addition to the exhaust gas heat Q, the amount of heat brought in by other media (for example, air, water, and auxiliary fuel of the PANA 40) and The amount of heat is preferably added to the calculation of the calorific value. This point is as described in the publication.
[0046] 前記パーナ停止条件として、前記 1)及び 2)のいずれか一方のみが採用されてもよ いし、双方が採用されてもよい。すなわち、前記 1)及び 2)の条件のうちの少なくとも 一方を満足するときにパーナ 40の運転を停止させるようにしてもよいし、双方を満足 する場合にのみパーナ 40の運転を停止させるようにしてもよい。  [0046] As the Pana stop condition, either one of the above 1) and 2) may be employed, or both may be employed. That is, the operation of the PANANER 40 may be stopped when at least one of the conditions 1) and 2) is satisfied, or the operation of the PANANER 40 is stopped only when both are satisfied. May be.
[0047] 前記ステップ S3において出力されるパーナ停止指令信号は、そのまま制御信号と して利用されてもよいし、オペレータへの報知信号として利用されてもよい。前者の場 合、前記パーナ停止指令信号がパーナ 40のァクチユエータに入力されることにより、 このパーナ 40の自動停止制御が実現可能である。後者の場合、前記パーナ停止指 令信号が例えば操作盤に入力されて当該操作盤の表示部を点灯させることにより、 オペレータに適正なパーナ停止タイミングが報知され、当該オペレータによりパーナ [0047] The Pana stop command signal output in step S3 may be used as it is as a control signal or may be used as a notification signal to the operator. In the former case, the automatic stop control of the parner 40 can be realized by inputting the paran stop command signal to the actuator of the parner 40. In the latter case, for example, by inputting the Pana stop instruction signal to the operation panel and lighting the display section of the operation panel, the operator is notified of an appropriate PANA stop timing, and the operator performs the PANA stop timing.
40の運転が手動でありながら適正なタイミングで停止操作される。 The operation of 40 is stopped at an appropriate timing while being manual.
[0048] このようにしてパーナ 40の運転が停止した後、適当なタイミングでパーナ 40が再着 火されればよい。しかし、当該パーナ 40の運転停止後に何らかの要因で炉頂温度が 未燃ガスの自燃着火温度以下となった後に当該自燃着火温度以下の温度でパーナ 40を再着火させた場合、その未燃ガスの濃度によっては、前記パーナ 40の再着火 が爆発を誘引するおそれも考えられる。 [0048] After the operation of the parner 40 is stopped in this manner, the parner 40 may be re-ignited at an appropriate timing. However, if the furnace top temperature falls below the self-ignition ignition temperature of the unburned gas for some reason after the operation of the Pana 40 is stopped, if the PANANER 40 is re-ignited at a temperature below the self-burning ignition temperature, the unburned gas Depending on the concentration, re-ignition of the PANA 40 may cause an explosion.
[0049] そこで、この実施の形態に係る制御系 50は、前記温度計 46により検出される炉頂 温度が予め設定された廃棄物投入停止温度 (この実施の形態では 900°C)まで降下 した時点で (ステップ S4で YES)、前記給じん機 2による給じんを停止させるための給 じん停止指令信号を出力する (ステップ S5)。この給じん停止指令信号も、前記バー ナ停止指令信号と同様、例えば給じん機 2の駆動部にそのまま入力されれば、当該 給じん機 2による給じんを自動停止させる信号として機能すること力 Sできるし、また前 記操作盤等にその表示部を点灯させるように入力されれば、オペレータに適正な給 じん停止タイミングを伝える信号として機能することも可能である。 [0049] Therefore, in the control system 50 according to this embodiment, the furnace top temperature detected by the thermometer 46 has dropped to a preset waste charging stop temperature (900 ° C in this embodiment). At that time (YES in step S4), a dust supply stop command signal for stopping the dust supply by the dust feeder 2 is output (step S5). Similarly to the burner stop command signal, this dust supply stop command signal can function as a signal for automatically stopping the dust supply by the dust feeder 2 if it is directly input to the drive unit of the dust feeder 2, for example. S can and again If an operation panel or the like is input so as to light its display unit, it can function as a signal that conveys an appropriate supply stop timing to the operator.
[0050] 前記ステップ S4では、炉頂温度が廃棄物投入停止温度まで降下した瞬間に直ち に給じん停止指令信号が出力されてもよい。し力、し、当該炉頂温度が何らかの要因 で突発的に下がった場合に再着火されることを除外するためには、前記炉頂温度が 前記廃棄物投入停止温度まで降下した状態が一定時間以上 (例えば 2〜20秒)続 いたときに前記給じん停止指令信号が出力されることが、好ましい。  [0050] In step S4, a dust supply stop command signal may be output immediately at the moment when the furnace top temperature falls to the waste charging stop temperature. In order to exclude re-ignition when the furnace top temperature suddenly drops for some reason, the state in which the furnace top temperature has dropped to the waste charging stop temperature remains for a certain period of time. It is preferable that the dust supply stop command signal is output when the above operation continues (for example, 2 to 20 seconds).
[0051] 前記のような給じんの停止は、ガス化炉 3から排出されて溶融炉 4に送られるガスの 中の酸素の濃度を上昇させ、溶融炉 4内を安全にパーナ 40を再着火させることがで きる状態にする。そこで、制御系 50は、前記酸素濃度計 45により検出される前記ガ ス中の酸素濃度を監視し、その酸素濃度が予め設定されたパーナ再着火濃度 (バー ナ再着火濃度;この実施の形態では 10%)に達した時点で (ステップ S6で YES)、バ ーナ再着火指令信号 (パーナ再着火指令信号)を出力する (ステップ S8)。  [0051] The stoppage of the dust supply as described above increases the concentration of oxygen in the gas discharged from the gasification furnace 3 and sent to the melting furnace 4, and safely reignites the burner 40 in the melting furnace 4. Be ready for Therefore, the control system 50 monitors the oxygen concentration in the gas detected by the oximeter 45, and the oxygen concentration of the gas is set in advance to the Pana reignition concentration (burner reignition concentration; this embodiment). When 10% is reached (YES in step S6), a burner re-ignition command signal (Pana re-ignition command signal) is output (step S8).
[0052] また、当該制御系 50は、前記酸素濃度が前記パーナ再着火濃度まで上昇してい なくても、何らかの要因で炉頂温度が上昇して前記パーナ再着火温度よりも高い所 定の温度(この実施の形態では 950°C)に達した時点で (ステップ S7で YES)、前記 パーナ再着火指令信号を出力する。この信号も、前記パーナ停止信号と同様、その ままパーナ 40のァクチユエータに入力されてこのパーナ 40の自動再着火を行わせる ものでもよいし、前記操作盤に入力されてオペレータに適正なバーナ再着火タイミン グを表示するものであってもよレ、。  [0052] Further, even if the oxygen concentration has not risen to the Pana reignition concentration, the control system 50 has a predetermined temperature higher than the Pana reignition temperature due to a rise in the furnace top temperature for some reason. When the temperature reaches (950 ° C in this embodiment) (YES in step S7), the above-mentioned Pana re-ignition command signal is output. This signal may also be input to the actuator of the PANANER 40 as it is to the PANANER STOP signal and cause the PANANER 40 to be automatically re-ignited, or may be input to the operation panel to allow the operator to properly re-ignite the burner. It may even be a timing display.
[0053] その後、制御系 50は、給じん機 2が起動可能であることを確認した後(ステップ S9 で YES)、給じん機 2に再起動指令信号を出力して当該給じん機 2を再起動させる( ステップ S 10)。この再起動もオペレータにより手動で行われてもよい。  [0053] After that, the control system 50 confirms that the dust feeder 2 can be started (YES in step S9), and then outputs a restart command signal to the dust feeder 2 to turn off the dust feeder 2. Reboot (Step S10). This restart may also be performed manually by the operator.
[0054] 以上のような運転は、パーナ 40を適当なタイミングで休止させることにより燃料の節 減や C02排出の抑制を図りながら、パーナ 40の再着火の際に高い安全性を確保す ることを可倉 にする。  [0054] The above operation ensures high safety when re-igniting the PANANER 40 while reducing the fuel and suppressing C02 emission by stopping the PANANER 40 at an appropriate timing. Is made kurakura.
[0055] このような高い安全性を確保するための運転の別の例を図 5に示す。この図に示さ れる運転制御動作のうち、パーナ停止指令信号出力(ステップ S3)までの動作は前 記図 4に示したものと同等である。その出力後、制御系 50は、炉頂温度が予め設定 されたパーナ再着火温度(この実施の形態では 1000°C)まで降下した時点で (ステ ップ S 11で YES)、パーナ再着火指令信号を出力する(ステップ S12)。 [0055] FIG. 5 shows another example of operation for ensuring such high safety. Of the operation control operations shown in this figure, the operation up to the PANANER stop command signal output (step S3) is the previous operation. It is equivalent to that shown in Fig. 4. After that output, the control system 50, when the furnace top temperature falls to the preset Pana re-ignition temperature (1000 ° C in this embodiment) (YES in Step S11), A signal is output (step S12).
[0056] 前記パーナ再着火温度は、その温度でパーナ 40を再着火したときに当該再着火 に起因して未燃ガスの異常燃焼が生じることが確実に回避されて高い安全性が確保 される程度まで高い温度に設定される。一般には、前記未燃ガスの自燃着火温度( 例えば天然ガスの場合は約 680°C)に十分な安全率を乗じた温度であって、テスト等 により安全が確認された温度が採用されればよい。  [0056] The Pana re-ignition temperature reliably prevents the occurrence of abnormal combustion of unburned gas due to the re-ignition when PANA 40 is re-ignited at that temperature, thereby ensuring high safety. The temperature is set to a high level. In general, if the self-ignition temperature of the unburned gas (for example, about 680 ° C in the case of natural gas) is multiplied by a sufficient safety factor and a temperature that has been confirmed to be safe by testing, etc. is adopted. Good.
[0057] このような運転も、パーナ 40の運転停止後、炉頂温度があまり下がらないうちに当 該パーナ 40を再着火させることで、溶融炉 4内の過剰な冷却を未然に防ぐことができ るとともに、パーナ再着火時の高い安全性を担保することができる。  [0057] Such operation also prevents excessive cooling in the melting furnace 4 in advance by reigniting the PANANER 40 before the furnace top temperature drops so much after the PANA 40 operation is stopped. In addition to this, it is possible to ensure high safety when re-igniting the PANA.
[0058] また、この運転において、ステップ S12においてバーナ再着火指令信号を出力した にもかかわらずパーナ 40の運転が停止されなかった場合あるいは当該信号の出力 自体が不能になった場合のフェールセーフのために、前記図 4に示した運転、すな わち、給じんを止めてガス化炉出口ガスの酸素濃度を高める運転が併せて行われて あよい。  [0058] In this operation, the fail-safe operation is performed when the burner re-ignition command signal is output in step S12 but the operation of the burner 40 is not stopped or the output of the signal itself is disabled. Therefore, the operation shown in FIG. 4 above, that is, the operation of stopping the supply and increasing the oxygen concentration of the gasifier outlet gas may be performed together.
[0059] 前記図 4に示される運転制御は、給じん停止後、ガス酸素濃度に基いてパーナの 再着火のタイミングを決定するものである力 当該ガス酸素濃度に直接影響するパラ メータとして、給じんが停止されてから溶融炉 4の上流側に供給される空気の量の積 算値を監視し、この積算値に基!/、てパーナの再着火のタイミングを決定するものでも よい。その例を図 6及び図 7を参照しながら説明する。  [0059] The operation control shown in Fig. 4 is a force that determines the timing of re-ignition of the burner based on the gas oxygen concentration after stopping the supply of fuel, as a parameter that directly affects the gas oxygen concentration. The integrated value of the amount of air supplied to the upstream side of the melting furnace 4 after the dust is stopped may be monitored, and the timing of re-ignition of the burner may be determined based on this integrated value. An example of this will be described with reference to FIGS.
