JP2001132440A - Exhaust emission control device - Google Patents

Exhaust emission control device

Info

Publication number
JP2001132440A
JP2001132440A JP31084899A JP31084899A JP2001132440A JP 2001132440 A JP2001132440 A JP 2001132440A JP 31084899 A JP31084899 A JP 31084899A JP 31084899 A JP31084899 A JP 31084899A JP 2001132440 A JP2001132440 A JP 2001132440A
Authority
JP
Japan
Prior art keywords
atmosphere
catalyst
way catalyst
exhaust gas
stoichiometric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP31084899A
Other languages
Japanese (ja)
Other versions
JP3925013B2 (en
Inventor
Hideaki Ueno
秀章 植野
Takeshi Yoshida
健 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP31084899A priority Critical patent/JP3925013B2/en
Publication of JP2001132440A publication Critical patent/JP2001132440A/en
Application granted granted Critical
Publication of JP3925013B2 publication Critical patent/JP3925013B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • Y02T10/24

Abstract

PROBLEM TO BE SOLVED: To maintain a purifying rate in a low temperature area high likewise as in a conventional way and effectively utilize HC for the reduction of NOx even if a rich spike has been input shallow. SOLUTION: In an exhaust emission control device comprising a three-way catalyst 2 and an NOx storage reduction type catalyst 3 arranged upstream and downstream respectively, in the case where exhaust emission under the condition that a lean atmosphere whose mole ratio of oxidized components to the reduced components in the exhaust emission in over 14.6 and a rich atmosphere whose mole ratio of the oxidized components are alternately repeated flows into the catalyst 2, the time while the catalyst 2 holds is limited to one second or less. In this case, this time is a from the time point when the atmosphere of the exhaust emission becomes stoichiometric atmosphere after passing through the catalyst 2 becomes stoichiometric atmosphere from a rich atmosphere until is becomes the lean atmosphere of 50% of the maximum lean atmosphere. The oxidation of HC at the time of rich spike by the catalyst 2 can be controlled, leading to the effective utilization of the reduction of NOx.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、内燃機関の排ガス
浄化装置に関し、詳しくは三元触媒とNOx 吸蔵還元型触
媒とを用いた排ガス浄化装置に関する。
The present invention relates to relates to exhaust gas purifying apparatus of an internal combustion engine, more particularly to an exhaust gas purifying apparatus using a three-way catalyst and NO x storage-and-reduction type catalyst.

【0002】[0002]

【従来の技術】近年、CO2 による地球温暖化現象が問題
となり、CO2 の排出量を低減することが課題となってい
る。自動車においても排ガス中のCO2 量の低減が課題と
なり、燃料を酸素過剰雰囲気で希薄燃焼させるリーンバ
ーンエンジンが開発されている。このリーンバーンエン
ジンによれば、燃費が向上するためCO2 の排出量を抑制
することができる。
In recent years, global warming has become a problem due to CO 2, reducing the emissions of CO 2 has become an issue. In automobiles, reducing the amount of CO 2 in exhaust gas has become an issue, and lean burn engines have been developed that burn lean fuel in an oxygen-rich atmosphere. According to this lean burn engine, the fuel consumption is improved, so that the emission of CO 2 can be suppressed.

【0003】リーンバーンエンジンからの排ガス中の有
害成分を浄化する場合、酸素過剰雰囲気であるがゆえに
NOx の還元浄化が困難となる。そこで特開平5-317652号
公報には、貴金属とともにアルカリ金属、アルカリ土類
金属及び希土類元素から選ばれるNOx 吸蔵材を担持した
NOx 吸蔵還元型の排ガス浄化用触媒が開示されている。
このNOx 吸蔵還元型触媒を用い、リーン雰囲気の途中に
パルス状にストイキ〜リッチ雰囲気となるように混合気
組成を制御すれば、HC及びCOの酸化とNOx の還元とを効
率よく進行させることができ、高い浄化性能が得られ
る。
[0003] When purifying harmful components in exhaust gas from a lean burn engine, because of an oxygen-excess atmosphere,
Reduction purification of NO x is difficult. Therefore JP-A-5-317652, carrying the the NO x storage material selected from alkali metals, alkaline earth metals and rare earth elements with a noble metal
NO x storage-and-reduction type exhaust gas purifying catalyst.
Using this NO x storage-and-reduction type catalyst, by controlling the mixture composition as a stoichiometric-rich atmosphere in a pulsed manner during the lean atmosphere, to proceed efficiently and reduction of HC and CO oxidation and NO x And high purification performance can be obtained.

【0004】つまりリーン雰囲気では排ガス中のNOが酸
化されてNOx となり、NOx 吸蔵材に吸蔵されるためNOx
の排出が抑制される。そしてパルス状にストイキ〜リッ
チ雰囲気に制御されると、NOx 吸蔵材からNOx が放出さ
れ、それが排ガス中に存在するHCなどの還元成分と反応
して還元されるため、NOx の排出が抑制される。したが
ってリーン〜リッチの全雰囲気でNOx の排出を抑制する
ことができる。
[0004] That NO x becomes oxidized is NO in the exhaust gas in a lean atmosphere, because it is occluded in the NO x storage material NO x
Emission is suppressed. When the controlled to the stoichiometric-rich atmosphere in a pulsed manner, NO x from the NO x storage material is released, because it is reduced by reaction with reducing components such as HC present in the exhaust gas, NO x emissions Is suppressed. Therefore it is possible to suppress the emission of the NO x in all the atmosphere of the lean-rich.

【0005】パルス状にストイキ〜リッチ雰囲気となる
ように混合気組成を制御することはリッチスパイクと称
され、リッチスパイクによってリッチ雰囲気とされる程
度は深い・浅いと表現されている。つまりリッチスパイ
クによって重度のリッチ雰囲気とすることは「リッチス
パイクを深く投入する」と称され、軽度のストイキ〜リ
ッチ雰囲気とすることは「リッチスパイクを浅く投入す
る」と称されている。
[0005] Controlling the air-fuel mixture so as to provide a stoichiometric to rich atmosphere in a pulsed manner is called a rich spike, and the degree to which the rich atmosphere is created by the rich spike is expressed as deep or shallow. In other words, to make a rich atmosphere with a rich spike is referred to as "introducing a rich spike deeply", and to make a mild stoichiometric to rich atmosphere is referred to as "introducing a shallow rich spike".