[0060] 図 6に示される設備は、送風機 60及び流量計 62を備える。前記送風機 60は、流 動床式ガス化炉 3に対して空気を供給するためのもので、この空気は、当該ガス化炉 3の風箱 24内に流動化ガスとして供給されるとともに、場合によってはフリーボード 3 6内にパージ空気として供給される。そして、炉頂部には熱分解ガス出口 38が設けら れている。前記流量計 62は、前記送風機 60の出口側に設けられ、この送風機 60か ら前記ガス化炉 3に対して供給される空気の流量を検出し、この流量についての検 出信号を出力する。この検出信号は制御系 50に入力される。 [0061] この制御系 50の制御動作を図 7に示す。この図 7において、給じん停止指令信号 を出力するまでの動作 (ステップ S1〜S5)は前記図 4に示された制御で行われる動 作と同等である。当該給じん停止指令信号が出力された後、パーナ制御部 52は、前 記検出信号に基いて、給じんが停止した時点から前記ガス化炉 3に供給される空気 の量を積算し (ステップ S6A)、その積算値が予め設定された一定値に達した時点で (ステップ S6Bで YES)、パーナ再着火指令信号を出力する(ステップ S8)。 The facility shown in FIG. 6 includes a blower 60 and a flow meter 62. The blower 60 is for supplying air to the fluidized bed gasification furnace 3, and this air is supplied as fluidized gas into the wind box 24 of the gasification furnace 3, and Is supplied as purge air into the freeboard 36. A pyrolysis gas outlet 38 is provided at the top of the furnace. The flow meter 62 is provided on the outlet side of the blower 60, detects the flow rate of air supplied from the blower 60 to the gasification furnace 3, and outputs a detection signal for the flow rate. This detection signal is input to the control system 50. The control operation of this control system 50 is shown in FIG. In FIG. 7, the operations (steps S1 to S5) until the dust supply stop command signal is output are the same as the operations performed in the control shown in FIG. After the dust supply stop command signal is output, the PANA controller 52 integrates the amount of air supplied to the gasifier 3 from the time when the dust supply stops based on the detection signal (step When the integrated value reaches a preset constant value (YES in step S6B), a Pana re-ignition command signal is output (step S8).
[0062] この制御も、パーナ 40の運転停止後、送風機 60からの空気の供給によってパーナ  [0062] This control is also performed by supplying air from the blower 60 after the operation of the parner 40 is stopped.
40の近傍の酸素濃度がある程度高くなつたと見越せるタイミングで当該パーナ 40を 再着火させることを可能にする。これにより、パーナ再着火時の高い安全性が保障さ れる。  It is possible to reignite the PANANER 40 at a timing when it can be expected that the oxygen concentration in the vicinity of 40 has increased to some extent. This ensures a high level of safety during Pana reignition.
[0063] 前記積算の対象となる空気としては、前記溶融炉 4の上流側に供給されて当該溶 融炉 4内での酸素濃度の増加に寄与し得るものが全て含まれる。従って、この空気は 、ガス化炉 3内に供給されるものに限られない。例えばガス化炉 3と溶融炉 4との間に 設けられるダクト 44にパージガスが供給される場合には、このパージガスも前記積算 の対象に含まれる。  [0063] The air to be integrated includes all air that is supplied to the upstream side of the melting furnace 4 and can contribute to the increase in the oxygen concentration in the melting furnace 4. Therefore, this air is not limited to that supplied into the gasification furnace 3. For example, when purge gas is supplied to a duct 44 provided between the gasification furnace 3 and the melting furnace 4, this purge gas is also included in the accumulation target.
[0064] 以上説明したように、この出願の第 1の発明は、投入される廃棄物をガス化するガス 化炉と、このガス化炉で生成された熱分解ガスが導入され、その導入された熱分解ガ ス中の可燃成分を燃焼させて同ガス中の灰分を溶融させる溶融炉と、この溶融炉に 設けられる助燃用のパーナとを備えたガス化溶融炉を運転するための運転方法を提 供する。この運転方法は、前記ガス化溶融炉の運転状態が特定のパーナ停止条件 を満たすときに前記パーナの運転を停止させる操作と、前記パーナの運転が停止し た後、前記パーナの近傍の溶融炉内温度が予め設定された廃棄物投入停止温度ま で降下した時点で前記ガス化炉への前記廃棄物の投入を停止させる操作と、前記 廃棄物の投入が停止した後、前記ガス化炉から前記溶融炉に送られるガスの中の酸 素の濃度が予め設定されたパーナ再着火濃度まで上昇した時点で前記パーナを再 着火させる操作とを含む。  [0064] As described above, according to the first invention of this application, a gasification furnace for gasifying waste to be input and a pyrolysis gas generated in the gasification furnace are introduced and introduced. Method for operating a gasification melting furnace comprising a melting furnace that burns combustible components in the pyrolysis gas and melts ash in the gas, and an auxiliary burner provided in the melting furnace I will provide a. In this operation method, the operation of stopping the operation of the gas generator when the operation state of the gasification melting furnace satisfies a specific condition of stopping the furnace, and the melting furnace in the vicinity of the burner after the operation of the heater is stopped. The operation of stopping the introduction of the waste into the gasification furnace when the internal temperature falls to a preset waste introduction stop temperature, and after the introduction of the waste is stopped, from the gasification furnace And an operation of reigniting the burner when the concentration of oxygen in the gas sent to the melting furnace rises to a preset burner reignition concentration.
[0065] ここで、「パーナの近傍の溶融炉内温度」を検出する位置については、当該パーナ の近傍であって当該パーナの再着火により未燃ガスの燃焼が行われ得る領域内で 適宜設定することが可能である。 [0065] Here, the position where the "temperature in the melting furnace near the burner" is detected is in the vicinity of the burner and in a region where unburned gas can be burned by reignition of the burner. It is possible to set appropriately.
[0066] また、「前記パーナの近傍の溶融炉内温度が予め設定された廃棄物投入停止温度 まで降下した時点で前記ガス化炉への前記廃棄物の投入を停止させる」態様として は、当該溶融炉内温度が当該廃棄物投入停止温度まで降下した瞬間に前記廃棄 物の投入を停止させる態様の他、当該溶融炉内温度が突発的に降下した場合を除 外するために、当該溶融炉内温度が当該廃棄物投入停止温度まで降下した状態が 予め設定された時間だけ経過した場合に前記廃棄物の投入を停止させる態様も含 よれ 。 [0066] Further, as an aspect of "stopping the introduction of the waste into the gasification furnace when the temperature in the melting furnace in the vicinity of the paner falls to a preset waste introduction stop temperature" In addition to a mode in which the introduction of the waste is stopped at the moment when the temperature in the melting furnace drops to the waste charging stop temperature, in order to exclude cases where the temperature in the melting furnace suddenly drops, Also included is a mode in which the input of the waste is stopped when the state in which the internal temperature has dropped to the waste input stop temperature has elapsed for a preset time.
[0067] この運転方法によれば、パーナの運転を停止させた後、前記パーナの近傍の溶融 炉内温度が予め設定された廃棄物投入停止温度まで降下した場合 (例えば未燃ガ スの自燃着火が困難となる温度状態となった場合)には、まず前記ガス化炉への前 記廃棄物の投入を停止させて当該ガス化炉から前記溶融炉に送られるガス中の酸 素の濃度を高くすることができ、その後、この濃度が予め設定されたパーナ再着火濃 度まで上昇した時点で前記パーナを再着火させることにより、この再着火による前記 未燃ガスの異常燃焼を確実に回避して良好な燃焼を再開することができる。  [0067] According to this operation method, after the operation of the burner is stopped, the melting furnace temperature in the vicinity of the burner falls to a preset waste charging stop temperature (for example, self-combustion of unburned gas). When the temperature becomes such that ignition is difficult, first, the introduction of the waste into the gasifier is stopped, and the concentration of oxygen in the gas sent from the gasifier to the melting furnace After that, when this concentration rises to the preset re-ignition concentration of the PANA, the PANA is re-ignited to ensure that abnormal combustion of the unburned gas due to this re-ignition is avoided. And good combustion can be resumed.
[0068] なお、前記パーナの運転が停止した後、そのパーナの近傍の溶融炉内温度が予 め設定された温度であって前記廃棄物投入停止温度よりも高い温度 (例えば未燃ガ スの異常燃焼を回避し得るに十分高い温度)まで上昇したときには、前記酸素濃度 にかかわらず前記パーナを再着火させるようにしてもよ!/、。  [0068] After the operation of the burner is stopped, the temperature in the melting furnace in the vicinity of the burner is a preset temperature that is higher than the waste charging stop temperature (for example, unburned gas When the temperature rises to a high enough temperature to avoid abnormal combustion, the PANA may be re-ignited regardless of the oxygen concentration! /.
[0069] この運転方法では、前記ガス化溶融炉の運転状態が特定のパーナ停止条件を満 たすときに前記パーナの運転を停止させる操作を行った後、前記パーナの近傍の溶 融炉内温度が予め設定されたパーナ再着火温度まで降下した時点で前記パーナを 再着火させる操作を行ってもよい。この方法も、前記パーナが過度に低い温度域 (例 えば未燃ガスの自燃着火が困難となる温度域)で再着火させるのを未然に防いで良 好な燃焼を保障することを可能にする。  [0069] In this operation method, after the operation of stopping the operation of the burner is performed when the operation state of the gasification melting furnace satisfies a specific condition of stopping the partner, the inside of the melting furnace in the vicinity of the burner is performed. An operation may be performed to re-ignite the PANA when the temperature drops to a preset PANA re-ignition temperature. This method also makes it possible to prevent the re-ignition of the PANA in an excessively low temperature range (for example, a temperature range in which self-ignition of unburned gas is difficult) and to ensure good combustion. .
[0070] 前記パーナ停止条件は適宜設定可能である。しかし、このパーナ停止条件が、前 記パーナの近傍の溶融炉内温度またはその移動平均値が予め設定されたパーナ停 止温度以上である状態が所定時間保たれるという条件であれば、前記廃棄物投入の 停止のタイミングや前記パーナの再着火のタイミングを図るために前記温度を検出す る手段を利用して前記パーナ停止条件の判定も行うことが可能になる。 [0070] The Pana stop condition can be set as appropriate. However, if the condition for stopping the panner is such that the temperature in the melting furnace in the vicinity of the panner or the moving average value thereof is equal to or higher than the preset temperature at which the panner is stopped, the disposal is performed. Stuffing In order to determine the timing of stopping or the timing of reignition of the burner, it is possible to determine the burner stop condition by using the means for detecting the temperature.
[0071] また、この運転方法では、前記ガス化溶融炉の運転状態が特定のパーナ停止条件 を満たすときに前記パーナの運転を停止させる操作と、前記パーナの運転が停止し た後、前記パーナの近傍の溶融炉内温度が予め設定された廃棄物投入停止温度ま で降下した場合に前記ガス化炉への前記廃棄物の投入を停止させる操作とが行わ れた後、その廃棄物の投入が停止した時点から前記溶融炉の上流側に供給される 空気の量の積算値が一定値に達した時点で前記パーナを再着火させる操作が行わ れてもよい。この操作は、前記パーナの燃焼領域の酸素濃度を十分確保してから再 着火することを可能にし、良好な燃焼を保障する。  [0071] Further, in this operation method, when the operation state of the gasification melting furnace satisfies a specific partner stop condition, the operation of stopping the operation of the partner is stopped, and after the operation of the partner is stopped, When the temperature in the melting furnace in the vicinity of the temperature falls to a preset waste charging stop temperature, the operation of stopping the charging of the waste into the gasification furnace is performed, and then the charging of the waste is performed. When the integrated value of the amount of air supplied to the upstream side of the melting furnace has reached a certain value from the time when is stopped, an operation of reigniting the panner may be performed. This operation makes it possible to re-ignite after ensuring a sufficient oxygen concentration in the combustion region of the panner, thereby ensuring good combustion.
[0072] 前記の運転方法を実行するためのガス化溶融炉の運転制御装置として、前記ガス 化炉に前記廃棄物を投入する廃棄物投入機と、前記パーナの近傍の溶融炉内温度 を検出する温度計と、前記ガス化炉から前記溶融炉に送られるガス中の酸素濃度を 検出する酸素濃度計と、前記温度計及び前記酸素濃度計の検出結果に基づいて前 記ガス化溶融炉の運転を制御するための制御系と、を備えるものが提供される。前記 制御系は、前記ガス化溶融炉の運転状態が特定のパーナ停止条件を満たすときに 前記パーナの運転を停止させるためのパーナ停止指令信号を出力するパーナ制御 部と、前記パーナの運転が停止した後、前記温度計により温度が予め設定された廃 棄物投入停止温度まで降下した時点で、前記廃棄物投入機による前記ガス化炉へ の前記廃棄物の投入を停止させるための廃棄物投入停止指令信号を出力する廃棄 物投入制御部とを含み、かつ、前記パーナ制御部は、前記廃棄物投入機による前記 廃棄物の投入が停止した後、前記酸素濃度計により検出される酸素濃度が予め設 定されたパーナ再着火濃度まで上昇した時点で、前記パーナを再着火させるための パーナ再着火指令信号を出力する。  [0072] As an operation control device of the gasification melting furnace for executing the operation method, a waste input device for inputting the waste into the gasification furnace, and a temperature in the melting furnace in the vicinity of the panner are detected. Of the gasification melting furnace based on the detection results of the thermometer and the oxygen concentration meter, and the oxygen concentration meter for detecting the oxygen concentration in the gas sent from the gasification furnace to the melting furnace. And a control system for controlling operation. The control system includes a panner control unit that outputs a panner stop command signal for stopping the operation of the panner when the operation state of the gasification melting furnace satisfies a specific panner stop condition, and the operation of the panner is stopped. After that, when the temperature falls to the waste input stop temperature set in advance by the thermometer, the waste input for stopping the input of the waste into the gasifier by the waste input machine is performed. A waste input control unit that outputs a stop command signal, and the panner control unit has an oxygen concentration detected by the oximeter after the waste input by the waste input device is stopped. When the PNA re-ignition concentration rises to a preset level, a PANA re-ignition command signal is output to re-ignite the PANA.
[0073] この装置において、前記パーナ制御部は、前記パーナの運転が停止した後、前記 温度計により検出される前記パーナの近傍の溶融炉内温度が予め設定された温度 であって前記廃棄物投入停止温度よりも高い温度まで上昇したときには、前記酸素 濃度にかかわらず前記パーナ再着火信号を出力してもよい。 [0074] また、前記運転方法を実行するための別の運転制御装置として、前記ガス化炉に 前記廃棄物を投入する廃棄物投入機と、前記パーナの近傍の溶融炉内温度を検出 する温度計と、前記温度計の検出結果に基づ!/、て前記パーナの運転を制御するた めの制御系とを備え、この制御系は、前記ガス化溶融炉の運転状態が特定のパーナ 停止条件を満たすときに前記パーナの運転を停止させるためのパーナ停止信号を 出力するとともに、前記パーナの運転停止後、前記温度計により温度が予め設定さ れたパーナ再着火温度まで降下した時点で前記パーナの運転を再開させるための パーナ再着火信号を出力するものが提供される。 [0073] In this apparatus, after the operation of the panner is stopped, the burner control unit is configured such that the temperature in the melting furnace in the vicinity of the panner detected by the thermometer is a preset temperature, and the waste When the temperature rises to a temperature higher than the charging stop temperature, the Pana reignition signal may be output regardless of the oxygen concentration. [0074] Further, as another operation control device for executing the operation method, a waste input device that inputs the waste into the gasification furnace, and a temperature that detects a temperature in the melting furnace in the vicinity of the panner And a control system for controlling the operation of the burner based on the detection result of the thermometer, and this control system stops the operation of the gasification melting furnace with a specific When a condition is satisfied, a Pana stop signal for stopping the operation of the PANA is output.After the operation of the PANA is stopped, the temperature is reduced to a preset re-ignition temperature by the thermometer. One that outputs a Pana reignition signal to resume PANA operation is provided.
[0075] 以上記載した装置におけるパーナ停止条件には、前記温度計により検出される温 度またはその移動平均値が予め設定されたパーナ停止温度以上である状態が所定 時間保たれるとレ、う条件が含まれることが、好まし!/、。  [0075] In the above-described apparatus, the condition for stopping the panner is that the temperature detected by the thermometer or its moving average value is equal to or higher than the preset panner stop temperature for a predetermined time. It is preferable that the condition is included! /.
[0076] また、前記運転方法を実行するための別の運転制御装置として、前記ガス化溶融 炉の運転状態が特定のパーナ停止条件を満たすときに前記パーナの運転を停止さ せるためのパーナ停止信号を出力するパーナ制御部と、前記パーナの運転が停止 した後、前記温度計により検出される温度が予め設定された廃棄物投入停止温度ま で降下した場合に、前記廃棄物投入機による前記ガス化炉への前記廃棄物の投入 を停止させるための廃棄物投入停止指令信号を出力する廃棄物投入制御部と、を 含み、かつ、前記パーナ制御部は、前記廃棄物投入機による前記廃棄物の投入が 停止した時点から前記空気量検出手段により検出される空気の量を積算し、その積 算値が予め設定された一定値に達した時点で前記パーナの運転を再開させるため のパーナ再着火信号を出力する装置が、提供される。  [0076] Further, as another operation control device for executing the operation method, a panner stop for stopping the operation of the panner when an operation state of the gasification melting furnace satisfies a specific condition for stopping the partner When the temperature detected by the thermometer drops to a preset waste charging stop temperature after the operation of the panner is stopped and the temperature of the temperature detected by the thermometer decreases, A waste input control unit that outputs a waste input stop command signal for stopping the input of the waste into the gasifier, and the panner control unit includes the waste input by the waste input device. The amount of air detected by the air amount detecting means is integrated from the time when the introduction of the article is stopped, and when the integrated value reaches a predetermined constant value, the operation of the panner is resumed. An apparatus for outputting a banner re-ignition signal is provided.
[0077] また、以上記した運転制御装置は、投入される廃棄物をガス化するガス化炉と、こ のガス化炉に廃棄物を投入する廃棄物投入機と、このガス化炉で生成された熱分解 ガスが導入され、その導入された熱分解ガス中の可燃成分を燃焼させて同ガス中の 灰分を溶融させる溶融炉と、この溶融炉に設けられる燃焼用のパーナとともに、優れ たガス化溶融炉を構成することができる。  [0077] Further, the operation control device described above is generated by a gasification furnace for gasifying the input waste, a waste input machine for inputting the waste into the gasification furnace, and the gasification furnace. An excellent pyrolysis gas is introduced together with a melting furnace that burns combustible components in the introduced pyrolysis gas and melts ash in the gas, and a combustion burner installed in the melting furnace. A gasification melting furnace can be constituted.
[0078] 次に、この出願の第 2の発明の実施の形態を図 8を参照しながら説明する。  Next, an embodiment of the second invention of this application will be described with reference to FIG.
[0079] 図 8は、この第 2の発明の適用対象となるガス化溶融炉を含む廃棄物処理設備の 全体構成を示す。この設備は、ガス化溶融炉 110と、このガス化溶融炉 110に対して 廃棄物であるごみを供給するごみ供給部 112と、前記ガス化溶融炉 110から排出さ れるガスを処理するためのガス処理部 114とを備える。 [0079] Fig. 8 shows a waste treatment facility including a gasification melting furnace to which the second invention is applied. The overall configuration is shown. This facility includes a gasification melting furnace 110, a waste supply unit 112 for supplying waste as waste to the gasification melting furnace 110, and a gas for treating the gas discharged from the gasification melting furnace 110. A gas processing unit 114.
[0080] 前記ごみ供給部 112は、ごみピット 116と、ごみ搬送装置 118と、給じん機 120とを 備える。前記ごみピット 116は、設備外力も搬入される処理対象であるごみを受け入 れ、これを一旦貯留する。前記ごみ搬送装置 118はクレーンを具備し、前記ごみピッ ト 116内のごみをつかんで前記給じん機 120へ搬送する。給じん機 120はホッパ 12 2を有し、このホッパ 122は、前記ごみ搬送装置 118から投入されるごみを受け入れ る。この投入量が、前記ガス化溶融炉 110内へのごみ投入量に相当する。前記給じ ん機 120は、ごみ搬送用のスクリューコンベアを内蔵し、前記ホッパ 122内に投入さ れたごみを前記ガス化溶融炉 110に供給する。  The waste supply unit 112 includes a waste pit 116, a waste transport device 118, and a dust feeder 120. The garbage pit 116 receives the garbage which is a treatment target to which external equipment force is also carried, and temporarily stores it. The waste transport device 118 includes a crane, and grips the dust in the waste pit 116 and transports it to the dust feeder 120. The dust feeder 120 has a hopper 122 2, and the hopper 122 accepts the waste introduced from the waste transport device 118. This input amount corresponds to the amount of waste input into the gasification melting furnace 110. The feeder 120 has a built-in screw conveyor for conveying garbage, and supplies the garbage charged into the hopper 122 to the gasification melting furnace 110.
[0081] 前記ガス化溶融炉 110は、ガス化炉 124と溶融炉 126とを具備する。前記ガス化炉 124は、前記給じん機 120から供給されるごみを熱分解し、これによつて熱分解ガス を生じさせる。このガス化炉 124には、例えば、周知の流動床炉ゃキルン炉をそのま ま適用することが可能である。前記溶融炉 126は、前記熱分解ガス中の可燃成分を 高温燃焼させるとともに、同ガス中の灰分を溶融してスラグを生じさせる。このスラグ は溶融炉 126の例えば炉壁に付着する。前記溶融炉 126の炉底にはスラグ排出口 1 28力設けられる。このスラグ排出口 128は、前記炉壁に付着し流下するスラグを炉外 へ排出するためのものである。また、この溶融炉 126では、その炉内温度の調節のた めに必要に応じて図略のバーナーによる補助燃料の燃焼が行われる。  The gasification melting furnace 110 includes a gasification furnace 124 and a melting furnace 126. The gasification furnace 124 pyrolyzes the waste supplied from the dust feeder 120, thereby generating pyrolysis gas. As this gasification furnace 124, for example, a well-known fluidized bed furnace or kiln furnace can be applied as it is. The melting furnace 126 burns combustible components in the pyrolysis gas at a high temperature and melts ash in the gas to generate slag. This slag adheres to the furnace wall of the melting furnace 126, for example. A slag discharge port 128 is provided at the bottom of the melting furnace 126. The slag discharge port 128 is for discharging the slag adhering to the furnace wall and flowing down to the outside of the furnace. Further, in this melting furnace 126, auxiliary fuel is burned by a burner (not shown) as necessary to adjust the temperature in the furnace.
[0082] 前記ガス処理部 114は、廃熱ボイラ 130と、減温塔 132と、集じん機 134と、誘引送 風機 136と、煙突 138とを備える。  The gas processing unit 114 includes a waste heat boiler 130, a temperature reducing tower 132, a dust collector 134, an induction fan 136, and a chimney 138.
[0083] 前記廃熱ボイラ 130は、前記溶融炉 126から出た高温の排ガスから熱を回収する ためのものであり、具体的には、前記排ガスの保有する熱を利用して蒸気を生成し、 排出するものである。その排出蒸気流量、すなわち、この廃熱ボイラ 130において単 位時間当たりに発生する蒸気の量は、前記ガス化溶融炉 110に対して単位時間当 たりに投入されるごみの発熱量に相当するパラメータとなる。  [0083] The waste heat boiler 130 is for recovering heat from the high-temperature exhaust gas emitted from the melting furnace 126. Specifically, the waste heat boiler 130 generates steam using the heat held by the exhaust gas. , It will be discharged. The flow rate of the discharged steam, that is, the amount of steam generated per unit time in the waste heat boiler 130 is a parameter corresponding to the amount of heat generated by the waste introduced into the gasification melting furnace 110 per unit time. It becomes.