【0006】ところで始動時などの低温域においては、
NOx 吸蔵還元型触媒に担持されている貴金属は活性温度
以下であるために酸化還元反応が生じず、NOx ばかりか
HCも排出されてしまうという問題がある。そこで特開平
5-195755号公報には、NOx 吸蔵還元型触媒の上流側でエ
ンジン直下に三元触媒を配置し、リーン雰囲気の途中に
リッチスパイクを投入するシステムの中で用いられる排
ガス浄化装置が開示されている。このような排ガス浄化
装置によれば、三元触媒はエンジン直下に配置されるた
め早期に昇温されて活性温度となるため、HCを酸化する
とともにNOを酸化してNO2 とする。したがって低温域に
おけるHCの排出を抑制でき、NO2 は下流側のNOx 吸蔵還
元型触媒に吸蔵されるため排出が抑制される。
By the way, in a low temperature range such as at the time of starting,
Since the noble metal supported on the NO x storage reduction type catalyst is at or below the activation temperature, no oxidation-reduction reaction occurs and only the NO x
There is a problem that HC is also emitted. Therefore,
The 5-195755 discloses a three-way catalyst is disposed immediately below the engine upstream of the NO x storage reduction catalyst, the exhaust gas purifying apparatus used in a system to introduce the rich spike is disclosed in the middle of lean atmosphere ing. According to such an exhaust gas purifying apparatus, the three-way catalyst for the heated early to be disposed immediately below the engine becomes an active temperature, the NO 2 by oxidizing NO with oxidizes HC. Therefore, the emission of HC in the low temperature range can be suppressed, and NO 2 is stored in the NO x storage reduction catalyst on the downstream side, so that the emission is suppressed.

【0007】[0007]

【発明が解決しようとする課題】三元触媒は、理論空燃
比(ストイキ)近傍で燃焼された排ガス雰囲気において
最も高い活性を示す。そこで排ガス雰囲気をストイキ近
傍に維持するために、三元触媒にはセリアなどの酸素吸
蔵放出能をもつ物質が含まれているのが通常である。ま
た三元触媒に担持されている貴金属としては、リーン雰
囲気における耐久性に優れたPdが用いられる場合が多
い。
The three-way catalyst exhibits the highest activity in an atmosphere of exhaust gas burned near the stoichiometric air-fuel ratio (stoichiometric). Therefore, in order to maintain the exhaust gas atmosphere in the vicinity of the stoichiometry, the three-way catalyst usually contains a substance having an oxygen storage / release capability such as ceria. As the noble metal supported on the three-way catalyst, Pd having excellent durability in a lean atmosphere is often used.

【0008】ところが上記した排ガス浄化装置において
このような三元触媒を用いると、リッチスパイクの投入
時に排ガス中に存在する多量のHCがセリアなどから放出
された酸素によって酸化され、HC量の低下によりNOx
蔵還元型触媒上におけるNOx還元能が低下するという問
題があった。また低温域における酸化活性を向上させる
ために、Pdの担持量を多くすると、HCがますます酸化さ
れてしまいNOx 還元効率が一層低下してしまう。
However, when such a three-way catalyst is used in the above-mentioned exhaust gas purifying apparatus, a large amount of HC present in the exhaust gas at the time of injection of the rich spike is oxidized by oxygen released from ceria or the like, and the HC amount decreases. NOx reduction activity in the NO x storage-and-reduction type on the catalyst is lowered. If the amount of supported Pd is increased in order to improve the oxidation activity in a low temperature range, HC is further oxidized, and the NO x reduction efficiency is further reduced.

【0009】また、リッチスパイクを深く投入すれば、
HC量の増大によりNOx 還元能が増大するが、燃費が悪化
するという問題がある。
Further, if the rich spike is deeply introduced,
Although the NO x reduction ability increases with an increase in the amount of HC, there is a problem that fuel efficiency deteriorates.

【0010】本発明はこのような事情に鑑みてなされた
ものであり、低温域における浄化率を従来と同様に高く
維持するとともに、リッチスパイクを浅く投入した場合
であってもHCを有効にNOx の還元に利用できる排ガス浄
化装置とすることを目的とする。
The present invention has been made in view of such circumstances, and maintains the purification rate in a low temperature region as high as before, and effectively reduces HC even when a rich spike is introduced shallowly. The purpose is to provide an exhaust gas purification device that can be used for x reduction.

【0011】[0011]

【課題を解決するための手段】上記課題を解決する本発
明の排ガス浄化装置の特徴は、排ガス流の上流側に三元
触媒を配置し、三元触媒の下流側にNOx 吸蔵還元型触媒
を配置してなる排ガス浄化装置において、三元触媒のス
トイキ保持時間を1秒以下としたことを特徴とする。
Means for Solving the Problems The characteristics of the exhaust gas purifying apparatus of the present invention for solving the above-mentioned problems, on the upstream side of the exhaust gas flow is arranged a three-way catalyst, NO x storage reduction catalyst downstream of the three-way catalyst Is characterized in that the stoichiometric holding time of the three-way catalyst is set to 1 second or less.

【0012】ここにストイキ保持時間とは、排ガス中の
還元成分に対する酸化成分のモル比が14.6を超えるリー
ン雰囲気と該モル比が14.6以下のリッチ雰囲気がそれぞ
れ交互に繰り返される条件の排ガスが前記三元触媒に流
入した場合に、前記三元触媒を通過した後の排ガスの雰
囲気が、リッチ雰囲気からストイキ雰囲気となった時点
から最大リーン雰囲気の50%のリーン雰囲気となるまで
の時間をいう。
Here, the stoichiometric retention time is defined as the exhaust gas under the condition that the lean atmosphere in which the molar ratio of the oxidizing component to the reducing component in the exhaust gas exceeds 14.6 and the rich atmosphere in which the molar ratio is 14.6 or less are alternately repeated. When flowing into the source catalyst, it means the time from when the atmosphere of the exhaust gas after passing through the three-way catalyst changes from a rich atmosphere to a stoichiometric atmosphere to a lean atmosphere of 50% of the maximum lean atmosphere.

【0013】上記三元触媒には、酸素吸蔵放出材を含ま
ないことが望ましい。また上記三元触媒は、Pdを含まず
Rh及びPtを含む構成とすることができる。
It is desirable that the three-way catalyst does not contain an oxygen storage / release material. The three-way catalyst does not contain Pd.
It can be configured to include Rh and Pt.

【0014】[0014]

【発明の実施の形態】例えば還元成分に対する酸化成分
のモル比が15.5のリーン雰囲気と、該モル比が13.5のリ
ッチ雰囲気とがそれぞれ5分間ずつ交互に繰り返される
条件の排ガスは、図3(a)に示すような矩形波として
表される。このような条件の排ガスを三元触媒に供給し
た場合、三元触媒から出る排ガスの雰囲気は図3(b)
のようになる。
DETAILED DESCRIPTION OF THE INVENTION For example, FIG. 3 (a) shows an exhaust gas in which a lean atmosphere in which the molar ratio of the oxidizing component to the reducing component is 15.5 and a rich atmosphere in which the molar ratio is 13.5 are alternately repeated for 5 minutes each. ) Is represented as a square wave. When the exhaust gas under such conditions is supplied to the three-way catalyst, the atmosphere of the exhaust gas emitted from the three-way catalyst is as shown in FIG.
become that way.