[0084] 前記減温塔 132は、前記廃熱ボイラ 130から排出されるガスが導入される塔本体と 、この塔本体内に冷却水を噴霧する噴霧装置と、当該塔本体の出口でのガス温度を 検出する温度センサと、この温度センサにより検出される出口ガス温度を一定に保つ ように前記噴霧装置による冷却水供給流量を調節するコントローラとを具備する。 [0084] The temperature reducing tower 132 includes a tower main body into which the gas discharged from the waste heat boiler 130 is introduced. A spraying device for spraying cooling water into the tower body, a temperature sensor for detecting the gas temperature at the outlet of the tower body, and the spraying device for keeping the outlet gas temperature detected by the temperature sensor constant. And a controller for adjusting the cooling water supply flow rate.
[0085] 前記集じん機 134は、前記減温塔 132から排出されるガス中の塵等を捕獲する。こ の集じん機 134により除塵されたガスは、前記誘引送風機 136を経て、前記煙突 13 8から排出される。 The dust collector 134 captures dust and the like in the gas discharged from the temperature reducing tower 132. The gas removed by the dust collector 134 is discharged from the chimney 138 through the induction fan 136.
[0086] さらに、この設備には、塩基度調整装置 140が含まれる。この塩基度調整装置 140 は、前記溶融炉 126のスラグ排出口 128から排出されるスラグの塩基度を調整する ためのものであり、塩基度調整剤供給装置 142と、蒸気流量計 144と、ごみ投入量 出力部 146と、コントローラ 150とを備える。  [0086] Further, the equipment includes a basicity adjusting device 140. The basicity adjusting device 140 is for adjusting the basicity of the slag discharged from the slag discharge port 128 of the melting furnace 126. The basicity adjusting agent supply device 142, the steam flow meter 144, An input amount output unit 146 and a controller 150 are provided.
[0087] 前記塩基度調整剤供給装置 142は、前記ガス化炉 124に投入されるごみの中に 塩基度調整剤を供給するためのものであり、その供給用の搬送手段であるスクリュー コンベア 147と、このスクリューコンベア 147を回転させるモータ 148とを具備する。前 記塩基度調整剤は適宜選定される。この実施の形態では、排出されるスラグの塩基 度が過度に高い場合のみが想定されており、よって、前記塩基度調整剤にはスラグ の塩基度を下げるための硅砂(SiO )が選定されて!/、る。  [0087] The basicity adjusting agent supply device 142 is for supplying the basicity adjusting agent into the garbage put into the gasification furnace 124, and is a screw conveyor 147 serving as a conveying means for supplying the basicity adjusting agent. And a motor 148 for rotating the screw conveyor 147. The above basicity adjusting agent is appropriately selected. In this embodiment, it is assumed only when the basicity of the discharged slag is excessively high, and therefore, the basicity adjusting agent is selected from dredged sand (SiO 2) for reducing the basicity of the slag. ! /
2  2
[0088] 前記蒸気流量計 144は、前記廃熱ボイラ 130の排出蒸気流量、すなわち、当該廃 熱ボイラ 130において単位時間あたりに発生する蒸気の量を測定する。  The steam flow meter 144 measures the exhaust steam flow rate of the waste heat boiler 130, that is, the amount of steam generated per unit time in the waste heat boiler 130.
[0089] 前記ごみ投入量出力部 146は、単位時間あたりに前記ガス化炉 124に投入される ごみの重量についての情報信号を出力する。具体的に、このごみ投入量出力部 146 は、前記ごみ搬送装置 118に付設され、このごみ搬送装置 118にかかる重量負荷と 搬送回数とからごみ搬送量を演算し、これを前記ガス化炉 124へのごみ投入量に相 当する情報として前記コントローラ 150に提供する。  The waste input amount output unit 146 outputs an information signal about the weight of waste input into the gasifier 124 per unit time. Specifically, the waste input amount output unit 146 is attached to the waste transport device 118, calculates a waste transport amount from the weight load applied to the waste transport device 118 and the number of times of transport, and calculates the waste transport amount. This information is provided to the controller 150 as information corresponding to the amount of waste input to the plant.
[0090] 前記コントローラ 150は、マイクロコンピュータ等により構成され、設備全体の統括 制御を行う機能を有する。そして、前記スラグの塩基度を調整するための機能として 、塩基度予想値演算部 152と、塩基度調整剤供給量調節部 154とを含む。  The controller 150 is constituted by a microcomputer or the like, and has a function of performing overall control of the entire facility. The functions for adjusting the basicity of the slag include a basicity expected value calculation unit 152 and a basicity adjusting agent supply amount adjustment unit 154.
[0091] 前記塩基度予想値演算部 152は、前記ごみ投入量出力部 146から出力される、単 位時間あたりに前記ガス化炉 124に投入されるごみの重量についての情報信号と、 前記蒸気流量計 144により測定される蒸気流量に基いて、前記スラグ排出口 128か ら排出されるスラグの塩基度の予測値を演算する。この予想値の演算は、単位時間 当たりの前記ごみの投入量と前記排出蒸気流量とに基づいて単位重量当たりのごみ の発熱量を演算するステップと、その単位重量当たりのごみの発生量に基づいて前 記塩基度の予測値を演算するステップとにより達成される。 [0091] The basicity expected value calculation unit 152 outputs an information signal about the weight of the waste to be input into the gasifier 124 per unit time, which is output from the waste input amount output unit 146. Based on the steam flow rate measured by the steam flow meter 144, a predicted value of the basicity of the slag discharged from the slag discharge port 128 is calculated. The calculation of the predicted value is based on the step of calculating the heat generation amount of the waste per unit weight based on the input amount of the waste per unit time and the exhaust steam flow rate, and the generation amount of the waste per unit weight. And calculating a predicted value of the basicity.
[0092] 単位ごみ重量当たりの排出蒸気流量もしくはごみ発熱量とスラグの塩基度との間に は相関関係がある。この相関関係は予め実測により求められることが可能である。具 体的には、後述の実施例に示すように、一定の期間、前記蒸気流量に対応する実際 のスラグの塩基度を分析計によって計測することにより、前記相関関係の推算が可能 である。当該相関関係は例えば一次式(直線式)に近似されることが可能である。  [0092] There is a correlation between the flow rate of discharged steam per unit waste weight or the amount of heat generated from waste and the basicity of slag. This correlation can be obtained in advance by actual measurement. Specifically, as shown in the examples described later, the correlation can be estimated by measuring the basicity of the actual slag corresponding to the steam flow rate with an analyzer for a certain period. The correlation can be approximated to, for example, a linear expression (linear expression).
[0093] 前記塩基度予想値演算部 152は、前記相関関係を記憶し、当該関係と前記蒸気 流量計 144により実測される蒸気流量とに基づいて前記塩基度の予想値を算定する [0093] The predicted basicity value calculation unit 152 stores the correlation, and calculates the predicted basicity value based on the relationship and the steam flow rate actually measured by the steam flow meter 144.
Yes
[0094] なお、前記塩基度予想値の算定の基礎となる排出蒸気流量の値としては、前記蒸 気流量計 144の指示値の特定期間内での平均値が採用される。その特定期間は適 宜設定可能であり、一般には 6〜24時間程度が好適である。  [0094] The average value of the indicated value of the steam flow meter 144 within a specific period is adopted as the value of the exhaust steam flow rate that is the basis for calculating the basicity expected value. The specific period can be set appropriately, and generally 6 to 24 hours is preferable.
[0095] 前記塩基度調整剤供給量調節部 154は、前記塩基度予想値演算部 152により演 算されるスラグの塩基度の予想値と、前記ごみ投入量出力部 146から入力されるご み投入量についての情報信号とに基づき、前記塩基度を予め設定された目標値 (例 えば 0. 5)に近づけるための塩基度調整剤の供給量を決定する。そして、この決定し た供給量が得られるように、前記塩基度調整剤供給装置 142のモータ 148に制御信 号を出力してその駆動速度を制御する。前記予想値と実際の塩基度調整剤供給量 との関係は、理論上、あるいはシミュレーションによって、予め用意しておくことが可能 である。  [0095] The basicity adjuster supply amount adjusting unit 154 receives the predicted value of the basicity of the slag calculated by the basicity expected value calculation unit 152 and the garbage input from the waste input amount output unit 146. Based on the information signal about the input amount, the supply amount of the basicity adjusting agent for bringing the basicity close to a preset target value (for example, 0.5) is determined. Then, a control signal is output to the motor 148 of the basicity adjusting agent supply device 142 to control the driving speed so that the determined supply amount can be obtained. The relationship between the predicted value and the actual supply amount of basicity adjuster can be prepared in advance theoretically or by simulation.
[0096] 以上示した装置及びこの装置にお!/、て行われるスラグの塩基度の調整方法では、 当該塩基度と密接な関係にあるごみ発熱量についてのパラメータ(ここでは廃熱ボイ ラ 130の排出蒸気流量)が着目され、そのパラメータの検出値と前記の関係とに基づ いて前記塩基度の予想値が演算される。このことは、実際のスラグの塩基度を分析計 にて実測しながら運転を進める従来法と異なり、既存の設備を利用した簡単な構成 で、供給すべき塩基度調整剤の量を適正かつ迅速に決定することを可能にする。 [0096] In the apparatus described above and the method for adjusting the basicity of slag performed in this apparatus, parameters for the amount of generated waste heat (herein, waste heat boiler 130) closely related to the basicity. The predicted basicity value is calculated based on the detected value of the parameter and the relationship. This means that the actual slag basicity Unlike conventional methods in which operation is carried out while actually measuring, the amount of basicity adjusting agent to be supplied can be determined appropriately and quickly with a simple configuration using existing equipment.
[0097] この方法は、前記廃熱ボイラ 130が省略された設備においても、実行されることが 可能である。その場合、前記ごみ発熱量についてのパラメータとして、例えば前記減 温塔 132における冷却水供給流量を選定することができる。この減温塔 132は、前述 のように、当該塔本体の出口でのガス温度を検出する温度センサと、この温度センサ により検出される出口ガス温度を一定に保つように前記噴霧装置による冷却水供給 流量を調節するコントローラとを具備するものであるので、その冷却水供給流量は、 前記ガス化溶融炉 110に単位時間当たりに投入されるごみの発熱量に対応すること になる。 [0097] This method can be executed even in a facility in which the waste heat boiler 130 is omitted. In that case, for example, a cooling water supply flow rate in the temperature-decreasing tower 132 can be selected as a parameter for the waste heat generation amount. As described above, the temperature-decreasing tower 132 includes a temperature sensor that detects the gas temperature at the outlet of the tower body, and cooling water generated by the spray device so as to keep the outlet gas temperature detected by the temperature sensor constant. And a controller for adjusting the supply flow rate, the supply flow rate of the cooling water corresponds to the amount of heat generated by the waste introduced into the gasification melting furnace 110 per unit time.
[0098] 前記塩基度調整剤の供給位置は前記ガス化炉 124の入口側に限られない。この 供給位置は、前記スラグ排出口 128よりも上流側の領域内で任意に設定され得る。 例えば、当該位置は、前記ガス化炉 124と前記溶融炉 126との間の領域内に設定さ れてもよいし、前記溶融炉 126内で前記スラグ排出口 128よりも上流側の燃焼室内 に設定されてもよい。  The supply position of the basicity adjusting agent is not limited to the inlet side of the gasification furnace 124. This supply position can be arbitrarily set within a region upstream of the slag discharge port 128. For example, the position may be set in a region between the gasification furnace 124 and the melting furnace 126, or in the combustion chamber upstream of the slag discharge port 128 in the melting furnace 126. It may be set.
実施例  Example
[0099] 以下、前記図 8に示された廃棄物処理設備でのスラグの塩基度の調整に関する実 施例を説明する。  [0099] Hereinafter, an embodiment relating to the adjustment of the basicity of slag in the waste treatment facility shown in Fig. 8 will be described.