【0015】つまり、先ずリーン雰囲気の排ガスが三元
触媒に流入すると、酸素が酸素吸蔵放出材などに吸蔵さ
れるため三元触媒から出る排ガスの雰囲気はストイキと
なり、酸素吸蔵放出材などの酸素吸蔵能が飽和に近付く
につれて排ガスの雰囲気はストイキから徐々にリーン最
高値に漸近する。次にリッチ雰囲気の排ガスが三元触媒
に流入すると、酸素吸蔵放出材などに吸蔵されていた酸
素が放出されるため三元触媒から出る排ガスの雰囲気は
ストイキとなり、吸蔵されていた酸素の減少により徐々
にリッチ最高値に漸近する。そして再びリーン雰囲気の
排ガスが三元触媒に流入すると、再び酸素吸蔵放出材な
どに酸素が吸蔵されるため、三元触媒から出る排ガスの
雰囲気はストイキから徐々にリーン最高値に漸近する。
That is, first, when the exhaust gas in the lean atmosphere flows into the three-way catalyst, oxygen is occluded by the oxygen storage / release material or the like, so that the atmosphere of the exhaust gas leaving the three-way catalyst becomes stoichiometric, and the oxygen storage / release material or the like As the performance approaches saturation, the atmosphere of the exhaust gas gradually approaches the lean maximum from stoichiometry. Next, when the exhaust gas in the rich atmosphere flows into the three-way catalyst, the oxygen stored in the oxygen storage and release material is released, so the atmosphere of the exhaust gas exiting the three-way catalyst becomes stoichiometric. It gradually approaches the rich maximum. When the exhaust gas in the lean atmosphere flows into the three-way catalyst again, oxygen is stored again in the oxygen storage / release material and the like, so that the atmosphere of the exhaust gas exiting the three-way catalyst gradually approaches the lean maximum value from the stoichiometric state.

【0016】すなわちリッチ雰囲気からリーン雰囲気に
切り替えられてから、しばらくの時間ストイキ雰囲気の
排ガスが三元触媒から排出され、その間は三元触媒上で
HCやCOの酸化反応が生じていると考えられ、この時間が
長くなるほどNOx 吸蔵還元型触媒へ流入するHCが少なく
なることとなる。
That is, after the atmosphere is switched from the rich atmosphere to the lean atmosphere, exhaust gas in the stoichiometric atmosphere is discharged from the three-way catalyst for a while, while the exhaust gas is discharged on the three-way catalyst.
It is considered that the oxidation reaction of HC and CO is occurring, and the longer this time is, the less HC flows into the NO x storage reduction catalyst.

【0017】そこで本発明者らは、三元触媒の下流側に
NOx 吸蔵還元型触媒を配置した排ガス浄化装置におい
て、上記したストイキ雰囲気にある時間とNOx 浄化率と
の関係を研究した。その結果、排ガス中の還元成分に対
する酸化成分のモル比が14.6を超えるリーン雰囲気と該
モル比が14.6以下のリッチ雰囲気がそれぞれ交互に繰り
返される条件の排ガスが三元触媒に流入した場合におい
て、三元触媒を通過した後の排ガスの雰囲気が、リッチ
雰囲気からストイキ雰囲気となった時点から最大リーン
雰囲気の50%のリーン雰囲気となるまでの時間(ストイ
キ保持時間)が1秒以下のときに、NOx 浄化率がきわめ
て高くなることを見出し、本発明を完成したものであ
る。
Therefore, the present inventors have proposed a method in which the three-way catalyst is provided on the downstream side.
In an exhaust gas purifying apparatus provided with a NO x storage-reduction catalyst, the relationship between the time in the stoichiometric atmosphere and the NO x purification rate was studied. As a result, when the exhaust gas under the condition that the lean atmosphere in which the molar ratio of the oxidizing component to the reducing component in the exhaust gas exceeds 14.6 and the rich atmosphere in which the molar ratio is 14.6 or less alternately flow into the three-way catalyst, When the time from the time when the atmosphere of the exhaust gas after passing through the source catalyst changes from the rich atmosphere to the stoichiometric atmosphere to the lean atmosphere of 50% of the maximum lean atmosphere (stoichiometric holding time) is 1 second or less, NO x It has been found that the purification rate is extremely high, and the present invention has been completed.

【0018】すなわち本発明の排ガス浄化装置では、三
元触媒のストイキ保持時間が1秒以下とされ、酸素吸蔵
放出能をほとんど若しくは全くもたない構成とされてい
る。したがってリッチスパイク時に酸素がほとんど放出
されないので、リッチスパイク時に発生した多くのHC
は、三元触媒を通過してもかなりの量が残存し、そのHC
が下流側のNOx 吸蔵還元型触媒に流入する。そしてNOx
吸蔵還元型触媒に流入したHCは、NOx 吸蔵材から放出さ
れたNOx の還元に消費される。これによりリッチスパイ
クを浅くしても、NOx 浄化能が向上する。三元触媒のス
トイキ保持時間が1秒を超えると、NOx 浄化率が急激に
低下してしまう。
That is, in the exhaust gas purifying apparatus of the present invention, the stoichiometric holding time of the three-way catalyst is set to 1 second or less, and the device has little or no oxygen storage / release capability. Therefore, since almost no oxygen is released during the rich spike, many HCs generated during the rich spike
Leaves a considerable amount even after passing through the three-way catalyst, and its HC
There flowing into the NO x storage-and-reduction type catalyst on the downstream side. And NO x
HC that has flowed into the storage-reduction catalyst is consumed in the reduction of released NO x from the NO x storage material. As a result, even if the rich spike is shallow, the NO x purification performance is improved. When stoichiometric retention time of the three-way catalyst is greater than 1 second, NO x purification rate is rapidly lowered.

【0019】ストイキ保持時間を1秒以下とするには、
三元触媒に含まれる酸素吸蔵放出材の量を低減するこ
と、あるいは酸素吸蔵放出材を含まないことで達成する
ことができる。つまりストイキ保持時間は、三元触媒の
酸素吸蔵放出能の指標ということができる。酸素吸蔵放
出材としては、セリア(CeO2)が代表的なものである
が、PrO4などの希土類金属酸化物、NiO 、Fe2O3 、CuO
、Mn2O5 などの遷移金属酸化物なども例示され、これ
らを含まないあるいは僅かに含む三元触媒とすること
で、ストイキ保持時間を1秒以下とすることができる。
To make the stoichiometric holding time less than 1 second,
This can be achieved by reducing the amount of the oxygen storage / release material contained in the three-way catalyst or by not including the oxygen storage / release material. In other words, the stoichiometric retention time can be said to be an index of the oxygen storage / release capacity of the three-way catalyst. Ceria (CeO 2 ) is a typical oxygen storage / release material, but rare earth metal oxides such as PrO 4 , NiO, Fe 2 O 3 , CuO
And transition metal oxides such as Mn 2 O 5 are also exemplified. By using a three-way catalyst not containing or slightly containing these, the stoichiometric retention time can be made 1 second or less.

【0020】また本発明の排ガス浄化装置において、三
元触媒にはPdを含まずRh及びPtを含むことが望ましい。
Pdは酸素吸着能を有するため、リッチ雰囲気においてHC
を酸化する活性が高い。そのためPdを含む三元触媒を用
いると、酸素吸蔵放出材を含む場合と同様にNOx 浄化率
が低くなってしまう場合がある。一方Pt及びRhは、リッ
チ雰囲気における酸化活性がPdより低いので、リッチ雰
囲気におけるHCの酸化が抑制され、Pdに比べてNOx の還
元効率が向上する。またPt及びRhはリーン雰囲気におけ
る酸化活性がPdより高く、その活性温度も低い。したが
って低温域のリーン雰囲気においてHC及びCOを効率よく
酸化浄化することができ、またNOの酸化によりNOx の吸
蔵効率も向上する。
In the exhaust gas purifying apparatus of the present invention, it is desirable that the three-way catalyst does not contain Pd but contains Rh and Pt.
Since Pd has oxygen adsorption capacity, HC in a rich atmosphere
High activity to oxidize. When using a three-way catalyst comprising Therefore Pd, there is a case where if it contains oxygen storage material in the same manner as the NO x purification rate becomes low. Meanwhile Pt and Rh, since oxidation activity in rich atmosphere is lower than Pd, oxidation of HC is suppressed in the rich atmosphere, reducing the efficiency of the NO x can be improved as compared with Pd. Pt and Rh have a higher oxidation activity in a lean atmosphere than Pd and a lower activation temperature. Therefore it is possible to efficiently oxidized purifying HC and CO in the lean atmosphere in the low temperature region, and also improves storage efficiency of the NO x by oxidation of NO.

【0021】本発明の排ガス浄化装置における三元触媒
は、担体とその担体に担持された貴金属とから構成され
たものを用いることができる。担体としては、アルミナ
( Al2O3)、シリカ(SiO2)、ジルコニア(ZrO2)、チ
タニア(TiO2)などの多孔質酸化物を用いることができ
る。また貴金属としては、上記したようにPt及びRhの少
なくとも一方を用いることが好ましいが、PtとRhの両方
を用いることが特に望ましい。Rhの存在により高温のリ
ーン雰囲気におけるPtの粒成長を抑制することができ、
耐熱性が向上する。
As the three-way catalyst in the exhaust gas purifying apparatus of the present invention, a three-way catalyst composed of a carrier and a noble metal carried on the carrier can be used. As the carrier, a porous oxide such as alumina (Al 2 O 3 ), silica (SiO 2 ), zirconia (ZrO 2 ), or titania (TiO 2 ) can be used. As described above, it is preferable to use at least one of Pt and Rh as the noble metal, but it is particularly preferable to use both Pt and Rh. The presence of Rh can suppress Pt grain growth in a high-temperature lean atmosphere,
Heat resistance is improved.

【0022】しかしながら、PtとRhとを共存担持すると
RhによってPtの酸化活性が阻害されるという不具合があ
る。そこでPtを担持した担体粉末と、Rhを担持した担体
粉末とを混合して用いたり、上層にRh又はPtの一方を担
持し、その下層にRh又はPtの他方を担持した二層構造の
三元触媒とすることが好ましい。これによりPtとRhとが
分離された状態で近接して担持された状態となるため、
Ptの粒成長を抑制しつつ酸化活性の低下が防止され、酸
化活性が向上する。なお二層構造とする場合には、下層
にPtを担持し上層にRhを担持した構成とすることが好ま
しい。
However, when Pt and Rh are co-supported,
There is a problem that the oxidation activity of Pt is inhibited by Rh. Therefore, a carrier powder carrying Pt and a carrier powder carrying Rh are mixed and used, or a three-layer structure in which one of Rh or Pt is carried in the upper layer and the other of Rh or Pt is carried in the lower layer. It is preferable to use a raw catalyst. As a result, Pt and Rh are in a state of being carried close to each other in a separated state,
While suppressing the grain growth of Pt, a decrease in the oxidation activity is prevented, and the oxidation activity is improved. In the case of a two-layer structure, it is preferable that the lower layer carries Pt and the upper layer carries Rh.

【0023】貴金属の担持量は、上記担体に対して 0.1
〜10重量%の範囲が好ましい。担持量がこれより少ない
と十分な浄化活性が得られず、これより多く担持しても
浄化活性が飽和し過剰の貴金属が無駄となる。
The supported amount of the noble metal is 0.1
A range of 〜10% by weight is preferred. If the supported amount is less than this, sufficient purification activity cannot be obtained, and even if the supported amount is more than this, the purification activity is saturated and excess noble metal is wasted.

【0024】本発明の排ガス浄化装置におけるNOx 吸蔵
還元型触媒は、多孔質酸化物担体と、多孔質酸化物担体
に担持された貴金属と、アルカリ金属、アルカリ土類金
属及び希土類元素から選ばれ多孔質酸化物担体に担持さ
れたNOx 吸蔵材と、から構成された従来と同様のものを
用いることができる。
The NO x storage-reduction type catalyst in the exhaust gas purifying apparatus of the present invention is selected from a porous oxide carrier, a noble metal supported on the porous oxide carrier, an alkali metal, an alkaline earth metal and a rare earth element. it can be used a porous oxide support supported on the the NO x storage material, those similar to the prior art, which is composed of.

【0025】NOx 吸蔵還元型触媒に用いられる多孔質酸
化物担体としては、アルミナ、シリカ、シリカ−アルミ
ナ、ジルコニア、チタニア、ゼオライトなどを用いるこ
とができる。このうちの一種でもよいし複数種類を混合
あるいは複合化して用いることもできる。中でも活性の
高いγ−アルミナを用いるのが好ましい。なおNOx 吸蔵
還元型触媒に用いられる多孔質酸化物担体は、三元触媒
の多孔質酸化物担体と同一種類であってもよいし、異な
るものを用いてもよい。
As the porous oxide carrier used for the NO x storage reduction catalyst, alumina, silica, silica-alumina, zirconia, titania, zeolite and the like can be used. One of these may be used, or a plurality of them may be mixed or combined for use. Among them, it is preferable to use γ-alumina having high activity. Note the NO x storage reduction catalyst porous oxide carrier used may be a porous oxide support and the same kind of three-way catalyst, may use different ones.

【0026】NOx 吸蔵還元型触媒に用いられる貴金属と
しては、Pt、Rh、Pd、Irなどが例示される。中でも活性
の高いPtが特に好ましい。また貴金属の担持量は、多孔
質酸化物担体1リットル当たり 0.1〜10gとすることが
好ましい。これより少ないと浄化活性が不足し、これよ
り多く担持しても効果が飽和するとともに高価となる。
Examples of the noble metal used for the NO x storage-reduction catalyst include Pt, Rh, Pd, and Ir. Among them, Pt having high activity is particularly preferable. The amount of the noble metal supported is preferably 0.1 to 10 g per liter of the porous oxide carrier. If the amount is less than this, the purification activity is insufficient, and if the amount is more than this, the effect is saturated and the cost increases.

【0027】NOx 吸蔵還元型触媒に用いられるNOx 吸蔵
材としては、アルカリ金属、アルカリ土類金属及び希土
類元素から選ばれる少なくとも一種である。アルカリ金
属としては、リチウム、ナトリウム、カリウム、セシウ
ムが例示される。アルカリ土類金属とは周期表2A族元素
をいい、バリウム、ベリリウム、マグネシウム、カルシ
ウム、ストロンチウムなどが例示される。また希土類元
素としては、スカンジウム、イットリウム、ランタン、
セリウム、プラセオジム、ネオジム、ジスプロシウム、
イッテルビウムなどが例示される。
The NO x storage material used in the NO x storage reduction catalyst is at least one selected from alkali metals, alkaline earth metals and rare earth elements. Examples of the alkali metal include lithium, sodium, potassium, and cesium. The alkaline earth metal refers to a Group 2A element in the periodic table, and examples thereof include barium, beryllium, magnesium, calcium, and strontium. Also, rare earth elements include scandium, yttrium, lanthanum,
Cerium, praseodymium, neodymium, dysprosium,
Ytterbium is exemplified.