[0100] 1)単位重量当たりのごみ発熱量とスラグの塩基度との相関関係について  [0100] 1) Correlation between waste heat generation per unit weight and basicity of slag
単位重量当たりのごみ発熱量とスラグの塩基度との間には、一次関数にて近似さ れ得る相関関係が存在する。  There is a correlation that can be approximated by a linear function between the amount of generated heat per unit weight and the basicity of the slag.
[0101] 図 9は、ある廃棄物処理設備での単位重量あたりのごみ発熱量 (kcal/kg)及びス ラグの塩基度の年間推移を示したものである。この図は、前記ごみ発熱量及び前記 塩基度が互いに近似した変化をすることを明確に示して!/、る。  [0101] Figure 9 shows the annual trends in waste heat per unit weight (kcal / kg) and basicity of slag in a waste treatment facility. This figure clearly shows that the waste heat generation amount and the basicity change close to each other!
[0102] 図 10は、 2つの廃棄物処理設備(設備 A及び設備 B)について実測により求められ たごみ発熱量とスラグの塩基度との関係をグラフにしたものである。この図に示される ように、設備 A及び設備 Bのいずれにおいても、ごみ発熱量とスラグの塩基度との間 に所定の相関関係が成立する。両設備 A, Bではそのガス化溶融炉に投入されるご みの成分が異なるため、前記ごみ発熱量と前記塩基度との関係は設備 A, B間で相 違しているが、いずれの設備 A, Bにおいても、前記の相関関係は一次関数によって 近似され得る。従って、その関係式が予め前記塩基度予想値演算部 52に入力され 、記憶されれば、当該演算部 52は前記ごみ発熱量に対応するパラメータ(例えば廃 熱ボイラ 30の排出蒸気流量)に基づ!/、てスラグの塩基度の予想値を速やかに算定 することが可能になる。 [0102] Fig. 10 is a graph showing the relationship between the waste heat value and the basicity of the slag obtained by actual measurement for two waste treatment facilities (Equipment A and Facility B). As shown in this figure, in both facilities A and B, a predetermined correlation is established between the amount of generated heat and the basicity of the slag. In both facilities A and B, the gasification melting furnace will be charged. The relationship between the amount of generated heat and the basicity is different between facilities A and B, but the correlation is approximated by a linear function in both facilities A and B. Can be done. Accordingly, if the relational expression is input and stored in advance in the basicity expected value calculation unit 52, the calculation unit 52 is based on a parameter corresponding to the waste heat generation amount (for example, the exhaust steam flow rate of the waste heat boiler 30). It is possible to quickly calculate the expected basic value of slag.
[0103] 2)スラグの塩基度の予想値と塩基度調整剤供給量との関係について [0103] 2) Relationship between expected basicity of slag and supply of basicity modifier
スラグの塩基度の予想値と、塩基度調整剤供給量との関係は、理論上、あるいはシ ミュレーシヨンに基づいて、予め設定されることが可能である。例えば、スラグの塩基 度を下げる調整のみを想定する場合には、そのための塩基度調整剤(例えば珪砂) の供給量 (単位時間当たりのごみの投入量に相当する供給量)と塩基度予想値との 関係について図 11に示すような設定がされればよい。この設定によれば、塩基度予 想値が目標値 (例えば 0. 5)を上回った場合にその超過分に相当する量の塩基度調 整剤が供給される。  The relationship between the expected basicity of the slag and the supply amount of the basicity adjusting agent can be set in advance theoretically or based on simulation. For example, if only adjustment to lower the basicity of slag is assumed, the supply amount of basicity adjusting agent (for example, silica sand) for that purpose (the supply amount corresponding to the input amount of waste per unit time) and the basicity expected value The relationship shown in Fig. 11 should be set. According to this setting, when the basicity prediction value exceeds the target value (for example, 0.5), an amount of basicity adjusting agent corresponding to the excess is supplied.
[0104] 以上のように、この出願の第 2の発明は、投入される廃棄物を熱分解し、その熱分 解により生じる熱分解ガス中の灰分を溶融するとともに、その溶融により生じたスラグ を炉外に排出するためのスラグ排出口を有するガス化溶融炉を運転するにあたって 、前記スラグの塩基度を調整するための方法を提供する。この塩基度調整方法は、 前記スラグ排出口よりも上流側の位置に前記スラグ排出口から排出されるスラグの塩 基度を調節するための塩基度調整剤を供給するステップと、単位時間あたりに前記 ガス化溶融炉に投入される廃棄物の重量を検出するステップと、前記廃棄物の単位 重量あたりの発熱量に対応するパラメータを検出するステップと、前記パラメータの検 出値に基づいて前記ガス化溶融炉内に生じるスラグの塩基度の予想値を演算するス テツプと、演算した前記塩基度の予想値に基づき、当該スラグの塩基度を予め設定 された塩基度の目標値に近づける方向に前記塩基度調整剤の供給量を調節するス テツプとを含む。  [0104] As described above, the second invention of this application is to pyrolyze the waste to be charged, melt the ash in the pyrolysis gas generated by the thermal decomposition, and slag generated by the melting. A method for adjusting the basicity of the slag is provided in operating a gasification melting furnace having a slag discharge port for discharging the slag out of the furnace. The basicity adjusting method includes a step of supplying a basicity adjusting agent for adjusting the basicity of slag discharged from the slag discharge port at a position upstream of the slag discharge port, and per unit time. Detecting the weight of the waste charged into the gasification melting furnace, detecting a parameter corresponding to a calorific value per unit weight of the waste, and detecting the gas based on the detected value of the parameter Based on the step of calculating the expected basicity of the slag generated in the chemical melting furnace and the calculated basicity of the basicity, the basicity of the slag is brought closer to the preset basicity target value. And a step of adjusting the supply amount of the basicity adjusting agent.
[0105] この塩基度調整方法では、前記廃棄物の単位重量あたりの発熱量に対応するパラ メータと実際のスラグの塩基度との相関関係を利用することにより、スラグ組成の複雑 な分析を行わなくても、実際のスラグの塩基度の予想値を得ることが可能である。す なわち、前記パラメータの検出値と、前記相関関係とに基づいて、前記塩基度の予 想値を演算することが可能である。そして、このスラグの塩基度の予想値に基づいて 、塩基度調整剤の適正な添加量が決定される。 [0105] This basicity adjustment method uses the correlation between the parameter corresponding to the calorific value per unit weight of the waste and the basicity of the actual slag, thereby complicating the slag composition. It is possible to obtain an expected value of the basicity of the actual slag without performing a detailed analysis. In other words, the predicted value of basicity can be calculated based on the detected value of the parameter and the correlation. And based on the expected value of the basicity of the slag, an appropriate addition amount of the basicity adjusting agent is determined.
[0106] 具体的に、前記廃棄物の単位重量あたりの発熱量に対応するパラメータとしては、 前記ガス化溶融炉力 排出されるガスの熱を用いて蒸気を発生させる廃熱ボイラで の単位時間あたりの蒸気発生量を検出することが有効である。この蒸気発生量は、 検出が容易である。しかも、この蒸気発生量と、前記ガス化溶融炉への単位時間当 たりの廃棄物の投入量とに基づいて、単位重量当たりの廃棄物の発熱量を的確に演 算すること力 Sでさる。 Specifically, as a parameter corresponding to the calorific value per unit weight of the waste, the unit time in the waste heat boiler that generates steam using the heat of the gas discharged from the gasification melting furnace force It is effective to detect the amount of generated steam. This amount of generated steam is easy to detect. Moreover, based on the amount of steam generated and the amount of waste input per unit time into the gasification melting furnace, the calorific value of waste per unit weight can be accurately calculated. .
[0107] 前記塩基度の予想 を演算するための具体的手段としては、例えば、前記ガス化 溶融炉内に生じるスラグの塩基度の予想値を演算するステップの前に予め前記パラ メータと実際のスラグの塩基度との関係を実測により求めるステップを含み、この関係 と前記パラメータの検出値とに基いて前記ガス化溶融炉内に生じるスラグの塩基度 の予想 を演算するものが有効である。この方法では、予め求められた前記パラメ一 タと実際のスラグの塩基度との関係に基づき、スラグの塩基度の適正な予想値が迅 速に演算される。  [0107] As specific means for calculating the basicity prediction, for example, before the step of calculating the basic value of the slag generated in the gasification melting furnace, the parameter and the actual It is effective to include a step of obtaining a relationship with the basicity of the slag by actual measurement, and to calculate the prediction of the basicity of the slag generated in the gasification melting furnace based on this relationship and the detected value of the parameter. In this method, an appropriate expected value of the basicity of the slag is quickly calculated based on the relationship between the parameter obtained in advance and the basicity of the actual slag.
[0108] また、このような塩基度調整方法を実行するためのガス化溶融炉の塩基度調整装 置が提供される。この装置は、前記スラグ排出口よりも上流側の位置に前記スラグ排 出口から排出されるスラグの塩基度を調節するための塩基度調整剤を供給する塩基 度調整剤供給手段と、単位時間あたりに前記ガス化溶融炉に投入される廃棄物の重 量を検出する廃棄物投入量検出手段と、前記廃棄物の単位重量あたりの発熱量に 対応するパラメータを検出するパラメータ検出手段と、前記パラメータの検出値に基 づレ、て前記ガス化溶融炉内に生じるスラグの塩基度の予想値を演算する塩基度予 想値演算手段と、前記塩基度の予想値に基づき、当該塩基度を予め設定された塩 基度の目標値に近づける方向に前記塩基度調整剤の供給量を調節する塩基度調 整剤供給量調節手段とを備える。  [0108] Further, a basicity adjusting device of a gasification melting furnace for executing such a basicity adjusting method is provided. The apparatus includes a basicity adjusting agent supplying means for supplying a basicity adjusting agent for adjusting the basicity of the slag discharged from the slag discharge outlet to a position upstream of the slag discharge outlet, and per unit time. A waste input amount detecting means for detecting the weight of the waste charged into the gasification melting furnace, a parameter detecting means for detecting a parameter corresponding to a calorific value per unit weight of the waste, and the parameter Based on the detected value, basicity expected value calculation means for calculating the expected value of basicity of the slag generated in the gasification melting furnace, and based on the predicted value of basicity, the basicity is calculated in advance. Basicity adjusting agent supply amount adjusting means for adjusting the supply amount of the basicity adjusting agent in a direction approaching a set target value of the basicity.
[0109] この装置のパラメータ検出手段としては、例えば、前記ガス化溶融炉から排出され るガスの熱を用いて蒸気を発生させる廃熱ボイラでの単位時間当たりの蒸気発生量 を検出するものが好適である。その場合、前記塩基度予想値演算手段は、前記パラ メータ検出手段が検出するパラメータと前記ガス化溶融炉への単位時間当たりの廃 棄物の投入量とに基づいて単位重量当たりの廃棄物の発熱量を演算すればよい。 また、前記塩基度調整剤供給量調節手段としては、例えば、予め実測により求めら れた前記パラメータと実際のスラグの塩基度との関係を記憶し、その記憶した関係と 前記パラメータの検出値とに基づいて前記塩基度調整剤の供給量を決定するものが 、好適である。 [0109] As the parameter detection means of this apparatus, for example, it is discharged from the gasification melting furnace. It is preferable to detect the amount of steam generated per unit time in a waste heat boiler that generates steam using the heat of the gas. In that case, the basicity expected value calculation means may calculate the waste per unit weight based on the parameter detected by the parameter detection means and the amount of waste input to the gasification melting furnace per unit time. What is necessary is just to calculate the calorific value. Further, as the basicity adjusting agent supply amount adjusting means, for example, the relationship between the parameter obtained by actual measurement and the basicity of the actual slag is stored, and the stored relationship and the detected value of the parameter It is preferable to determine the supply amount of the basicity adjusting agent based on the above formula.