【0028】NOx 吸蔵還元型触媒におけるNOx 吸蔵材の
担持量は、多孔質酸化物担体1リットル当たり0.01〜1
モルの範囲とすることが望ましい。担持量がこの範囲よ
り少ないとNOx 吸着量が低下するためNOx 浄化能が低下
し、この範囲より多くなると貴金属がNOx 吸蔵材に覆わ
れて活性が低下するようになる。
The amount of the NO x storage material carried by the NO x storage reduction catalyst is 0.01 to 1 per liter of the porous oxide carrier.
Desirably, it is in the molar range. If the supported amount is smaller than this range, the NO x adsorption amount is reduced, so that the NO x purification ability is reduced. If the supported amount is larger than this range, the noble metal is covered with the NO x storage material and the activity is reduced.

【0029】三元触媒は、排ガス流路においてNOx 吸蔵
還元型触媒より上流側に配置され、エンジン直下に配置
することが望ましい。また三元触媒とNOx 吸蔵還元型触
媒との配置間隔は特に制限されず、隣接して配置しても
よいし、所定の距離を隔てて配置することもできる。ま
た一つの担体基材の一端面から所定長さの部分に三元触
媒を形成し、残りの部分にNOx 吸蔵還元型触媒を形成し
て、三元触媒を排ガス流に対向するように向けて配置し
てもよい。
The three-way catalyst is disposed upstream of the NO x storage reduction catalyst in the exhaust gas passage, it is desirable to place directly under the engine. The arrangement interval between the three-way catalyst and NO x storage-and-reduction type catalyst is not particularly limited, and may be placed adjacent, may be arranged at a predetermined distance. The form one of the three-way catalyst to a portion of the predetermined length from one end face of the carrier substrate, to form a NO x storage-and-reduction type catalyst to rest, for a three-way catalyst so as to face the exhaust gas flow May be arranged.

【0030】[0030]

【実施例】以下、実施例及び比較例により本発明を具体
的に説明する。
The present invention will be specifically described below with reference to examples and comparative examples.

【0031】(実施例1)図1に本発明の一実施例の排
ガス浄化装置を模式的に示す。この排ガス浄化装置は、
エンジン1から延びる排ガス流路の上流側に配置された
三元触媒2と、三元触媒2より下流側で排ガス流路に配
置されたNOx 吸蔵還元型触媒3とから構成されている。
(Embodiment 1) FIG. 1 schematically shows an exhaust gas purifying apparatus according to an embodiment of the present invention. This exhaust gas purification device
A three way catalyst 2 disposed on the upstream side of the exhaust gas flow path extending from the engine 1 is composed of the three-way catalyst 2 from the NO x storage reduction catalyst 3 which is disposed in the exhaust gas line downstream.

【0032】三元触媒2は、図2に示すように、コーデ
ィエライト製のハニカム基材20と、ハニカム基材20表面
に形成されPtが担持されたγ-Al2O3よりなる下層21と、
下層21の表面に形成されRhが担持されたθ-Al2O3よりな
る上層22とから構成されている。
As shown in FIG. 2, the three-way catalyst 2 includes a honeycomb substrate 20 made of cordierite and a lower layer 21 made of γ-Al 2 O 3 formed on the surface of the honeycomb substrate 20 and carrying Pt. When,
An upper layer 22 made of θ-Al 2 O 3 and formed on the surface of the lower layer 21 and carrying Rh thereon.

【0033】ハニカム基材20は容量 1.3リットルであ
り、下層21はハニカム基材20の1リットル当たり 160g
形成され、Ptはハニカム基材20の1リットル当たり 1.5
g担持されている。また上層22はハニカム基材20の1リ
ットル当たり40g形成され、Rhはハニカム基材20の1リ
ットル当たり 0.3g担持されている。
The honeycomb substrate 20 has a capacity of 1.3 liters, and the lower layer 21 has a capacity of 160 g per liter of the honeycomb substrate 20.
The Pt is formed at a rate of 1.5
g is carried. The upper layer 22 is formed with 40 g per liter of the honeycomb substrate 20, and 0.3 g of Rh is supported per liter of the honeycomb substrate 20.

【0034】またNOx 吸蔵還元型触媒3は、コーディエ
ライト製のハニカム基材と、ハニカム基材表面に形成さ
れたγ-Al2O3,TiO2及びZrO2からなるコート層とからな
り、コート層にはPt及びRhからなる貴金属と、Ba,K及
びLiよりなるNOx 吸蔵材とが担持されている。
The NO x storage-reduction catalyst 3 comprises a cordierite honeycomb substrate and a coating layer formed on the surface of the honeycomb substrate and composed of γ-Al 2 O 3 , TiO 2 and ZrO 2. , a noble metal made of the coating layer Pt and Rh, Ba, and the the NO x storage material consisting of K and Li are carried.

【0035】ハニカム基材は容量 2.0リットルであり、
コート層はハニカム基材の1リットル当たり 250g形成
されている。コート層の内訳は、ハニカム基材の1リッ
トル当たりγ-Al2O3が 100g、TiO2が 100g、ZrO2が50
gである。またPtはハニカム基材の1リットル当たり
2.0g担持され、Rhはハニカム基材の1リットル当たり
0.5g担持されている。そしてハニカム基材の1リット
ル当たり、Baが 0.2モル、Kが 0.1モル、Liが 0.1モル
担持されている。
The honeycomb substrate has a capacity of 2.0 liters,
The coating layer is formed in an amount of 250 g per liter of the honeycomb substrate. The breakdown of the coating layer is as follows: 100 g of γ-Al 2 O 3 , 100 g of TiO 2 and 50 g of ZrO 2 per liter of the honeycomb substrate.
g. Pt is per liter of honeycomb substrate
2.0g supported, Rh is per liter of honeycomb substrate
0.5 g is carried. And 0.2 mol of Ba, 0.1 mol of K and 0.1 mol of Li are supported per liter of the honeycomb substrate.

【0036】エンジン1として、排気量2Lのガソリン
直噴エンジンを用い、先ず三元触媒2のみを配置して入
りガス温度 800℃で5時間運転する耐久試験を行った。
次にNOx 吸蔵還元型触媒3のみを配置し、入りガス温度
700℃で50時間運転する耐久試験を行った。
An endurance test was conducted in which a gasoline direct injection engine having a displacement of 2 L was used as the engine 1 and only the three-way catalyst 2 was placed and operated at an inlet gas temperature of 800 ° C. for 5 hours.
Next, only the NO x storage reduction catalyst 3 was placed, and the incoming gas temperature
An endurance test was performed at 700 ° C. for 50 hours.