Claims

請求の範囲 The scope of the claims
[1] 投入される廃棄物をガス化するガス化炉と、このガス化炉で生成された熱分解ガス が導入され、その導入された熱分解ガス中の可燃成分を燃焼させて同ガス中の灰分 を溶融させる溶融炉と、この溶融炉に設けられる助燃用のパーナとを備えたガス化溶 融炉を運転するためのガス化溶融炉の運転方法であって、  [1] A gasification furnace for gasifying the input waste and a pyrolysis gas generated in the gasification furnace are introduced, and combustible components in the introduced pyrolysis gas are combusted in the gas. A gasification melting furnace operating method for operating a gasification melting furnace provided with a melting furnace for melting the ash content of the gas and an auxiliary burner provided in the melting furnace,
前記ガス化溶融炉の運転状態が特定のパーナ停止条件を満たすときに前記バー ナの運転を停止させる操作と、  An operation of stopping the operation of the burner when the operating state of the gasification melting furnace satisfies a specific condition for stopping the burner;
前記パーナの運転が停止した後、前記パーナの近傍の溶融炉内温度が予め設定 された廃棄物投入停止温度まで降下した場合に前記ガス化炉への前記廃棄物の投 入を停止させる操作と、  An operation of stopping the introduction of the waste into the gasification furnace when the temperature in the melting furnace in the vicinity of the panner has dropped to a preset waste introduction stop temperature after the operation of the panner is stopped; ,
前記廃棄物の投入が停止した後、前記ガス化炉から前記溶融炉に送られるガスの 中の酸素の濃度が予め設定されたパーナ再着火濃度まで上昇した時点で前記バー ナを再着火させる操作と、を含む。  The operation of reigniting the burner when the concentration of oxygen in the gas sent from the gasification furnace to the melting furnace rises to a preset reignition concentration of the burner after the introduction of the waste is stopped. And including.
[2] 請求項 1記載のガス化溶融炉の運転方法にお!/ヽて、  [2] According to the operation method of the gasification melting furnace according to claim 1,!
前記パーナの運転が停止した後、前記パーナの近傍の溶融炉内温度が予め設定 された温度であって前記廃棄物投入停止温度よりも高い温度まで上昇したときには、 前記酸素濃度にかかわらず前記パーナを再着火させる。  After the operation of the panner is stopped, when the temperature in the melting furnace in the vicinity of the panner rises to a preset temperature that is higher than the waste charging stop temperature, the panner is controlled regardless of the oxygen concentration. Reignite.
[3] 投入される廃棄物をガス化するガス化炉と、このガス化炉で生成された熱分解ガス が導入され、その導入された熱分解ガス中の可燃成分を燃焼させて同ガス中の灰分 を溶融させる溶融炉と、この溶融炉に設けられる助燃用のパーナとを備えたガス化溶 融炉を運転するためのガス化溶融炉の運転方法であって、 [3] A gasification furnace for gasifying the input waste and a pyrolysis gas generated in the gasification furnace are introduced, and combustible components in the introduced pyrolysis gas are combusted in the gas. A gasification melting furnace operating method for operating a gasification melting furnace provided with a melting furnace for melting the ash content of the gas and an auxiliary burner provided in the melting furnace,
前記ガス化溶融炉の運転状態が特定のパーナ停止条件を満たすときに前記バー ナの運転を停止させる操作と、  An operation of stopping the operation of the burner when the operating state of the gasification melting furnace satisfies a specific condition for stopping the burner;
前記パーナの運転が停止した後、前記パーナの近傍の溶融炉内温度が予め設定 されたパーナ再着火温度まで降下した時点で前記パーナを再着火させる操作と、を 含む。  An operation of reigniting the burner when the temperature in the melting furnace near the burner drops to a preset burner reignition temperature after the operation of the burner is stopped.
[4] 投入される廃棄物をガス化するガス化炉と、このガス化炉で生成された熱分解ガス が導入され、その導入された熱分解ガス中の可燃成分を燃焼させて同ガス中の灰分 を溶融させる溶融炉と、この溶融炉に設けられる助燃用のパーナとを備えたガス化溶 融炉を運転するためのガス化溶融炉の運転方法であって、 [4] A gasification furnace for gasifying the input waste and a pyrolysis gas generated in the gasification furnace are introduced, and combustible components in the introduced pyrolysis gas are combusted in the gas. Ash content An operation method of a gasification melting furnace for operating a gasification melting furnace provided with a melting furnace for melting the gas and an auxiliary burner provided in the melting furnace,
前記ガス化溶融炉の運転状態が特定のパーナ停止条件を満たすときに前記バー ナの運転を停止させる操作と、  An operation of stopping the operation of the burner when the operating state of the gasification melting furnace satisfies a specific condition for stopping the burner;
前記パーナの運転が停止した後、前記パーナの近傍の溶融炉内温度が予め設定 された廃棄物投入停止温度まで降下した場合に前記ガス化炉への前記廃棄物の投 入を停止させる操作と、  An operation of stopping the introduction of the waste into the gasification furnace when the temperature in the melting furnace in the vicinity of the panner has dropped to a preset waste introduction stop temperature after the operation of the panner is stopped; ,
前記廃棄物の投入が停止した時点から前記溶融炉の上流側に供給される空気の 量の積算値が一定値に達した時点で前記パーナを再着火させる操作と、を含む。  And an operation of reigniting the panner when the integrated value of the amount of air supplied to the upstream side of the melting furnace reaches a certain value from the time when the introduction of the waste is stopped.
[5] 請求項 1〜4のいずれかに記載のガス化溶融炉の運転方法において、 [5] In the method for operating a gasification melting furnace according to any one of claims 1 to 4,
前記パーナ停止条件には、前記パーナの近傍の溶融炉内温度またはその移動平 均値が予め設定されたパーナ停止温度以上である状態が所定時間保たれるという 条件が含まれる。  The condition of the stop of the burner includes a condition that the temperature in the melting furnace in the vicinity of the burner or the moving average value thereof is equal to or higher than the preset stop temperature of the furnace for a predetermined time.
[6] 投入される廃棄物をガス化するガス化炉と、このガス化炉で生成された熱分解ガス が導入され、その導入された熱分解ガス中の可燃成分を燃焼させて同ガス中の灰分 を溶融させる溶融炉と、この溶融炉に設けられる助燃用のパーナとを備えたガス化溶 融炉の運転を制御するためのガス化溶融炉の運転制御装置であって、  [6] A gasification furnace for gasifying the input waste and a pyrolysis gas generated in the gasification furnace are introduced, and combustible components in the introduced pyrolysis gas are combusted in the gas. A gasification melting furnace operation control device for controlling the operation of a gasification melting furnace comprising a melting furnace for melting the ash content of the gas and an auxiliary burner provided in the melting furnace,
前記ガス化炉に前記廃棄物を投入する廃棄物投入機と、  A waste input machine that inputs the waste into the gasifier;
前記パーナの近傍の溶融炉内温度を検出する温度計と、  A thermometer for detecting the temperature in the melting furnace near the panner;
前記ガス化炉から前記溶融炉に送られるガス中の酸素濃度を検出する酸素濃度計 と、  An oxygen concentration meter for detecting an oxygen concentration in a gas sent from the gasification furnace to the melting furnace;
前記温度計及び前記酸素濃度計の検出結果に基づいて前記ガス化溶融炉の運 転を制御するための制御系と、を備え、この制御系は、  A control system for controlling the operation of the gasification melting furnace based on the detection results of the thermometer and the oximeter, the control system comprising:
前記ガス化溶融炉の運転状態が特定のパーナ停止条件を満たすときに前記バー ナの運転を停止させるためのパーナ停止指令信号を出力するパーナ制御部と、 前記パーナの運転が停止した後、前記温度計により検出される温度が予め設定さ れた廃棄物投入停止温度まで降下した場合に、前記廃棄物投入機による前記ガス 化炉への前記廃棄物の投入を停止させるための廃棄物投入停止指令信号を出力 する廃棄物投入制御部と、を含み、 A burner control unit for outputting a burner stop command signal for stopping the operation of the burner when the operation state of the gasification melting furnace satisfies a specific condition for stopping the burner; and after the operation of the burner is stopped, Waste input stop for stopping the input of the waste into the gasification furnace by the waste input device when the temperature detected by the thermometer falls to a preset waste input stop temperature Output command signal A waste input control unit,
かつ、前記パーナ制御部は、前記廃棄物投入機による前記廃棄物の投入が停止 した後、前記酸素濃度計により検出される酸素濃度が予め設定されたパーナ再着火 濃度まで上昇した時点で、前記パーナを再着火させるためのパーナ再着火指令信 号を出力する。  In addition, the Pana control unit, at the time when the oxygen concentration detected by the oximeter increases to a preset Pana reignition concentration after the waste charging by the waste charging machine is stopped, Outputs a Pana reignition command signal to reignite the PANA.
[7] 請求項 6記載のガス化溶融炉の運転制御装置にお!/、て、  [7] The operation control device for the gasification melting furnace according to claim 6! /,
前記パーナ制御部は、前記パーナの運転が停止した後、前記温度計により検出さ れる温度が予め設定された温度であって前記廃棄物投入停止温度よりも高い温度ま で上昇したときには、前記酸素濃度にかかわらず前記パーナ再着火信号を出力する  When the temperature of the temperature detected by the thermometer rises to a preset temperature that is higher than the waste charging stop temperature after the operation of the panner is stopped, the PANA control unit Outputs the Pana reignition signal regardless of the concentration
[8] 請求項 6または 7記載のガス化溶融炉の運転制御装置にお!/ヽて、 [8] The operation control device for a gasification melting furnace according to claim 6 or 7!
前記パーナ停止条件には、前記温度計により検出される温度またはその移動平均 値が予め設定されたパーナ停止温度以上である状態が所定時間保たれるという条 件が含まれる。  The Pana stop condition includes a condition that a temperature detected by the thermometer or a moving average value thereof is equal to or higher than a preset Pana stop temperature for a predetermined time.
[9] 投入される廃棄物をガス化するガス化炉と、このガス化炉で生成された熱分解ガス が導入され、その導入された熱分解ガス中の可燃成分を燃焼させて同ガス中の灰分 を溶融させる溶融炉と、この溶融炉に設けられる助燃用のパーナとを備えたガス化溶 融炉の運転を制御するためのガス化溶融炉の運転制御装置であって、  [9] A gasification furnace for gasifying the input waste and a pyrolysis gas generated in the gasification furnace are introduced, and combustible components in the introduced pyrolysis gas are combusted in the gas. A gasification melting furnace operation control device for controlling the operation of a gasification melting furnace comprising a melting furnace for melting the ash content of the gas and an auxiliary burner provided in the melting furnace,
前記ガス化炉に前記廃棄物を投入する廃棄物投入機と、  A waste input machine that inputs the waste into the gasifier;
前記パーナの近傍の溶融炉内温度を検出する温度計と、  A thermometer for detecting the temperature in the melting furnace near the panner;
前記温度計の検出結果に基づいて前記パーナの運転を制御するための制御系と 、を備え、この制御系は、前記ガス化溶融炉の運転状態が特定のパーナ停止条件を 満たすときに前記パーナの運転を停止させるためのパーナ停止信号を出力するとと もに、前記パーナの運転停止後、前記温度計により検出される温度が予め設定され たパーナ再着火温度まで降下した時点で前記パーナの運転を再開させるためのバ ーナ再着火信号を出力する。  And a control system for controlling the operation of the burner based on the detection result of the thermometer, and the control system is configured so that the operation state of the gasification melting furnace satisfies a specific burner stop condition. When the temperature detected by the thermometer drops to a preset re-ignition temperature after the stop of the operation, the operation of the controller is stopped. A burner re-ignition signal is output to restart the operation.
[10] 請求項 9記載のガス化溶融炉の運転制御装置にお!/、て、 [10] The operation control device for the gasification melting furnace according to claim 9! /,