【0037】耐久試験後の各触媒を図1のように配置
し、ECモードにて運転して、HC,CO及びNOx の浄化率を
それぞれ測定した。結果を表1に示す。
[0037] Each catalyst after the durability test was arranged as shown in FIG. 1, and operated at EC mode was measured HC, and purification rate of CO and NO x, respectively. Table 1 shows the results.

【0038】(試験例)上記実施例1における三元触媒
2の下層21をγ-Al2O3とCeO2との混合物から構成し、Ce
O2の添加量を種々異ならせた6種類の三元触媒を調製し
た。そして排気量3Lのガソリン直噴エンジンの排ガス
流路にそれぞれの三元触媒を装着し、三元触媒の入りガ
ス雰囲気が図3(a)のように還元成分に対する酸化成
分のモル比( A/F)が15.5のリーン雰囲気と、 A/Fが1
3.5のリッチ雰囲気とが交互に5秒間ずつ繰り返される
条件下で、それぞれの三元触媒からの出ガスを分析し
た。この分析結果を図3(b)のようにグラフ化し、リ
ッチ雰囲気からストイキ雰囲気となった時点から最大リ
ーン雰囲気の50%のリーン雰囲気となるまでの時間を求
めてストイキ保持時間とした。
(Test Example) The lower layer 21 of the three-way catalyst 2 in Example 1 was composed of a mixture of γ-Al 2 O 3 and CeO 2 ,
Six types of three-way catalysts were prepared by varying the amount of O 2 added. Each three-way catalyst was mounted in the exhaust gas flow path of a 3 L gasoline direct injection engine, and the gas atmosphere of the three-way catalyst was changed so that the molar ratio of the oxidizing component to the reducing component (A / F) Lean atmosphere of 15.5 and A / F of 1
The outgas from each three-way catalyst was analyzed under the condition that the rich atmosphere of 3.5 was alternately repeated for 5 seconds. The result of this analysis was graphed as shown in FIG. 3B, and the time from when the rich atmosphere was changed to the stoichiometric atmosphere to when the lean atmosphere became 50% of the maximum lean atmosphere was determined and defined as the stoichiometric holding time.

【0039】さらに三元触媒の下流側に実施例1と同様
のNOx 吸蔵還元型触媒を配置して、エンジンを回転数 2
000rpmで運転しながら、それぞれの三元触媒についてNO
x 吸蔵還元型触媒を通過させたときのNOx 浄化率をそれ
ぞれ測定した。それぞれの三元触媒のストイキ保持時間
と、測定されたNOx 浄化率との関係を図4に示す。
Further, the same NO x storage-reduction type catalyst as in the first embodiment is arranged downstream of the three-way catalyst, and the engine is rotated at 2 rpm.
While operating at 000 rpm, NO for each three-way catalyst
The NO x purification rates when passing through the x storage reduction catalyst were measured. FIG. 4 shows the relationship between the stoichiometric holding time of each three-way catalyst and the measured NO x purification rate.

【0040】図4より、ストイキ保持時間が1秒を超え
るとNOx 浄化率が急激に低下していることがわかり、ス
トイキ保持時間は1秒以下とすることが好ましいことが
明らかである。
FIG. 4 shows that when the stoichiometric holding time exceeds 1 second, the NO x purification rate sharply decreases, and it is clear that the stoichiometric holding time is preferably 1 second or less.

【0041】なお実施例1で用いた三元触媒2のストイ
キ保持時間は 0.2秒であった。
The stoichiometric retention time of the three-way catalyst 2 used in Example 1 was 0.2 seconds.

【0042】(実施例2)実施例1と同様の三元触媒の
上流側端面から20mmの範囲に、ハニカム基材の1リット
ル当たり5gのPtをさらに担持した。これを三元触媒と
して用いたこと以外は実施例1と同様にして排ガス浄化
装置を構成し、同様に耐久試験後の浄化率を測定した。
結果を表1に示す。この三元触媒2の試験例と同様に測
定されたストイキ保持時間は 0.2秒であった。
(Example 2) 5 g of Pt per liter of the honeycomb substrate was further carried in a range of 20 mm from the upstream end face of the same three-way catalyst as in Example 1. Except that this was used as a three-way catalyst, an exhaust gas purifying apparatus was constructed in the same manner as in Example 1, and the purification rate after the durability test was measured in the same manner.
Table 1 shows the results. The stoichiometric retention time measured in the same manner as in the test example of the three-way catalyst 2 was 0.2 seconds.

【0043】(実施例3)実施例1と同様のハニカム基
材20に、γ-Al2O3よりなるコート層をハニカム基材の1
リットル当たり 200g形成し、そのコート層にPt及びRh
をハニカム基材の1リットル当たりそれぞれ 1.5gと
0.3g担持してなる三元触媒を用いたこと以外は実施例
1と同様にして排ガス浄化装置を構成し、同様に耐久試
験後の浄化率を測定した。結果を表1に示す。この三元
触媒2の試験例と同様に測定されたストイキ保持時間は
0.2秒であった。
(Example 3) On the same honeycomb substrate 20 as in Example 1, a coating layer made of γ-Al 2 O 3
200 g per liter, Pt and Rh on the coat layer
1.5 g per liter of honeycomb substrate
An exhaust gas purifying apparatus was constructed in the same manner as in Example 1 except that a three-way catalyst carrying 0.3 g was used, and the purification rate after the durability test was measured in the same manner. Table 1 shows the results. The stoichiometric retention time measured in the same manner as in the test example of the three-way catalyst 2 is
0.2 seconds.

【0044】(実施例4)実施例1と同様の三元触媒の
上流側端面から20mmの範囲に、ハニカム基材の1リット
ル当たり10gのPdをさらに担持した。これを三元触媒と
して用いたこと以外は実施例1と同様にして排ガス浄化
装置を構成し、同様に耐久試験後の浄化率を測定した。
結果を表1に示す。この三元触媒2の試験例と同様に測
定されたストイキ保持時間は 0.7秒であった。
Example 4 The same three-way catalyst as in Example 1 was further loaded with 10 g of Pd per liter of the honeycomb substrate in a range of 20 mm from the upstream end face. Except that this was used as a three-way catalyst, an exhaust gas purifying apparatus was constructed in the same manner as in Example 1, and the purification rate after the durability test was measured in the same manner.
Table 1 shows the results. The stoichiometric retention time measured in the same manner as in the test example of the three-way catalyst 2 was 0.7 seconds.

【0045】(実施例5)下層21にハニカム基材の1リ
ットル当たり 5.0gのPdを担持し、上層22にハニカム基
材の1リットル当たり 0.5gのRhを担持してなる三元触
媒を用いたこと以外は実施例1と同様にして排ガス浄化
装置を構成し、同様に耐久試験後の浄化率を測定した。
結果を表1に示す。この三元触媒2の試験例と同様に測
定されたストイキ保持時間は 0.9秒であった。
(Example 5) A three-way catalyst comprising 5.0 g of Pd per liter of a honeycomb substrate in the lower layer 21 and 0.5 g of Rh per liter of the honeycomb substrate in the upper layer 22 was used. Except for this, an exhaust gas purifying apparatus was constructed in the same manner as in Example 1, and the purification rate after the durability test was measured in the same manner.
Table 1 shows the results. The stoichiometric retention time measured in the same manner as in the test example of the three-way catalyst 2 was 0.9 seconds.