前記パーナ停止条件には、前記温度計により検出される温度またはその温度の移 動平均値が予め設定されたパーナ停止温度以上である状態が所定時間保たれると いう条件が含まれる。 The Pana stop condition includes the temperature detected by the thermometer or the temperature shift. The condition that the state where the dynamic average value is equal to or higher than the preset Pana stop temperature is maintained for a predetermined time is included.
[11] 投入される廃棄物をガス化するガス化炉と、このガス化炉で生成された熱分解ガス が導入され、その導入された熱分解ガス中の可燃成分を燃焼させて同ガス中の灰分 を溶融させる溶融炉と、この溶融炉の上流側に空気を供給する空気供給手段と、こ の溶融炉に設けられる助燃用のパーナとを備えたガス化溶融炉の運転を制御するた めのガス化溶融炉の運転制御装置であって、  [11] A gasification furnace for gasifying the input waste and a pyrolysis gas generated in the gasification furnace are introduced, and combustible components in the introduced pyrolysis gas are combusted in the gas. The operation of a gasification melting furnace comprising a melting furnace for melting the ash content, an air supply means for supplying air to the upstream side of the melting furnace, and an auxiliary burner provided in the melting furnace is controlled. An operation control device for a gasification melting furnace for
前記ガス化炉に前記廃棄物を投入する廃棄物投入機と、  A waste input machine that inputs the waste into the gasifier;
前記空気供給手段により供給される空気の量を検出する空気量検出手段と、 前記パーナの運転を制御するための制御系とを備え、この制御系は、 前記ガス化溶融炉の運転状態が特定のパーナ停止条件を満たすときに前記バー ナの運転を停止させるためのパーナ停止信号を出力するパーナ制御部と、 前記パーナの運転が停止した後、前記温度計により検出される温度が予め設定さ れた廃棄物投入停止温度まで降下した場合に、前記廃棄物投入機による前記ガス 化炉への前記廃棄物の投入を停止させるための廃棄物投入停止指令信号を出力 する廃棄物投入制御部と、を含み、  An air amount detection means for detecting the amount of air supplied by the air supply means; and a control system for controlling the operation of the panner. The control system specifies the operating state of the gasification melting furnace. A burner control unit for outputting a burner stop signal for stopping the operation of the burner when a condition for stopping the burner is satisfied, and a temperature detected by the thermometer after the operation of the burner is stopped. A waste input control unit that outputs a waste input stop command signal for stopping input of the waste into the gasification furnace by the waste input device when the waste input stop temperature is lowered. Including,
かつ、前記パーナ制御部は、前記廃棄物投入機による前記廃棄物の投入が停止 した時点から前記空気量検出手段により検出される空気の量を積算し、その積算値 が予め設定された一定値に達した時点で前記パーナの運転を再開させるためのバ ーナ再着火信号を出力する。  Further, the Pana control unit integrates the amount of air detected by the air amount detecting means from the time when the waste input by the waste input device is stopped, and the integrated value is a predetermined constant value. When the temperature reaches the burner, a burner re-ignition signal for restarting the operation of the burner is output.
[12] ガス化溶融炉であって、  [12] A gasification melting furnace,
投入される廃棄物をガス化するガス化炉と、  A gasification furnace for gasifying the input waste;
このガス化炉に廃棄物を投入する廃棄物投入機と、  A waste input machine that inputs waste into the gasifier;
このガス化炉で生成された熱分解ガスが導入され、その導入された熱分解ガス中 の可燃成分を燃焼させて同ガス中の灰分を溶融させる溶融炉と、  A melting furnace in which pyrolysis gas generated in the gasification furnace is introduced, combustible components in the introduced pyrolysis gas are burned, and ash in the gas is melted;
この溶融炉に設けられる燃焼用のパーナと、  A burner provided in the melting furnace;
請求項 5〜; 11のいずれかに記載のガス化溶融炉の運転制御装置と、を備える。  An operation control device for a gasification melting furnace according to any one of claims 5 to 11;
[13] 投入される廃棄物を熱分解し、その熱分解により生じる熱分解ガス中の灰分を溶融 するとともに、その溶融により生じたスラグを炉外に排出するためのスラグ排出口を有 するガス化溶融炉を運転するにあたり、前記スラグの塩基度を調整するためのガス化 溶融炉におけるスラグの塩基度の調整方法であって、 [13] The waste to be input is pyrolyzed and the ash in the pyrolysis gas generated by the pyrolysis is melted. At the same time, when operating a gasification melting furnace having a slag discharge port for discharging slag generated by the melting out of the furnace, a slag base in the gasification melting furnace is used to adjust the basicity of the slag. A method of adjusting the degree,
前記スラグ排出口よりも上流側の位置に前記スラグ排出口から排出されるスラグの 塩基度を調節するための塩基度調整剤を供給するステップと、  Supplying a basicity adjusting agent for adjusting the basicity of the slag discharged from the slag discharge port to a position upstream of the slag discharge port;
単位時間あたりに前記ガス化溶融炉に投入される廃棄物の重量を検出するステツ プと、  A step of detecting the weight of waste charged into the gasification melting furnace per unit time;
前記廃棄物の単位重量あたりの発熱量に対応するパラメータを検出するステップと 前記パラメータの検出値に基づいて前記ガス化溶融炉内に生じるスラグの塩基度 の予想値を演算するステップと、  Detecting a parameter corresponding to a calorific value per unit weight of the waste; calculating a predicted value of basicity of slag generated in the gasification melting furnace based on a detection value of the parameter;
演算した前記スラグの塩基度の予想値に基づき、当該スラグの塩基度を予め設定 された塩基度の目標値に近づける方向に前記塩基度調整剤の供給量を調節するス テツプとを含む。  And a step of adjusting the supply amount of the basicity adjusting agent in a direction to bring the basicity of the slag closer to a preset basicity value based on the calculated predicted value of the basicity of the slag.
[14] 請求項 13記載のガス化溶融炉におけるスラグの塩基度の調整方法において、 前記パラメータとして、前記ガス化溶融炉から排出されるガスの熱を用いて蒸気を 発生させる廃熱ボイラでの単位時間あたりの蒸気発生量が検出され、  [14] The method for adjusting the basicity of the slag in the gasification melting furnace according to claim 13, wherein the parameter is a waste heat boiler that generates steam using the heat of the gas discharged from the gasification melting furnace as the parameter. The amount of steam generated per unit time is detected,
この蒸気発熱量と単位時間当たりの前記ガス化溶融炉への廃棄物の投入量とに基 づいて、単位重量当たりの廃棄物の発熱量が演算される。  Based on this steam heat generation amount and the amount of waste input to the gasification melting furnace per unit time, the heat generation amount of waste per unit weight is calculated.
[15] 請求項 13または 14に記載のガス化溶融炉におけるスラグの塩基度の調整方法に おいて、 [15] In the method for adjusting the basicity of slag in the gasification melting furnace according to claim 13 or 14,
さらに、前記ガス化溶融炉内に生じるスラグの塩基度の予想値を演算するステップ の前に予め前記パラメータと実際のスラグの塩基度との相関関係を実測により求めて 前記予想値を演算するステップでは、前記相関関係と前記パラメータの検出値に 基いて前記ガス化溶融炉内に生じるスラグの塩基度の予想値が演算される。  Further, before calculating the predicted value of the basicity of the slag generated in the gasification melting furnace, calculating the predicted value by obtaining a correlation between the parameter and the basicity of the actual slag in advance by actual measurement Then, based on the correlation and the detected value of the parameter, an expected value of basicity of slag generated in the gasification melting furnace is calculated.
[16] 投入される廃棄物を熱分解し、その熱分解により生じる熱分解ガス中の灰分を溶融 するとともに、その溶融により生じたスラグを炉外に排出するためのスラグ排出口を有 するガス化溶融炉を運転するにあたって、前記スラグの塩基度を調整するためのガス 化溶融炉におけるスラグの塩基度の調整装置であって、 [16] The waste that is input is pyrolyzed, and the ash in the pyrolysis gas generated by the pyrolysis is melted, and a slag discharge port is provided for discharging the slag generated by the melting out of the furnace. A slag basicity adjusting device for adjusting the basicity of the slag to adjust the basicity of the slag,
前記スラグ排出口よりも上流側の位置に前記スラグ排出口から排出されるスラグの 塩基度を調節するための塩基度調整剤を供給する塩基度調整剤供給手段と、 単位時間あたりに前記ガス化溶融炉に投入される廃棄物の重量を検出する廃棄物 投入量検出手段と、  A basicity adjusting agent supplying means for supplying a basicity adjusting agent for adjusting the basicity of the slag discharged from the slag discharge port at a position upstream of the slag discharge port; and the gasification per unit time. Waste input detection means for detecting the weight of waste input to the melting furnace;
前記廃棄物の単位重量あたりの発熱量に対応するパラメータを検出するパラメータ 検出手段と、  Parameter detecting means for detecting a parameter corresponding to the calorific value per unit weight of the waste;
前記パラメータの検出値に基づいて前記ガス化溶融炉内に生じるスラグの塩基度 の予想値を演算する塩基度予想値演算手段と、  A basicity expected value calculating means for calculating an expected value of the basicity of slag generated in the gasification melting furnace based on the detected value of the parameter;
前記塩基度の予想値に基づき、当該塩基度を予め設定された塩基度の目標値に 近づける方向に前記塩基度調整剤の供給量を調節する塩基度調整剤供給量調節 手段と、を備える。  Basicity adjusting agent supply amount adjusting means for adjusting the supply amount of the basicity adjusting agent in a direction to bring the basicity close to a preset basicity target value based on the predicted basicity value.
[17] 請求項 16記載のガス化溶融炉におけるスラグの塩基度の調整装置において、 前記パラメータ検出手段は、前記ガス化溶融炉力 排出されるガスの熱を用いて蒸 気を発生させる廃熱ボイラでの蒸気発生量を検出するものであり、  [17] The apparatus for adjusting the basicity of slag in the gasification melting furnace according to claim 16, wherein the parameter detecting means generates waste heat using heat of the gas discharged from the gasification melting furnace force. It detects the amount of steam generated in the boiler,
前記塩基度予想値演算手段は、前記パラメータ検出手段が検出する蒸気発生量と 前記ガス化溶融炉への単位時間当たりの廃棄物の投入量とに基づいて単位重量当 たりの廃棄物の発熱量を演算する。  The basicity expected value calculation means is a heat generation amount of waste per unit weight based on a steam generation amount detected by the parameter detection means and an input amount of waste per unit time to the gasification melting furnace. Is calculated.
[18] 請求項 16または 17に記載のガス化溶融炉におけるスラグの塩基度の調整装置に おいて、 [18] In the apparatus for adjusting the basicity of slag in the gasification melting furnace according to claim 16 or 17,
前記塩基度調整剤供給量調節手段は、予め実測により求められた前記パラメータ と実際のスラグの塩基度との関係を記憶し、その記憶した関係と前記パラメータの検 出値とに基づいて前記塩基度調整剤の供給量を決定する。  The basicity adjusting agent supply amount adjusting means stores a relationship between the parameter obtained by actual measurement in advance and an actual basicity of the slag, and based on the stored relationship and the detected value of the parameter. Determine the supply amount of the degree adjusting agent.
PCT/JP2007/067003 2006-09-26 2007-08-31 Operating method and operation control apparatus for gasification melting furnace WO2008038492A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP07806476.3A EP2068081B1 (en) 2006-09-26 2007-08-31 Operating method and operation control apparatus for gasification melting furnace
KR1020117006198A KR20110048557A (en) 2006-09-26 2007-08-31 Method for controling basicity of slag in gasification melting furnace and controling apparatus thereof
PL07806476T PL2068081T3 (en) 2006-09-26 2007-08-31 Operating method and operation control apparatus for gasification melting furnace
KR1020097007726A KR101107787B1 (en) 2006-09-26 2007-08-31 Operating method and operation control apparatus for gasification melting furnace
ES07806476.3T ES2461769T3 (en) 2006-09-26 2007-08-31 Operating method and operating control device for gasification-melting furnace