【0046】(実施例6)下層21をハニカム基材の1リ
ットル当たり 120g形成し、この下層21にハニカム基材
の1リットル当たり 3.0gのPdを担持してなる三元触媒
を用いたこと以外は実施例1と同様にして排ガス浄化装
置を構成し、同様に耐久試験後の浄化率を測定した。結
果を表1に示す。この三元触媒2の試験例と同様に測定
されたストイキ保持時間は 0.9秒であった。
Example 6 Except that a three-way catalyst comprising 120 g of the lower layer 21 per liter of the honeycomb base material and carrying 3.0 g of Pd per liter of the honeycomb base material on the lower layer 21 was used. In the same manner as in Example 1, an exhaust gas purification device was constructed, and the purification rate after the durability test was measured in the same manner. Table 1 shows the results. The stoichiometric retention time measured in the same manner as in the test example of the three-way catalyst 2 was 0.9 seconds.

【0047】(比較例1)下層21をγ-Al2O3とCeO2とか
ら構成し、ハニカム基材の1リットル当たりγ-Al2O3
びCeO2がそれぞれ80gとなるように形成した。そしてこ
の下層21にPdをハニカム基材の1リットル当たり 5.0g
担持し、実施例1と同様の上層22のRhをハニカム基材の
1リットル当たり 0.5g担持してなる三元触媒を用いた
こと以外は実施例1と同様にして排ガス浄化装置を構成
し、同様に耐久試験後の浄化率を測定した。結果を表1
に示す。この三元触媒2の試験例と同様に測定されたス
トイキ保持時間は 1.1秒であった。
[0047] consist of (Comparative Example 1) The lower layer 21 γ-Al 2 O 3 and CeO 2 Prefecture, per liter of γ-Al 2 O 3 and CeO 2 of the honeycomb base material is formed so as to 80g, respectively . Then, 5.0 g of Pd was added to the lower layer 21 per liter of the honeycomb substrate.
An exhaust gas purifying apparatus was configured in the same manner as in Example 1, except that a three-way catalyst was used, which supported 0.5 g of Rh of the upper layer 22 per liter of the honeycomb substrate as in Example 1. Similarly, the purification rate after the durability test was measured. Table 1 shows the results
Shown in The stoichiometric retention time measured in the same manner as in the test example of the three-way catalyst 2 was 1.1 seconds.

【0048】(比較例2)ハニカム基材の1リットル当
たりγ-Al2O3が40g、CeO2が 120gとなるように下層21
を形成したこと以外は比較例1と同様にして排ガス浄化
装置を構成し、実施例1と同様に耐久試験後の浄化率を
測定した。結果を表1に示す。この三元触媒2の試験例
と同様に測定されたストイキ保持時間は 2.0秒であっ
た。
(Comparative Example 2) The lower layer 21 was prepared so that γ-Al 2 O 3 was 40 g and CeO 2 was 120 g per liter of the honeycomb substrate.
An exhaust gas purifying apparatus was constructed in the same manner as in Comparative Example 1 except that the sample was formed, and the purification rate after the durability test was measured in the same manner as in Example 1. Table 1 shows the results. The stoichiometric retention time measured in the same manner as in the test example of the three-way catalyst 2 was 2.0 seconds.

【0049】(評価)(Evaluation)

【0050】[0050]

【表1】 [Table 1]

【0051】表1より、各実施例の排ガス浄化装置によ
れば、HC,CO及びNOx をそれぞれ高い浄化率でバランス
よく浄化することができることがわかる。これは、用い
た三元触媒のストイキ保持時間を1秒以下としたことに
よる効果であることが明らかである。
[0051] From Table 1, according to the exhaust gas purifying apparatus of each embodiment, it is understood that it is possible to purify a balanced HC, and CO and NO x at each high purification rate. This is apparently due to the effect of reducing the stoichiometric retention time of the used three-way catalyst to 1 second or less.

【0052】[0052]

【発明の効果】すなわち本発明の排ガス浄化装置によれ
ば、リッチスパイクを浅く投入した場合であってもHCを
有効にNOx の還元に利用することができ、燃費を悪化さ
せることなくNOx を効率よく浄化することができる。
According to the exhaust gas purifying apparatus of the Effects of the Invention] The present invention, even when the shallow put the rich spike can be utilized for the reduction of effective NO x and HC, NO x without deteriorating the fuel economy Can be efficiently purified.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の排ガス浄化装置の構成を示す説明図で
ある。
FIG. 1 is an explanatory diagram showing a configuration of an exhaust gas purifying apparatus of the present invention.

【図2】本発明の一実施例に用いた三元触媒の構成を示
す説明断面図である。
FIG. 2 is an explanatory sectional view showing a configuration of a three-way catalyst used in one embodiment of the present invention.

【図3】ストイキ保持時間の測定方法の説明図である。FIG. 3 is an explanatory diagram of a method for measuring a stoichiometric retention time.

【図4】ストイキ保持時間とNOx 浄化率との関係を示す
グラフである。
FIG. 4 is a graph showing a relationship between a stoichiometric retention time and a NO x purification rate.

【符号の説明】[Explanation of symbols]

1:エンジン 2:三元触媒 3:NOx
蔵還元型触媒 20:ハニカム基材 21:下層 22:上層
1: engine 2: three-way catalyst 3: NO x storage reduction catalyst 20: honeycomb substrate 21: lower layer 22: upper layer

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) B01J 23/58 ZAB F01N 3/08 A F01N 3/08 3/10 A 3/10 3/20 H 3/20 3/24 E 3/24 U F02D 41/04 305A F02D 41/04 305 B01D 53/36 101B 104A Fターム(参考) 3G091 AA02 AA12 AA13 AA17 AA24 AA28 AB03 AB06 AB09 BA03 BA14 BA15 BA19 BA39 CB02 DA01 DA02 DA03 DB10 EA30 EA34 FA02 FA04 FA12 FA13 FB02 FB10 FB11 FB12 FC07 GA06 GA19 GA20 GB01W GB01X GB02W GB02X GB03W GB03X GB04W GB04X GB05W GB06W GB10X GB16X GB17X HA08 HA18 HA47 3G301 HA04 HA15 JA25 JA26 LB04 MA01 NE13 NE14 NE15 NE16 NE23 PD03A 4D048 AA06 AA13 AA18 AB02 AB05 BA03Y BA07Y BA08Y BA30X BA30Y BA31X BA31Y BA33X BA33Y BA41Y BB02 CC31 4G066 AA13B AA16B AA28B BA05 BA07 CA28 DA02 GA01 GA06 4G069 AA03 AA15 BA01B BA04B BA05B BA13B BC70A BC70B BC72A BC72B BC75A BC75B CA03 CA08 CA09 EA18 EC22Y FB79 Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat II (reference) B01J 23/58 ZAB F01N 3/08 A F01N 3/08 3/10 A 3/10 3/20 H 3/20 3 / 24 E 3/24 U F02D 41/04 305A F02D 41/04 305 B01D 53/36 101B 104A F-term (reference) 3G091 AA02 AA12 AA13 AA17 AA24 AA28 AB03 AB06 AB09 BA03 BA14 BA15 BA19 BA39 CB02 DA01 DA02 DA03 DB10 FA03 FA04 FA12 FA13 FB02 FB10 FB11 FB12 FC07 GA06 GA19 GA20 GB01W GB01X GB02W GB02X GB03W GB03X GB04W GB04X GB05W GB06W GB10X GB16X GB17X HA08 HA18 HA47 3G301 HA04 HA15 JA25 JA26 LB04 MA01 NE13 NE03 BA03 A03 A03 A03 A03 A03 A03 A03 BA30Y BA31X BA31Y BA33X BA33Y BA41Y BB02 CC31 4G066 AA13B AA16B AA28B BA05 BA07 CA28 DA02 GA01 GA06 4G069 AA03 AA15 BA01B BA04B BA05B BA13B BC70A BC70B BC72A BC72B BC75A BC75B CA03 CA08 CA09 EA18