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2006260083 2006-09-26
JP2006-260083 2006-09-26
JP2007-050892 2007-03-01
JP2007050892A JP2008215665A (en) 2007-03-01 2007-03-01 Method and device for adjusting basicity of slag in gasification melting furnace
JP2007141664A JP4966743B2 (en) 2006-09-26 2007-05-29 Operation method and operation control apparatus for gasification melting furnace
JP2007-141664 2007-05-29

Publications (1)

Publication Number Publication Date
WO2008038492A1 true WO2008038492A1 (en) 2008-04-03

Family

ID=39229931

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/067003 WO2008038492A1 (en) 2006-09-26 2007-08-31 Operating method and operation control apparatus for gasification melting furnace

Country Status (5)

Country Link
EP (2) EP2068081B1 (en)
KR (1) KR101107787B1 (en)
ES (1) ES2461769T3 (en)
PL (2) PL2068081T3 (en)
WO (1) WO2008038492A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014031927A (en) * 2012-08-02 2014-02-20 Kobelco Eco-Solutions Co Ltd Gas temperature control method and device for gasification melting furnace
CN110094725A (en) * 2019-05-10 2019-08-06 东北电力大学 A kind of ultralow nitrogen combustion method of Thermal generation unit

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5316913B2 (en) * 2009-10-28 2013-10-16 株式会社Ihi Combustion furnace temperature control method and apparatus for gasification equipment
FR3009977B1 (en) * 2013-09-02 2018-07-06 Savoie Dechets METHOD FOR VITRIFICATION BY GASIFYING A CARBONACEOUS MATERIAL
JP5826954B1 (en) * 2015-01-19 2015-12-02 株式会社神鋼環境ソリューション Waste treatment system and NOx treatment method in the system
CN108954364A (en) * 2018-05-19 2018-12-07 潘礼斌 A kind of excrement gasification cleaning heating system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06159640A (en) * 1992-11-26 1994-06-07 Ebara Infilco Co Ltd Basicity adjusting apparatus and adjusting method therefor
JP2001182924A (en) 1999-12-28 2001-07-06 Nkk Corp Method of operating melting furnace
JP2003302023A (en) * 2002-04-10 2003-10-24 Ebara Corp Operation method for melting furnace, operation control device and gasification melting system
JP2004037049A (en) 2002-07-08 2004-02-05 Kobe Steel Ltd Combustion control method for gasification melting furnace, and device thereof
JP2004353944A (en) * 2003-05-29 2004-12-16 Hitachi Zosen Corp Combustion control method in refuse disposal facility and refuse disposal facility
JP2006029678A (en) 2004-07-15 2006-02-02 Kobelco Eco-Solutions Co Ltd Heat insulation method when stopping supply of waste material in fluidized bed type gasified melting furnace
JP2006349218A (en) * 2005-06-14 2006-12-28 Kobelco Eco-Solutions Co Ltd Slag basicity adjusting method and its device for gasification melting furnace

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4013023A (en) * 1975-12-29 1977-03-22 Envirotech Corporation Incineration method and system
KR100763531B1 (en) * 2000-08-11 2007-10-05 가부시키가이샤 긴세이 산교 Method for incineration disposal of waste
US20040137390A1 (en) * 2003-01-09 2004-07-15 Arnold Kenny M. Methods and systems for measuring and controlling the percent stoichiometric oxidant in an incinerator

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06159640A (en) * 1992-11-26 1994-06-07 Ebara Infilco Co Ltd Basicity adjusting apparatus and adjusting method therefor
JP2001182924A (en) 1999-12-28 2001-07-06 Nkk Corp Method of operating melting furnace
JP2003302023A (en) * 2002-04-10 2003-10-24 Ebara Corp Operation method for melting furnace, operation control device and gasification melting system
JP2004037049A (en) 2002-07-08 2004-02-05 Kobe Steel Ltd Combustion control method for gasification melting furnace, and device thereof
JP2004353944A (en) * 2003-05-29 2004-12-16 Hitachi Zosen Corp Combustion control method in refuse disposal facility and refuse disposal facility
JP2006029678A (en) 2004-07-15 2006-02-02 Kobelco Eco-Solutions Co Ltd Heat insulation method when stopping supply of waste material in fluidized bed type gasified melting furnace
JP2006349218A (en) * 2005-06-14 2006-12-28 Kobelco Eco-Solutions Co Ltd Slag basicity adjusting method and its device for gasification melting furnace

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2068081A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014031927A (en) * 2012-08-02 2014-02-20 Kobelco Eco-Solutions Co Ltd Gas temperature control method and device for gasification melting furnace
CN110094725A (en) * 2019-05-10 2019-08-06 东北电力大学 A kind of ultralow nitrogen combustion method of Thermal generation unit

Also Published As

Publication number Publication date
EP2322855A3 (en) 2011-08-31
PL2068081T3 (en) 2014-09-30
EP2068081B1 (en) 2014-04-16
KR101107787B1 (en) 2012-01-20
PL2322855T3 (en) 2016-09-30
KR20090057441A (en) 2009-06-05
EP2068081A4 (en) 2011-05-11
EP2068081A1 (en) 2009-06-10
EP2322855A2 (en) 2011-05-18
ES2461769T3 (en) 2014-05-21
EP2322855B1 (en) 2016-04-13

Similar Documents

Publication Publication Date Title
EP1816396B1 (en) Treatment method for combustible gas in waste melting furnace
WO2008038492A1 (en) Operating method and operation control apparatus for gasification melting furnace
JP4474429B2 (en) Waste incinerator and incineration method
JP4833270B2 (en) Operation control device for gasification melting furnace
JP5154094B2 (en) Combustion control method for gasification melting system and system
JP5611418B2 (en) Combustion control method for gasification melting system and system
JP3859926B2 (en) Method and apparatus for controlling combustion air in pyrolysis gasification melting system
CZ289075B6 (en) Procedure for operating industrial furnaces
JP3902454B2 (en) Combustion control method and waste treatment apparatus
JP4966743B2 (en) Operation method and operation control apparatus for gasification melting furnace
JP3944389B2 (en) Combustion air volume control system in pyrolysis gasification melting furnace
JP4111107B2 (en) Method and apparatus for preventing corrosion of melting furnace secondary combustion chamber dust discharger
JP4108624B2 (en) Combustion control method and waste treatment apparatus
JP4096509B2 (en) Gasification and melting apparatus and method
JP2002181320A (en) Waste gasification combustion system and method therefor
JP5021543B2 (en) Combustion control method and waste treatment apparatus
JP2004132648A (en) Combustion control method and combustion control device for gasification melting furnace
JP2018040534A (en) Waste gasification melting apparatus and waste gasification melting method
JPH11351538A (en) Method and apparatus for controlling combustion of melting furnace
JP4233212B2 (en) High-temperature swirl combustion method and waste treatment apparatus
JP4283254B2 (en) Operation control method and apparatus for gasification and melting system
JP2008215665A (en) Method and device for adjusting basicity of slag in gasification melting furnace
JP2012122625A (en) Method for operating waste melting furnace
JP2004132605A (en) Method of manufacturing molten slag with low lead content in surface melting device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07806476

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2007806476

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1020097007726

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 1020117006198

Country of ref document: KR