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 排ガス流の上流側に三元触媒を配置し、
該三元触媒の下流側にNOx 吸蔵還元型触媒を配置してな
る排ガス浄化装置において、該三元触媒のストイキ保持
時間を1秒以下としたことを特徴とする排ガス浄化装
置。ここにストイキ保持時間とは、排ガス中の還元成分
に対する酸化成分のモル比が14.6を超えるリーン雰囲気
と該モル比が14.6以下のリッチ雰囲気がそれぞれ交互に
繰り返される条件の排ガスが前記三元触媒に流入した場
合に、前記三元触媒を通過した後の排ガスの雰囲気が、
リッチ雰囲気からストイキ雰囲気となった時点から最大
リーン雰囲気の50%のリーン雰囲気となるまでの時間を
いう。
Claims: 1. A three-way catalyst is arranged upstream of an exhaust gas stream,
In the exhaust gas purifying apparatus formed by arranging a NO x storage-and-reduction type catalyst on the downstream side of the three-way catalyst, the exhaust gas purifying apparatus is characterized in that the stoichiometric retention time of the three-way catalyst and less than one second. Here, the stoichiometric holding time means that the three-way catalyst has a condition in which a lean atmosphere in which the molar ratio of the oxidizing component to the reducing component in the exhaust gas exceeds 14.6 and a rich atmosphere in which the molar ratio is 14.6 or less are alternately repeated, respectively. When flowing, the atmosphere of the exhaust gas after passing through the three-way catalyst,
This is the time from when the rich atmosphere changes to the stoichiometric atmosphere until the atmosphere becomes 50% of the maximum lean atmosphere.
【請求項2】 前記三元触媒には酸素吸蔵放出材を含ま
ないことを特徴とする請求項1に記載の排ガス浄化装
置。
2. The exhaust gas purifying apparatus according to claim 1, wherein the three-way catalyst does not contain an oxygen storage / release material.
【請求項3】 前記三元触媒にはPdを含まずRh及びPtを
含むことを特徴とする請求項1に記載の排ガス浄化装
置。
3. The exhaust gas purifying apparatus according to claim 1, wherein the three-way catalyst does not contain Pd but contains Rh and Pt.
JP31084899A 1999-11-01 1999-11-01 Exhaust gas purification device Expired - Lifetime JP3925013B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31084899A JP3925013B2 (en) 1999-11-01 1999-11-01 Exhaust gas purification device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31084899A JP3925013B2 (en) 1999-11-01 1999-11-01 Exhaust gas purification device

Publications (2)

Publication Number Publication Date
JP2001132440A true JP2001132440A (en) 2001-05-15
JP3925013B2 JP3925013B2 (en) 2007-06-06

Family

ID=18010129

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31084899A Expired - Lifetime JP3925013B2 (en) 1999-11-01 1999-11-01 Exhaust gas purification device

Country Status (1)

Country Link
JP (1) JP3925013B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7246486B2 (en) 2003-04-30 2007-07-24 Hitachi, Ltd. Combination of selected opioids with other active substances for use in the therapy of urinary incontinence
CN112879127A (en) * 2019-11-29 2021-06-01 丰田自动车株式会社 Exhaust gas purification system
US11480091B2 (en) 2021-01-19 2022-10-25 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7246486B2 (en) 2003-04-30 2007-07-24 Hitachi, Ltd. Combination of selected opioids with other active substances for use in the therapy of urinary incontinence
CN112879127A (en) * 2019-11-29 2021-06-01 丰田自动车株式会社 Exhaust gas purification system
US11365661B2 (en) 2019-11-29 2022-06-21 Toyota Jtdosha Kabushiki Katsha Exhaust gas purification system
CN112879127B (en) * 2019-11-29 2023-02-17 丰田自动车株式会社 Exhaust gas purification system
US11480091B2 (en) 2021-01-19 2022-10-25 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification system
JP7420087B2 (en) 2021-01-19 2024-01-23 トヨタ自動車株式会社 Exhaust gas purification system

Also Published As

Publication number Publication date
JP3925013B2 (en) 2007-06-06

Similar Documents

Publication Publication Date Title
JP3827838B2 (en) Exhaust gas purification catalyst
JP2004074138A (en) Catalyst for exhaust gas purification, and exhaust gas purification method
JP3685463B2 (en) Exhaust gas purification catalyst
JP3789231B2 (en) Exhaust gas purification catalyst
JP2002045702A (en) Catalyst for purifying exhaust gas
JP2001300262A (en) Exhaust gas purifying device and catalyst for purifying exhaust gas
JPH09313938A (en) Catalyst for cleaning exhaust gas
JPH09248462A (en) Exhaust gas-purifying catalyst
JPH11169670A (en) Nox occlusion-reduction type ternary catalyst and apparatus for cleaning exhaust gas using same
JPH10128114A (en) Catalyst for purifying exhaust gas
JP2005087963A (en) Exhaust gas cleaning apparatus
JP3925013B2 (en) Exhaust gas purification device
JP5328133B2 (en) Exhaust gas purification catalyst
JP2004216224A (en) Nox occlusion reduction type catalyst
JPH08141394A (en) Catalyst for purifying exhaust gas
JP3775080B2 (en) Exhaust gas purification catalyst
JP3664201B2 (en) Exhaust gas purification catalyst
JPH09299795A (en) Catalyst for purification of exhaust gas
JP2002168117A (en) Exhaust emission control system
JPH0857315A (en) Catalyst for purification of exhaust gas
JP4507413B2 (en) Exhaust gas purification catalyst
JP3925015B2 (en) Internal combustion engine exhaust gas purification device, purification method, and purification catalyst
JP3338889B2 (en) Exhaust gas purification device
JP3826476B2 (en) Exhaust gas purification catalyst and method for producing the same
JPH11247654A (en) Exhaust emission control device using nox stored and reduced type three-way catalyst

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051102

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060124

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060821

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061017

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20061025

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070219

R151 Written notification of patent or utility model registration

Ref document number: 3925013

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110309

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110309

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120309

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120309

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130309

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130309

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140309

Year of fee payment: 7

EXPY Cancellation because of completion of term